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Abstract

The aim of this article is to prove that for the graphene model like for a model
considered by the physicist Hou on a kagome lattice, there exists a formula which
is similar to the one obtained by Chambers for the Harper model in the case of the
rational flux. As an application, we propose a semi-classical analysis of the spectrum
of the Hou butterfly near a flat band.

1 Introduction

1.1 A brief historics

Starting from the middle of the fifties [11], solid state physicists have been interested in
the flux effects created by a magnetic field (see in the sixties Azbel [4], Chambers [8]) . In
1976 a celebrated butterfly was proposed by D. Hofstadter [15] to describe as a function of
the flux γ the spectrum (at the bottom) of a Schrödinger operator with constant magnetic
field and periodic electric potential. About ten years later mathematicians start to propose
rigorous proofs for this approximation and to analyze the model itself. The celebrated ten
martinis conjecture about the Cantor structure when γ/2π is irrational was formulated
by M. Kac and only solved a few years ago (see [2] and references therein). We refer also
to the survey of J. Bellissard [5] for a state of the art in 1991. Once a semi-classical (or
tight-binding) approximation is done, involving a tunneling analysis we arrive (modulo a
controlled smaller error, see [12]) in the case of a square lattice to the so-called Harper
model, which is defined on `2(Z2,C) by

(Hu)m,n := (um+1,n + um−1,n) + eiγmum,n+1 + e−iγmum,n−1 ,

where γ denotes the flux of the constant magnetic field through the fundamental cell of
the lattice.
When γ

2π is a rational, a Floquet theory (see [5] or [13] and references therein) permits to
show that the spectrum is the union of the spectra of a family of q× q matrices depending
on the quasi-momenta θ = (θ1, θ2) ∈ R2.
More precisely, when

γ = 2πp/q , (1.1)

where p ∈ Z and q ∈ N∗ are relatively prime, the two following matrices in Mq(C) play an
important role:

Jp,q = diag(ei(j−1)γ) , (1.2)
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and
(Kq)jk = 1 if k ≡ j + 1 [q] , 0 else. (1.3)

Note that Kq represents the cycle (1, · · · , q), Jp,q is the diagonal form of Kq, and these
matrices satisfy relations (2.1) and (2.3) in Section 2.
In the case of Harper, the family of matrices is

MH(θ1, θ2) = eiθ1Jp,q + e−iθ1J∗p,q + eiθ2Kq + e−iθ2K∗q . (1.4)

The Hofstadter butterfly is then obtained as a picture in the rectangle [−4,+4] × [0, 1]
(see Figure 1):
A point (λ, γ/2π) is in the picture if there exists θ such that
det(MH(θ1, θ2)− λ) = 0 for some p

q with p/q ∈ [0, 1] (q ≤ 50).
The Chambers formula gives a very elegant formula for this determinant:

det(MH(θ1, θ2)− λ) = fHp,q(λ) + (−1)q+12 (cos qθ1 + cos qθ2) , (1.5)

where fHp,q is a polynomial of degree q.

Many other models have been considered. In the case of a triangular lattice, the second
model is, according to [18] (see also [3]),

MT (θ1, θ2, φ) = eiθ1Jp,q+e
−iθ1J∗p,q+e

iθ2Kq+e
−iθ2K∗q+eiφei(θ1−θ2)Jp,qK

∗
q+e−iφei(θ2−θ1)KqJ

∗
p,q

(1.6)
with φ = −γ/2.
The Chambers formula in this case takes the form

det(MT (θ1, θ2, φ)− λ) = fTp,q,φ(λ) + (−1)q+12 (cos qθ1 + cos qθ2 + cos q(θ2 − θ1 − φ)) .
(1.7)

The resulting spectrum is given in Figure 2.

In the case of the hexagonal lattice, which appears also in the analysis of the graphene,
we have to analyze

MG(θ1, θ2) :=

(
0 Iq + eiθ1Jp,q + eiθ2Kq

Iq + e−iθ1J∗p,q + e−iθ2K∗q 0

)
(1.8)

We denote by PG the characteristic polynomial of MG. The resulting spectrum is given
in Figure 3.
Finally, inspired by the physicist Hou, the first and third authors [19] have shown that for
the kagome lattice, the following approximating model is relevant: we consider the matrix

MK(θ1, θ2, ω) =

 0 A(θ1, θ2, ω) B(θ1, θ2, ω)
A∗(θ1, θ2, ω) 0 C(θ1, θ2, ω)
B∗(θ1, θ2, ω) C∗(θ1, θ2, ω) 0

 , (1.9)

with

A(θ1, θ2, ω) = ei(ω+
γ
8
)(e−iθ1J∗p,q + e−i

γ
2 e−i(θ1−θ2)J∗p,qKq)

B(θ1, θ2, ω) = e−i(ω+
γ
8
)(e−iθ1J∗p,q + e−iθ2K∗q )

C(θ1, θ2, ω) = ei(ω+
γ
8
)(e−i

γ
2 ei(θ1−θ2)Jp,qK

∗
q + e−iθ2K∗q ) .

Here ω is a parameter appearing in the computation of the tunneling coefficients (most
of the physicists consider without justification the case ω = 0) and should probably be
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interpreted as a flux. We refer to [19] for a discussion of this point.

The trigonometric polynomial

(x, ξ) 7→ p4(x, ξ) = cosx+ cos ξ + cos(x− ξ) (1.10)

which was playing an important role in the analysis of the triangular Harper model (see
Claro-Wannier [9] and Kerdelhué [18]) will also appear in our analysis.
We denote by PK(θ1, θ2, ω, λ) the characteristic polynomial det(MK(θ1, θ2, ω)− λ).

1.2 Main results

The aim of this article is to prove that, for a model considered by Hou [16], there exists a
formula which is similar to the one obtained by Chambers [8] for the Harper model and
describe the dependence of the characteristic polynomial on the quasi-momenta (θ1, θ2).
(see also Helffer-Sjöstrand [12], [13], Bellissard-Simon [7], C. Kreft [20], I. Avron (and
coauthors) [3]). Such an existence was motivated by computations of [19]. We also con-
sider the case of the graphene, where a huge litterature in Physics exists (see [10] and
references therein) which is sometimes unaware of semi-classical mathematical results of
the nineties. Note that the Chambers formula plays an important role in the semi-classical
analysis of the Harper’s model (see for example [13]).

The first statement is probably well known in the physical literature.

Theorem 1.1 (Graphene).

PG(θ1, θ2, λ) = (−1)q det(MT (θ1, θ2, 0) + 3− λ2) . (1.11)

The second statement was to our knowledge unobserved.

Theorem 1.2 (Kagome).
For any ω, there exists a polynomial Qω of degree 3q, with real coefficients, depending on
p, q, such that

PK(θ1, θ2, ω, λ) = Qω(λ) + p4(q(θ1 + pπ), q(θ2 + pπ))Rω(λ) , (1.12)

with
Rω(λ) := 2

(
λ+ 2 cos(3ω − γ

8
)
)q

. (1.13)

Moreover the principal term of Qω(λ) is λ3q.

We call k-th band the set described when (θ1, θ2) ∈ R2 by the k-th eigenvalue of the matrix
MK . We will call this band flat if this k-th eigenvalue is independent of (θ1, θ2).

Corollary 1.3. A flat band exists if and only if

Qω(−2 cos(3ω − γ

8
)) = 0 .

Remark 1.4.

• Qω is a trigonometric potential in 3ω.

• For (p, q) given, the set of the ω’s such that a flat band exists is discrete. Formula
(1.9) shows indeed that the expression PK(θ1, θ2, ω,−2 cos(3ω − γ/8)), which ac-
cording to Theorem 1.2 is independent of (θ1, θ2), takes the form Σ9q

j=−9qaje
ijω with

a9q = e−i
3γq
8 .
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1.3 Examples

Let us illustrate by some examples mainly extracted of [19].
In the case when q = 1 and p = 0, one finds, for the Hou’s model:

PK(θ1, θ2, ω, λ) = λ3 − 6λ− 4 cos(3ω)− 2 (λ+ 2 cos(3ω)) p4(θ1, θ2) .

Hence, we have in this case:

Qω(λ) = λ3 − 6λ− 4 cos(3ω) .

It is then natural to ask if the two polynomial have a common zero. The condition reads:

Qω(−2 cos(3ω) ) = 0 .

We get:
(cos 3ω)3 − cos 3ω = 0 ,

hence cos 3ω = 0 or cos 3ω = ±1. So a ”flat band” appears when ω = 0, which was mostly
considered in the physical literature. Note that in [19], it is proved only that ω → 0 as
a function of the initial semi-classical parameter. The set of ω’s for which we have a flat
band is {ωk = k π6 , k ∈ Z} .

Remark 1.5. Note that this model appears in [22, Proposition 3.2] who refers to [21] in
the context of quantum graphs. Other models also appear when γ = 0 in [17] as mentioned
to us by the referee. These authors consider the so-called Bellissard-Harper algebra and as
a particular case the triangular lattice.

Another example is, as shown in [19] (Proposition 1.13), for ω = π/8 and p/q = 3/2.
The bands are {−2} (with multiplicity 2), [1 −

√
6, 1 −

√
3], [1 −

√
3, 1], [1, 1 +

√
3] and

[1 +
√

3, 1 +
√

6].

1.4 Organization of the paper

This paper is organized as follows. In Section 2 we establish symmetry properties of the
two matrices Jp,q and Kq. In Section 3 we recall how a method due to Bellissard-Simon
permits to establish the Chambers formula for a square lattice or a triangular lattice. In
Section 4, we give an application to the case of the graphene. Section 5 is devoted to
the proof of the main theorem for the kagome lattice. In Section 6, we establish the non
overlapping of the bands in the case of the kagome lattice. Section 7 gives as an application
a semi-classical analysis near a flat band and we finish with a conclusion.

2 Symmetries

We recall some basic symmetry properties of the two matrices Jp,q and Kq. Some of them
were used in the previous literature, some other are new. We first recall that

Jp,qKq = exp(−2iπ
p

q
)KqJp,q . (2.1)

and (take the complex conjugation and the adjoint )

K∗qJp,q = exp(−2iπ
p

q
) Jp,qK

∗
q . (2.2)
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Lemma 2.1. There exist unitary matrices U and V in Mq(C) such that

U∗K∗qU = Jp,q (2.3)

U∗Jp,qU = Kq (2.4)

V ∗K∗qV = Jp,q (2.5)

V ∗Jp,qV = (−1)pe−i
γ
2 J∗p,qKq (2.6)

V ∗((−1)pe−i
γ
2 J∗p,qKq)V = K∗q (2.7)

Remark 2.2. Note from (2.1) and (2.2) that the pairs (Jp,q,Kq) and (K∗q , Jp,q) satisfy the
same commutation relation. (2.3) et (2.4) make explicit the unitary equivalence between
this representation and the one used in [19].

Proof
U is actually the discrete Fourier transform:

Uj,k = q−1/2e−iγ(j−1)(k−1) , j, k = 1, · · · , q . (2.8)

It is easy to verify (2.3) et (2.4).
For (2.5), we observe that, Jp,q being diagonal, (2.5) is verified for any matrix V in the
form

V = UD ,

where D is a diagonal unitary matrix

D = diag(dj) ,

with |dj | = 1.
We are looking for the dj ’s and a complex number c of module 1 such that

V ∗Jp,qV = cJ∗p,qKq .

If we think of the indices as elements in Z/qZ, we have:

(V ∗Jp,qV )j,k = dj+1d̄jδj+1,k ,

and
(J∗p,qKq)j,k = e−i(j−1)γδj+1,k .

We want to have
d1 = 1 , dj+1 = c e−i(j−1)γ for j > 1 ,

but also:
dq+1 = 1 .

This implies

e−iγ
q(q−1)

2 cq = 1 .

So we choose
c = eiγ

q−1
2 = (−1)pe−i

γ
2 .

We then obtain
V ∗(J∗p,qKq)V = c̄K∗qJp,qJ

∗
p,q = c̄K∗q .
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3 Harper on square and triangular lattice

We recall in this section the approach of Bellissard-Simon [7], initially introduced for the
analysis of the Harper model, we apply it for the case of the triangular lattice. Note that
this second situation was recently analyzed in [3] and [1].

3.1 The case of Harper

We start from the general formula

det(M − λIq) = (−λ)q exp Tr

(
log(Iq −

M

λ
)

)
. (3.1)

This implies

det(MH(θ1, θ2)− λIq) = (−λ)q exp

−∑
k≥1

λ−k
TrMH(θ1, θ2)

k

k

 . (3.2)

The next point is to observe that

Tr (J `1p,qK
`2
q ) = 0 , except `1 ≡ 0 and `2 ≡ 0 mod q . (3.3)

The only term which depends on (θ1, θ2) in 1
k λk

TrMH(θ1, θ2)
k (for k ≤ q) corresponds to

k = q and is simply: 2
λq (cos qθ1 + cos qθ2).

The general term is indeed

exp i (`1θ1 − `∗1θ1 + `2θ2 − `∗2θ2) Tr J
`1−`∗1
p,q K

`2−`∗2
q ,

with `1 ≥ 0 , `∗1 ≥ 0 , `2 ≥ 0 , `∗2 ≥ 0 , and `1 + `∗1 + `2 + `∗2 ≤ q .
But (3.3) implies that the non vanishing terms (depending effectively on (θ1, θ2)) can only
correspond to

`1 ≡ `∗1 and `2 ≡ `∗2 , with |`1 − `∗1|+ |`2 − `∗2| 6= 0 .

A case by case analysis leads to only four non zero terms corresponding to
`1 = q, `∗1 = 0, `2 = 0, `∗2 = 0, and the three permutations of this case. Hence we have
proved:

Proposition 3.1.

det(MH(θ1, θ2)− λIq) = fHp,q(λ) + (−1)q+12 (cos qθ1 + cos qθ2) . (3.4)

3.2 The case of Harper on a triangular lattice

We first treat the case with φ as a free parameter.
The starting point is the same but this time the general term is

exp i (`1θ1 − `∗1θ1 + `2θ2 − `∗2θ2 + (`3 − `∗3)(θ1 − θ2)) Tr J
`1−`∗1+`3−`∗3
p,q K

`2−`∗2−`3+`∗3
q ,

with `1 ≥ 0 , `∗1 ≥ 0 , `2 ≥ 0 , `∗2 ≥ 0 , `3 ≥ 0 , `∗3 ≥ 0 , and

`1 + `∗1 + `2 + `∗2 + `3 + `∗3 ≤ q . (3.5)

But (3.3) implies that the non vanishing terms can only correspond to

`1 − `∗1 + `3 − `∗3 ≡ 0 and `2 − `∗2 − `3 + `∗3 ≡ 0 , (3.6)
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with
`1 − `∗1 + `3 − `∗3 6= 0 or `2 − `∗2 − `3 + `∗3 6= 0 . (3.7)

We have six evident cases corresponding to all indices equal to 0 except one equal to q. It
remains to discuss if there are other cases.
We introduce the auxiliary parameters:

˜̀
1 = `1 + `3 , ˜̀∗

1 = `∗1 + `∗3 ,
˜̀
2 = `1 + `∗3 ,

˜̀∗
1 = `∗2 + `3 ,

and with these conditions we get:

˜̀
1 − ˜̀∗

1 ≡ 0 and ˜̀
2 − ˜̀∗

2 ≡ 0 , (3.8)

with
˜̀
1 − ˜̀∗

1 6= 0 or ˜̀
2 − ˜̀∗

2 6= 0 (3.9)

This looks rather similar to the previous situation except the bounds on the ˜̀
j .

In the case by case discussion, we first verify that for each congruence it is enough (using
(3.5)) to look at ˜̀

j − ˜̀∗
j = −q, 0, q hence to nine cases but the second condition eliminates

one case. One can also eliminate two cases corresponding to (˜̀
1 − ˜̀∗

1)(
˜̀
2 − ˜̀∗

2) > 0 using
again the condition (3.5). Hence it remains six cases, each one containing one of the
evident cases.
Let us look at one of these six cases:

˜̀
1 = ˜̀∗

1 + q , ˜̀
2 = ˜̀∗

2 − q .

This reads
`1 + `3 = `∗1 + `∗3 + q , `2 + `∗3 = `∗2 + `3 − q .

The left part together with (3.5) implies `∗1 = `∗3 = 0 and the right part implies `2 = 0.
Hence it remains:

`1 + `3 = q , `∗2 = q − `3 = `1 .

Using again the condition on the sum we get `∗2 = `1 = 0 , hence finally `3 = 0 . We are
actually in one of the six announced trivial cases.

Proposition 3.2.

det(MT (θ1, θ2, φ)−λIq) = fTp,q,φ(λ)+(−1)q+12
(
cos qθ1 + cos qθ2 + (−1)q+1 cos q(θ1 − θ2 + φ)

)
.

(3.10)

What remains is to compute the coefficients in the six cases (actually three cases are
enough because the sum should be real). We only compute the new case. As

((−1)pe−iγ/2Jp,qK
∗
q )q = Iq

we immediately get as coefficient cos(qθ1) + cos(qθ2) + (−1)pq cos(qθ1 − qθ2 + πp + qφ)
which can be written observing that (−1)(p+1)(q+1) = 1 (p and q being mutually prime):

cos(qθ1) + cos(qθ2) + (−1)q+1 cos(qθ1 − qθ2 + qφ) .

Remark 3.3. Similar formulas appear in [1].
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4 The hexagonal or graphene case

Taking the square of the matrix given by (1.8), we obtain(
3Iq +MT (θ1, θ2, 0) 0

0 3Iq + M̂T (θ1, θ2, 0)

)
(4.1)

with

M̂T (θ1, θ2, 0) = eiθ1Jp,q + e−iθ1J∗p,q + eiθ2Kq + e−iθ2K∗q

+ ei(θ1−θ2)K∗qJp,q + e−i(θ1−θ2)J∗p,qKq . (4.2)

For the second term we have just an exchange of Jp,q and Kq. It is clear by a stan-
dard argument used for Dirac type operators that the two terms have the same non-zero
eigenvalues. If we control the multiplicity this will give the isospectrality. If we introduce

A = Iq + eiθ1Jp,q + eiθ2Kq ,

the two operators read AA∗ and A∗A .
Consider indeed u 6= 0 such that

AA∗u = λu .

Then we get
A∗AA∗u = λA∗u .

If λ 6= 0, then A∗u 6= 0 and is consequently an eigenvector of A∗A. The multiplicity is
also easy to follow.
Hence we get easily an equation for the square of the eigenvalues. But it has been shown in

[19] (by conjugation by

(
−Iq 0

0 Iq

)
), that the spectrum is invariant by λ→ −λ. Hence

looking at the first characteristic polynomial gives us all the squares of the eigenvalues of
MG + 3I2q, counted with multiplicity.
So we have proved Theorem 1.1. Hence the spectrum will consist of q bands in R+ and of
q bands in R− obtained by symmetry. We will show in the next section that these bands
are not overlapping but that possibly touching. The last (maybe standard) observation is
that the two central gaps for the Graphene-model are effectively touching at 0. We have
to show that 0 belongs to the spectrum :

Proposition 4.1. There exists (θ1, θ2) ∈ R2 such that

det(MG(θ1, θ2)) = 0 .

It is actually enough to show:

Lemma 4.2. There exists (θ1, θ2) ∈ R2 such that

det(Iq + eiθ1Jp,q + eiθ2Kq) = 0 .

Proof
We consider the polynomial

P (λ) = det(−λ Iq + eiθ1Jp,q + eiθ2Kq) =

det


−λ+ eiθ1 eiθ2 0 · · · 0

0 −λ+ ei2πp/qeiθ1 eiθ2 · · · 0
...

...
...

. . .
...

eiθ2 0 0 · · · −λ+ ei2πp(q−1)/qeiθ1

 (4.3)
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P has degree q, the coefficient of λq is (−1)q, and

P (λ) = (−1)q−1eiqθ2

if λ = ei2πk/qeiθ1 for k ∈ {0, · · · , q − 1}, i.e. if λq = eiqθ1 . Hence

P (λ) = (−1)q(λq − eiqθ1 − eiqθ2) .

Considering λ = −1 gives

det(Iq + eiθ1Jp,q + eiθ2Kq) = 1− eiq(θ1+π) − eiq(θ2+π) .

The choice of θ1 = π + π/(3q) and θ2 = π − π/(3q) achieves the proof.

Remark 4.3. Interesting new results concerning the graphene case and the computation
of Chern classes have been obtained recently in [1] and [3].

5 Proof of Theorem 1.2

Although the Bellissard-Simon’s approach gives a partial proof of Theorem 1.2, the proof
given below goes much further by implementing the symmetry considerations described
in Section 2.

5.1 First a priori form

We first establish:

Lemma 5.1. There exist polynomials Tj,k, −1 ≤ j, k ≤ 1 such that, for all (θ1, θ2) ∈ R2

PK(θ1, θ2, ω, λ) =
∑

j,k∈{−1,0,1}

ei(q(jθ1+kθ2))Tj,k(λ) . (5.1)

Proof:
We introduce the matrix S(θ1, θ2, ω), which is unitary equivalent with MK(θ1, θ2, ω), by

S(θ1, θ2, ω) =

 e−iθ1J∗p,q 0 0

0 Iq 0
0 0 eiθ2Kq

∗MK(θ1, θ2, ω)

 e−iθ1J∗p,q 0 0

0 Iq 0
0 0 eiθ2Kq

 .

(5.2)

A computation shows that

S(θ1, θ2, ω) =

 0 ei(ω+
γ
8
)(Iq + e−i

γ
2 eiθ2Kq) e−i(ω+

γ
8
)(eiθ2Kq + eiθ1Jp,q)

e−i(ω+
γ
8
)(Iq + ei

γ
2 e−iθ2K∗q ) 0 ei(ω+

γ
8
)(e−i

γ
2 eiθ1Jp,q + Iq)

ei(ω+
γ
8
)(e−iθ2K∗q + e−iθ1J∗p,q) e−i(ω+

γ
8
)(ei

γ
2 e−iθ1J∗p,q + Iq) 0

 .

(5.3)

Hence MK(θ1, θ2, ω) and S(θ1, θ2, ω) have the same characteristic polynomial and coming
back to the definition of the determinant, we can verify that PK is a polynomial of degree
q in (e−iθ1 , eiθ1), and also of degree q in (e−iθ2 , eiθ2).
Then we observe that Jp,q 0 0

0 Jp,q 0
0 0 Jp,q

∗MK(θ1, θ2, ω)

 Jp,q 0 0
0 Jp,q 0
0 0 Jp,q

 = MK(θ1, θ2 +
2πp

q
, ω)
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and  Kq 0 0
0 Kq 0
0 0 Kq

∗MK(θ1, θ2, ω)

 Kq 0 0
0 Kq 0
0 0 Kq

 = MK(θ1 −
2πp

q
, θ2, ω) .

As PK is 2π-periodic in θ1 and θ2, and p et q are mutually prime, PK is1 (2π/q)-periodic
in θ1 and θ2. One can indeed use Bézout’s theorem observing that 1 = up + vq (with u
and v in Z), hence 1

q = u p
q + v.

5.2 Improved a priori form

Here we prove the existence of two polynomials Qω and Rω, with real coefficients, depend-
ing on γ and possibly on ω, but not on (θ1, θ2), such that

PK(θ1, θ2, ω, λ) = Qω(λ) + p4(q(θ1 + pπ), q(θ2 + pπ))Rω(λ) . (5.4)

In view of Lemma 5.1, it remains to prove that PK(θ1 + pπ, θ2 + pπ) is invariant by the
”rotation of angle −2π/3” r which leaves invariant p4 and is defined by

r(θ1, θ2) = (−θ1 + θ2,−θ1) ,

and by the symmetry s defined by

s(θ1, θ2) = (θ2, θ1) .

We now introduce
N(θ1, θ2) = (−1)pMK(θ1 + pπ, θ2 + pπ, ω) , (5.5)

and
Lp,q = (−1)pe−i

γ
2 J∗p,qKq . (5.6)

With this notation and ω′ = ω + γ/8, N(θ1, θ2) reads: 0 eiω
′
(e−iθ1J∗p,q + e−i(θ1−θ2)Lp,q) e−iω

′
(e−iθ1J∗p,q + e−iθ2K∗q )

e−iω
′
(eiθ1Jp,q + ei(θ1−θ2)L∗p,q) 0 eiω

′
(ei(θ1−θ2)L∗p,q + e−iθ2K∗q )

eiω
′
(eiθ1Jp,q + eiθ2Kq) e−iω

′
(e−i(θ1−θ2)Lp,q + eiθ2Kq) 0


(5.7)

We will show that the characteristic polynomial of N is invariant by r and s. We have
seen that

V ∗K∗qV = Jp,q , V
∗Jp,qV = Lp,q and V ∗Lp,qV = K∗q .

We easily see that :

Lemma 5.2.  0 V 0
0 0 V
V 0 0

∗N(r(θ1, θ2))

 0 V 0
0 0 V
V 0 0

 = N(θ1, θ2) . (5.8)

1This argument is already present in a similar context in [7].
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Hence the characteristic polynomial is invariant by r.
We have already used that K̄q = Kq et J̄p,q = J∗p,q and we have consequently:

U∗Jp,qU = K∗q , U∗KqU = J∗p,q and U∗Lp,qU = Lp,q

It is then easy to get:

Lemma 5.3.  0 0 U
0 U 0
U 0 0

∗N(θ2, θ1)

 0 0 U
0 U 0
U 0 0

 = N(θ1, θ2) .

Hence the characteristic polynomial is invariant by s.

5.3 End of the proof

We now make explicit the polynomial Rω. (5.2) reads:

2 eiq(θ1−θ2)(Qω(λ) + (cos(q(θ1 − θ2)) + (−1)pq cos(qθ1) + (−1)pq cos(qθ2))Rω(λ))

= 2 det

 −e−iθ2λ Iq ei(ω+
γ
8
)(e−iθ2Iq + e−i

γ
2Kq) e−i(ω+

γ
8
)(Kq + ei(θ1−θ2)Jp,q)

e−i(ω+
γ
8
)(Iq + ei

γ
2 e−iθ2K∗q ) −λ Iq ei(ω+

γ
8
)(e−i

γ
2 eiθ1Jp,q + Iq)

ei(ω+
γ
8
)(ei(θ1−θ2)K∗q + J∗p,q) e−i(ω+

γ
8
)(ei

γ
2 J∗p,q + eiθ1Iq) −eiθ1λ Iq


(5.9)

This equality between holomorphic functions holds for real (θ1, θ2) and hence for complex
(θ1, θ2). Let t be a real parameter and take θ1 = −θ2 = it in (5.9). The limit t → +∞
gives:

Rω(λ) = 2 det

 0 ei(ω+
γ
8
)e−i

γ
2Kq e−i(ω+

γ
8
)Kq

e−i(ω+
γ
8
)Iq −λ Iq ei(ω+

γ
8
)Iq

ei(ω+
γ
8
)J∗p,q e−i(ω+

γ
8
)ei

γ
2 J∗p,q 0


= 2 det

 Kq 0 0
0 Iq 0
0 0 J∗p,q

 det

 0 ei(ω+
γ
8
)e−i

γ
2 Iq e−i(ω+

γ
8
)Iq

e−i(ω+
γ
8
)Iq −λ Iq ei(ω+

γ
8
)Iq

ei(ω+
γ
8
)Iq e−i(ω+

γ
8
)ei

γ
2 Iq 0

 .

Jp,q and Kq are conjugate, hence

det

 Kq 0 0
0 Iq 0
0 0 J∗p,q

 = 1 , (5.10)

and a straightforward computation gives

det

 0 ei(ω+
γ
8
)e−i

γ
2 Iq e−i(ω+

γ
8
)Iq

e−i(ω+
γ
8
)Iq −λ Iq ei(ω+

γ
8
)Iq

ei(ω+
γ
8
)Iq e−i(ω+

γ
8
)ei

γ
2 Iq 0

 =
(
λ+ 2 cos(3ω − γ

8
)
)q

. (5.11)
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6 On the non-overlapping of the bands

In the case of the Harper model, the non overlapping of the bands has been proved in [7]
who refers for one part to a general argument to Reed-Simon [24]. The fact that except
at the center for q even, the bands do not touch has been proven by P. Van Mouche [25].
We show below that the non overlapping of the bands is a general property for all the
considered models but that the ”non touching” property was specific of the Harper model.

Lemma 6.1. Let f(λ) be a real polynomial of degree q, such that, for any µ ∈ I =]a, b[,
f(λ) = µ has q real solutions. Then f ′(λ) 6= 0, for any λ such that f(λ) = µ ∈ I.

Proof
Suppose that for some µ0, there exists λ such that f(λ) = µ0 and f ′(λ) = 0. We should
show that this leads to a contradiction.
Let λ1, · · · , λ` the points with this last property. Let kj > 1 be the smallest integer
such that f (kj)(λj) 6= 0. Using Rouché’s theorem, we see that when kj is even, neces-
sary kj complex eigenvalues appear near λj when (µ − µ0)f (kj)(λj) < 0 in contradiction
with the assumption. Similarly, when kj is odd, (kj − 1) complex zeros appear when
(µ− µ0)f (kj)(λj) 6= 0.

Lemma 6.2. Let f(λ) be a real polynomial of degree q and g a real polynomial of degree
r < q, such that, for any µ ∈ I =]a, b[, f(λ) = µg(λ) has q real solutions and suppose that
f and g have no common zero, then f ′g − fg′ 6= 0, for any λ such that f(λ) ∈ I.

Proof
We have necessarily g 6= 0 for these solutions. Hence we can perform the previous argument
by applying it to f/g.

Proposition 6.3. The spectrum of the Hou model consists of non overlapping (possibly
touching) bands, except isolated values corresponding to (isolated or embedded) flat bands.

Here are two examples of non trivial closed gaps:

• For the triangular model, for p/q = 1/6, the spectrum is given by :

{λ ∈ R , ∃(θ1, θ2) ∈ R2, λ6−18λ4−12
√

3λ3 +45λ2 +36
√

3λ+6−2p4(6θ1, 6θ2) = 0}

i.e. by the condition

λ6 − 18λ4 − 12
√

3λ3 + 45λ2 + 36
√

3λ+ 6 ∈ [−3, 6] .

We have
QT (λ) = λ6 − 18λ4 − 12

√
3λ3 + 45λ2 + 36

√
3λ

which satisfies
QT (−

√
3) = Q′T (−

√
3) = 0 .

Hence the second gap is closed. Note this is to our knowledge the only closed gap
which has been observed for the triangular butterfly (see Figure 2).

• For the graphene model, for p/q = 1/2, the spectrum is given by

{λ ∈ R , ∃(θ1, θ2) ∈ R2, λ4 − 6λ2 + 3− 2(cos(2θ1) + cos(2θ2)− cos(2(θ1 − θ2)))}

i.e.
λ4 − 6λ2 ∈ [−9, 0] .

The bands are [−
√

6,−
√

3], [−
√

3, 0], [0,
√

3] and [
√

3,
√

6]. We have in this case
three closed gaps at −

√
3, 0,+

√
3.
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7 Semi-classical analysis for Hou’s butterfly near a flat band

The general study of Hou’s butterfly near its flat bands seems difficult, but we can obtain
an explicit reduction for the simplest one, which is the flat band {0} in the case when
ω = 0, γ = 4π. As shown in [19], the spectrum of Hou’s operator for ω = 0, γ = 4π+ h is
the spectrum of the Weyl h-quantization of

M(x, ξ, h) =

 0 i eih/8(e−ix + e−i(x−ξ)) −i e−ih/8(e−ix + e−iξ)

−i e−ih/8(eix + ei(x−ξ)) 0 i eih/8(ei(x−ξ) + e−iξ)

i eih/8(eix + eiξ) −i e−ih/8(e−i(x−ξ) + eiξ) 0


(7.1)

Let us first recall some rules in semi-classical analysis. The considered symbols are func-
tions p(x, ξ, h) in the class S0(R2) of smooth functions of (x, ξ) ∈ R2 depending on a
semi-classical parameter h ∈ [−h0, h0], h0 > 0 (view as “little”) and satisfying

∀(j, k) ∈ N2 ; ∃Cj,k ; ∀(x, ξ) ∈ R2, |∂jx∂kξ p(x, ξ, h)| ≤ Cj,k (7.2)

The classical and Weyl quantizations of the symbol p are respectively (for h 6= 0, |h| ≤ h0)
the pseudodifferential operators acting on L2(R) by

p(x, hDx, h)u(x) =
1

2πh

∫∫
ei(x−y)ξ/hp(x, ξ, h)u(y) dy dξ , (7.3)

OpWh (p)u(x) =
1

2πh

∫∫
ei(x−y)ξ/hp(

x+ y

2
, ξ, h)u(y) dy dξ . (7.4)

Conversely, if P is a pseudodifferential operator, we denote σ(P ) and σW (P ) its classical
and Weyl symbols. If these symbols admit asymptotic expansions

σ(P )(x, ξ, h) = σ0(P )(x, ξ) + hσ−1(P )(x, ξ) +O(h2) ,

σW (P )(x, ξ, h) = σW0 (P )(x, ξ) + hσW−1(P )(x, ξ) +O(h2)

they are related by

σW0 (P )(x, ξ) = σ0(P )(x, ξ) , (7.5)

σW−1(P )(x, ξ) = σ−1(P )(x, ξ)− 1

2i
∂x∂ξσ0(P )(x, ξ) . (7.6)

σW0 (P ) and σW−1(P ) are called the principal and subprincipal symbols of P . If P and Q
are pseudodifferential operators admitting such expansions, the classical composition2 is
given by

σ0(P Q) = σ0(P )σ0(Q) , σ−1(P Q) = σ−1(P )σ0(Q) + σ0(P )σ−1(Q) +
1

i
∂ξP ∂xQ (7.7)

Another important fact, which partially justifies the use of Weyl quantization in the study
of selfadjoint operators, is

σW (P ∗) =
(
σW (P )

)∗
. (7.8)

In our case, the principal symbol M0 is given by

M0(x, ξ) =

 0 i(e−ix + e−i(x−ξ)) −i(e−ix + e−iξ)

−i(eix + ei(x−ξ)) 0 i(ei(x−ξ) + e−iξ)

i(eix + eiξ) −i(e−i(x−ξ) + eiξ) 0

 (7.9)

We first prove :

2By this, we mean that we use the pseudo-differential calculus involving the classical quantization.
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Proposition 7.1. There exists a familly U0(x, ξ) of unitary 3 × 3 matrices, depending
smoothly on (x, ξ), 2π-periodic in each variable, and a familly A(x, ξ) of selfadjoint 2× 2
matrices such that

U∗0 (x, ξ)M0(x, ξ)U0(x, ξ) =

 0 0 0
0
0

A(x, ξ)

 . (7.10)

Moreover, for any (x, ξ) ∈ R2, the spectrum of A(x, ξ) is contained in [−2
√

3,−
√

3] ∪
[
√

3, 2
√

3].

Proof : We easily compute the characteristic polynomial

det(M0(x, ξ)− λ I3) = −λ3 + (6 + 2p4(x, ξ))λ . (7.11)

The range of p4 is [−3/2, 3], so the kernel of M0(x, ξ) has dimension 1, and the spectrum
of the restriction of M0 to (ker(M0(x, ξ))

⊥ is contained in [−2
√

3,−
√

3] ∪ [
√

3, 2
√

3]. A
unitary basis vector of ker(M0(x, ξ)) is e0(x, ξ) = α(x, ξ) ẽ0(x, ξ) with

ẽ(x, ξ) =

 1 + e−ix

1 + ei(x−ξ)

1 + eiξ

 (7.12)

α(x, ξ) =
1√

6 + 2p4(x, ξ)
(7.13)

So we choose e0(x, ξ) as the first column of U0(x, ξ). We then observe

Re

〈
ẽ0(x, ξ),

 1
1
1

〉 = 3 + p4(x, ξ) ≥ 3

2
, (7.14)

and thus consider a unitary 3× 3 matrix B whose first line is 1√
3
(1, 1, 1). Then

B e0(xξ) =

 a(x, ξ)
b(x, ξ)
c(x, ξ)

 (7.15)

where Re(a(x, ξ)) > 0. We define the unitary vector f(x, ξ) by

f(x, ξ) = B∗
1√

|a(x, ξ)|2 + |b(x, ξ)|2

 −b̄(x, ξ)ā(x, ξ)
0

 (7.16)

f(x, ξ) is orthogonal to e0(x, ξ) and we put

g(x, ξ) = e0(x, ξ) ∧ f(x, ξ) . (7.17)

We finally take U0(x, ξ) = (e0(x, ξ), f(x, ξ), g(x, ξ)).

Remark 7.2. We have preferred to give a complete elementary proof for the triviality
of the fiber bundle whose fiber at (x, ξ) is the eigenspace of M(x, ξ) associated with the
two non vanishing eigenvalues. As observed by G. Panati, this can be obtained by general
results (see in particular Proposition 4 in [23]).
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Using Proposition 3.3.1 in [13] and its corollary, we get:

Proposition 7.3. There exist a unitary 3×3 pseudodifferential operator U with principal
symbol U0(x, ξ), a selfadjoint scalar operator µ with principal symbol 0, and a selfadjoint
2× 2 operator Ã with principal symbol A(x, ξ) such that

U∗OpW
h (M(x, ξ,h)) U =

 µ 0 0
0
0

Ã

 (7.18)

Moreover, the part of the spectrum of OpW
h (M(x, ξ,h)) in any compact subset of ]−

√
3,
√

3[
is that one of µ for |h| small enough.

The main result of this section is the computation of the subprincipal symbol of µ.

Proposition 7.4. :

σW (µ)(x, ξ, h) = −h 3− p4(x, ξ)

4(3 + p4(x, ξ))
+O(h2) . (7.19)

Proof : The computation is in the spirit of §6.2 in [13]. In this text3 the matrix M(x, ξ)
satisfies in addition ∂x∂ξM(x, ξ) = 0 and does not depend on h. On the other hand, we
are here helped by the relation M0(x, ξ)e0(x, ξ) = 0 .

Since σ0(µ) = 0, (7.6) gives

σW−1(µ) = σ−1(µ) = σ−1(U
∗OpW

h (M(x, ξ,h)) U)11 . (7.20)

We use the classical calculus to compute this term. Let U(x, ξ, h), V (x, ξ, h) and

N(x, ξ, h) = N0(x, ξ) + hN1(x, ξ) +O(h2)

be the classical symbols of U , U∗ and OpW
h (M(x, ξ,h)).

Using (7.5), (7.6) and (7.8) we observe :

1. The first column of U(x, ξ, h) is on the form e0(x, ξ) + h e1(x, ξ) +O(h2) .

2. The first line of V (x, ξ) is on the form ēT0 (x, ξ) + h fT1 (x, ξ) +O(h2).

3. N0(x, ξ) = M0(x, ξ) .

4. N1(x, ξ) = M1(x, ξ) + 1
2i∂x∂ξM0(x, ξ) .

Then the composition rules (7.7) together with

M0(x, ξ) e0(x, ξ) = 0

and
ēT0 (x, ξ)M0(x, ξ) = 0

give :

σW−1(µ)(x, ξ) = fT1 (x, ξ)N0(x, ξ) e0(x, ξ) + ēT0 (x, ξ)N1(x, ξ) e0(x, ξ) + ēT0 (x, ξ)N0(x, ξ) e1(x, ξ)

+
1

i
∂ξ(ē

T
0 (x, ξ)N0(x, ξ)) ∂xe0(x, ξ) + (

1

i
∂ξ ē

T
0 (x, ξ)∂xN0(x, ξ)) e0(x, ξ)

= ēT0 (x, ξ)M1(x, ξ) e0(x, ξ) +
1

2i
ēT0 (x, ξ) ∂x∂ξM0(x, ξ) e0(x, ξ)

+
1

i
(∂ξ ē

T
0 (x, ξ) ∂xM0(x, ξ) e0(x, ξ)) .

3 Note that one term has disappeared at the printing in formula (6.2.9) in [13] which is fortunately
re-established in formula (6.2.19).
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Then differentiating the identity M0(x, ξ)e0(x, ξ) = 0 successively gives:

∂xM0(x, ξ) e0(x, ξ) = −M0(x, ξ) ∂xe0(x, ξ) ,

∂ξM0(x, ξ) e0(x, ξ) = −M0(x, ξ) ∂ξe0(x, ξ) ,

∂̄x∂ξM0(x, ξ) e0(x, ξ) = −∂xM0(x, ξ) ∂ξe0(x, ξ)− ∂ξM0(x, ξ) ∂xe0(x, ξ)

−M0(x, ξ) ∂x∂ξe0(x, ξ) ,

ēT0 (x, ξ) ∂x∂ξM0(x, ξ) e0(x, ξ) = ∂xē
T
0 (x, ξ)M0(x, ξ) ∂ξe0(x, ξ)

+∂ξ ē
T
0 (x, ξ)M0(x, ξ) ∂xe0(x, ξ) .

Hence

σW−1(µ)(x, ξ) = 〈M1(x, ξ) e0(x, ξ), e0(x, ξ)〉+ Im〈M0(x, ξ) ∂ξe0(x, ξ), ∂xe0(x, ξ)〉 . (7.21)

A straightforward computation gives

Im〈M0(x, ξ) ∂ξe0(x, ξ), ∂xe0(x, ξ)〉 =
p4(x, ξ)

3 + p4(x, ξ)
. (7.22)

On the other side, we denote by λ(x, ξ, h) the second eigenvalue of M(x, ξ, h). The com-
putation of the characteristic polynomial det(M(x, ξ)− λ I3) gives

− λ3(x, ξ, h) + (6 + 2p4(x, ξ))λ(x, ξ, h) + 4 sin
3h

8
(1 + p4(x, ξ)) = 0 . (7.23)

So

〈M1(x, ξ) e0(x, ξ), e0(x, ξ)〉 = 〈∂hM(x, ξ, 0) e0(x, ξ), e0(x, ξ)〉 (7.24)

= ∂hλ(x, ξ, 0) = −3(1 + p4(x, ξ))

4(3 + p4(x, ξ))
. (7.25)

Hence

σW−1(µ)(x, ξ) = −3(1 + p4(x, ξ))

4(3 + p4(x, ξ))
+

p4(x, ξ)

3 + p4(x, ξ)

= − 3− p4(x, ξ)

4(3 + p4(x, ξ))
.

Then σW0 (µ) = 0 achieves the proof.

8 Conclusion

In this paper we have shown that for the model proposed by Hou relative to the kagome
lattice and whose justification for the analysis of the Schrödinger magnetic operator was
given in [19], a Chambers analysis is available permitting to recover most of the character-
istics observed in the case of the square lattice for the Hofstadter butterfly, the triangular
butterfly or the hexagonal (graphene) butterfly. This makes all the semi-classical tech-
niques developed in [12, 13, 14, 18] available but this leads also to new questions like the
existence of flat bands, for some rational 1

2π -flux, and its influence on the spectrum for close
fluxes. In the previous section we have shown how, when the flux is close to 4π (γ = 4π+h)
the semi-classical calculus permits via the computation of a subprincipal symbol to reduce
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the spectral analysis of the Hou operator in the interval [−
√

3+ε0,
√

3−ε0] (ε0 > 0) to the
analysis of a h- pseudodifferential operator with explicit principal symbol. In particular,
our analysis implies that the convex hull of the part of the spectrum contained in this
interval is [−3

4h + O(h2) , O(h2)] for h > 0 and [O(h2) , −3
4h + O(h2)] for h < 0. This

suggests the beginning of a renormalization involving after one step the perturbation of a
function of the triangular Harper model. More precisely, this function is the function

λ 7→ −h 3− λ
4(3 + λ)

.
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[13] B. Helffer and J. Sjöstrand. Analyse semi-classique pour l’équation de Harper. II.
Comportement semi-classique près d’un rationnel. Mém. Soc. Math. France (N.S.)
40 (1990) 1–139.
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Figure 1: Square lattice.

Figure 2: triangular lattice.
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Figure 3: Hexagonal lattice.

Figure 4: Kagome lattice, ω = 0.
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Figure 5: Kagome lattice, ω = π
8 .
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