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Abstract

Foldover is a commonly used follow-up strategy in experimental designs.

All existing foldover designs were constructed by reversing the sign of columns

of the initial design. We propose a new methodology by allowing the permu-

tation of columns in foldover. Focusing on resolution IV designs, we show that

almost all designs are better than existing results with respect to the minimum

aberration criterion. While augmenting a design by a foldover with column

permutations may result in a nonregular combined design, the proposed de-

signs all have a solution of 4.5 or higher, for which no two-factor interaction is

fully aliased with any other two-factor interactions.

KEY WORDS: Foldover design; Minimum aberration design; Optimal foldover;

Word length pattern.

1



Two-level fractional factorial designs are among the most commonly used exper-

imental designs. The tradeoff of the run size economy of using such designs is that

many effects can be aliased. A commonly used follow-up methodology to break up

aliased effects involves adding a second fraction, which is called a foldover design (or

simply foldover), by reversing the signs of one or more columns of the initial design.

In practice, the strategy usually involves two stages: 1. Run the initial design to

identify active main effects and two-factor interactions (2fi’s). 2. Use a foldover de-

sign to de-alias possible aliased pairs of 2fi’s. This strategy has been widely accepted

and used in practice. However, there is a major limitation of this approach, which

we illustrate below by using a simulated example.

Suppose that an experimenter uses a minimum aberration 26−2
IV design, which is

defined by I = 1235 = 1246 = 3456, to study six 2-level factors. The responses, as

well as the design matrix, are given in Table 1a. The regression results show that all

main effects and the two 2fi’s, x1x5 and x3x4, are active. Knowing that each of these

2fi’s is aliased with another 2fi, the experimenter decides to use a foldover design to

de-alias both pairs by folding over column 5. The responses for the new runs are

given in Table 1b, and the analysis of the combined design of those in Tables 1a and

1b identified four active 2fi’s: x1x5, x2x3, x3x4, and x5x6.

(Table 1 around here.)

The foldover methodology appears to work well for this example, except that

there is actually another pair of active 2fi’s, x1x4 and x2x6 that cannot be identified
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as active effects in the analysis of the initial design. In fact, the true underlying model

was given by: y = 7(x1+x2+· · ·+x6)+5x1x5+4x2x3+4x1x4−4x2x6+6x3x4+3x5x6+ϵ,

where the error term ϵ follows a normal distribution N(0, 1).

None of the existing foldover strategies is able to de-alias those aliased 2fi pairs in

all three words in I = 1235 = 1246 = 3456. In the past decade, foldover designs have

received surging interest, and most literature focuses on optimal foldover designs. For

example, Li and Mee (2002) and Li and Lin (2003) both studied optimal foldovers

of regular fractional factorial designs in terms of the resolution and the minimum

aberration criteria of the combined design. However, it can be easily seen that the

optimal foldover design for I = 1235 = 1246 = 3456 can de-alias those aliased 2fi

pairs in only two out of three words. For instance, when folding over column 5, the

combined design is a resolution-IV design with one length-4 word 1246. This moti-

vates us to extend the traditional foldover strategy by allowing column permutations,

so as to further increase the resolution of the combined design. Table 1c shows such

a design that was obtained by folding over column 5 and permuting columns 5 and

6. The combined design of 1a and 1c has a resolution of 4.5, in which the word 1246

has a length of 4.5 instead of 4, implying that x1x2 is only partially aliased with x4x6.

(The fractional length word will be defined in the next section.) For the simulated

responses in Table 1c, the stepwise regression method correctly identified all active

main effects and the six 2fi’s.

The motivation example demonstrates the value of using a foldover design, for

3



which the combined design has a higher resolution than the “optimal” design ob-

tained previously in Li and Lin (2003). This research note answers a simple question:

For a given 2k−p design, can we find a foldover design with respect to the minimum

aberration criterion of the combined design by allowing column permutations? In the

reminder of this note, Section 1 discusses the criterion used to select optimal foldover

designs with column permutations. In Section 2, we obtain and tabulate a new class

of designs. The concluding remarks are given in Section 3.

1 Notations and criterion

Consider a regular fractional factorial 2k−p design d, where k is the number of factors,

and p is the number of generators. There are 2p − 1 words in its defining relation.

Let wi denote the number of words with length i in the defining relation, then

W (d) = (w3, w4, . . . , wk) is called the word length pattern (WLP) of the design. The

resolution of d is the smallest r such that wr ≥ 1.

In general, a two-level design (which can be either regular or nonregular) is de-

noted by d = [xij]n×k, where xij = ±1. Denote the collection of all columns by

D = {1, . . . , k}. Then for an m-subset of columns s = {j1, . . . , jm} ⊆ D, Deng and

Tang (1999) defined the J-characteristic:

Jm(s) = |
n∑

i=1

xij1 · · · xijm|. (1)

A design d is regular if Jm(s) = 0 or n for all subsets of columns s ⊆ D. On
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the other hand, if there exists an s ⊆ D such that 0 < Jm(s) < n, then it is a

nonregular design. Following Li et al. (2003), we call the term j1 · · · jm a word if its

J-characteristic defined in (1) does not equal 0. Its generalized word length is defined

as

m+ (1− 1

n

n∑
i=1

xij1 · · · xijm). (2)

Following Li et al. (2003), we define the extended word length pattern (EWLP) of d

as

(f1, · · · , f1+(n−1)/n; f2, · · · , f2+(n−1)/n . . . ; fk, . . . , fk+(n−1)/n), (3)

in which fi+j/n is the number of length-(i + j/n) words. (In the remainder of the

note, we shall only display EWLP for i ≥ 4 because all designs discussed are of

resolution IV or higher.)

When a regular design is augmented by its foldover with column permutations,

the length of an m-letter word in the combined design equals either m or m+0.5. To

see this, suppose that defining relations of the initial design d and its foldover d′ are

given respectively by I(d) = c11 = c12 = · · · = c1u and I(d′) = c21 = c22 = . . . = c2u,

where u is the number of words in the defining relation of each design. Then we

can obtain two sets: a partial set that contains words appearing in either I(d) or

I(d′) (but not in both), and a full set that contains words appearing in both defining

relations. A word in the full set implies full aliasing, and its word length is equal to

number of factors in the word. For words in the partial set, their word lengths can

be computed by (2). Because the run size of the combined design is twice as large
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as the one for the initial design, the length of a word in the partial set is equal to

the number of factors in the word plus 0.5.

In the illustrative example, the initial design is defined by I(d) = 1235 = 1246 =

3456. The foldover design resulting from foldover on 5 and permutations on 5 and

6 has I(d′) = −1236 = 1245 = −3456. Thus, Dpartial = {1235, 1246,−1236, 1245},

and Dfull = {}. The combined design has EWLP=(0,4;0,0), in which f4 = 0 and

f4.5 = 4. It has 0 length-4 word and 4 length-4.5 words, and its resolution is 4.5.

2 Optimal foldovers with column permutations

We now develop a class of optimal foldover plans with column permutations with

respect to the EWLP criterion. For a given 2k−p design d, denote its foldover plan

γ as the collection of columns whose signs are to be reversed in the foldover design

d′ = d(γ, δ), where δ denotes the permutations of columns 1, . . . , k. Then the optimal

foldover design is the one such that

EWLP([ d
d(γ∗,δ∗)]) = minγ,δ EWLP([ d

d(γ,δ)]). (4)

Note that for a k-factor design, the number of cases considered in (4) is equal to

2k×k!, which can be substantially large. Li and Lin (2003) proved that, for a regular

2k−p design, all foldover plans are equivalent to a core foldover plan that only involves

the p generated factors. It can be easily shown that this still holds for foldover with

permutations. Thus, the number of computations can be reduced to 2p × k!.
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We studied optimal foldover designs with column permutations of a class of 16-

run and 32-run resolution-IV designs cataloged in Chen, Sun, and Wu (1993). Their

foldovers were studied previously in Montgomery and Runger (1996) and Li and Lin

(2003). The results are summarized in Table 2. For n = 16 and n = 32, k ≤ 9,

we used an exhaustive search method that evaluated all 2p × k! cases. For n = 32

and k = 10, 11, the number of cases became prohibitively large. We evaluated a

very large number of randomly chosen permutations (by stopping the program after

it was run for 168 hours on a 3.40GHz-CPU PC). As there are many permutations

that would produce the same foldover designs in terms of the EWLP criterion of

the combined design, the results reported in the table for n = 32 and m ≥ 10 are

considered to be very close to (if not exactly the same) optimal results.

The results in Table 2 are very promising. Among the 21 cases, with the excep-

tion of one design (design 7-2.2), all foldover designs result in a higher resolution

when column permutations are implemented. For design 7-2.2, the optimal foldover

without column permutations has a combined design of resolution IV, which can-

not be improved further with column permutations. For design 7-2.1, the optimal

foldover without column permutations is γ∗ = {6}, resulting in a combined design

of resolution V. In comparison, by using γ∗ = {6} with columns permutations of

δ∗ = 1234576 (that involves a swap of columns 6 and 7 of the initial design), the new

combined design has the EWLP = (0,0;0,4), which is shown as [0 0][0 4] in Table

2. (For simplicity, with the exception design 7-2.2, we only report the EWLP for
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words with four and five letters, which is displayed in the form of two brackets.)

Thus, the combined design for design 7-2.1 is of resolution 5.5 with four length-5.5

words. In all other 19 cases, the resolution of the combined design is improved from

4 for foldovers without column permutations to 4.5 for the new optimal foldover with

column permutations. This improvement from a resolution 4 to 4.5 is substantial, as

no 2fi is fully aliased with another 2fi in a resolution-4.5 design.

3 Discussions

In this note we proposed a new class of optimal foldover designs with column permu-

tations, which are shown to have better extended word length patterns than existing

optimal foldovers. The trade-off is that the resulting combined designs are generally

nonregular designs, which may pose additional challenges to data analysis. Analy-

sis of nonregular designs has been extensively discussed in the literature. See Wu

and Hamada (2009) for a review. For more recent discussions, see Mee (2013) and

Draguljic et al. (2014).

We note that the proposed approach is related to the earlier work on equivalent

family, which was proposed by Addelman (1969). Two defining relations are said to

be equivalent if one can be obtained from another by interchanging factors in a word.

From this perspective, the initial design d and its foldover with column permutations

d′ can be considered from the equivalent family. The idea of combining equivalent

family of designs has been explored to construct efficient designs. For example, Pajak
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and Addelman (1975) developed a criterion for determining the minimum number

of blocks of 2n−m
III designs such that the combined design could estimate all main

effects and 2fi’s. More recently, Mee (2004) gave a comprehensive review on the

alternatives to the usual orthogonal resolution V designs, in which the combination

of designs from the equivalent family was also discussed. Our proposed methodology

is distinctive from these studies in two aspects: First, the proposed foldover approach

adds only one foldover to the initial design, whereas some of previous approaches may

require adding several blocks. Second, we focus on optimal foldover designs in terms

of the EWLP criterion, whereas other criteria were considered in previous studies.

The foldover is just one of the follow-up experiment strategies in the literature.

Alternative approaches include the D-optimal augmented design (Mitchell, 1974),

the Bayesian approach for augmenting 2k−p designs proposed by Meyer et al. (1996),

and semi-foldover design (Mee and Peralta, 2000). For even designs, in which their

defining relation consists entirely of even-length words, Mee and Xiao (2008) stud-

ied optimal foldovers and semi-foldovers for resolution IV designs. We compared

our designs with the corresponding D-optimal augmented designs. As an example,

consider the 26−2 design in Table 1a. As the analysis of the initial design identified

two active 2fi’s from two aliasing sets: x1x2x3x5 and x3x4x5x6, we constructed two

D-optimal augmented designs in JMP. The first one d1 is D-optimal in terms of

the model consisting of all main effects and the 11 2fi’s involved in the two alias-

ing sets. The second design d2 is D-optimal in terms of the model consisting of all
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main effects and all 15 2fi’s. The results are encouraging for the proposed foldover

designs. First, neither d1 nor d2 was level-balanced. In comparison, our design

is orthogonal with respect to main effects. Second, we computed the D-criterion

values in terms of the true model consisting of the intercept and 12 active effects:

x1, . . . , x6, x1x5, x2x3, x1x4, x2x6, x3x4, x5x6. The standardized D values for the two

combined designs, d plus d1 and d plus d2, are .9205 and .9365, respectively. In com-

parison, the combined design of d and its optimal foldover with column permutations

has a D-value of .9567.
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Table 1. A 16-run Design Generated by 5=123 and 6=124
(a) Initial design

Runs x1 x2 x3 x4 x5 x6 y
1 -1 -1 -1 -1 -1 -1 -26.09
2 1 -1 -1 -1 1 1 16.11
3 -1 1 -1 -1 1 1 0.88
4 1 1 -1 -1 -1 -1 -12.98
5 -1 -1 1 -1 1 -1 -29.93
6 1 -1 1 -1 -1 1 -15.58
7 -1 1 1 -1 -1 1 -0.82
8 1 1 1 -1 1 -1 11.84
9 -1 -1 -1 1 -1 1 -15.77
10 1 -1 -1 1 1 -1 0.16
11 -1 1 -1 1 1 -1 -19.56
12 1 1 -1 1 -1 1 -3.11
13 -1 -1 1 1 1 1 14.98
14 1 -1 1 1 -1 -1 0.60
15 -1 1 1 1 -1 -1 17.20
16 1 1 1 1 1 1 58.10

(b) Optimal foldover design (Foldover on column 5)
Runs 1'=1 2'=2 3'=3 4'=4 5'=-5 6'=6 y
17 -1 -1 -1 -1 1 -1 -26.79
18 1 -1 -1 -1 -1 1 -12.30
19 -1 1 -1 -1 -1 1 -9.12
20 1 1 -1 -1 1 -1 5.58
21 -1 -1 1 -1 -1 -1 -27.65
22 1 -1 1 -1 1 1 12.02
23 -1 1 1 -1 1 1 8.67
24 1 1 1 -1 -1 -1 -4.63
25 -1 -1 -1 1 1 1 -5.55
26 1 -1 -1 1 -1 -1 -17.99
27 -1 1 -1 1 -1 -1 -14.93
28 1 1 -1 1 1 1 28.46
29 -1 -1 1 1 -1 1 5.53
30 1 -1 1 1 1 -1 18.00
31 -1 1 1 1 1 -1 14.41
32 1 1 1 1 -1 1 27.96

(c) Optimal foldover with permutation (Foldover on 5. Permutation of columns 5 and 6)
Runs 1'=1 2'=2 3'=3 4'=4 5'=6 6'=-5 y
17 -1 -1 -1 -1 -1 1 -10.00
18 1 -1 -1 -1 1 -1 -9.88
19 -1 1 -1 -1 1 -1 -11.43
20 1 1 -1 -1 -1 1 -13.61
21 -1 -1 1 -1 -1 -1 -30.58
22 1 -1 1 -1 1 1 14.01
23 -1 1 1 -1 1 1 8.49
24 1 1 1 -1 -1 -1 -3.18
25 -1 -1 -1 1 1 1 -5.33
26 1 -1 -1 1 -1 -1 -18.67
27 -1 1 -1 1 -1 -1 -14.48
28 1 1 -1 1 1 1 27.43
29 -1 -1 1 1 1 -1 -13.83
30 1 -1 1 1 -1 1 16.95
31 -1 1 1 1 -1 1 16.57
32 1 1 1 1 1 -1 44.67



Runs k-p Genarating relations Initial W (d ) Foldover with permutation R EWLP (D (γ))

Foldover plan (γ)

n=16 6-2.1 5=123,6=124 (3 0 0) γ={5}, perm=123465 4.5 [0 4] [0 0]

γ={5} 4 [1 0] [0 0]

7-3.1 5=123,6=124,7=134 (7 0 0 0) γ={5}, perm=1234675 4.5 [0 12] [0 0]

γ={5} 4 [3 0] [0 0]

8-4.1 5=123,6=124,7=134, (14 0 0 0) γ={7,8}, perm=12346758 4.5 [0 24] [0 0]

8=234 γ={5,6} 4 [6 0] [0 0]

n=32 7-2.1 6=1234,7=1245 (1 2 0 0) γ={6}, perm=1234576 5.5 [0 0] [0 4]

γ={6} 5 [0 0] [1 0]

7-2.2 6=123,7=145 (2 0 1 0) γ={6,7}, perm=1234567 6 [0 0] [0 0] [1 0]

γ={6,7} 6 [0 0] [0 0] [1 0]

7-2.3 6=123,7=124 (3 0 1 0) γ={6}, perm=1234576 4.5 [0 4] [0 0]

γ={6} 4 [1 0] [0 0] 

8-3.1 6=123,7=124,8=2345 (3 4 0 0) γ={6}, perm=12354687 4.5 [0 4] [0 8]

γ={6} 4 [1 0] [2 0]

8-3.2 6=123,7=124,8=135 (5 0 2 0) γ={7,8}, perm=12345876 4.5 [0 6] [0 0]

γ={7,8} 4 [1 0] [0 0] 

8-3.3 6=123,7=124,8=125 (6 0 0 0) γ={6,7}, perm=12345687 4.5 [0 8] [0 0]

γ={6,7} 4 [2 0] [0 0]

8-3.4 6=123,7=124,8=134 (7 0 0 0) γ={6}, perm=12345786 4.5 [0 12] [0 0]

γ={6} 4 [3 0] [0 0]

9-4.1 6=2345,7=1345,8=1245, (6 8 0 0) γ={8,9}, perm=123458967 4.5 [0 8] [0 16]

9=1235 γ={6,7} 4 [2 0] [4 0]

9-4.2 6=123,7=124,8=134, (7 7 0 0) γ={8,9}, perm=123457869 4.5 [0 12] [0 12]

9=2345 γ={6,7} 4 [3 0] [3 0]

9-4.3 6=123,7=124,8=135, (9 0 6 0) γ={6,7,8}, perm=123459786 4.5 [0 12] [0 0] 

9=145 γ={6,7,8} 4 [3 0] [0 0] 

9-4.4 6=123,7=124,8=134, (10 0 4 0) γ={7,9}, perm=123547986 4.5 [0 16] [0 0] 

9=125 γ={8,9} 4 [3 0] [0 0] 

9-4.5 6=123,7=124,8=134, (14 0 0 0) γ={8,9}, perm=123457869 4.5 [0 24] [0 0]

9=234 γ={6,7} 4 [6 0] [0 0]

10-5.1 6=1234,7=1235,8=1245, (10 16 0 0) γ={9,10}, perm=12346591078 4.5 [0 16] [0 32]

9=1345, 10=2345 γ={6,7} 4 [4 0] [8 0]

10-5.2 6=123,7=124,8=135, (15 0 15 0) γ={6}, perm=12345689710 4.5 [0 24] [0 0]

9=145, 10=12345 γ={6,7,8} 4 [5 0] [0 0]

10-5.3 6=123,7=124,8=134, (16 0 12 0) γ={8,9}, perm=12345786109 4.5 [0 26] [0 0]

9=125, 10=135 γ={8,9} 4 [6 0] [0 0]

10-5.4 6=123,7=124,8=134, (18 0 8 0) γ={8,9,10}, perm=12345786910 4.5 [0 30] [0 0]

9=234, 10=125 γ={8,9,10} 4 [6 0] [0 0]

11-6.1 6=123,7=124,8=134, (25 0 27 0) γ={8,10,11}, perm=1234579106118 4.5 [0 42] [0 0]

9=125, 10=135, 11=145 γ={6,8,9} 4 [10 0] [0 0]

11-6.2 6=123,7=124,8=134, (26 0 24 0) γ={6,10}, perm=1234578611109 4.5 [0 46] [0 0]

9=234, 10=125, 11=135 γ={7,8,10} 4 [10 0] [0 0]

Table 2. Optimal Foldover Plans for Resolution IV Designs With and Without Column Permutations




