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Abstract: The goal of this paper is to establish a relation between characteristic polynomi-
als of N × N GUE random matrices H as N → ∞, and Gaussian processes with logarithmic
correlations. We introduce a regularized version of fractional Brownian motion with zero Hurst
index, which is a Gaussian process with stationary increments and logarithmic increment struc-
ture. Then we prove that this process appears as a limit of DN (z) = − log | det(H − zI)| on
mesoscopic scales as N → ∞. By employing a Fourier integral representation, we use this to
prove a continuous analogue of a result by Diaconis and Shahshahani [15]. On the macroscopic
scale, DN (x) gives rise to yet another type of Gaussian process with logarithmic correlations.
We give an explicit construction of the latter in terms of a Chebyshev-Fourier random series.

1. Introduction

Suppose that H is a random Hermitian matrix of size N × N taken from the Gaussian Unitary
Ensemble (GUE), with ensemble distribution given by the measure

Const. exp
[
−2NTr(H2)

] N∏
j=1

dHjj
∏

1≤j<k≤N

dReHjkd ImHjk. (1.1)

It is well known that in the limit of infinite matrix dimensions N → ∞, the distribution of the
eigenvalues of H is supported on the interval [−1, 1] and has density 2

π

√
1− x2 there. This is known

as Wigner’s semicircle law, see e.g. [42] and [1] for precise statements. In this paper we are concerned
with the random process in x defined by the logarithm

DN (x) = − log |det(H− xI)| (1.2)

of the characteristic polynomial of H in the limit N → ∞, with x varying in (−1, 1). The quantity

DN (x) is a particular case of linear eigenvalue statistics XN (f) =
∑N
k=1 f(xk), where x1, . . . , xN are

the eigenvalues ofH. It is well known that for suitably regular test functions f ,XN (f) is asymptotically
normal as N → ∞ with variance σ2(f) = 1

4

∑∞
k=1 kck(f)2, where ck(f) are the Chebyshev-Fourier

coefficients:

ck(f) =
2

π

∫ 1

−1

f(u)Tk(u)√
1− u2

du, Tk(u) = cos(k arccos(u)). (1.3)

In fact, the asymptotic normality of XN (f) for regular f has been established for a variety of random
matrix ensembles, see for example [31, 38, 42] and references therein.

Since x lies in the bulk of the eigenvalue distribution, our test function, f(u) = log |u − x| is
unbounded. Its Chebyshev-Fourier coefficients are proportional to 1/k, so that σ2(f) = ∞ and it
is then natural to consider normalizing DN (x) before taking the limit N → ∞. Indeed, for any
fixed x ∈ (−1, 1) the variance of DN (x) grows with N like 1

2 logN , and for any finite number of

distinct points x1, . . . , xm in (−1, 1) the random vector (DN (x1), . . . , DN (xm))/( 1
2 logN)1/2 converges
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in distribution, after centering, to a collection of m independent standard Gaussians as N →∞. This
can be inferred from the asymptotic identity due to Krasovsky [35]:

E
{
e−

∑m
k=1 αkDN (xk)

}
=

m∏
k=1

[
C
(αk

2

)
(1− x2

k)α
2
k/8Nα2

k/4eαkN(2x2
k−1−2 log(2))/2

]
×

∏
1≤ν<µ≤m

(2|xν − xµ|)−αναµ/2
(

1 +O

(
logN

N

))
,

(1.4)

where C(α) = 22α2

G(α+ 1)2/G(2α+ 1) and G(z) is the Barnes G-function. The most salient feature
of the asymptotics in (1.4) is the product of differences on the second line which, when rewritten in
the form

exp
[
−

∑
1≤ν<µ≤m

αναµ
2

log |2(xν − xµ)|
]
, (1.5)

is suggestive of the existence of a logarithmic covariance structure in the Gaussian process DN (x).
However, this term is of sub-leading order to the variance term. Clearly then, the normalization of
the process (1.2) comes at a price, because the non-trivial covariance structure implied by (1.5) is too
small to survive the limit N →∞.

This motivates the following question. How can we ‘regularize’ the process (1.2) so that it has a well-
defined limit that ‘feels’ the covariance structure implied by (1.5)? Hughes, Keating and O’Connell
[30] answered this question in the context of the Circular Unitary Ensemble (Haar unitary matrices).
Employing convergence in functional spaces instead of point-wise convergence, they proved that the
logarithm VN (θ) = −2 log |pN (θ)| of the characteristic polynomial pN (θ) = det

(
I − U e−iθ

)
of Haar

unitary matrices U converges as N →∞ to the stochastic process represented by the Fourier series

V (θ) =

∞∑
n=1

1√
n

(
vne

inθ + vne
−inθ) . (1.6)

Here, the coefficients vn, vn are independent standard complex Gaussians, E{vnvn} = 1, and the
convergence of the series is understood in the sense of distributions in a suitable Sobolev space. This
process has a logarithmic singularity in the covariance structure: E{V (θ1)V (θ2)} = −2 log |eiθ1 − eiθ2 | .

At this point it is appropriate to mention that random processes and fields with logarithmic covari-
ance structure appear with astonishing regularity in physics and also engineering applications, see e.g.
[12] and more recently [26]. Those objects are intimately related to multifractal cascades emerging in
turbulence, and from that angle attracted considerable mathematical interest within the last decade,
see, e.g., [3] and [4]. In fact, closely related mathematical objects appear in the so-called ”multiplicative
chaos” construction going back to Kahane’s work [32], also see [44] and references therein for recent re-
search in that direction which was motivated, in particular, by Quantum Gravity applications. In two
spatial dimensions, the most famous example of the random field of that type is the two-dimensional
Gaussian Free Field [48]. A regularized version of this field appeared in a non-trivial way in the work
of Rider and Virág [45], who showed that it describes the limiting law of the log-modulus of charac-
teristic polynomials in the Ginibre ensemble. The Gaussian Free Field also appeared more recently as
the limiting distribution of the eigenvalue counting function in general β-Jacobi ensembles and their
principal subminors [7]. As for the one-dimensional processes with logarithmic correlations, they are
known in natural sciences under the general name of 1/f noises (see Section 2 in [26] for some general
references) since, in the spectral representation, the Fourier transform of the covariance or structure
function, interpreted as a ”power” of the signal, is inversely proportional to the Fourier variable (i.e.
the ”frequency” f). The random process V (θ) is, arguably, the simplest time-periodic stationary ver-
sion of 1/f noise. It was found to play an important role in the construction of conformally invariant
planar random curves [2] and statistical mechanics of disordered systems [24]. We note in passing
that from a different angle, discrete sequences with 1/f properties were considered heuristically in the
physics literature, see e.g. [20] and [39].
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The motivation for the work in [30] came from number theory, as for large N , pN (θ) provides a
good model for describing statistics of the values of the Riemann-zeta function high up the critical line
[33]. The established relation of pN (θ) to V (θ) turned out to be fruitful. It allowed one to put forward
nontrivial conjectures about statistics of extreme and high values of characteristic polynomials of Haar
unitary matrices emerging as N →∞, and eventually for the Riemann-zeta function [23, 25].

The main goal of this paper is to investigate further the relation between 1/f -noises and the
characteristic polynomials of random matrices in the limit N →∞. Significantly extending the picture
found in [30] we will show that the limiting process depends on the spectral scale at which one allows
the argument x of the characteristic polynomial det(H − xI) to vary. To this end, let us remind the
reader that, as is well known in random matrix theory, see e.g., [42], there exist three natural scales
in the spectra of large random matrices. One, known as the global, or macroscopic scale is set for
the GUE by the width of the support of the semicircle law and, in the normalization chosen in the
present paper, see (1.1), remains of the order of unity as N → ∞. Second, known as the local, or
microscopic scale is set by the typical separation between neighbouring eigenvalues and is, in the
chosen normalization, of order 1/N for large N . Finally, the third scale which is called mesoscopic can
be defined as intermediate between those two.

Deferring precise statements to the next section, now we will outline the two instances of 1/f
noise that emerge in the limit N →∞ for the GUE matrices. On the macroscopic scale, by adapting
the arguments of [30] to our setting, we prove that, as N → ∞, the process {DN (x) : x ∈ (−1, 1)}
converges, after centering, to the (aperiodic) 1/f noise given by the random Chebyshev-Fourier series

F (x) =

∞∑
n=1

1√
n
an Tn(x), x ∈ (−1, 1), (1.7)

where an, n = 1, 2 . . . is a sequence of independent standard real Gaussians. As with the Fourier
series in (1.6), the convergence in (1.7) has to be understood in the sense of distributions in a suitable
Sobolev space. The covariance structure associated with the generalized process (1.7) is given by an
integral operator with kernel E{F (x)F (y)} = − 1

2 log(2|x− y|).
The problem of finding a suitable model to describe the statistical properties of the characteristic

polynomials of random matrices on the mesoscopic rather than macroscopic scale turned out to be
much more challenging and is the main focus of the present paper. Our main finding is the emergence of
fractional Brownian motion with Hurst index H = 0 in this context. To describe the latter, we recall
that the conventional fractional Brownian motion (fBm) is a zero-mean Gaussian process BH(t),
BH(0) = 0, with stationary increments and the covariance structure given by

E
{

[BH(t1)−BH(t2)]2
}

= σ2 |t1 − t2|2H , (1.8)

where H ∈ (0, 1) and σ2 > 0 are two parameters. Although first introduced by Kolmogorov in 1940,
fBm became very popular after the seminal work of Mandelbrot and van Ness [40] and proved to be
a very rich mathematical object of high utility, see e.g. articles by M. Taqqu and by G. Molchan in
the book [43] for an introduction and further references and applications. The utility of fBm is related

to its properties of being self-similar, i.e. {BH(at) : t ∈ R} d
= aH{BH(t) : t ∈ R} for any a > 0, and

having stationary increments. These two properties characterize the corresponding Gaussian process
uniquely, see, e.g., [43]. In the context of self-similarity parameter H is also known as the Hurst index
H or the scaling exponent.

For H = 1/2, the fBm B1/2(t) is proportional to the usual Brownian motion (Wiener process).
We will denote the latter simply as B(t), with B(dt) being the corresponding white noise measure,
E {B(dt)} = 0 and E {B(dt)B(dt′)} = δ(t − t′)dtdt′, where we have chosen the normalization corre-
sponding to the choice of σ = 1 in (1.8).

It is apparent from (1.8) that the naive limit H = 0 of BH(t) is not well-defined. To overcome this
problem, the first author proposed some time ago to regularize the fBm in the limit H → 0 as follows.
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Consider the stochastic Fourier integral

B
(η)
H (t) =

1

2
√

2

∫ ∞
0

e−ηs

s1/2+H

[(
e−its − 1

)
Bc(ds) +

(
eits − 1

)
Bc(ds)

]
, η ≥ 0 , (1.9)

where Bc(t) = BR(t)+iBI(t) and BR(t) and BI(t) are two independent copies of the Brownian motion.
For H ∈ (0, 1) the integral in (1.9) is well defined for all η ≥ 0 and represents a zero-mean Gaussian

process with stationary increments and covariance E
{

[B
(η)
H (t1)−B(η)

H (t2)]2
}

= 2φ
(η)
H (t1 − t2), where

φ
(η)
H (t) =

1

2

∫ ∞
0

e−2ηs

s1+2H
(1− cos (ts)) ds

=
1

4H
Γ(1− 2H)

[
(4η2 + t2)H cos

(
2H arctan

t

2η

)
− (2η)2H

]
.

(1.10)

For fixed H ∈ (0, 1), limη→0 φ
(η)
H (t) = 1

4HΓ(1 − 2H) cos(πH)t2H , where Γ(z) is the Euler gamma-

function. Hence B
(0)
H (t) is fBm. This also follows from the so-called harmonizable representation of the

fBm, which is precisely the integral on r.h.s. in (1.9) when η = 0, see Proposition 9.2 in [43], or Eq.
(7.16) in [46]. On the other hand, for any fixed η > 0, the limit of H = 0 in (1.9) is well defined, and

lim
H↓0

φ
(η)
H (t) =

1

4
log

(
t2

4η2
+ 1

)
. (1.11)

We consider the resulting limiting process,

B
(η)
0 (τ) =

1

2
√

2

∫ ∞
0

e−ηs√
s

{
[e−iτs − 1]Bc(ds) + [eiτs − 1]Bc(ds)

}
(1.12)

as the most natural extension of the standard fBm to the case of zero Hurst index H = 0. This process
can also be defined axiomatically.

Definition. The regularized fBm with Hurst index H = 0 is a real-valued stochastic process {B(η)
0 (τ), τ ∈

R} with the following properties

(i) B
(η)
0 (t) is a Gaussian process with mean 0 and B

(η)
0 (0) = 0,

(ii) Var{B(η)
0 (t)} = 1

2 log
(
t2

4η2 + 1
)

for some η > 0,

(iii) B
(η)
0 (t) has stationary increments.

The increment structure of B
(η)
0 (t) depends logarithmically on the time separation:

E{[B(η)
0 (t1)−B(η)

0 (t2)]2} =
1

2
log

[
(t1 − t2)2

4η2
+ 1

]
, (1.13)

and, hence the regularized fBm with H = 0 defines a bona fide version of the 1/f noise with stationary

increments1. Therefore, the stochastic process B
(η)
0 (τ) is of interest in its own right and deserves further

study. We do not pursue this direction in the present paper except for noting for future reference that
the regularized fBm has continuous sample paths.

Note. After posting the initial version of this paper to the arXiv, we learnt of the work [52], where a

regularization of fBm essentially equivalent to our B
(η)
H (t) was introduced for H > 0. Note that neither

the limit H → 0 nor the connection with random matrices were identified or investigated there.

1Compare (1.12) with a stationary version of fBm with H = 0 proposed in Eq. (16) of [47]
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2. Main results

2.1. Macroscopic regime

We start with the simpler case of the macroscopic scale where we extend the analogous construction
of [30] from unitary to Hermitian matrices. The relation between characteristic polynomials of Haar
unitary matrices and the random Fourier series in (1.6) can be understood by expanding log |pN (θ)|
into the Fourier series

VN (θ) = −2 log |det(I − Ue−iθ)| =
∞∑
n=1

1√
n

(
vn,Ne

inθ + vn,Ne
−inθ) , (2.1)

where vn,N = 1√
n

Tr (U−n). Now, the coefficients vn,N converge in distribution as N →∞ to indepen-

dent standard complex Gaussians. This is a result due to Diaconis and Shahshahani [15] from which
it can be inferred [30] that (1.6) represents the limit of VN (θ) in a suitable functional space.

An analogue of the Diaconis-Shahshahani result for the N × N GUE matrices H was obtained
by Johansson [31]. He proved that for any fixed m the vector

(
2√
n

TrTn(H)
)m
n=1

, with Tn(x) =

cos(n arccos(x)) being Chebyshev polynomials, converges, after centering, to a collection of indepen-
dent standard Gaussians in the limit N →∞. In view of the handy identity

− log(2|x− y|) =

∞∑
n=1

2

n
Tn(x)Tn(y), x, y ∈ [−1, 1], x 6= y , (2.2)

the desired analogue of Fourier expansion is an expansion in terms of Chebyshev polynomials,

DN (x) = − log |det(H− xI)| =
∞∑
n=1

an,N√
n
Tn(x) +N log 2 +RN (x), an,N =

2√
n

TrTn(H), (2.3)

where the error term RN (x) is due to the eigenvalues of H outside the support [−1, 1] of the semicircle
law. Since the probability of finding such an eigenvalue vanishes fast as N → ∞ it can be shown
that the error term does not contribute in the limit (see the proof of Proposition 5.2 for a more
precise statement). One then concludes that the natural limit of DN (x), after centering, is given by
the random Chebyshev-Fourier series (1.7).

We will make this picture mathematically rigorous by working in a suitable functional space. First,
let us assign a formal meaning to the series in (1.7) and the corresponding stochastic process. Consider
the space L2 = L2((−1, 1), µ(dx)) with µ(dx) = dx/

√
1− x2. The Chebyshev polynomials form an

orthogonal basis in this space, with cn(f) (1.3) being the coefficients of the corresponding Chebyshev-
Fourier series. For a > 0, consider the space V (a) of functions f in L2 such that

∑∞
n=0 |cn(f)|2(1 +

n2)a <∞. This is a Hilbert space with the inner product

〈f, g〉a =

∞∑
n=0

cn(f)cn(g)(1 + n2)a .

Its dual, V (−a), is the Hilbert space of generalised functions F (x) =
∑∞
n=0 cnTn(x) with ||F ||2−a =∑∞

n=0 |cn|2(1 + n2)−a < ∞. Setting here c0 = 0 and cn = an/
√
n with an, n ≥ 1, being independent

standard Gaussians, one obtains F (x) of (1.7). In such case ||F ||2−a is finite with probability one.
This defines F (x) in (1.7) as a generalised random function (stochastic process) which acts on a test
function f ∈ V (a) in the usual way,

F [f ] =

∞∑
n=1

an√
n
cn(f) = 〈f, F 〉0 .
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This process is Gaussian with zero mean. Its covariance, E{F [f ]F [g]}, is given by

E{F [f ]F [g]} =

∞∑
n=1

1

n

∫ 1

−1

∫ 1

−1

f(x)g(y)Tn(x)Tn(y) µ(dx)µ(dy) . (2.4)

It can be shown, see e.g. Lemma 3.1 in [27], that the order of summation and integration in (2.4) can
be interchanged, and, in view of (2.2), one obtains the covariance operator in closed form:

E{F [f ]F [g]} = −
∫ 1

−1

∫ 1

−1

1

2
log(2|x− y|)f(x)g(y) µ(dx)µ(dy), f, g ∈ V (a) .

We are now in a position to formulate our result. Consider the centered process

D̃N (x) = − log |det(H− xI)|+ E{log |det(H− xI)|}, x ∈ (−1, 1) . (2.5)

Since log |x| is locally integrable, D̃N ∈ V (−a) for every N .

Theorem 2.1. For every a > 1/2, D̃N (x)⇒ F (x) in V (−a) as N →∞, where F (x) given by (1.7).

Our proof of this theorem in Section 5 involves solving at least two technical problems that did
not arise in [30]. First, when proving convergence of the finite-dimensional distributions of D̃N (x),
we are faced with a test function possessing square-root singularities at the edges of the spectrum,
arising from the Chebyshev-Fourier coefficients of the logarithm outside [−1, 1], see Lemma 5.1. Most
bounds and concentration inequalities for linear statistics rely on the test function having at least
C1(R) regularity, see e.g. [42, 38, 1], while ours is only C1/2(R) (even the recent extension [50] of such
bounds to test functions from the C1/2+ε(R) class does not suffice here). Making use of fine asymptotics
of orthogonal polynomials and Airy functions, we prove that this linear statistic converges to zero, a
problem that did not appear in [30].

Secondly, when proving tightness of (D̃N (x))∞N=1 we need additional control over the variance of
Tr(Tn(H)) for both large N and large n. In [30], the analogous quantity, namely Var{Tr(U−n)}, was
known explicitly due to exact results for the unitary group obtained by Diaconis and Shashahani
[15]. In contrast, for the GUE case, Var{Tr(Tn(H))} and related quantities need to be estimated
asymptotically as N →∞, uniformly in the degree n of the Chebyshev polynomial.

2.2. Mesoscopic regime

Now we proceed to our next task of extending the relation between characteristic polynomials of
random matrices and 1/f -noises to the mesoscopic scale. In this case, instead of working directly with
a generalised stochastic process, we find it more convenient to work with their regularized versions.

To formulate our results more precisely, fix a parameter η > 0 and consider the following sequence

of stochastic processes {W (η)
N (τ) : τ ∈ R}, N = 1, 2, . . .:

W
(η)
N (τ) = − log

∣∣∣∣det

[
H−

(
x0 −

τ

dN

)
I − iη

dN
I

] ∣∣∣∣+ log

∣∣∣∣det

[
H− x0I −

iη

dN
I

] ∣∣∣∣ . (2.6)

Note that W
(η)
N (τ) also depends implicitly on three additional parameters: η > 0, x0 ∈ (−1, 1) and

dN > 0; their importance is explained below, though for ease of notation we will not emphasize

the dependence on x0 when referring to W
(η)
N (τ). We use the parameter dN > 0 to zoom into the

appropriate spectral scale of H centered around a point x0 inside the bulk of the limiting spectrum
of the GUE matrices H. On the macroscopic scale dN = 1, on the microscopic scale dN = N whilst
on the mesoscopic scale dN is in between these two extremes, 1 � dN � N . The parameter η is an
arbitrary but fixed positive real number, introduced to regularize the logarithmic singularity at zero.
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Our main result shows that in the mesoscopic limiting regime where

dN →∞ and dN = o(N/ logN) as N →∞ (2.7)

the stochastic process W
(η)
N (τ) converges, after centering, to B

(η)
0 (τ); the regularized fractional Brow-

nian motion with Hurst index H = 0. For finite-dimensional distributions this is the content of the
following Theorem. Let

W̃
(η)
N (τ) = W

(η)
N (τ)− E{W (η)

N (τ)} .

Theorem 2.2. Consider GUE random matrices H in (1.1). Assume that the reference point x0 is in
the bulk of the limiting spectrum of H, x0 ∈ (−1, 1), and the scaling factor dN satisfies (2.7). Then
for any fixed η > 0 and any finite number of times (τ1, . . . , τm) ∈ Rm we have the convergence in
distribution

(W̃
(η)
N (τ1), . . . , W̃

(η)
N (τm))

d
=⇒ (B

(η)
0 (τ1), . . . , B

(η)
0 (τm)), as N →∞. (2.8)

We prove this theorem in Section 3 by adopting Krasovsky’s derivation of identity (1.4) to the
mesoscopic scale. The characteristic function of the random vector on the l.h.s. in (2.8) is given
by a Hankel determinant whose symbol possesses Fisher-Hartwig singularities. The Riemann-Hilbert
problem provides a powerful tool to obtain asymptotics of such Hankel determinants [14, 37, 36, 35].
On the mesoscopic scale the Fisher-Hartwig singularities (these are located at points x0+(τk+iη)/dN )
are all at distance of order 1/dN from the point x0 ∈ (−1, 1). Because of this, the system of contours
defining the Riemann-Hilbert problem (inside of which the symbol is analytic) close onto the real line
as N →∞. In this regime, the estimates become more delicate. In contrast, in the macroscopic regime
the Fisher-Hartwig singularities are real and spaced out and one does not need to consider the case
of shrinking contours.

Here it is appropriate to mention that linear eigenvalue statistics on the mesoscopic scale are
more challenging to study compared to the macroscopic scale. Known results are sparse and mostly
limited to regular test functions with compact support, see [9, 10, 49] and also more recent works
[18, 19, 16, 8, 11]. One reason is that the majority of concentration inequalities involving derivatives,
such as e.g. Lipschitz norm [1] or the Poincaré inequality [1, 42], that proved to be so useful on the
macroscopic scale, get a factor of dN in the mesoscopic case and, hence, no longer apply without
appropriate modification. In this context, the Riemann-Hilbert problem proves to be a powerful tool
for estimating the error terms down to very small scales (2.7).

One can extend Theorem 2.2 to an infinite-dimensional setting with a little bit more work. Let
L2[a, b] denote the Hilbert space of square integrable functions on [a, b] with the inner product

〈f, g〉2 =

∫ b

a

f(τ)g(τ) dτ. (2.9)

Since the sample paths of W̃
(η)
N are continuous, ‖W̃ (η)

N ‖2 <∞. Therefore, both W
(η)
N and its N →∞

limit B
(η)
0 can be viewed as random elements in the space L2[a, b]. We have,

Theorem 2.3. Let −∞ < a < b <∞. Then on mesoscopic scales (2.7), the process W̃
(η)
N converges

weakly (in the sense of probability law) to B
(η)
0 in L2[a, b] as N → ∞. Furthermore, for every h ∈

L2[a, b], we have the convergence in distribution∫ b

a

h(τ)W̃
(η)
N (τ) dτ

d
=⇒

∫ b

a

h(τ)B
(η)
0 (τ) dτ, N →∞ . (2.10)

This result follows from Theorem 3 in [28], which allows one to deduce weak convergence for general
processes in L2[a, b] under the hypothesis that

(i) The finite-dimensional distributions of W̃
(η)
N converge to those of B

(η)
0 as N →∞.
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(ii) For some C > 0, the bound E{|W̃ (η)
N (τ)|2} ≤ C holds for all N and τ ∈ [a, b] and

lim
N→∞

E{|W̃ (η)
N (τ)|2} = E{|B(η)

0 (τ)|2}. (2.11)

Note that item (i) is a restatement of Theorem 2.2, while item (ii) will be shown to follow from our
proof of Theorem 2.2.

Having established the relation between characteristic polynomials of GUE matrices and 1/f noise
on the mesoscopic scale, let us revisit the series expansions of the macroscopic scale discussed at length

in Sec. 2.1. Instead of expanding the process W
(η)
N (τ) in a Chebyshev-Fourier series and applying the

Diaconis-Shahshahani result, in the mesoscopic regime it comes in handy to expand W
(η)
N (τ) as a

Fourier integral.

To this end, we now provide a suitable Fourier-integral representation for W
(η)
N (τ). Such a repre-

sentation can be derived by making use of the identity (see, e.g., Eq. 7.89 in [14])

1

2
log

(
t2

ε2
+ 1

)
=

∫ ∞
0

e−εs

s
[1− cos(ts)] ds, ε > 0 . (2.12)

It follows from (2.12) that

W
(η)
N (τ) =

1

2

∫ ∞
0

e−ηs√
s

{
[e−iτs − 1] bN (s) + [eiτs − 1] bN (s)

}
ds (2.13)

where

bN (s) =
1√
s

Tr e−isdN (H−x0I) . (2.14)

The identity (2.13) can be thought of as the Fourier integral version of the Fourier series (2.1).

Furthermore, comparison of the harmonizable representation (1.12) for B
(η)
0 (t) (which can be thought

as a natural integral analogue of the series expansions in (1.6)) and (2.13)), suggests that the Fourier
coefficients bN (s) converge in the mesoscopic regime to Gaussian white noise. Such a statement may
be interpreted as a continuous analogue of the Diaconis-Shahshahani result [15] and is the content of
our next theorem.

Let C∞0 (R+) be the space of infinitely many times differentiable functions with compact support
on R+ = {x ∈ R : x > 0}. Denote

cN (ξ) =

∫ ∞
0

ξ(s) bN (s) ds. (2.15)

Theorem 2.4. Consider the mesoscopic regime where dN = Nα with any α ∈ (0, 1). Then for every
ξ ∈ C∞0 (R+)

lim
N→∞

E{e−iRe cN (ξ)} = exp

(
−1

4

∫ ∞
0

|ξ(s)|2 ds
)
. (2.16)

Furthermore, for any finite number of ξj ∈ C∞0 (R+), the vector (cN (ξ1), . . . , cN (ξm)) converges in
distribution, as N → ∞, to the centered complex Gaussian vector Z ∈ Rm having relation matrix
E(ZZT) = 0 and covariance matrix Γ = E(ZZ†) given by

Γj,k =

∫ ∞
0

ξj(s)ξk(s) ds, j, k = 1, . . . ,m. (2.17)

Proof. See Section 4.

Remark 2.5. As is often the case in random matrix theory, linear eigenvalue statistics such as (2.15)
have variance of the order of unity due to strong correlations between the eigenvalues and converge to
a Gaussian random variable after centering. One would typically expect that E{cN (ξ)} = O(N/dN )
as N → ∞. Instead, we find, see Section 4, that the smoothness of ξ and the rapid oscillations in
(2.14) imply E{cN (ξ)} = O(d−1

N ) as N →∞ and, thus, centering is not really needed.
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The rest of the paper is organized as follows. Section 3 is devoted to the proof of Theorem 2.2.
To do this, we begin by adapting the differential identity used in [35] and then outline the relevant
asymptotic analysis of the Riemann-Hilbert problem, leaving estimation of all error terms to Appendix
A. Section 4 is devoted to proving the convergence of the Fourier coefficients bN (s) to the white noise.
In the final section we focus on the macroscopic scale and prove Theorem 2.1.

3. Mesoscopic regime

In this section we prove Theorem 2.2. Let us fix m−1 distinct times τ1, . . . , τm−1, m ≥ 2, and consider
the characteristic function

ϕN (α1, . . . , αm−1) = E

{
exp

(
m−1∑
k=1

αkW
(η)
N (τk)

)}

of the random vector (W
(η)
N (τ1), . . . ,W

(η)
N (τm−1)). Our strategy will be to prove that ϕN converges to

the characteristic function of the multivariate Gaussian distribution in the limit N → ∞. Theorem
2.2 will then follow by inspection of the quadratic form in the exponential.

To begin with, we will write the characteristic function ϕN as the partition function of a matrix
model with Gaussian weight, modified by the singularities

µk =
√

2N

(
x0 +

τk + iη

dN

)
, η > 0, (3.1)

where k = 1, . . . ,m and τm ≡ 0. A standard calculation (changing variables of integration from H to
the eigenvalues and eigenvectors of H and integrating out the eigenvectors, see e.g. [42]) yields

ϕN (α1, . . . , αm−1) =
1

C

∫
RN

N∏
j=1

w(xj)
∏

1≤i<j≤N

(xi − xj)2 dx1 . . . dxN (3.2)

where the weight function is given by

w(x) = e−x
2
m∏
k=1

|x− µk|αk , Im(µk) 6= 0, k = 1, . . . ,m (3.3)

and αm = −α1 − . . . − αm−1. Note the discrepancy with the measure (1.1); for convenience we have
changed variables xj → xj/

√
2N , the resulting multiplicative constants cancelling each other out.

Our calculation will be guided by that of Krasovsky [35] who treated a similar partition function,
but only for the macroscopic regime dN = 1 and η = 0. In that case the weight function acquires
Fisher-Hartwig singularities inside the spectral interval (−1, 1). In contrast, our weight (3.3) posesses
singularities in the complex plane that merge towards the point x0 on the spectral axis at rate dN as
N →∞. Since this merging process occurs sufficiently slowly (i.e. dN = o(N)), these singularities will
not play a crucial role in the calculation.

A special feature of the weight function (3.3) is the cyclic condition

m∑
k=1

αk = 0. (3.4)

This holds because the second term in (2.6) is independent of τ . Our first step is to express the
partition function (3.2) in a form suitable for the computation of asymptotics.
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3.1. Orthogonal polynomials and differential identity

The multiple integral in (3.2) is intimately connected to the theory of orthogonal polynomials. Let

pn(x) = χn(xn + βnx
n−1 + γnx

n−2 + . . .), n = 0, 1, 2, . . . ,

be orthogonal polynomials with respect to weight function w(x):
∫∞
−∞ pm(x)pn(x)w(x) dx = δm,n.

When the αj ’s are real and each αj > −1/2 we have w(x) ≥ 0 and the existence of the polynomials
pn(x) is well known [14]. Then, as in [35], the coefficients χn, βn and γn and the polynomials pn(x)
are defined for any {αj}mj=1 ∈ Cm via analytic continuation, provided each Re(αj) > −1/2.

Now, the partition function (3.2) can be written in terms of the coefficients {χj}Nj=1 (see e.g. [41])

ϕN (α1, . . . , αm−1) =
N !

C

N−1∏
j=0

χ−2
j . (3.5)

Thus, in principle, our problem is reduced to computing the asymptotics of the orthogonal polynomials
and related quantities with respect to the weight w(x). The crucial point observed in [35] is that by
taking the logarithmic derivative on both sides of (3.5) with respect to any of the αj ’s, the right-
hand side can be written as a sum involving only O(m) terms, rather than N . To state the resulting
differential identity we also need the following 2× 2 matrix involving the orthogonal polynomials and
their Cauchy transforms:

Y (z) =


χ−1
N pN (z) χ−1

N

∫ ∞
−∞

pN (x)

x− z
w(x)dx

2πi

−2πiχN−1pN−1(z) −χN−1

∫ ∞
−∞

pN−1(x)

x− z
w(x)dx

 . (3.6)

Lemma 3.1. For each k = 1, . . . ,m, let µk in (3.3) be any complex parameters satisfying Im(µk) 6= 0
and define αm+k = αk, µm+k = µk. Denoting by ′ differentiation with respect to αj, the following
formula holds for any j = 1, . . . ,m.

(logϕN )′ = −N(logχNχN−1)′ − 2

(
χN−1

χN

)2(
log

χN−1

χN

)′
+ 2(γ′N − βNβ′N )

+
1

2

2m∑
k=1

αk(Y11(µk)′Y22(µk)− Y21(µk)′Y12(µk) + (logχNχN−1)′Y11(µk)Y22(µk)).

(3.7)

Proof. The proof follows from simple modifications of the arguments given in Sec. 3 of [35]. In fact,
further simplifications occur due to the cyclic condition

∑m
k=1 αk = 0 and the fact that the singularities

µk have non-zero imaginary part (k = 1, . . . ,m).

Note that χN and the coefficients βN and γN can be computed from the relations:

Y11(z) = zN + βNz
N−1 + γNz

N−2 + . . .

χ2
N−1 = lim

z→∞

iY21(z)

2πzN−1

(3.8)

Therefore, our plan will be to compute the asymptotics of Y (z) and then, by making use of identities
(3.8), evaluate the right-hand side of (3.7) to the desired accuracy in the limit as N →∞. We will find
that the error terms in the asymptotics are uniform in the variables {αk}m−1

k=1 belonging to a compact
subset of

Ω = {(α1, . . . , αm−1) | Re(αk) > −1/2, k = 1, . . . ,m− 1}. (3.9)
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This uniformity property then allows us to integrate the identity (3.7) recursively with respect to
{αk}m−1

k=1 and obtain asymptotics for the characteristic function (3.2). The asymptotics of Y (z) in
the limit N →∞ can be obtained by using an appropriate Riemann-Hilbert problem. Although this
technique is nowadays standard, for the reader’s convenience we will briefly summarise the necessary
ingredients of the corresponding calculation.

3.2. The Riemann-Hilbert problem for Y (z)

The relationship between orthogonal polynomials and Riemann-Hilbert problems was established for
general weights in [21] where it was shown that Y (z) solves the following problem:

1. Y (z) is analytic in C \ R.

2. On the real line there is a jump discontinuity

Y+(x) = Y−(x)

(
1 w(x)
0 1

)
, x ∈ R, (3.10)

where Y+(x) and Y−(x) denote the limiting values of Y (z) as z approaches the point x ∈ R from
above (+) or below (−).

3. Near z =∞, we have the following asymptotic behaviour

Y (z) =

(
I +O

(
1

z

))
zNσ3 . (3.11)

Here σ3 is the third Pauli matrix and serves as a convenient notational tool. By definition of the
matrix exponential, the notation in (3.11) has the meaning

zNσ3 =

(
zN 0
0 z−N

)
. (3.12)

One can verify directly that Y (z) of (3.6) does indeed solve this Riemann-Hilbert problem, while
the uniqueness of this solution can be deduced from the observation that detY (z) ≡ 1, in conjunction
with the Liouville theorem. Further details regarding existence and uniqueness of the problem can be
found in [14].

In order to obtain asymptotics as N → ∞, we will perform a sequence of transformations to our
initial Riemann-Hilbert problem known as the Deift-Zhou steepest descent (see e.g. [14] and [13]). The
purpose of these transformations is to identify a ‘limiting’ problem that can be solved with elemen-
tary functions, giving the leading order asymptotics to Y (z). For the reader’s convenience, we briefly
describe the key points underlying these transformations:

1. The first transformation Y → T normalizes the unsatisfactory asymptotic behaviour in the third
condition, equation (3.11). This comes with the cost that the entries of the jump matrix for T (z)
on the interval (−1, 1) are now oscillating in N and do not have a limit as N →∞.

2. The second transformation T → S aims to remove these oscillations by splitting the contour
(−1, 1) into lens shaped contours where now the jump matrices are exponentially close to the
identity. For our particular mesoscopic problem, we need the lenses to pass below the singulari-
ties for each k = 1, . . . ,m, so that their distance from (−1, 1) is of order O(d−1

N ) (see Figure 1).



Y. V. Fyodorov, B. A. Khoruzhenko and N. J. Simm/fBm with H = 0 and the GUE 12

3. Now it turns out that the jump matrices for S tend to the identity as N → ∞, except on the
contour (−1, 1). But the jump across (−1, 1) is of a special form that can be solved exactly in
terms of elementary functions. This solution, denoted P∞(z), gives the leading order contribu-
tion to the asymptotics in the required regions of the complex plane.

In Sec. 3.5 we will show that the asymptotics obtained in this way lead directly to Theorem 2.2.
However, to complete the proof, one has to show that the conclusion of (3), namely that S(z) ∼ P∞(z)
as N → ∞, is really correct. This may be regarded as the most technical part of the Deift-Zhou
method. The main problem is that although the jump matrix for S(z) converges to that of P∞(z),
this convergence is not uniform near the edges z = ±1. To remedy this, local solutions known as
parametrices have to be constructed near these points, and then matched to leading order with the
so-called outer parametrix P∞(z). These final technical issues will be addressed in Appendix A.

3.3. T and S transformations of the Riemann-Hilbert problem

The T transformation is performed in the usual way. First we define the g-function:

g(z) =

∫ 1

−1

log(z − s)ρ(s) ds, z ∈ C \ (−∞, 1], (3.13)

where throughout we take the principal branch of the logarithm. Here and below ρ(s) = (2/π)
√

1− s2

denotes the limiting density of eigenvalues. The Y → T transformation is then given by the formula

Y (z
√

2N) = (2N)Nσ3eNlσ3/2T (z)eN(g(z)−l/2)σ3 (3.14)

where l = −1 − 2 log(2). Notice that we have rescaled the Riemann-Hilbert problem so that the
singularities of the corresponding weight function are of order O(1) as N →∞, so that from now on
we deal with singularities of the form

zk =
µk√
2N

= x0 +
τk + iη

dN
. (3.15)

The resulting jump matrix for T (z) can now be computed from the standard properties of the
g-function:

g+(x) + g−(x)− 2x2 − l = 0, x ∈ (−1, 1),

g+(x) + g−(x)− 2x2 − l < 0, x ∈ R \ [−1, 1],

g+(x)− g−(x) =


2πi x ≤ −1

2πi

∫ 1

x

ρ(s)ds x ∈ [−1, 1]

0 x ≥ 1.

(3.16)

In addition, since g(z) ∼ log(z) as z → ∞, we have eNg(z)σ3 ∼ zNσ3 . Thus one easily verifies that
T (z) is normalized at z =∞. We now have the following Riemann-Hilbert problem for T (z):

1. T (z) is analytic in C \ R.
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2. We have the jump condition

T+(x) = T−(x)

e−N(g+(x)−g−(x))

m∏
k=1

|x− zk|αk

0 eN(g+(x)−g−(x))

 , x ∈ (−1, 1), (3.17)

T+(x) = T−(x)

 1

m∏
k=1

|x− zk|αkeN(g+(x)+g−(x)−2x2−l)

0 1

 , x ∈ R \ [−1, 1]. (3.18)

3. T (z) = I +O(z−1) as z →∞.

We see that although the problem for T (z) is normalized at ∞, the jump matrix (3.17) on (−1, 1)
has oscillatory diagonal entries that not have a limit as N → ∞. The Deift-Zhou steepest descent
procedure remedies this situation by splitting the contour (−1, 1) into ‘lenses’ in the complex plane
(see Figure 1), transforming the unwanted oscillations into exponentially decaying matrix elements.

This procedure is facilitated by the factorization of the jump matrix on (−1, 1):(
e−Nh(x) ω(x)

0 eNh(x)

)
=

(
1 0

ω(x)−1eNh(x) 1

)(
0 ω(x)−1

−ω(x)−1 0

)(
1 0

ω(x)−1e−Nh(x) 1

)
where

ω(x) =

m∏
k=1

|x− zk|αk (3.19)

h(x) = g+(x)− g−(x) = −2πi

∫ x

1

ρ(y)dy (3.20)

The latter objects (3.19) and (3.20) possess analytic continuations into the lens shaped regions
depicted in Figure 1. For the weight ω(x) we have

ω(z) =

m−1∏
k=1

[
(z − x0 − τk/dN )2 + (η/dN )2

(z − x0)2 + (η/dN )2

]αk/2
, (3.21)

where throughout we take the principal branch of the roots. This function is analytic for all z such
that the inequality

(Re(z)− Re(zk))2 > (Im(zk))2 − (Im(z))2 (3.22)

is satisfied for every k = 1, . . . ,m. One easily verifies that for x0 ∈ (−1+δ, 1−δ), the inequality (3.22)
holds for any z chosen from the interior region bounded by the lips Σ±1 and the discs z ∈ ∂B±1(δ) of
sufficiently small radius (see Figure 1). Finally let h(z) denote the analytic continuation of (3.20) to
C \ ((−∞,−1] ∪ [1,∞)). We are now ready to define the T → S transformation. Let

S(z) =



T (z), for z outside the lenses,

T (z)

(
1 0

−ω(z)−1e−Nh(z) 1

)
, for z in the upper part of the lenses,

T (z)

(
1 0

ω(z)−1eNh(z) 1

)
, for z in the lower part of the lenses.

(3.23)

Now we get the following Riemann-Hilbert problem for S(z):
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Fig 1. The contour Σ for the S Riemann-Hilbert problem with m = 3. The crosses depict the 3 singularities and their
complex conjugates, of distance O(d−1

N ) from the point x0 ∈ (−1, 1). The lenses Σ± pass between the real line and the
singularities into the points ±1.

1. S(z) is analytic in C \ Σ where Σ = Σ+ ∪ R ∪ Σ−.

2. S(z) has the following jumps on Σ

S+(x) = S−(x)

(
1 0

ω(x)−1e∓Nh(x) 1

)
, x ∈ Σ±,

S+(x) = S−(x)

(
0 ω(x)

−ω(x)−1 0

)
, x ∈ (−1, 1),

S+(x) = S−(x)

(
1 ω(x)eN(g+(x)+g−(x)−2x2−l)

0 1

)
, x ∈ R \ [−1, 1].

3. S(z) = I +O(z−1) as z →∞.

At this point in the asymptotic analysis, it becomes clear that the mesoscopic regime under con-
sideration becomes important. In order to obtain asymptotics, it is essential that the jump matrix for
S(z) approaches the identity as N →∞ for z ∈ Σ±. In the Appendix (see Prop. A.4) we will see that

|e∓Nh(z)| = O(e
−c1 N

dN ) as N →∞ uniformly on Σ± \ (B1(δ)∪B−1(δ)). Notice that such a bound fails
when one approaches the critical situation dN = N corresponding to the local or microscopic regime.
It is precisely at this scale that one would not expect the appearance of a Gaussian process in the
limit N →∞.

Therefore, in the mesoscopic regime it is reasonable to expect that in the limit N → ∞ we may
neglect the jumps on Σ± ∪ (R \ [−1, 1]) and approximate S(z) by a Riemann-Hilbert problem with
jumps only on the interval (−1, 1). This approximation will be valid only in the region U∞ = C \
(B1(δ) ∪B−1(δ)) and will give rise to an error that is quantified in Appendix A.

3.4. Limiting Riemann-Hilbert problem: Parametrix in U∞

Before we perform the final transformation S → R of the Riemann-Hilbert problem, we must construct
parametrices in the appropriate regions of the complex plane. We saw in the last section how the jump
matrices for S(z) converge to the identity as N →∞, except on [−1, 1]. Therefore, outside the lenses
and the discs, we expect the solution to the following problem to give a good approximation to S(z)
for large N .



Y. V. Fyodorov, B. A. Khoruzhenko and N. J. Simm/fBm with H = 0 and the GUE 15

1. P∞(z) is analytic in C \ [−1, 1].

2. We have the jump condition

P∞,+(x) = P∞,−(x)

(
0 ω(x)

−ω(x)−1 0

)
, x ∈ (−1, 1). (3.24)

3. P∞(z) = I +O(z−1) as z →∞.

This problem has the advantage that it has a completely explicit solution. The solution, as obtained
in [36], is given by

P∞(z) =
1

2
(D∞)σ3

(
a+ a−1 −i(a− a−1)
i(a− a−1) a+ a−1

)
D(z)−σ3 , a(z) =

(z − 1)1/4

(z + 1)1/4
, (3.25)

where D(z) is the Szegö function

D(z) = exp

(√
z + 1

√
z − 1

2π

∫ 1

−1

logω(x)√
1− x2

dx

z − x

)
(3.26)

and

D∞ = lim
z→∞

D(z) = exp

(
1

2π

∫ 1

−1

logω(x)√
1− x2

dx

)
. (3.27)

Recalling the definition of the weight ω(x) in (3.19), the integrals in (3.26) can be calculated explicitly
by extending the procedure outlined in [35] to the case of complex singularities.

As we shall see in the next subsection, the Szegö function D(z) will turn out to be the key ingredient
in deriving the logarithmic covariance structure in (1.13).

3.5. Asymptotics of the polynomials and proof of Theorem 2.2

We are now ready to present the leading order asymptotics N →∞ of the Y -matrix in (3.6), leaving
the technical matters of estimation of errors and the final transformation of the Riemann-Hilbert
problem to Appendix A. Our aim in this subsection is to prove Theorem 2.2 using these asymptotics.

Tracing back the transformations S → T → Y , we find that

Y (z
√

2N) = (2N)Nσ3/2eNlσ3/2S(z)eN(g(z)−l/2)σ3 (3.28)

According to (3.7), we need the asymptotics for Y (z) in two different regions of the complex plane,
near z =∞ in the first line of (3.7) and at z = zk in the second line. In the following Proposition, let
A denote the bounded subset of C enclosed by the lenses Σ± and the discs ∂B±1(δ).

Proposition 3.2. Consider the Riemann-Hilbert problems S(z) and P∞(z) from Sections 3.3 and 3.4
respectively. Then the following asymptotics hold as N →∞

S(z) =

(
I +

R̃1(z)

N
+O

(
1

NdN

)
+O

(
log(dN ) e

−c1 N
dN

))
P∞(z), (3.29)

uniformly for all z ∈ C \ A. The function R̃1(z) has an asymptotic expansion of the form R̃1(z) =
(A/z +B/z2 +O(z−3)) as z →∞ where c1 is a positive constant depending only on δ and η and

A =

(
0 i/24

i/24 0

)
, B =

(
−1/48 0

0 1/48

)
. (3.30)
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Proof. See Appendix A.

Remark 3.3. The error terms in (3.29) are uniform in the parameters {αk}m−1
k=1 belonging to Ω

(cf. (3.9)), {τk}m−1
k=1 belonging to a compact subset of R and x0 belonging to a compact subset of

(−1 + δ, 1− δ). Furthermore, every such error term is an analytic function in the variables {αk}m−1
k=1

whose derivatives with respect to αj have the same order in N and have the same uniformity property
described above. Hence, in the remainder of this Section it will be implicit that the error terms involved
are of this form.

Now inserting the above asymptotics (3.29) into the differential identity (3.7), we obtain

Proposition 3.4. Let ϕN denote the characteristic function of the stochastic process W
(η)
N (τ) defined

in (3.2). Then in the limit N →∞, we have

ϕN (α1, . . . , αm−1) = exp

(
N

m−1∑
k=1

αk(Re(g(zk))− Re(g(zm)))

+
m−1∑
k,j=1

αkαj
2

(
φ

(η)
0 (τk) + φ

(η)
0 (τj)− φ(η)

0 (τk − τj)
)

+O(d−1
N ) +O

(
N log(dN ) exp

(
−c1

N

dN

)))
,

(3.31)

where g(z) is defined in (3.13) and φ
(η)
0 (τ) in (1.11). The asympotics in (3.31) hold uniformly in the

same sense described in Remark 3.3.

Remark 3.5. Notice that the asymptotics in (3.31) consist of both global error terms, which become
large when dN ∼ 1 and local error terms, which become large when dN ∼ N . Throughout the following
proof, we will write eN for the local error term of order

eN = log(dN ) exp

(
−c1

N

dN

)
. (3.32)

Proof. We remind the reader that the prime ′ always denotes differentiation with respect to αj . We
begin by considering the second line of (3.7). Taking into account αm = −(α1 + . . .+αm−1), we insert
(3.29) into (3.28) and make use of the explicit formula (3.25) for P∞(z). Straightforward calculation
then gives

Y11(
√

2Nzk)′Y22(
√

2Nzk)− Y21(
√

2Nzk)′Y12(
√

2Nzk)

= (P∞(zk))′11(P∞(zk))22 − (P∞(zk))′21(P∞(zk))12 +O(N−1) +O(eN ). (3.33)

= C(zm, zk)− C(zj , zk) +O(d−1
N ) +O(eN ) (3.34)

where we introduced

C(µ, z) =

√
z + 1

√
z − 1

2π

∫ 1

−1

log |x− µ|√
1− x2

dx

z − x
, (3.35)

and (3.34) was obtained from (3.33) using the estimate D∞ = 1+O(d−1
N ). Since C(zj , zk) = C(zj , zk),

we find from (3.34) that

1

2

2m∑
k=1

αk

(
Y11(
√

2Nzk)′Y22(
√

2Nzk)− Y21(
√

2Nzk)′Y12(
√

2Nzk)
)

(3.36)

=

m∑
k=1

αk (Re(C(zm, zk))− Re(C(zj , zk))) +O(d−1
N ) +O(eN ) (3.37)

=

m−1∑
k=1

αk

(
φ

(η)
0 (τk) + φ

(η)
0 (τj)− φ(η)

0 (τk − τj)
)

+O(d−1
N ) +O(eN ) (3.38)
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To obtain (3.38) from (3.37), we used the formula (B.6) to compute the asymptotics of Re(C(zj , zk))
and used that αm = −(α1 + . . .+ αm−1).

Now let us compute the asymptotics of the coefficients βN , γN and χN−1 defined in (3.8) and
appearing in the first line of (3.7). As usual, these quantities are all obtained by expanding all z-
dependent quantities appearing in (3.28) in powers of 1/z. Firstly, the Szegö function (3.26) satisfies
D(z) = D∞(1 +D1/z + (D2

1/2 +D2)/z2 +O(z−3)) as z →∞, where

D1 = −1

2

m∑
k=1

αk Re

(
1

zk +
√
zk + 1

√
zk − 1

)
,

D2 = −1

8

m∑
k=1

αk Re

(
1

(zk +
√
zk + 1

√
zk − 1)2

)
,

(3.39)

and secondly, use of the definitions (3.25) and (3.13) shows that for z →∞

g(z) = log(z)− 1

8z2
+O(z−4), a(z) = 1− 1

2z
+

1

8z2
+O(z−3) (3.40)

Then expanding (3.29) at z =∞, we can compare with (3.8) and obtain

βN =
√

2N

(
−D1 +

A11

N
+O

(
1

NdN

)
+O(eN )

)
γN = 2N

(
1/8−N/8 +D2

1/2−D2 +
B11 −A11D1 − iA12/2

N
+O

(
1

NdN

)
+O(eN )

)
χ2
N−1 =

2N−1

√
π(N − 1)!

(
1

D2
∞

+
1

N

(
1

12D2
∞

+ 2iA21

)
+O

(
1

NdN

)
+O(eN )

)
A similar computation shows that the asymptotics of χ2

N are given by

χ2
N =

2N√
πN !

(
1

D̃2
∞

+
1

N

(
1

12D̃2
∞

+ 2iA12

)
+O

(
1

NdN

)
+O(eN )

)
(3.41)

where D̃∞ denotes the quantity (3.27) with rescaled singularities z̃k =
√

2N/(2N + 2)zk. This rescal-
ing is necessary when estimating χ2

N , because without it one obtains asymptotics with respect to the
weight w(x) =

∏
j |x −

√
2N + 2zk|αk . Cumbersome though routine manipulations with the above

asymptotics yield

−N(logχNχN−1)
′

= 2N(C(zj ,∞)− C(zm,∞)) +O(d−1
N ) +O(NeN ),

2(γ′N − βNβ′N ) = −4ND′2 +O(d−1
N ) +O(NeN ),

(3.42)

and

(logχNχN−1)′Y11(
√

2Nzk)Y22(
√

2Nzk) = O(d−1
N ) +O(eN ),

2

(
χN−1

χN

)2(
log

χN−1

χN

)′
= O(d−1

N ) +O(eN ),
(3.43)

where we introduced

C(µ,∞) = lim
z→∞

C(µ, z) =
1

2π

∫ 1

−1

log |x− µ|√
1− x2

dx (3.44)

=
1

2
log |z +

√
z + 1

√
z − 1| − 1

2
log(2). (3.45)



Y. V. Fyodorov, B. A. Khoruzhenko and N. J. Simm/fBm with H = 0 and the GUE 18

Using the explicit formulae (3.45) and (3.39), we get

2(C(zj ,∞)− C(zm,∞))− 4D′2 = Re(g(zj))− Re(g(zm)) (3.46)

where we exploited the convenient identity (see e.g. the derivation of Eq. 7.89 in [14])

log |z +
√
z + 1

√
z − 1|+ 1

2
Re

(
1

(z +
√
z + 1

√
z − 1)2

)
= Re(g(z)). (3.47)

Now inserting (3.42), (3.38) and (3.43) into (3.7), we obtain

∂

∂αj
logϕN (α1, . . . , αm−1) = N(Re(g(zj))− Re(g(zm)))

+

m−1∑
k=1

αk

(
φ

(η)
0 (τk) + φ

(η)
0 (τj)− φ(η)

0 (τk − τj)
)

+O(d−1
N ) +O(NeN ).

(3.48)

Note that the error terms in (3.48) hold uniformly in the parameters (αk)m−1
k=1 (see Remark 3.3), so

that we may integrate both sides of (3.48) according to the procedure discussed in Sect. 5 of [35],
arriving at the asymptotics (3.31).

Proof of Theorems 2.2 and 2.3. Bearing in mind Remark 3.3, we differentiate (3.31) with respect to
the parameters (αk)m−1

k=1 and evaluate near the origin, leading to

E{W (η)
N (τ)} = N(Re(g(zk))− Re(g(zm))) +O(d−1

N ) +O(NeN ) (3.49)

Cov{W (η)
N (τ),W

(η)
N (υ)} = φ

(η)
0 (τ) + φ

(η)
0 (υ)− φ(η)

0 (τ − υ) +O(d−1
N ) +O(NeN ) (3.50)

where the error terms are uniform in τ and υ varying in a compact subset of R. Then defining the

centered process W̃
(η)
N (τ) = W

(η)
N (τ) − E{W (η)

N (τ)} we immediately find from (3.49) and (3.31) that
in the mesoscopic regime (2.7), we have

lim
N→∞

E
{
ei

∑m
k=1 skW̃

(η)
N (τk)

}
= exp

−1

2

m∑
k=1

m∑
j=1

sksj (φ0(τk) + φ0(τj)− φ0(τk − τj))

 (3.51)

where (sk)mk=1 ∈ Rm. Theorem 2.2 follows immediately. To complete the proof of Theorem 2.3, it

suffices to note that the error terms in (3.50) are uniform, so that the sequence (E{(W̃N (τ))2})∞N=1 is
uniformly bounded.

4. Convergence to white noise in the spectral representation

The main achievement of the previous section was to prove that for any mesoscopic scales of the form

(2.7), the process W̃
(η)
N (τ) converges in the sense of finite-dimensional distributions to the regularized

fractional Brownian motion B
(η)
0 (τ). We also proved Theorem 2.3 which extends this convergence to

an appropriate function space.

In this section we will study W̃
(η)
N (τ) from a different point of view, namely by means of the

Fourier coefficients bN (s) appearing in the spectral decomposition (2.13). We remind the reader of the
definition

bN (s) =
1√
s

Tr
(
e−isdN (H−x0I)

)
, s > 0. (4.1)

A useful and interesting feature of the integral representations (2.13) and its N → ∞ limit (1.9) is
that they are suggestive of a corresponding limiting law satisfied by the coefficients bN (s). Namely,
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we expect that bN (s) should ‘converge’ to the white noise measure Bc(ds)/
√

2. The precise mode of
the convergence we consider is described in Theorem 2.4 and it is our goal in this Section to prove
this result.

By its very definition, the white noise measure Bc(ds) cannot be understood in a pointwise sense and
must be regularized by integrating against a test function. We will consider test functions ξ ∈ C∞0 (R+),
i.e. ξ is a smooth function with compact support on R+. Then we have the correspondence

cN (ξ) =

∫ ∞
0

ξ(s)bN (s) ds =

N∑
j=1

f(dN (xj − x0)) =: XN (f) (4.2)

where

f(x) =

∫ ∞
0

ξ(s)√
s
e−isx ds. (4.3)

By our assumptions on ξ, it follows that f belongs to the Schwartz space of rapidly decaying smooth
functions, i.e. f ∈ S(R) where

S(R) =

{
f ∈ C∞(R) : sup

x∈R

∣∣∣∣xγ dβf(x)

dxβ

∣∣∣∣ <∞ γ, β = 0, 1, 2, . . .

}
. (4.4)

In the following three subsections we will obtain results for the mean, variance and distribution of the
random variable (4.2) as N →∞.

4.1. Mean

We begin by proving that centering is not required in Theorem 2.4.

Proposition 4.1. On any mesoscopic scales of the form dN = Nα with any α ∈ (0, 1), we have

E{cN (ξ)} = O(d−1
N ), N →∞. (4.5)

Proof. We write the expectation above as an integral over the normalized density of states ρN (x),

E{cN (ξ)} = N

∫ ∞
−∞

f(dN (x− x0))ρN (x) dx (4.6)

where

ρN (x) =
1

N
E


N∑
j=1

δ(x− xj)

 . (4.7)

Firstly, note that the tails of the integral (4.6) can be removed using the rapid decay of f . For any
ε > 0, we have

E{cN (ξ)} = N

∫ x0+ε

x0−ε
f(dN (x− x0))ρN (x) dx+O(Nd−∞N ), (4.8)

where here and elsewhere, the notation O(Nd−∞N ) refers to a quantity that is O(Nd−γN ) for any γ > 0.
Such a contribution tends to zero for the power law scales dN = Nα with any α ∈ (0, 1). Then for
small enough ε we have the uniform estimate (see [42], Chapter 5.2)

ρN (x) =
2

π

√
1− x2 +O(N−1), x ∈ (x0 − ε, x0 + ε) (4.9)

After inserting (4.9) into (4.8) we find that

E{cN (ξ)} =
2N

π

∫ x0+ε

x0−ε
f(dN (x− x0))

√
1− x2 dx+ EN +O(Nd−∞N ) (4.10)
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where the error term EN = O(d−1
N ), since

|EN | ≤ C
∣∣∣∣ ∫ x0+ε

x0−ε
f(dN (x− x0)) dx

∣∣∣∣ ≤ C

dN

∫ ∞
−∞
|f(x)| dx. (4.11)

Similarly, we can replace the integration limits in (4.10) with ±1 using the Schwartz property of f .
We have

E{cN (ξ)} =
2N

π

∫ 1

−1

f(dN (x− x0))
√

1− x2 dx+O(d−1
N ) (4.12)

Next we substitute f with the definition (4.3) and interchange the order of integration (justified by
the rapid decay of ξ(s)) so that,

E{cN (ξ)} =
2N

π

∫ ∞
0

ξ(s)s−1/2eisdNx0

∫ 1

−1

e−isdNx
√

1− x2 dx ds+O(d−1
N )

= 2N

∫ ∞
0

ξ(s)s−3/2J1(dNs)e
isdNx0 ds+O(d−1

N ) (4.13)

where J1(z) is the Bessel function of index 1. To finish the proof, note that J1(dNs) has an asymptotic
expansion (for any fixed γ ∈ N and s > 0) as N →∞,√

π

2
J1(dNs) = cos(dNs− 3π/4)

γ−1∑
k=0

Ck

d
2k+1/2
N s2k+1/2

+ sin(dNs− 3π/4)

γ−1∑
k=0

Dk

d
2k+3/2
N s2k+3/2

+ EN (s) (4.14)

where the error term satisfies the bound |EN (s)| ≤ |Cγd−2γ−1/2
N s−2γ−1/2| and Ck, Dk are constants

depending only on k. Such asymptotics can be found in e.g. [22] or [34].
Inserting (4.14) into (4.13) we see that the contribution from each term in the sum in (4.14) is an

oscillatory integral of order O(Nd−∞N ), as follows from repeated integration by parts. The final error

term EN (s) is integrable with respect to ξ(s) and gives rise to an error of order O(Nd−2γ
N ). Since

γ > 0 was arbitrary, we conclude that the term proportional to N in (4.12) is in fact asymptotically
smaller than the error term. This completes the proof of the proposition.

4.2. Covariance

Having studied the expectation of bN (s) in the previous subsection, we now consider the fluctuations.
In the introduction it was remarked, in accordance with the expected white noise limit for bN (s), that
we should have limN→∞ E{bN (s1)bN (s2)} = δ(s1 − s2). In this subsection we will make this assertion
precise by proving that

lim
N→∞

E{cN (ξ1)cN (ξ2)} =

∫ ∞
0

ξ1(s)ξ2(s) ds (4.15)

for all smooth functions ξ1, ξ2 with compact support on R+.
It turns out that there is an exact finite-N formula for the covariance (see Eq. (4.2.38) in [42]):

E{X̃N (f1)X̃N (f2)} =
1

8

∫
R2

∆f1(dNx)∆f2(dNx)K2
N (x1, x2) dx1 dx2 (4.16)

where f1 and f2 are defined in terms of ξ1 and ξ2 as in formula (4.3) and we introduced the notation
∆f(x) = f(x1) − f(x2) for any f . The function KN (x1, x2) is the kernel of the GUE ensemble (see
e.g. [41], [42]) having the explicit formula

KN (x, y) =
ψ

(N)
N (x1)ψ

(N)
N−1(x2)− ψ(N)

N (x2)ψ
(N)
N−1(x1)

x1 − x2
(4.17)
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where
ψ

(N)
l (x) = e−Nx

2

P
(N)
l (x), (4.18)

and P
(N)
l (x) are (rescaled) Hermite polynomials, normalized by the condition that {ψ(N)

l }∞l=1 forms
an orthonormal family on R. By making use of the known Plancherel-Rotach asymptotics for the

functions ψ
(N)
l (x), we deduce the following covariance formula. After noting the correspondence (4.3),

we immediately derive from it the δ-correlations (4.15).

Proposition 4.2. Let the test functions f1 and f2 belong to the Schwartz space S(R) defined in (4.4)
and consider the mesoscopic regime dN = Nα with any α ∈ (0, 1). We have

lim
N→∞

E
{
X̃N (f1)X̃N (f2)

}
=

1

2π

∫ ∞
−∞
|s|f̂1(s)f̂2(−s) ds. (4.19)

where f̂(s) = (2π)−1/2
∫∞
−∞ f(x)e−isx dx.

Remark 4.3. Formula (4.19) is already known for C1 functions with compact support, as in Theorem
5.2.7 (iii) of [42]. It was also proved recently in [18] for a class of Wigner matrices with f a Schwartz
test function, but only up to scales dN = Nα with any 0 < α < 1/3. Our main contribution in this
subsection is to adapt the argument given in [42] to our test functions f in (4.3), which cannot be
compactly supported due to our assumptions on ξ. We note that our proof holds on the full range
0 < α < 1 and that the smoothness hypothesis can be relaxed to C1 functions with rapid decay at
±∞.

Proof. Here we only consider the contribution to integral (4.16) coming from the square I2
δ = [−(1−

δ), (1 − δ)]2 for some small δ > 0. In Appendix C we will show that the complement of this region
can be neglected for small enough δ. We will need the following asymptotic formula for the functions

ψ
(N)
N+k defined in (4.18). Uniformly for |x| < (1− δ) and k = O(1), we have

ψ
(N)
N+k(x) =

(
2

π
√

1− x2

)1/2

cos(Nα(x) + (k + 1/2) cos−1(x)− π/4) +O(N−1) (4.20)

where α(x) = 2
∫ x
−1
dt
√

1− t2. Formula (4.20) follows immediately from the classical asymptotic
results of Plancherel and Rotach (see Sections 5 in [42] and 8 in [51]).

Now, using the symmetry about the line x1 = x2, we see that the integral (4.16) restricted to I2
δ

can be written in the convenient form,

1

4

∫
I2δ

∆f1(dNx)

∆x

∆f2(dNx)

∆x
FN (x1, x2) dx1 dx2 (4.21)

where
FN (x1, x2) = ψ

(N)
N (x1)2ψ

(N)
N−1(x2)2 − ψ(N)

N (x1)ψ
(N)
N−1(x1)ψ

(N)
N (x2)ψ

(N)
N−1(x2). (4.22)

We insert the Plancherel-Rotach formula (4.20) into (4.21) and denote θ(x) = cos−1(x). Using the
double angle formula for the cosine, we find that the contribution of (4.20) to the product of squares
in (4.22) is

1 + cos(2Nα(x1) + θ(x1)/2− π/4) + cos(2Nα(x2)− θ(x2)/2− π/4)

π2
√

1− x2
2

√
1− x2

1

(4.23)

+
cos(2Nα(x1) + θ(x1)/2− π/4) cos(2Nα(x2)− θ(x2)/2− π/4)

π2
√

1− x2
2

√
1− x2

1

+O(N−1). (4.24)

Inserting the oscillatory terms in lines (4.23) and (4.24) into (4.21) gives rise to error terms that are
O((N/dN )−∞) as N →∞ for every δ > 0. This can be shown by repeated integration by parts, using



Y. V. Fyodorov, B. A. Khoruzhenko and N. J. Simm/fBm with H = 0 and the GUE 22

the fact that α(x) is smooth and increasing on the interval Iδ. Combined with a similar calculation
applied to the second term in (4.22), we see that the integral (4.21) is equal to

1

4π2

∫
I2δ

∆f1(dNx)

∆x

∆f2(dNx)

∆x

1− x1x2√
1− x2

1

√
1− x2

2

dx1 dx2 +O((N/dN )−∞) =

1

4π2

∫
R2

∆f1(x)

∆x

∆f2(x)

∆x

1− x1x2/d
2
N√

1− x2
1/d

2
N

√
1− x2

2/d
2
N

χIN (x1)χIN (x2) dx1 dx2 +O((N/dN )−∞) (4.25)

where χIN (x1) is the indicator function on the set IN = (−(1− δ)dN , (1− δ)dN ).
Now Lebesgue’s dominated convergence theorem can be applied to take the limit under the integral

in (4.25). Indeed, it is easy to see that the integrand in (4.25) is bounded by the integrable function(
2

δ2
− 1

) ∣∣∣∣∆f1(x)

∆x

∣∣∣∣∣∣∣∣∆f2(x)

∆x

∣∣∣∣ (4.26)

for any N ∈ N, (x1, x2) ∈ R2 and 0 < δ < 1. We finally see that for all 0 < δ < 1, we have

lim
N→∞

1

4

∫
I2δ

∆f1(dNx)

∆x

∆f2(dNx)

∆x
FN (x1, x2) dx1 dx2 =

1

4π2

∫
R2

∆f1(x)

∆x

∆f2(x)

∆x
dx1 dx2. (4.27)

Rewriting f1 and f2 in terms of their Fourier transforms and applying the Plancherel theorem gives
the identity

1

4π2

∫
R2

f1(x1)− f1(x2)

x1 − x2

f2(x1)− f2(x2)

x1 − x2
dx1 dx2 =

1

2π

∫
R
|s|f̂1(s)f̂2(−s) ds, (4.28)

which is precisely the right-hand side of (4.19). To complete the proof, we just need to show that the
integral (4.16) restricted to the complement of the square I2

δ can be neglected in the limit N → ∞.
Namely, we prove in the Appendix that

lim
N→∞

∫
(I2δ )c

∆f1(dNx)∆f2(dNx)K2
N (x1, x2) dx1 dx2 = O(δ), δ → 0, (4.29)

and so complete the proof of the Proposition by choosing δ > 0 sufficiently small.

4.3. Convergence in distribution

The aim of this subsection is to study the full distribution of the coefficients bN (s) and ultimately to

prove Theorem 2.4. First we need a preliminary result regarding the stochastic process W̃
(η)
N (τ). It

will be convenient to consider the increments

∆p[W̃
(η)
N ](τ) : = W̃

(η)
N (τ)− W̃ (η)

N (τ + p)

=
1

2

∫ ∞
0

e−ηs√
s

{
[1− e−ips]e−iτsb̃N (s) + [1− eips]eiτsb̃N (s)

}
ds,

(4.30)

where b̃N (s) = bN (s)− E{bN (s)}.
Similarly, the corresponding limiting object is given by the following stationary Gaussian process

∆p[B
(η)
0 ](τ) : = B

(η)
0 (τ)−B(η)

0 (τ + p)

=
1

2
√

2

∫ ∞
0

e−ηs√
s

{
[1− e−ips]e−iτsBc(ds) + [1− eips]eiτsBc(ds)

}
.

(4.31)
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Proposition 4.4. Let p ∈ R. For any h ∈ S(R) and on any power law scales dN = Nα with α ∈ (0, 1),
we have the convergence in distribution∫ ∞

−∞
h(τ)∆p[W̃

(η)
N ](τ) dτ

d
=⇒

∫ ∞
−∞

h(τ)∆p[B
(η)
0 ](τ) dτ, N →∞. (4.32)

Proof. The proof will be analogous to our proof of Theorem 2.3, the main difference being we must
have good enough control of the tails in the above integrals. This will be taken care of by the rapid
decay of h. To proceed, we fix some (arbitrary) M ∈ R and δ0 > 0 and decompose the left-hand side
of (4.32) as ∫ M

−M
h(τ)∆p[W̃

(η)
N ](τ) dτ

+

∫
|τ |∈[M,δ0dN ]

h(τ)∆p[W̃
(η)
N ](τ) dτ +

∫
|τ |∈[δ0dN ,∞)

h(τ)∆p[W̃
(η)
N ](τ) dτ

(4.33)

and label each of the integrals in (4.33) with I1, I2 and I3. Let us begin with the first integral, I1.

By Theorem 2.2 and the Cramér-Wold device, the finite-dimensional distributions of ∆p[W̃
(η)
N ](τ)

converge in law to those of ∆p[B
(η)
0 ](τ). Furthermore, by the uniform estimate (3.50) we have that

there is a constant C > 0 such that E{(∆p[B
(η)
0 (τ)])2} ≤ C for all τ ∈ [−M,M ] and for all N .

Therefore the hypotheses of Theorem 3 in [28] are satisfied and we conclude that the first integral
in (4.33) converges in distribution to the right-hand side of (4.32) in the limit N → ∞ followed by
M → ∞. To complete the proof, it suffices to show that the second and third integrals in (4.33)
converge in probability to 0 in the same limit.

For notational convenience we just consider the contributions to I2 and I3 where τ > 0 as the
situation τ < 0 is almost identical. By Chebyshev’s inequality and Cauchy-Schwarz, we have

P{|I2| > ε} ≤ ε−2

∫ δ0dN

M

|h(τ)|dτ
∫ δ0dN

M

|h(τ)|E{∆p[W̃
(η)
N ](τ)2} dτ (4.34)

We will now argue that the variance term in (4.34) is uniformly bounded. Since |τ | ≤ δ0dN , by
choosing δ0 small enough we see that |x0 + τ/dN | < 1 − δ for some δ > 0 independent of N . Hence
the singularities of the logarithm in (2.6) remain inside the bulk region (−1 + δ, 1− δ) for all N and
we may apply the methods of Section 3 with m = 2 and weight (cf. (3.19))

ω(z) =

[
(z − x0(τ,N)− p/dN )2 + (η/dN )2

(z − x0(τ,N))2 + (η/dN )2

]α/2
, x0(τ,N) = x0 + τ/dN . (4.35)

The only difference in the analysis of the Riemann-Hilbert problem with this weight is that the new
reference point x0(τ,N) can vary with N in the small fixed neighbourhood [x0− δ0, x0 + δ0]. However,
all the estimates we obtain are uniform for x0 varying in compact subsets of (−1+ δ, 1−δ) so that the
variance bound (3.50) (with υ = τ) remains valid. This implies that for some N -indepedent C > 0,

P{|I2| > ε} ≤ ε−2C

(∫ δ0dN

M

|h(τ)| dτ

)2

→ 0, (4.36)

in the limit N →∞ followed by M →∞.
To bound the integral I3 we again apply Chebyshev’s inequality and exploit the rapid decay of h.

We have

P{|I3| > ε} ≤ ε−2

∫ ∞
δ0dN

∫ ∞
δ0dN

E{h(τ1)∆p[W̃
(η)
N ](τ1)h(τ2)∆p[W̃

(η)
N ](τ2)} dτ1 dτ2 (4.37)

= ε−2

∫ ∞
δ0dN

∫ ∞
δ0dN

∫ ∞
−∞

∫ ∞
−∞

h(τ1)h(τ2)

2∏
j=1

(q(x1, τj)− q(x2, τj))K
2
N (x1, x2) dx1dx2dτ1dτ2 (4.38)
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where we computed the expectation using the identity (4.16) and

q(x, τ) = − log

∣∣∣∣x− x0 −
τ + iη

dN

∣∣∣∣+ log

∣∣∣∣x− x0 −
τ + p+ iη

dN

∣∣∣∣. (4.39)

Now, since h is a Schwartz test function, we know that for any γ > 0 and u > 0, we have |h(udN )| ≤
(dNu)−γ for N large enough. Then using the inequalities |q(x, τ)| ≤ Cp,η for some finite constant
depending only on p and η, K2

N (x1, x2) ≤ N2ρN (x1)ρN (x2) and substituting τj = udN we obtain

P(|I3| > ε) ≤ 4ε−2C2
p,ηN

2d−2γ+2
N

(∫ ∞
δ0

u−γdu

)2

. (4.40)

Then provided dN takes the form dN = Nα with α ∈ (0, 1) we can always choose γ > 0 large enough
such that the right-hand side of (4.40) tends to 0 as N →∞.

We can now translate the result (4.32) into a statement about the Fourier coefficients bN (s), allowing
us to prove Theorem 2.4. For the convenience of the reader, we repeat the statement of the latter
result here.

Theorem 4.5. Let ξ1, . . . , ξm be smooth functions compactly supported on R+. Then the vector
(cN (ξ1), . . . , cN (ξm)) converges in distribution to a centered complex Gaussian vector Z with relation
matrix C = E{ZZT} = 0 and covariance matrix Γ = E{ZZ†} given by

Γj,k =

∫ ∞
0

ξj(s)ξk(s) ds, j, k = 1, . . . ,m. (4.41)

Proof. Define functions hk in terms of their Fourier transform as∫ ∞
−∞

hk(τ)e−iτs dτ =

√
s

1− e−ips
eηsξk(s) k = 1, . . . ,m. (4.42)

Then for sufficiently small p, the right-hand side of (4.42) is smooth and compactly supported. There-
fore, its Fourier transform hk is a Schwartz function, i.e. hk ∈ S(R). Next, note that with cN (ξ) as in
(4.2), we have the identity

cN (ξk)− E(cN (ξk)) = 2

∫ ∞
−∞

hk(τ)∆p[W̃
(η)
N ](τ) dτ (4.43)

which holds almost surely and follows after inserting the representation (4.30) and interchanging
the order of integration, justified by the rapid decay of ξk and hk. Now we apply Proposition 4.4
with h(τ) =

∑m
k=1 αkhk(τ) where αk ∈ C. Since E(cN (ξk)) = O(d−1

N ), we get the convergence in
distribution

m∑
k=1

αkcN (ξk)
d

=⇒ 2

m∑
k=1

αk

∫ ∞
−∞

hk(τ)∆p[B
(η)
0 ](τ) dτ, N →∞. (4.44)

By the Cramér-Wold device, this implies the convergence in distribution

(cN (ξ1), . . . , cN (ξk))
d

=⇒ (Z(h1), . . . , Z(hm)) (4.45)

where

Z(hk) = 2

∫ ∞
−∞

hk(τ)∆p[B
(η)
0 ](τ) dτ. (4.46)

Since ∆p[B
(η)
0 ](τ) is a Gaussian process, one easily sees that (Z(h1), . . . , Z(hm)) is a mean zero

complex Gaussian vector. Then by a simple computation using the integral representation (4.31) and
basic properties of the white noise measure Bc(ds), we find the covariance structure

Γj,k = E{Z(hj)Z(hk)} =

∫ ∞
0

ξj(s)ξk(s) ds, (4.47)

and Cj,k = E{Z(hj)Z(hk)} = 0 for all j, k = 1, . . . ,m.
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5. Macroscopic regime

The main goal of this section is to prove Theorem 2.1. Namely, we will show that the process D̃N (x)
(2.5) converges in probability law as N →∞ to the generalized Gaussian process F (x) given by (1.7).
The convergence is interpreted in the Sobolev space V (−a), i.e. the assertion of Theorem 2.1 is that
for any bounded continuous functional q on V (−a), we have

lim
N→∞

E{q(D̃N )} = E{q(F )}. (5.1)

Our proof is an adaptation for the GUE matrices H of the proof of a similar result for the CUE
matrices given in [30]. First, we will prove that the finite-dimensional distributions of D̃N (x) converge
to those of F (x) and then establish that the sequence D̃N (x) is tight in V (−a). This will imply the
convergence in probability law in V (−a) as in (5.1). As explained in section 2.1, for the GUE matrices
there are additional analytical complications compared with the case of CUE matrices.

We start with a deterministic result, writing down the Chebyshev-Fourier series for D̃N (x).

Lemma 5.1. Let H be a Hermitian matrix of size N ×N with eigenvalues x1, . . . , xN . Then

− log |det(H− xI)| = N log 2 +

∞∑
k=0

ck(DN )Tk(x)

where the convergence is pointwise for any x ∈ [−1, 1]\{x1, . . . , xN} and the Chebyshev-Fourier coef-
ficients ck(DN ) are given for any k > 0 by the formula

ck(DN ) =

N∑
j=1

2

k
Tk(xj) +

N∑
j=1

r+
k (xj) +

N∑
j=1

r−k (xj) (5.2)

and

c0(DN ) = −
N∑
j=1

r+
0 (xj)−

N∑
j=1

r−0 (xj) (5.3)

where for k > 0

r±k (x) =
[
(2/k)(−Tk(x) + (x∓

√
x2 − 1)k

]
χ(±1,±∞)(x) (5.4)

and
r±0 (x) = log |x∓

√
x2 − 1|χ(±1,±∞)(x) (5.5)

In the above formulae, χJ(x) is the indicator function on the set J .

Proof. This follows immediately from Lemma 3.1 in [27].

It follows from this Lemma that for our random matrices H, with probability one,

D̃N (x) =

∞∑
k=0

ck(D̃N )Tk(x), where ck(D̃N ) = ck(DN )− E{ck(DN )}.

5.1. Convergence of finite-dimensional distributions

The main goal of this subsection is to establish the following:

Proposition 5.2. Fix M ∈ N and let X1, . . . , XM be independent Gaussian random variables with
mean zero and variance one. Then for any (tk)Mk=1 ∈ RM we have the convergence in distribution

M∑
k=0

ck(D̃N )tk
d

=⇒
M∑
k=1

Xk√
k
tk, N →∞. (5.6)
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Proof. We begin by inserting Eq. (5.2) into the left-hand side of (5.6). Then from [31] or [42], we know
that the sum

M∑
k=1

tk

 N∑
j=1

2

k
Tk(xj)− E


N∑
j=1

2

k
Tk(xj)


 (5.7)

converges in distribution to the right-hand side of (5.6) as N → ∞. The main technical part of our
proof of (5.6) consists in showing that the other terms appearing in (5.2) and (5.3) do not contribute
in the limit N →∞. All such terms that appear are of the form

A±k,N =

N∑
j=1

r±k (xj) (5.8)

and by definition of the test function r±k (x), they are non-zero only when an eigenvalue xj lies outside
the bulk of the limiting spectrum [−1, 1]. Intuitively this is a rare event and we show below that in
fact E|A±k,N | → 0 as N → ∞. We note in passing that the regularity of the test functions r±k (x) lies

outside the best known C1/2+ε threshold in [50], due to the singularities at the spectral edges.
Let us focus our attention on the case E{|A+

k,N |}, since the estimation of E{|A−k,N |} follows exactly
the same pattern. First, one sees from the explicit formula (5.4) and the elementary inequality (x −√
x2 − 1)k ≤ Tk(x) ≤ (x +

√
x2 − 1)k, x ≥ 1 that −r+

k (x) is non-negative for all x ∈ R. Therefore
E{|A+

k,N |} = −E{A+
k,N}.

In terms of the normalized eigenvalue density, we have

E{A+
k,N} = N

∫ ∞
1

r+
k (x)ρN (x)dx. (5.9)

To proceed, we split the integral as

E{A+
k,N} = N

∫ 1+δN

1

r+
k (x)ρN (x) dx+N

∫ ∞
1+δN

r+
k (x)ρN (x) dx (5.10)

where we choose δN = N−7/12. The first integral in (5.10) is over a shrinking neighbourhood of the
spectral edge x = 1. An estimate that holds uniformly in this region can be given in terms of the Airy
function Ai(x) and its derivatives. In particular, Eq. 4.4 of [17] (see also the Proof of Lemma 2.2 in
[29]) shows that as N →∞

NρN (x) =

(
Φ′(x)

4Φ(x)
− γ′(x)

γ(x)

)
[2Ai(N2/3Φ(x))Ai′(N2/3Φ(x))]

+N2/3Φ′(x)[(Ai′(N2/3Φ(x)))2 −N2/3Φ(x)(Ai(N2/3Φ(x)))2] +O

(
1

N(
√
x− 1)

) (5.11)

where

γ(x) =

(
x− 1

x+ 1

)1/4

(5.12)

and

Φ(x) =

 −
(

3
∫ 1

x

√
1− y2 dy

)2/3

, |x| ≤ 1(
3
∫ x

1

√
y2 − 1 dy

)2/3

, |x| > 1
(5.13)

Since Φ(x) ≥ 0 for x ≥ 1, the functions Ai(N2/3Φ(x)) and Ai′(N2/3Φ(x)) are uniformly bounded on

[1,∞). Furthermore,
(

Φ′(x)
4Φ(x) −

γ′(x)
γ(x)

)
and Φ′(x) are bounded near x = 1. Inserting (5.11) into the first

integral in (5.10), we obtain the bound

N

∫ 1+δN

1

r+
k (x)ρN (x) dx = c1N

2/3

∫ 1+δN

1

r+
k (x) dx+O

(
1

N

)
, (5.14)
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where c1 is an N -independent constant. In (5.14) we used that r+
k (x)(x − 1)−1/2 is bounded near

x = 1 to estimate the contribution of the error term in (5.11). A simple computation shows that∫ 1+δN
1

r+
k (x) dx = O(δ

3/2
N ) as N →∞ for k ≥ 0. Inserting the latter into (5.14) yields the bound

N

∫ 1+δN

1

r+
k (x)ρN (x) dx = O(N2/3δ

3/2
N ) = O(N−5/24). (5.15)

Now consider the second integral in (5.10). We will prove below that it is exponentially small as
N →∞. Using the fact that (for k ≥ 1) −r+

k (x) ≤ Tk(x) and applying Lemma C.1, we obtain

−N
∫ ∞

1+δN

r+
k (x)ρN (x) dx (5.16)

≤ NδN
∫ ∞

1

Tk(1 + uδN )ρN (1 + uδN ) du (5.17)

≤ B−1

∫ ∞
1

u−1Tk(1 + uδN )e−buN
1/8

du (5.18)

where B, b > 0 are absolute constants. Then e.g. expanding Tk(1 + uδN ) in powers of (uδN ) and
integrating (5.18) term by term, we can apply the standard Laplace method and find that (5.18) is

O(e−cN
1/8

) for some c > 0. If k = 0 in the integral (5.16), one can use the inequality |r+
0 (1+x)| ≤

√
2x,

x > 0 and then apply the Laplace method as before yielding a similar error bound. This completes
the proof of the Proposition.

5.2. Tightness

The final ingredient required for proving the weak convergence in (5.1) is to show that the sequence
D̃N is tight in V (−a). In direct analogy to the proof given in Theorem 2.5 of [30] for the Circular
Unitary Ensemble, we will exploit the convenient fact that for −∞ < a < b < ∞, the closed unit
ball in V (b) is compact in V (a). Then by Chebyshev’s inequality, tightness follows if we can bound the
variance

E‖D̃N‖2(−b) =

∞∑
k=0

E{ck(D̃N )2}(1 + k2)−b (5.19)

uniformly inN . Such a uniform bound will follow for any b > 1/2 provided we show that E{ck(D̃N )2)} ≤
C for some constant C independent of k and N . We begin by writing the Chebyshev-Fourier coefficient
as

ck(D̃N ) =

N∑
j=1

hk(xj)− E


N∑
j=1

hk(xj)

 (5.20)

where

hk(x) = (2/k)Tk(x)χ[−1,1](x)− (2/k)(x−
√
x2 − 1)kχ(1,∞)(x)

− (2/k)(x+
√
x2 − 1)kχ(−1,−∞)(x)

(5.21)

Then by formula (4.16) we have

E{ck(D̃N )2} =
1

8

∫
R2

(hk(x1)− hk(x2))2KN (x1, x2)2 dx1 dx2 (5.22)

where KN (x, y) is the GUE kernel defined in Eq. (4.17).
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First we consider the contribution to the integral (5.22) coming from the region [−1, 1]2, namely
the integral

1

2k2

∫
[−1,1]2

(
∆Tk(x)

∆x

)2

FN (x1, x2) dx1 dx2 (5.23)

where FN (x1, x2) is defined by (4.22) and, as in Section 4, for a function f , we denote by ∆f the
difference ∆f(x) = f(x1)− f(x2). By the Plancherel-Rotach asymptotics of Hermite polynomials, we
have the bound (as follows from e.g. parts (iii) and (v) of Theorem 2.2 in [13])

|FN (x1, x2)| ≤ K1√
1− x2

1

√
1− x2

2

(5.24)

uniformly for (x1, x2) ∈ [−1, 1]2. This implies that the modulus of (5.23) is bounded by

K1

2k2

∫
[−1,1]2

(
∆Tk(x)

∆x

)2
1√

1− x2
1

√
1− x2

2

dx1 dx2 = K1π
2/8. (5.25)

The equality in (5.25) is a simple exercise involving standard properties of Chebyshev polynomials
and we omit the derivation.

Finally consider the contribution to the integral (5.22) from outside the square [−1, 1]2. For sim-
plicity, consider just the region 1 < x1 <∞ and −1 < x2 < 1, all others being analogous. Since hk(x)
is uniformly bounded in k and x on the whole real line, we have∫ 1

−1

∫ ∞
1

(hk(x1)− hk(x2))2KN (x1, x2)2 dx1 dx2 (5.26)

≤
∫ ∞
−∞

∫ ∞
1

KN (x1, x2)2 dx1 dx2 (5.27)

=

∫ ∞
1

NρN (x1) dx1 =

∫ 1+δ

1

NρN (x1) dx1 +O(Ne−cδN ) (5.28)

where δ > 0 is a constant and cδ > 0. The last equality in (5.28) follows from Theorem 5.2.3 (iii)
in [42]. Now we can insert the formula (5.11) which holds uniformly on [1, 1 + δ]. The first term in
(5.11) is bounded in N and x1 and so its integral over [1, 1 + δ] is bounded in N . The third term gives
an error of order 1/N . The contribution from the middle term can be explicitly integrated using the
substitution u = N2/3Φ(x2):∫ 1+δ

1

N2/3Φ′(x2)
(

Ai′2(N2/3Φ(x2))−N2/3Φ(x2)Ai2(N2/3Φ(x2))
)
dx2 (5.29)

=

∫ N2/3Φ(1+δ)

0

[Ai′2(u)− uAi2(u)] du (5.30)

= −
[

2

3
(u2Ai2(u)− uAi′2(u))− 1

3
Ai(u)Ai′(u)

]N2/3Φ(1+δ)

0

(5.31)

= Ai(0)Ai′(0)/3 +O(e−dδN ) (5.32)

where dδ > 0. A completely analogous argument proves that the integral over the region {1 < x1 <
∞, 1 < x2 < ∞} is also uniformly bounded in k and N , in addition to the remaining 6 regions that
make up Bc. This completes the proof that D̃N is tight in V (−a) for any a > 1/2 and hence completes
the proof of Theorem 2.1.
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Appendix A: Proof of Proposition 3.2

The purpose of this Appendix is to give the technical details required to show that the matrix P∞(z)
in Sec. 3.4 gives a good approximation to the matrix S(z) in Sec. 3.3 for large N , as described by
Proposition 3.2. Although we can mostly follow the now standard techniques described in [13], we must
take special care with the estimates because the system of contours in Figure 1 can come arbitrarily
close to the real axis as N →∞.

Remark A.1. In this Appendix there are many estimates holding uniformly in the parameters
{τk}m−1

k=1 , {αk}m−1
k=1 and x0 that appear in the partition function (3.2). We will use the big-oh no-

tation O (distinguished from the usual O) for an error term that defines an analytic function of the
parameters {αk}m−1

k=1 on Ω (cf. (3.9)) satisfying uniformity in the following parameters

• τk varying in a compact subset of R for k = 1, . . . ,m− 1,
• αk varying in a compact subset of Ω for k = 1, . . . ,m− 1,
• x0 varying in a compact subset of (−1 + δ, 1− δ).

Construction of the Parametrices at z = ±1

The parametrices at z = ±1 consist of a matrix valued function P±1(z) defined in the discs B±1(δ)
(cf. Figure 1) satisfying the following properties:

1. P±1(z) is analytic in B±1(δ) \ Σ.

2. P±1(z) satisfies the same jump conditions as S(z) on Σ ∩B±δ.

3. The following matching condition is satisfied on the boundary ∂B±1(δ)

P±1(z)P∞(z)−1 = I +O(N−1), z ∈ ∂B±1(δ), (A.1)

as N →∞.

The functions P1(z) and P−1(z) can be obtained in precisely the same way as in [35], which was
itself based on the construction in [13] corresponding to weights ω(z) ≡ 1. In our situation, the only
difference is that our weight ω(z) and the Szegö function D(z) are N -dependent, so that one has to
be careful with the matching condition (A.1). From Eq. (76) in [35], we have

P±1(z)P∞(z)−1 = P∞(z)ω(z)σ3/2P̃∞(z)−1P̃±1(z)P̃∞(z)−1P̃∞(z)ω(z)−σ3/2P∞(z)−1, (A.2)

where P̃±1(z) and P̃∞(z) are the quantities P±1(z) and P∞(z) with ω(z) ≡ 1. For our purposes we
will not need the explicit expression for P̃±1(z), which can be found in e.g. [13] or [35]. Our main goal
here is to check that the matching condition (A.1) is still satisfied.

Lemma A.2. Let P±1(z) denote the parametrix defined in (A.2). Then we have as N →∞

P±1(z)P∞(z)−1 = I +
∆̃

(±1)
1 (z)

N
+O

(
1

NdN

)
, z ∈ ∂B±1(δ) (A.3)

where the estimate is uniform for z ∈ ∂B±1(δ). The first correction term ∆̃
(±1)
1 (z) depends only on z

and is analytic except for a second order pole at z = ±1.

Proof. Prop. 7.7 of [13] implies that there is a uniform asymptotic expansion

P̃±1(z)P̃∞(z)−1 ∼ I +

∞∑
k=1

∆̃
(±1)
k (z)

Nk
, z ∈ ∂B±1(z) (A.4)
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where ∆̃
(±1)
k (z) are independent of N (and independent of ω(z)), and have meromorphic continuations

inside the disc ∂B±1(δ) with a pole of order (3k+ 1)/2 at z = ±1. Inserting (A.4) back into (A.2), we
find that

P±1(z)P∞(z)−1 − I ∼
∞∑
k=1

Q(z)∆̃
(±1)
k (z)Q(z)−1

Nk
, z ∈ ∂B±1(δ) (A.5)

where Q(z) = P∞(z)ω(z)σ3/2P̃∞(z)−1. To prove the Lemma it is sufficient to show that

Q(z) = I +O(d−1
N ), z ∈ B±1(δ). (A.6)

First note that
ω(z) = 1 +O(d−1

N ), z ∈ ∂B±1(δ) ∪ [−1, 1] (A.7)

as follows immediately from the representation (3.21). Then the proof is complete if we can check that
√
z − 1

√
z + 1

2π

∫ 1

−1

logω(x)√
1− x2(z − x)

dx = O(d−1
N ), z ∈ ∂B±1(δ) (A.8)

because this would imply the corresponding estimate for the Szegö function D(z) = 1 + O(d−1
N )

(cf. (3.26)) so that P∞(z) = P̃∞(z) + O(d−1
N ). We will prove (A.8) below only for z ∈ ∂B1(δ),

the case z ∈ ∂B−1(δ) being identical. If (z − x)−1 is bounded, the result follows immediately from
(A.7), therefore we consider only the contribution to the integral (A.8) from a small neighbourhood
[1 − δ − ε0, 1 − δ + ε0] and the points z ∈ ∂B1(δ) such that 0 < |z − (1 − δ)| < ε0/2. First consider
Im(z) > 0 and let C denote the clockwise oriented semi-circle in the upper-half plane connecting the
points 1− δ− ε0 and 1− δ+ ε0. Then by the residue theorem and analyticity of ω(x), (A.8) is equal to

i
√
z + 1

√
z − 1

logω(z)√
1− z2

+

√
z − 1

√
z + 1

2π

∫
C

logω(x)√
1− x2(x− z)

dx (A.9)

where we take the principal branch of the square root. Now both terms in (A.9) are clearly O(d−1
N ),

as follows from (A.7) and the fact that (x− z)−1 is uniformly bounded in (A.9). A similar calculation
applies when Im(z) < 0. This completes the proof of the Lemma.

Final transformation

We will now define the final transformation of the Riemann-Hilbert problem, S → R. As usual, we set

R(z) =

{
S(z)P∞(z)−1, z ∈ U∞ \ Σ

S(z)P±1(z)−1, z ∈ B±1(δ) \ Σ
(A.10)

From the Riemann-Hilbert problem for S(z), it is easily shown that R(z) has jumps only on ∂B±1(δ),
R\ [−1−δ, 1+δ] and the parts of Σ± outside of B1(δ)∪B−1(δ) (denoted here by Γ±). In what follows,
we will denote the disjoint union of these contours as ΣR, which we plot in Figure 2. The function
R(z) satisfies the following:

1. R(z) is analytic in C \ ΣR.

2. R(z) satisfies the jump condition R+(s) = R−(s)J(s) where

J(s) = P∞(s)

(
1 ω(s)eN(g+(s)+g−(s)−2s2−l)

0 1

)
P∞(s)−1, s ∈ R \ [−1− δ, 1 + δ] (A.11)

J(s) = P∞(s)

(
1 0

ω(s)−1e∓Nh(s) 1

)
P∞(s)−1, s ∈ Γ± (A.12)

J(s) = P±1(s)P∞(s)−1 s ∈ ∂B±1 (A.13)



Y. V. Fyodorov, B. A. Khoruzhenko and N. J. Simm/fBm with H = 0 and the GUE 31

Fig 2. The contour ΣR for the R(z) Riemann-Hilbert problem. The parts of the lenses Γ = Σ \ ∂B±1(δ) near x0 are
of distance O(d−1

N ) from the real line. The circles ∂B±1(δ) are of radius δ.

3. R(z) = I +O(z−1) as z →∞.

Estimating the jump matrix ∆(s)

Before we estimate the jump matrix we need to understand the behaviour of P∞(z) (cf. (3.25)) on
the contours Γ±.

Lemma A.3. The Szegö function D(s) in (3.26) and its inverse D(s)−1 are uniformly bounded on
the contours Γ±. In fact we have

logD(s) = O(1), N →∞, (A.14)

uniformly for s ∈ Γ±.

Proof. It suffices to prove that ∫ 1

−1

logω(x)

(s− x)
√

1− x2
dx = O(1). (A.15)

By definition of the weight (3.21), we have the elementary inequality

| log(ω(x))| ≤ 1

2

m−1∑
k=1

|αk|
∣∣∣∣ log (1 + gτ,η,N (x, x0))

∣∣∣∣ (A.16)

where

gτ,η,N (x, x0) =
(τ/dN )2 − 2(x− x0)τ/dN

(x− x0)2 + (η/dN )2
(A.17)

Now, clearly if x ≤ x∗ = x0 + τ/(2dN ), we have gτ,η,N (x, x0) ≥ 0, so that log(1 + gτ,η,N (x, x0)) ≤
gτ,η,N (x, x0). If x > x∗, we symmetrise about the point x∗ exploiting the symmetry | log(1+gτ,η,N (x∗−
x, x0)| = | log(1 + gτ,η,N (x∗ + x, x0)| to obtain

| log(1 + gτ,η,N (x, x0))| ≤ |gτ,η,N (x, x0)|+ |gτ,η,N (2x∗ − x, x0))|. (A.18)

We will focus only on the region x ∈ [x0 − ε, x0 + ε] as this gives the dominant contribution to the
integral (A.15). For s ∈ Γ± and x ∈ [x0 − ε, x0 + ε] we have |s − x|−1 ≤ ((x − x0)2 + (η/2dN )2)−1/2

and (1− x2)−1/2 = O(1). Then the contribution to (A.15) from the first term on the r.h.s. of (A.18)
is bounded by ∫ x0+ε

x0−ε

|gτ,η,N (x, x0)|√
(x− x0)2 + (η/2dN )2

dx ≤
∫ 1

−1

|(τ/dN )2 − 2xτ/dN |
(x2 + (η/2dN )2)3/2

dx (A.19)

=
8|τ |
η

(√
τ2/η2 + 1

√
(2dN/η)2 + 1− 1√

(2dN/η)2 + 1

)
= O(1) (A.20)
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where we changed variables x → x − x0 and extended the limits of integration back to [−1, 1]. The
resulting integral on the right-hand side of (A.19) can be evaluated exactly in e.g. Maple.

For the second term in (A.18), we use the estimate ((x−x0)2 +(η/dN )2)−1/2 ≤ c((x0−x+τ/dN )2 +
(η/dN )2)−1/2 (where c depends on η and τ only) to get∫ x0+ε

x0−ε

|gτ,η,N (2x∗ − x, x0)|√
(x− x0)2 + (η/(2dN ))2

dx ≤ c
∫ x0+ε

x0−ε

|(τ/dN )2 − 2(x0 − x+ τ/dN )τ/dN |
((x0 − x+ τ/dN )2 + (η/(2dN ))2)3/2

dx (A.21)

= c

∫ ε+τ/dN

−ε+τ/dN

|(τ/dN )2 − 2uτ/dN |
(u2 + (η/(2dN ))2)3/2

du = O(1) (A.22)

where we used that the last integral is bounded by the r.h.s. of (A.19).

Proposition A.4. Let ∆(s) = J(s)−I where J(s) is the jump matrix for R(z) defined on the contour
ΣR. We have the following bounds

• On the discs
|∆(s)| = O(N−1), s ∈ ∂B±1(δ). (A.23)

• On the upper and lower lips

|∆(s)| = O
(

exp

(
−c1

N

dN

))
, s ∈ Γ±. (A.24)

• On the real line
|∆(s)| = O (exp (−c2N)) , s ∈ R \ [−1− δ, 1 + δ]. (A.25)

Here, c1 > 0 and c2 > 0 are constants depending only on δ and η.

Proof. The bound (A.23) follows immediately from Lemma A.2, while (A.25) follows from the fact
that P∞(s) is uniformly bounded in R\ [−1−δ, 1+δ] combined with the inequalities (3.16). It remains
to settle (A.24). On the contours Γ±, we have the explicit expression

∆(s) = e∓Nh(s)

(
P∞(s)12P∞(s)22 −(P∞(s)12)2

(P∞(s)22)2 −P∞(s)12P∞(s)22

)
, s ∈ Γ±. (A.26)

where h(s) was defined in (3.20). By Lemma A.3 we see that P∞(s) is uniformly bounded on Γ±.
Therefore, the only danger is that Reh(s) vanishes too quickly as N → ∞. However, a careful ex-
amination of the function (3.20) shows that Reh(z) vanishes at the same rate that the contours Γ±
collapse onto the real axis. Indeed, an elementary calculation using Taylor’s theorem shows that we
have the inequalities

Re(h(s)) > c1/dN , s ∈ Γ+,

Re(h(s)) < −c1/dN , s ∈ Γ−,
(A.27)

where c1 = 4η
√

1− (1− δ)2. This concludes the proof of (A.24).

Estimating the R-matrix and the proof of Proposition 3.2

Finally we are in a position to prove Proposition 3.2. The proof follows from the standard method
described in [13]. However, in our case extra care must be taken with the estimates because our contour
ΣR depends explicitly on N , see e.g. [6] for another example of N -dependent contours.

Proposition A.5. The matrix R(z) satisfies the following estimate

R(z) = I +O
(

1

N

)
+O

(
log(dN ) exp

(
−c1

N

dN

))
, N →∞ (A.28)

uniformly for z ∈ C \ ΣR.
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Fig 3. The deformed contour Γ̃+. The semi-circle of radius η/(4dN ) is sufficiently small that it does not touch the
singularities (crosses), whose imaginary parts are η/dN .

Proof. Since for every N , ΣR is a finite union of smooth contours, standard theory (see e.g. [14, 36, 35])
gives

R(z) = I +
1

2πi

∫
ΣR

∆(s)ν(s)

s− z
ds (A.29)

where ∆(s) is as in Proposition A.4 and ν(s) is the unique solution to the singular integral equation
ν(s) = I + C−[ν∆](s). Here, C− is the Cauchy operator on L2(ΣR), defined by

C−[f ](s) =
1

2πi

∫
ΣR

f(x)

x− s−
dx, f ∈ L2(ΣR) (A.30)

where s− denotes the limiting value of the integral as the point s ∈ ΣR is approached from the minus
side of the contour.

We begin by solving the equation for ν(s) in a perturbation series (see e.g. [5])

ν(s) = I +

∞∑
k=1

νk(s), νk(s) = C−[νk−1∆](s), (A.31)

and ν0 = I. We need to show that this series is absolutely and uniformly convergent for any s ∈ ΣR.
Let s ∈ Γ+ and deform Γ+ to a new contour Γ̃+ differing only by a small semi-circle of radius η/(4dN )
centered at s, as depicted in Figure 3. Denote by Σ̃R the contour ΣR with Γ+ replaced with Γ̃+. By
the Cauchy theorem, we have

ν1(s) =
1

2πi

∫
ΣR

∆(x)

x− s−
dx =

1

2πi

∫
Σ̃R

∆(0)(x)

x− s
dx (A.32)

where ∆(0) is the analytic continuation of ∆ to Σ̃R and satisfies the same bounds as in Proposition
A.4. Now we estimate, splitting the integral into a contribution from the discs ∂B±1(δ), the real line
R \ [−1− δ, 1 + δ] (both of which are at most O(N−1)) and the contribution from Γ̃±:

|ν1(s)| ≤ c3/N +
1

2π

∫
Γ̃±

|∆(0)(x)|
|x− s|

dx, s ∈ Γ+

≤ c3/N +
1

2π
e−c1N/dN

∫
Γ̃±

1

|x− s|
dx, s ∈ Γ+

≤ c3/N + c2 log(dN )e−c1N/dN , s ∈ Γ+

(A.33)

where c3 and c2 are constants depending only on δ and η, with a similar bound if s ∈ Γ−. If s ∈
ΣR \ (Γ+ ∪ Γ−) then the same bound holds with c2 = 0. Applying this procedure inductively, we
obtain

|νj(s)| ≤ K1N
−j +K2

(
log(dN )e−c1N/dN

)j
, s ∈ ΣR, (A.34)
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where we can choose K2 = 0 if s ∈ ΣR \ (Γ+ ∪ Γ−). The bound (A.34) implies that the series (A.31)
is absolutely convergent. Inserting (A.31) back into (A.29) we arrive at

R(z) = I +

∞∑
j=1

Rj(z), Rj(z) =
1

2πi

∫
ΣR

νj−1(s)∆(s)

s− z
ds, j = 1, 2, 3, . . . (A.35)

Now we bound the terms in the sum (A.35). First consider the case that dist(z,ΣR) ≥ η/(4dN ). Then
estimates entirely analogous to (A.33) yield

|Rj(z)| ≤ K1N
−j +K2

(
log(dN )e−c2N/dN

)j
, j = 1, 2, 3, . . . (A.36)

On the other hand, if 0 < dist(z,ΣR) < η/(4dN ), one can again deform the contour with a semi-circle
of radius η/(4dN ) and obtain the same bound (A.36) after essentially repeating the steps (A.32) and
(A.33).

Remark A.6. To complete the proof of Proposition 3.2 we will derive the explicit form of the O(1/N)
term in (A.28). Thus we need to compute the function R1(z) defined in (A.35). By Proposition A.4
and Lemma A.2 we have

R1(z) =
R̃1(z)

N
+O

(
1

NdN

)
+O

(
dN exp

(
−c1

N

dN

))
(A.37)

where

R̃1(z) =
1

2πi

∫
∂B1(δ)

∆
(+1)
1 (s)

s− z
ds+

1

2πi

∫
∂B−1(δ)

∆
(−1)
1 (s)

s− z
ds. (A.38)

The functions ∆
(±1)
1 (s) are explicitly known, e.g. by setting ω(z) ≡ 1 in Eqs. (79, 83), of [35] or

by using the results in [13]. Then expanding (A.37) near z = ∞ and computing the residues of the

function ∆
(±1
1 (s) near the poles s = ±1, we find that

R̃1(z) = A/z +B/z2 +O(z−3), z →∞ (A.39)

where

A =

(
0 i/24

i/24 0

)
, B =

(
−1/48 0

0 1/48

)
(A.40)

Then inserting (A.28) and the first order correction above into the definition (A.10), we arrive at
(3.29).

Appendix B: The Szegö function

For a weight ω(x), the Szegö function is defined by the formula

D(z) = exp

(√
z + 1

√
z − 1

2π

∫ 1

−1

log(ω(x))√
1− x2

dx

z − x

)
. (B.1)

It satisfies the properties

1. D(z) is non-zero and analytic in C \ [−1, 1],

2. D+(x)D−(x) = ω(x) for x ∈ (−1, 1),

3. limz→∞D(z) = D∞ 6= 0.



Y. V. Fyodorov, B. A. Khoruzhenko and N. J. Simm/fBm with H = 0 and the GUE 35

For our problem, we are interested in the weight ω(x) =
∏m
k=1 |x − zk|αk where Im(zk) 6= 0 for

k = 1, . . . ,m. It can easily be seen that the above three properties uniquely specify the Szegö function
for this weight. Let c(z) = z+

√
z − 1

√
z + 1 be the conformal map from C \ [−1, 1] to the exterior of

the unit disk. Then the Szegö function for the weight |x− µ|2 is

|c(µ)|
2

(
1− 1

c(µ)c(z)

)(
1− 1

c(µ)c(z)

)
, Im(µ) 6= 0. (B.2)

This can be checked by verifying the above three conditions using the properties c(z) + 1
c(z) = 2z and

c+(x)c−(x) = 1 for x ∈ [−1, 1]. Thus the Szegö function for ω(x) is

D(z) =

m∏
k=1

(
|c(zk)|

2

(
1− 1

c(zk)c(z)

)(
1− 1

c(zk)c(z)

))αk/2
. (B.3)

Similar considerations show straightforwardly that the function C(z, µ) defined in (3.35) is given by

C(z, µ) =
1

2
log

(
|c(µ)|

2

(
1− 1

c(µ)c(z)

)(
1− 1

c(µ)c(z)

))
. (B.4)

Defining zk = x0 + τk+iη
dN

, one easily gets the asymptotic

dN
|c(zj)|

2

(
1− 1

c(zj)c(zk)

)(
1− 1

c(zj)c(zk)

)
= 2η + i(τj − τk) +O(d−1

N ) (B.5)

which immediately implies that

Re(C(zj , zk)) = −1

2
log(dN ) +

1

4
log((τj − τk)2 + 4η2) +O(d−1

N ). (B.6)

The uniformity of the error term in the relevant compact sets follows from the uniform expansions of
the logarithm and square roots in these regions. From (B.3) we obviously have the expansion

D(z) = D∞
(

1 +
D1

z
+
D2

1/2 +D2

z2

)
+O(z−3) (B.7)

where

D∞ =

m−1∏
k=1

∣∣∣∣ c(zk)

c(zm)

∣∣∣∣αk/2. (B.8)

and

D1 = −1

2

m∑
k=1

αk Re

(
1

c(zk)

)
, D2 = −1

8

m∑
k=1

αk Re

(
1

c(zk)2

)
. (B.9)

Appendix C: Proof of equation 4.29

Our first task is to prove that we have the limit

lim
N→∞

∫
[IcN ]2

∆f1(dNx)

∆x

∆f2(dNx)

∆x
FN (x1, x2) dx1 dx2 = 0, (C.1)

where IcN is the complement of the region IN = [−(1 − δN ), (1 − δN )], δN = N−7/12 and we defined
FN (x, y) = (x− y)2K2

N (x, y) in terms of the GUE kernel (4.17). After proving (C.1) we show that δN
can be replaced with an N -independent δ > 0 costing an error term that can be neglected.
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Let 0 < ε < 1 and consider the following three subsets of R2,

R1 = {(x1, x2) ∈ R2 | (|x1| < ε) ∧ (x2 > (1 + δN ))},
R2 = {(x1, x2) ∈ R2 | (|x1| < ε) ∧ (1− δN < x2 < 1 + δN )},
R3 = {(x1, x2) ∈ R2 | (x1 > ε) ∧ (x2 > ε)}.

It is sufficient to consider only these regions, because together with their reflections in the x1 and
x2 axes, they cover the entire region [IcN ]2. In the following we will prove that the contribution from
each of these regions to the integral (C.1) tends to zero as N →∞. Finally we complete the proof of
Eq. (4.19) by showing that the difference between the integral (C.1) over [IcN ]2 and [Icδ ]2 converges as
N →∞ to a function that is O(δ) as δ → 0.

We start with the contribution of the region R3 to the integral (C.1). Using the Schwartz property
of f1, f2 and the inequality K2

N (x1, x2) ≤ N2ρN (x1)ρN (x2), we have for any γ > 0∣∣∣∣ ∫ ∞
ε

∫ ∞
ε

∆f1(dNx)∆f2(dNx)K2
N (x1, x2) dx1 dx2

∣∣∣∣ (C.2)

≤ N2(2εdN )−2γ

(∫ ∞
ε

ρN (x1) dx1

)(∫ ∞
ε

ρN (x2) dx2

)
= O(N2d−∞N ) (C.3)

where we used the inequality |∆gj(dNx)| ≤ |gj(dNx1)+gj(dNx2)| ≤ d−γN (|x1|−γ+|x2|−γ) ≤ 2d−γN (ε−γ).
We conclude that the integral (4.16) restricted to the region R3 is of order O(N−∞) as N →∞.

Now let us consider the edge region R2. We will make use of the following Lemma from [42], which
states

Lemma C.1 (Theorem 5.2.3 (ii) [42]). Let ρN (x) denote the normalized density of states, as in (4.7).
The bound

ρN (1 + sN−2/3) ≤ (BN1/3s)−1e−bs
3/2

(C.4)

holds for N large enough. Here B and b are absolute constants and s→∞ as N →∞.

Using this result and again the bound KN (x1, x2)2 ≤ N2ρN (x1)ρN (x2), we see that the contribution
to the integral (C.1) from the region R2 is bounded by

N2

∫ ∞
−∞

∫ ∞
(1+δN )

|∆f1(dNx)||∆f2(dNx)|ρN (x1)ρN (x2) dx1 dx2

= CδNN
2

∫ ∞
−∞

∫ ∞
1

ρN (1 + x1δN )ρN (x2) dx1 dx2

≤ CBN
∫ ∞
−∞

∫ ∞
1

x−1
1 e−bx

3/2
1 N1/8

ρN (x2) dx1 dx2 = O(N−∞), N →∞, (C.5)

where we used that f1, f2 are uniformly bounded on R2.

For the region R1, we need a bound for the absolute value of the functions ψ
(N)
l (x).

Lemma C.2 (Szegö, Sect. 10.8 [51]). Let ψ
(N)
l (x) denote the orthonormal functions defined in (4.18).

Then the following bound holds uniformly in l as N →∞,

sup
u∈R
|ψ(N)
l (u)| = O(N1/4). (C.6)

First consider the contribution from the product of squares, i.e. that of ψ
(N)
N (x1)2ψ

(N)
N−1(x2)2 in

FN (x1, x2). Since in the region R1 we have x1 6= x2, the bound |∆fj(dNx)/∆x| ≤ C, j = 1, 2 holds
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for some N -independent C > 0. Then the contribution coming from ψ
(N)
N (x1)2ψ

(N)
N−1(x2)2 is bounded

by

C

∫ (1+δN )

(1−δN )

∫ ε

−ε
ψ

(N)
N (x1)2ψ

(N)
N−1(x2)2 dx1 dx2 (C.7)

≤ C
∫ (1+δN )

(1−δN )

∫ ∞
−∞

ψ
(N)
N (x1)2 sup

u∈R
|ψ(N)
N−1(u)|2 dx1 dx2 ≤ C ′N−1/12 (C.8)

where C ′ > 0 is another constant independent of N . A similar calculation shows that the contribution

from the mixed term ψ
(N)
N (x1)ψ

(N)
N−1(x1)ψ

(N)
N (x2)ψ

(N)
N−1(x2) is also O(N−1/12) as N →∞. We conclude

that the contribution of the region R1 is O(N−1/12) as N → ∞. Finally, a completely analogous
calculation shows that the contribution to (4.16) coming from all reflections of the regions R1, R2

and R3 in the x1 and x2 axes satisfy the same corresponding asymptotic estimates as N → ∞ and
therefore may be neglected. Eq. (C.1) is proven.

To complete the argument, we need to show that the difference between the integral (4.16) over I2
N

and the same integral over Iδ = [−(1− δ), (1− δ)]2 for some N -independent δ > 0, can be neglected in
the limitN →∞. It will be sufficient to consider only the thin strip |x1| < ε and (1−δ) < x2 < (1−δN ),
because the remaining parts of IcN \ Iδ are either reflections of this region or are subsets of the region
R1 treated earlier. Thus, we just have to estimate the integral∫ (1−δN )

(1−δ)

∫ ε

−ε

∆f1(dNx)

∆x

∆f2(dNx)

∆x
FN (x1, x2) dx1 dx2 (C.9)

According to the first Plancherel-Rotach formula of Corollary 5.1.5 in [42], we have the bound
FN (x1, x2) = (1 − x2

1)−1/2(4 − x2
2)−1/2O(1) uniformly as N → ∞. Therefore since x1 6= x2 in (C.9)

and f1, f2 are uniformly bounded, we see that (C.9) is bounded in absolute value by

C

∣∣∣∣ ∫ (1−δN )

(1−δ)

∫ ε

−ε
(1− x2

1)−1/2(1− x2
2)−1/2 dx1 dx2

∣∣∣∣ (C.10)

≤ C|
(
cos−1(1− δN )− cos−1(1− δ)

)
| → C| cos−1(1− δ)|, N →∞, (C.11)

where C > 0 is some N -independent constant. Hence, by choosing δ > 0 sufficiently small, we can
ensure that the integral over this strip is as small as we desire. This proves Eq. (4.29).
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