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Exponential scaling limit
of the single-particle Anderson model
via adaptive feedback scaling

Abstract We propose a reformulation of the bootstrap version of the Multi-Scale

Analysis (BMSA), developed by Germinet and Klein, to make explicit the fact

that BMSA implies asymptotically exponential decay of eigenfunctions (EFs) and

of EF correlators (EFCs), in the lattice Anderson models with diagonal disorder,

viz. with an IID random potential. We also show that the exponential scaling limit

of EFs and EFCs holds true for a class of marginal distributions of the random

potential with regularity lower than Hölder continuity of any positive order.

1 Introduction

We consider Anderson models with diagonal disorder in a periodic lattice Zd,

d ≥ 1. Such models have been extensively studied over the last thirty years; the

two principal tools of the modern Anderson localization theory are the Multi-Scale

Analysis (MSA) and the Fractional Moment Method (FMM). In the framework

of lattice systems (and more generally, systems on graphs with sub-exponential

growth of balls) the MSA proved to be more flexible; in particular, it is less exi-

gent to the regularity properties of the probability distribution generating the local

disorder – in the simplest case, the single-site marginal distribution of the IID (in-
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dependent and identically distributed) values of the external random potential. On

the other hand, a considerable advantage of the FMM in the same class of models

is to provide exponential decay bounds for the (averaged) eigenfunction correla-

tors (EFCs), under the condition of Hölder continuity of the single-site marginal

distribution. By comparison, the original MSA scheme by Fröhlich et al. [23], re-

formulated by von Dreifus and Klein [19], proved only a power-law decay of the

key probabilistic estimates in finite volumes. When the MSA was adapted to the

proofs of strong dynamical localization (cf. [24,20,25]), this resulted in power-

law decay of EFCs.

Germinet and Klein [25] significantly narrowed the gap between the EFC de-

cay bounds provided by the MSA and FMM. Specifically, using the bootstrap

MSA, involving several interconnected scaling analyses, they proved sub-exponen-

tial decay bounds with rate L 7→ e−L
δ

for any δ ∈ (0, 1). Recently Klein and

Nguyen [26,27] have adapted the BMSA to the multi-particle Anderson Hamilto-

nians.

In theoretical physics, the celebrated scaling theory, put forward by the ”Gang

of Four” (Abrahams, Anderson, Licciardello and Ramakrishnan, [2]) and further

developing the Anderson localization theory [1], predicted – under certain as-

sumptions including also those sufficient for the MSA or FMM to apply – that the

functionals FL related to the quantum transport, first of all conductance, for sys-

tems of large size L, should admit a limiting behaviour in the double logarithmic

coordinate system, with the independent variable to be lnL rather than L. While

the existence of a.c. spectrum for systems on a periodic lattice or in a Euclidean

space remains an intriguing challenge for the mathematicians, we show that in the

parameter zone(s) where various forms of localization can be established with the

help of existing techniques, the rate of decay F (L) of eigenfunction correlators

(EFCs) at large distances L admits the limit

lim
L→∞

ln lnFL
lnL

= 1.

Below we will call such a behavior exponential scaling limit (ESL). Formally

speaking, we obtain, as usual, only upper bounds, but the example of one-dimen-

sional systems shows that decay faster than exponential should not be expected.
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The main goal of the present paper is a transformation of the Germinet–Klein

multi-stage bootstrap MSA procedure from [25] into a single scaling algorithm,

replacing several interconnected scaling analyses in the bootstrap method and es-

tablishing the ESL in the traditional Anderson model.

The motivation for the present work came from an observation, made in Refs.

[12] (cf. [12, Theorem 6]), [14] (see Theorem 8 in [14] and discussion after its

proof), and some earlier works, that already in the von Dreifus–Klein method

from [19] there were some unexploited resources, giving rise to “self-improving”

estimates in the course of the induction on the length scales Lk, k ≥ 0, following

the recursion Lk = bLαk−1c ∼ Lα
k

0 , α > 1. Specifically, it was observed that

the k-th induction step actually produces more decay of the GFs than required for

merely reproducing the desired decay rate at the step k + 1, and that this excess

can be put in a feedback loop, improving the master parameters of the scaling

scheme. The net result is the decay of the GFs (and ultimately, EFCs) faster than

any power law1, viz. L 7→ e−a ln1+c L, with a, c > 0.

The benefits of such a feedback-based self-enhancement of the master scaling

parameters become much greater, when the scales grow multiplicatively, as in the

first stage of the bootstrap MSA (BMSA): Lk = Y Lk−1 = Y kL0, with Y ≥ 2.

A fairly simple calculation shows that essentially the same feedback loop as the

one used in [12,16,14] for the scales Lk ∼ Lα
k

0 , k ≥ 0, gives rise in this case to a

fractional-exponential decay L 7→ e−L
δ

, with some δ > 0.

Acting in the spirit of the bootstrap MSA, we implement a technically more

involved scaling procedure than the above mentioned “simple feedback scaling”,

aiming to render more explicit and constructive the statement of the BMSA (cf.

[25]) that any (viz. arbitrarily close to 1) value of the exponent δ in the above

formulae can be achieved for L large enough. To this end, we replace the first

two stages of the BMSA (with fixed parameters) by an adaptive scaling algorithm.

The latter makes the multiplicative growth factor Y , figuring in the scaling rela-

tion Lk = Y Lk−1, scale-dependent: Yk = Y(k, Lk). In fact, the BMSA scheme

includes another geometrical parameter – an integer Sk ∈ [1, Yk); see Section 3.

1 This result holds true under a very weak regularity of the random potential, just barely
stronger than the conventional log-Hölder continuity of the marginal distribution. See Assump-
tion (W3) (Eqn. (2.15)) in [14].



4

However, the ”simple feedback scaling” – with Yk and Sk fixed – is still re-

quired during an initial “boost” stage, where the effects of localization are almost

imperceptible, particularly in the probabilistic estimates. Since the scales grow

with k (viz. Lk = Y kL0), writing formally Yk = Lτkk results in a finite, initial

sub-sequence {τ1, . . . , τK−1}, with some K depending upon the model parame-

ters, which is actually decreasing. (As such, the values {τ1, . . . , τK−1} are simply

unused.) It is only later, for k ≥ K, that we fix τk = τ∗ > 0, thus effectively

switching to the super-exponential growth Lk ∼ CL
(1+τ∗)k

K . Of course, depend-

ing on the reader’s personal point of view, the presence of this switching point

may be considered as another form of the Germinet–Klein multi-stage technique.

Taking account of abundance of various scaling parameters in our scheme, we

keep τk fixed for the rest of the scaling procedure. However, the algorithm’s ef-

ficiency can be further improved by making τk also k-dependent (and growing).

This may prove useful in a numerical implementation of the adaptive scaling al-

gorithm, as well as in specific models (including the multi-particle models with

slowly decaying interaction). We show that the ”gap” between the genuine expo-

nential decay (viz. the value δ = 1) and the exponent δk achieved at the k-th step,

decays at least exponentially fast in k. In a way, it provides a rigorous complement

to the predictions of the physical scaling theory on the convergence to the ESL, at

least in the parameter zone(s) where localization can be proved with the existing

scaling methods.

Speaking of the consecutive phases (analyses) in the Germinet–Klein BMSA,

it is to be pointed out that we do not perform the last stage where a genuine ex-

ponential decay of the Green functions is established in cubes of size Lk with

probability ∼ e−L
δk
k , where δk = δ is made arbitrarily close to 1 by the results

of [25]; one would expect δk ↗ 1 in the framework of the present paper. We do

not analyze the behaviour of such probabilities related to the exponential decay

of the GFs in finite volume. As was already said, this paper focuses on the expo-

nential scaling limit – for the Green functions, eigenfunctions and eigenfunction

correlators. The actual road map is as follows: GFs  EFCs  EFs, so the

decay rate of the EFs is shaped by that of the EFCs. Naturally, one can switch

at any moment from the analysis of the ”almost exponential” decay to that of the
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exponential one, by simply following the Germinet-Klein approach, but our main

goal is the construction of a single algorithm which takes care of all exponents δ

close to 1. In the author’s opinion, there can be various further developments of

the BMSA technoology from [25].

Finally, we show that the proposed adaptive scaling technique allows for a

lower regularity of the marginal distribution of the IID random potential than

Hölder continuity of any positive order. In the realm of the FMM proofs of lo-

calization, is is known that the absolute continuity of the marginal distribution

can be safely and easily relaxed to Hölder continuity of any positive order β (cf.

[3]); a similar observation was made in the works following [25]; yet, the MSA

in general is renowned for its tolerance to a lower regularity of the probability

distribution of the disorder. So, while the question on the lowest regularity com-

patible with the FMM approach to the exponential strong dynamical localization

remains open, our results evidence that Hölder continuity is not required for the

exponential scaling limit of the EF correlators.

As was said, strong dynamical localization at some fractional-exponential rate

δ ∈ (0, 1) actually follows from the initial, weak hypotheses through a simpler

scaling procedure, under the assumption of Hölder continuity of the marginal PDF

of the random potential.

1.1 The model

We focus on the case where Z = Zd and consider the random Hamiltonian H(ω)

of the form (
Hψ
)
(x) =

∑
|y−x|=1

(
ψ(x)− ψ(y)

)
+ V (x;ω)ψ(x),

where V : Zd × Ω → R is an IID random field relative to some probability

space (Ω,F,P). Until Section 7, we assume that marginal probability distribution

function (PDF) FV , of the random field V ,

FV (t) := P {V (0;ω) ≤ t} , t ∈ R,

is Hölder-continuous of some order β ∈ (0, 1). In Section 7 we show that the

assumption of Hölder-continuity can be slightly relaxed (cf. Eqn. (7.1)).
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The second-order lattice Laplacian can be easily replaced by any (self-adjoint)

finite-difference Hamiltonian of finite order, without any significant modification

of our algorithm. Indeed, we replace the form of the Geometric Resolvent Inequal-

ity most often employed in the MSA of lattice models, with its variant traditional

for the MSA in continuous systems (in Rd). It is based on a simple commutator

relation, so that the range (order) of a finite-difference kinetic energy operator be-

comes irrelevant, provided the initial length scale L0 is large enough. For clarity,

we work only with the standard lattice Laplacian.

1.2 Structure of the paper

– The principal objects and notations are introduced in Section 2.

– In Section 3, we present the main analytic tool of the scaling analysis – the

Geometric Resolvent Equation (GRE) and Inequality (GRI) stemming from

it. The exposition is closer to the form of the GRE/GRI used in the continu-

ous systems than to the one traditionally used in the lattice models, starting

from the pioneering papers [22,23,18,31,19]. This is required for the geo-

metrical optimizations à la Germinet–Klein [25] and the proofs of the scale-

independent, percolation-type probabilistic bounds.

– The core of the paper is Section 4.

– The derivation of the exponential scaling limit from the results of Section 4 is

given in Section 5.

– Section 6 is devoted to a ”soft” derivation of strong dynamical localization

from the fixed-energy analysis carried out in Section 4.

– In Section 7, we relax the Hölder-continuity assumption on the marginal prob-

ability distribution of the random potential.

In theoretical physics, a sufficiently fast decay of the Green functions away

from the diagonal is usually considered as one of equivalent ”signatures” of An-

derson localization. Speaking mathematically, this is a higher-dimensional analog

of positivity of Lyapunov exponents in one-dimensional (or quasi-one-dimensional)

systems. While it is known that this analog does not imply in general spectral lo-

calization, first, it has been shown long ago by Martinelli and Scoppola [28] that

it rules out a.c. spectrum with probability one, and, secondly, it has been observed
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that the s.c. spectrum occurs in systems with some strong “degeneracies” in the

probability distribution of the ergodic (not necessarily IID or weakly correlated)

potential. Under reasonable assumptions on regularity of the ergodic potential,

fast decay of the GFs implies indeed spectral and strong dynamical localization,

and the role of Section 6 to summarize the progress achieved in this direction and

to show, in a fairly simple way, that the fixed-energy analysis is the heart of the

localization analysis of the conventional lattice Anderson model.

The continuous systems are not considered in the present paper, since work-

ing with unbounded differential operators would certainly require an additional

technical discussion pertaining to the domains, self-adjointness, etc. But as was

already said, we focus mainly on the scaling algorithm that could be applied, es-

sentially in the same way, both to the discrete and continuous systems.

2 Basic geometric objects and notations

Following essentially Ref. [25] (where the Anderson-type models in a continuous

space Rd were considered), we work with a hierarchical collection of lattice cubes,

with specific centers and positive integer side lengths Lk. For our purposes, it is

more convenient to start with the cardinalities of the cubes and those of their one-

dimensional projections: we fix odd positive integers Y , `0 and set

Lk = Y k · 3`0 = 3 · Y k`0 =: 3`k.

Next, we consider the lattice cubes with coordinate projections of cardinality Lk:

BLk(x) :=

{
y ∈ Zd : |y − x| ≤ Lk

2

}
.

Since Lk = 3Y k`0 is odd, the upper bound in the above definition of the cube

BLk(x) could have been replaced with (Lk − 1)/2, resulting in the same lattice

subset. However, having in mind the canonical embedding Zd ↪→ Rd, the above

definition looks more natural when transformed as follows: with y ∈ Zd ↪→ Rd,

BLk(x) :=

{
y ∈ Zd ↪→ Rd : |y − x| ≤ Lk

2

}
,

so that the ”fictitious” radius of the ball is precisely Lk/2.
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Fig. 1 Cubes and cells. Here d = 2, L0 = 9. 32 cells (gray), including the core (dark gray).

Sometimes it is more convenient to refer to the spherical layers and balls rela-

tive to the max-distance, with a clearly identified integer radius:

Lr(u) =
{
x ∈ Zd : |x− u|∞ = r

}
,

Λr(u) =
{
x ∈ Zd : |x− u|∞ ≤ r

}
≡ B2r+1(u).

(2.1)

Notice that one has BLk(u) = ΛLk−1

2

(u).

The cube BLk(u) is partitioned into 3d adjacent cubes called k-cells,

Ck(c) := B`k(c) = Λ `k−1

2

(c)

with centers in the sub-lattice (3Z)d.

– The central cell Ck(u) of a cube BLk(u) will be called the core of BLk(u);

– the complementary annulus, formed by the remaining 3d-1 cells of BLk(u),

will be called the shell of BLk(u).

Given any length scale Lk = Y kL0, we shall always work with the family of

Lk-cubes whose cells form the uniquely defined partition of Zd including the cube

centered at the origin, B`k(0); these cores, as well as their centers, will be called

admissible at the scale Lk. The centers of the admissible `k-cores form a sub-

lattice of Zd which we will denote by Ck. Sometimes we use notation 〈c, c′〉, mean-

ing that c, c′ ∈ Ck are two nearest neighbors (in Ck) relative to the max-distance:

|c−c′| = `k. By a slight abuse of notations, we will write, e.g.,
∑
〈c,c′〉∈Ck instead

of
∑
〈c,c′〉∈Ck×Ck Each point c ∈ Ck has 3d − 1 nearest neighbors.

See Fig. 1 where

– an admissible square of size L = 9 (thus with 9 vertices along each side) is

shown in gray color; it is partitioned into 3d = 32 congruent cells separated

visually by thin white lines; the admissibility means that the periodic sublattice

of the cell centers (large black dots) includes the origin 0 ∈ Zd;
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– the core, i.e., the central cell, is shown in a darker shade of gray;

– each cell is composed – in this example – of 32 points.

The larger dots on Fig. 1 represent the centers of the cells of size `0 = L0/3 = 3

admissible in the geometrical constructions referring to the cubes of such size.

In this case, the minimal spacing between the centers of admissible cores = 3.

Considering L0 = 9, we have the spacing `0 = L0/3. The admissible cells of a

given size form a partition of Zd, and we denote by Ck(x) the unique admissible

cell of size `k = Lk/3, containing a given point x.

It will be convenient to endow the set of the admissible cell centers in BLk+1
(u)

with the natural graph structure, with edges formed by the pairs of nearest neigh-

bors c, c′ with respect to the max-distance, i.e., those with |c− c′|∞ = `k = Lk/3.

Such a graph Bk+1 will be called the skeleton graph of BLk+1
.

The main tool for the analysis of the Green functions in such balls is the Ge-

ometric Resolvent Inequality (GRI). In its basic form, used in [18,31,19] and in

numerous subsequent works, a single application of the GRI moves one from the

center of a given ball BL(x) to (any) point y of the exterior boundary ∂+BL(x) :={
z : d

(
z,BL(x)

)
= 1)

}
. Here d(· , ·) stands for the graph-distance in the lattice

Zd, with edges formed by the nearest neighbors in the Euclidean norm | · |2. The

notion of the exterior boundary is relative to an ambient set Λ ⊃ BL(x) (a sub-

graph of Zd), when the analysis is carried out in a proper subset Λ of the lattice.

Given a finite subset Λ ⊂ Zd, we introduce the local Hamiltonian HΛ :=

1ΛH1Λ � `2(Λ), acting in the finite-dimensional space `2(Λ) canonically injected

into `2(Zd). HΛ is self-adjoint; it is often considered as the restriction of H to the

subset Λ with Dirichlet boundary conditions outside Λ, but the terminology here

varies from one source to another.

Further, given any point x ∈ Zd and the nearest k-admissible center, denoted

by cx, we denote by Γkx the boundary annulus of width 2 of BLk(cx): with Rk :=

(Lk − 1)/2,

Γkx ≡ Γkcx := ΛRk(cx) \ ΛRk−2(cx), (2.2)

and by Γkx the operator of multiplication by 1Γkx
.

Let φ be a compactly supported function φ on Zd, where suppφ ⊂ Λ ⊂ Λ′,

with d(∂+Λ, ∂−Λ′) ≥ 2, and Φ the operator of multiplication by φ. For any u ∈ Λ,
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HΛ1u = HΛ′1u, since H is a finite-difference operator of order 2, so one has the

operator identity ΦHΛ = ΦHΛ′ , thus for any E ∈ R,

Φ(HΛ − E) = (HΛ′ − E)Φ + [Φ, (HΛ′ − E)] (2.3)

Below E will be fixed and omitted from notation in the resolvents GΛ′ = (HΛ′ −
E)−1, GΛ = (HΛ − E)−1. Denoting W = [Φ, (HΛ′ − E)] and multiplying (2.3)

by GΛ′ on the left and by GΛ on the right, we obtain the identity

GΛ′Φ = ΦGΛ +GΛ′WGΛ .

Now let k ≥ 0, Rk = Lk−1
2 , Λ = BLk(u) = ΛRk(u), φ = 1ΛRk−1(u), so Φ is

the projection onto ΛRk−1(u), and the commutator

W = 1ΛRk−1(u) ◦ (HΛ′ − E)− (HΛ′ − E) ◦ 1ΛRk−1(u)

satisfies the operator identity W = ΓkWΓk, where

Γk :=
∑
c∈Γkx

χkc1Γkx
, Γkx :=

{
c : |c− cx|∞ ∈ {`k − 1, `k}

}
,

and χkc the indicator function of the admissible cell of size Lk/3 centered at c.

Thus for any subset A ⊂ Λ′ \ ΛRk(u), one has

1AGΛ′χ
k
u = 1AΦGΛχ

k
u + 1AGΛ′WGΛχ

k
u

=
(
1AGΛ′Γ

kW
) (

ΓkGΛχ
k
u

)
,

so we come to the following form of the Geometric Resolvent Inequality:∥∥1AGΛ′χku∥∥ ≤ ∥∥W∥∥ · ∥∥1AGΛ′Γk∥∥ · ∥∥ΓkGΛχku∥∥.
Introduce a slightly abusive but convenient notation∥∥GBLk (x)

∥∥f := 3dCW
∥∥1ΓLk (u)GBLk (x)(E)1Ck(u)

∥∥, CW := ‖W‖.

Here f symbolizes the decay from the center to the boundary of a ball. A more

accurate, but also more cumbersome notation would include the dependence of

the symbol f upon the ball B. Let B′ = BLk+1
(u), B = BLk(x). With A = Γk+1,

we have ∥∥Γk+1
u GB′χ

k
x

∥∥ ≤ CW · ∥∥Γk+1
u GB′Γ

k
x

∥∥ · ∥∥ΓkxGBχ
k
x

∥∥
≤ CW

∥∥GB

∥∥f ∑
c:χkc∩Γkx 6=∅

∥∥Γk+1
u GB′χ

k
c

∥∥
≤
∥∥GB

∥∥f max
〈c,x〉∈Ck

∥∥Γk+1
u GB′χ

k
c

∥∥.
(2.4)
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More generally, in the case where x ∈ B is not necessarily the center of the cube

B ⊂ B′, with diam B′ ≤ Y diam B, we obtain∥∥Γ(B′)GB′χ
k
x

∥∥ ≤ ∥∥Γ(B′)GB′Γ(B)
∥∥∥∥Γ(B)GBχ

k
x

∥∥
≤
∥∥Γ(B)GBχ

k
x

∥∥ ∑
c∈Γ(B)∩Ck

∥∥Γ(B′)GB′χ
k
c

∥∥
≤ Y d

∥∥Γ(B)GBχ
k
x

∥∥ max
c∈Γ(B)∩Ck

∥∥Γ(B′)GB′χ
k
c

∥∥
By self-adjointness of the Hamiltonians at hand, we also have an upper bound∥∥Γ(B)GBχ

k
x

∥∥ ≤ ∥∥Γ(B)
∥∥∥∥χkx∥∥ (dist(E,Σ(H ′B))

−1

≤ (dist(E,Σ(H ′B))
−1
,

(2.5)

hence∥∥Γ(B′)GB′χ
k
x

∥∥ ≤ (dist(E,Σ(H ′B))
−1

max
c∈Γ(B)∩Ck

∥∥Γ(B′)GB′χ
k
c

∥∥. (2.6)

3 Dominated decay and EVC bounds

Consider a cube B = BLk+1
(u) along with its skeleton graph B, and introduce the

function f : B → R+ given by

f : x 7→
∥∥Γk+1

u GBLk+1
(u)χ

k
x

∥∥.
Then by GRI (2.4),

f(x) ≤
∥∥GBLk (x)

∥∥f max
〈c,x〉∈Ck

f(c). (3.1)

An inequality of the form (3.1) is most useful when
∥∥GBLk (x)

∥∥f ≤ q < 1; in

this case, using an iterated application of the GRI, it is not difficult to prove the

bound f(u) ≤ qY−1. Below we prove an analog of this simple bound in a more

general situation where there are at most S ≥ 1 vertices c ∈ B where
∥∥BLk(c)

∥∥f
fails to be smaller than q.

Definition 1 Let be given an integer k ≥ 0 and real numbers ε > 0 and E.

• A cube BL(u) is called (E, ε)-NR, iff dist (Σu,L, E) ≥ ε;

• A cube BLk+1
(u) is called (E, ε)-CNR, iff for all j = 1, . . . , Yk the cube

BjLk/3(u) is (E, ε)-NR.
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Recall that, according to the discussion in Section 2, Lk/3 is an integer – the

size of the cells of order k. The role of the cubes concentric with BLk+1
(u) and

composed of entire adjacent Lk/3-cells is explained in Appendix A where Lemma

1 is proved. Notice that with j = Yk+1, we have BjLk/3(u) = BLk+1
(u).

Definition 2 Let be given an integer k ≥ 0 and real numbers ε > 0 and E. A cube

BLk(u) is called (E, ε)-NS, if E 6∈ Σu,L, and
∥∥GBLk (u)

∥∥f ≤ ε.
Below we choose the sizes L of cubes BL(u) and the parameter ε > 0 figuring

in Definitions 1 and 2 in a specific way. First, we take L ∈ {Lk, k ≥ 0}, with

Lk defined in (4.9); ε = L−bkk in the context of Definition 1, while in the property

(E, ε)-CNR we set ε = L−skk , with recursively constructed sequences bk and sk,

k ≥ 0.

Lemma 1 Suppose that for some S ≥ 0, a cube B = BLk+1
(u)

(i) is (E,L−skk )-CNR, sk ≤ bk;

(ii) contains no collection of (Sk+1 + 1) disjoint (E,L−bkk )-S cubes of size Lk

with admissible centers c ∈ Ck.

Then one has ∥∥GB(E)
∥∥f ≤ Y dk+1 L

sk
k+1 L

−bk(Y−6Sk+1−1)
k . (3.2)

See the proof in Appendix A.

As usual in the MSA, we also need an eigenvalue concentration (EVC) esti-

mate to bound the norm of the resolvent near the spectrum.

Lemma 2 Assume that the marginal probability distribution of an IID random

potential V is Hölder-continuous of order β ∈ (0, 1). Then for any cube of size L

one has

P
{

BL(u) is not (E,L−s-CNR
}
≤ ConstL−βs. (3.3)

In the case where V admits a bounded probability density, hence β = 1, this is

the classical result by Wegner [32]; cf. also a short proof in [15]. A simple adap-

tation to Hölder-continuous (and more general) marginal distributions, sufficient

for our purposes, can be found in [13], where it is shown that an EVC bound for

the potentials with Lipschitz-continuous marginal PDF FV can be automatically
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transformed into its counterparts for PDF with an arbitrary continuity modulus.

Optimal Wegner bounds have been proved earlier for various types of operators;

cf., e.g., [10,11,27].

4 Adaptive feedback scaling

4.1 Technical assumptions and some useful inequalities

In the recursive construction of the sequences (bk)k≥0 and (sk)k≥0, mentioned in

the previous section, the crucial parameter is b0. Given the marginal distribution

FV of the random potential V : Zd×Ω → R, which we assume Hölder-continuous

of order β ∈ (0, 1] until Section 7, we always assume that b0 > d/β and introduce

the scaling parameters

η :=
1

2
(βb0 − d) > 0, (4.1)

s0 :=
d

β
+
η

β
≡ b0 −

η

β
. (4.2)

Next, denote

κd = d ln 3 + ln 2 / 1.1d+ 0.7 < 2d. (4.3)

Given an integer L0 ≥ 1, set

Y1 = 9, S1 = 1, L1 = Y1L0, a1 := (3Y1 − 4)d. (4.4)

Under the crucial assumption,

p0 := P
{

BL0
(0) is not (E,L−b0k -NS

}
< a−2d

1 =
1

529d
, (4.5)

we introduce the parameters θ0 ∈ (0, 1/3) and σ > 0 by setting

1− ln a1

ln p−1
0

=
1 + 3θ0

2

and

σ0 = min

[
ln a1

ln p−1
0

,
1

16

]
. (4.6)

The scale-free probability threshold in the RHS of (4.5) is slightly larger (hence

better) than 841−d given in [25]. This marginal modification is due to a geomet-

rical strategy of the proof of Lemma 1 which deviates from that of the analogous

Germinet–Klein argument in [25]. It is clear, however, that the importance of the
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scale-free probability bounds from [25] goes far beyond the explicit numerical

estimates for specific periodic lattices.

Further, introduce an integer K = K(p0) (one might want to add Y1 to the list of

arguments of the function K(·), but with Y1 = 9 fixed, this becomes unnecessary):

K = min{k ≥ 1 : (1 + θ0)k ≥ 2d/σ0}, (4.7)

and define the integer sequences (Yk)k≥1, (Sk)k≥1, and (Lk)k≥1 as follows:

Yk =

{
Y1 = 9, k ≤ K,⌊
L

1/8
k−1

⌋
, k > K,

(4.8)

Lk := YkLk+1, (4.9)

Sk :=

{
S1 = 1, k ≤ K,⌊

1
9Yk
⌋
, k > K.

(4.10)

For further use, notice that we can have Yk ≤ Lτkk , for all k ≥ 1, taking

τk :=

{
τ1 := min

[
lnY1

lnL0
, 1/8

]
, k ≤ K,

1/8, k > K.

Here τk, 1 ≤ k ≤ K, depend upon L0 and can actually be very small, so in most

difficult cases the constraint τ1 ≤ 1/8 is a pure formality, but this allows us to

avoid the case-by-case study of different parameter zones.

In the course of the scale induction, we will also assume that, for some integer

M ≥ 18,

L0 ≥ L0(η, τ1) := max

[
(M + 1)1/τ2

1 , exp

(
4d

η

)]
. (4.11)

4.2 Unbounded growth of the geometric scaling parameters

The following statement is an important ingredient of the proof of exponential

scaling limit in the scheme with varying scaling parameters Yk, Sk (cf. Sect. 5).

Lemma 3 Let be given an integer L0 ≥ L0(η), with L0(η) given by (4.11). Then

the sequences (Lk)k≥0, (Yk)k≥K and (Sk)k≥K, given by (4.8)–(4.10), are strictly

monotone increasing, and for all k ≥ 1 one has

1

10
Yk ≤ Sk ≤

1

9
Yk. (4.12)
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Proof Pick an integer M ≥ 18, and let L0 ≥ (M + 1)1/τ2

. Then we have

Yk+1 = bLτkc =
⌊
Y τk L

τ
k−1

⌋
=
⌊(⌊

Lτk−1

⌋)τ
Lτk−1

⌋
≥
⌊
(bLτ0c)

τ
Lτk−1

⌋
≥
⌊(⌊

(M + 1)τ/τ
2
⌋)τ

Lτk−1

⌋
≥
⌊(⌊

Mτ/τ2

+ 1
⌋)τ

Lτk−1

⌋
≥
⌊(
Mτ/τ2

)τ
Lτk−1

⌋
≥M

⌊
Lτk−1

⌋
= MYk > Yk.

Furthermore,

Sk+1 =

⌊
1

9
Yk+1

⌋
≥
⌊
M · 1

9
Yk

⌋
≥M

⌊
1

9
Yk

⌋
> Sk.

Therefore, the sequences (Yk)k≥K and (Sk)k≥K are strictly increasing.

To prove the RHS inequality in (4.12), notice that YK+1 ≥MYK ≥ 18 · 9, and

for any real y ≥ 90 one has
⌊
y
9

⌋
≥ y

9 − 1 ≥ y
10 , hence ∀ k ≥ K + 1

1

10
Yk ≤ Sk =

⌊
1

9
Yk

⌋
≤ 1

9
Yk, (4.13)

as asserted. ut

4.3 Scaling of the GFs

Lemma 4 Let be given the integers k ≥ 0, 1 ≤ Sk+1 ≤ Yk+1 and real numbers

bk ≥ sk > d/β. Assume that

(i) the ball BLk+1
(u) is (E,L−skk+1)-CNR and contains no collection of Sk+1 + 1

pairwise disjoint (E,L−bkk )-S balls of radius Lk with admissible centers;

(ii) Yk+1 ≤ Lτkk for some 0 < τk ≤ 1/8;

(iii) Nk+1 := Yk+1 − 5Sk+1 − 1 ≥ 3.

Set

bk+1 := Ak+1bk, with Ak+1 :=
7

12
Nk+1 ≥

7

4
. (4.14)

Then BLk+1
(u) is (E,L−bk+1)-NS.

Proof Denote

f(u, Lk+1) =
∥∥GBLk+1

(u)
∥∥f,

then by Lemma 1, we have

f(u, Lk+1) ≤ Y dLskk+1 L
−bkNk+1

k ≤ Y d+sk
k+1 L

−bkNk+1+sk
k .
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Therefore, recalling that bk ≥ sk > d/β, Nk+1 ≥ 3, we obtain

− ln f(u, Lk+1)

lnLk
≥ bkNk+1 − sk −

(d+ sk) · lnYk+1

lnLk

≥ bkNk+1

(
1− sk

Nk+1bk
− d+ sk
Nk+1bk

·
lnL

τk+1

k

lnLk

)
≥ bkNk+1

((
1− 1

Nk+1

)
− 2

Nk+1
τk+1

)
≥ bkNk+1

(
2

3
− 2

3
· 1

8

)
≥ 7Nk+1

12
bk ≥

7

4
bk .

(4.15)

With Lk+1 = LkYk+1, lnYk+1/ lnLk ≤ 1/8, we have (cf. (4.14))

− ln f(u, Lk+1)

lnLk+1
= bk+1 ≥ bk

7

12
Nk+1 ·

1

1 + 1
8

= Ak+1 bk,

Ak+1 =
14

27
Nk+1 ≥

14

9
.

(4.16)

ut

4.4 Scaling of the probabilities

Denote, as before,

pk := P
{

BLk(u) is (E,L−bkk )-S
}
,

wk+1 := P
{

BLk(u) is not (E,L−skk+1)-CNR
} (4.17)

Further, let

%k+1 = βskγk, γk :=

{
1
2

(
1− d

βs0

)
> 0, k = 0,

1
8 , k ≥ 1.

(4.18)

In the next statement, we establish an important technical ingredient of the

proof of the key Lemma 6. Specifically, we assess the probability of “admissible

resonances” by using a Wegner estimate. As usual in the MSA, such upper bounds

essentially shape those on probability of “insufficient decay” of the Green func-

tions and, ultimately, of the eigenfunction correlators. Pictorially, one cannot get

bounds better than those stemming from a Wegner-type analysis, so we have to

make sure the latter is compatible with the exponential scaling limit.
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Lemma 5 Consider the sequences of positive integers (Lk)k≥0, (Yk)k≥1, (Sk)k≥1

defined as in (4.8)–(4.10), and let wk, k ≥ 0, be given by (4.17). Assume that

L0 ≥ exp(4d/η) (cf. (4.11)). Then for all k ≥ 1, the following bound holds:

wk ≤ L−%kk . (4.19)

Proof By Wegner estimate (cf. (3.3)),

− ln
(

1
2wk+1

)
lnLk+1

≥
− ln

(
(Sk+1 + 1)(3Lk+1)d L−βskk+1

)
lnLk+1

= βsk

(
1− d

βsk
− d ln 3

βsk lnLk+1
− ln(Sk+1 + 1)

βsk lnLk+1

) (4.20)

Recall κd = d ln 3+ln 2 < 2d, L0 ≥ e4d/η > e2κd/η, so for k = 0, (4.20) becomes

− ln
(

1
2w1

)
lnL1

≥ βs0 − d−
κd

lnL1
≥ η − 2d

lnL0
≥ 1

2
η =%1 . (4.21)

Hence 1
2w1 ≤ L−%11 =: 1

2q1.

Now let k ≥ 1. With βs1 = 3
2βb0 >

3d
2 , we have

− ln
(

1
2wk+1

)
lnLk+1

≥ βsk
(

1− d

βsk
− d ln 3

βsk lnLk+1
− ln(Sk+1 + 1)

βsk lnLk+1

)
=: βskγ̃k+1,

where we denoted temporarily

γ̃k+1 := 1− d

βsk
− d ln 3

βsk lnLk+1
− ln(Sk+1 + 1)

βsk lnLk+1

≥ 1− 2

3
− 2 ln 3

3 lnLk+1
− lnYk+1

βsk lnLk+1

≥ 1

3
− 2 ln 3

3 lnLk+1
−

2 lnL
1/8
k

3 lnLk
≥
(

1

3
− 1

12

)
− 2 ln 3

3 lnLk+1

≥ 1

4
− 2 ln 3

3 lnL0
≥ 1

8
,

provided L0 ≥ 27 > 38/3. ut

Recall that we have defined in (4.7) an integer K = min{k ≥ 1 : (1 + θ0)k ≥
2d/σ0}, with σ0 defined in (4.6).
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Lemma 6 Consider the sequences of positive integers (Lk)k≥0, (Yk)k≥1, (Sk)k≥1

defined as in (4.8)–(4.10), and let {pk, k ≥ 0} be given by (4.17). Assume that

L0 ≥ exp(4d/η) (cf. (4.11)), and we have

p0 < (3Y1 − 4)−2d. (4.22)

Define recursively a sequence of positive numbers (σk)k≥0 :

σk = Bkσ0, Bk = B1 · · ·Bk, (4.23)

Bj =

{
1 + θ0 ∈ (1, 2), j = 1, . . .K
7
9 (Sj + 1) > 3

2 , j ≥ K + 1.
(4.24)

Then for all k ≥ 1, the following bound holds:

pk ≤ L−σkk . (4.25)

Proof By Lemma 4, if BLn+1
(u) is singular, then it must be either (Sn+1 +1)-bad

or not (E,L−snn+1)-CNR. Therefore, with an+1 = (3Yn+1 − 4)d,

pn+1 ≤
1

2

(
an+1pn

)Sn+1+1
+

1

2
wn+1. (4.26)

By Lemma 5, we have wk+1 ≤ qk+1 = L
%k+1

k+1 , thus

pk+1 ≤
1

2
(ak+1pk)Sk+1+1 +

1

2
qk+1.

If pk+1 ≤ qk+1, we simply keep this bound and proceed to the conclusion of the

scaling step; otherwise, we argue as follows.

I First, let k < K(θ0), so that Yj = Y1, aj ≡ (3Yj−4)d = a1 for all 1 ≤ j ≤ k+1.

By induction in j = 1, . . . , k, we know that σj is monotone increasing, thus

1− d ln ak+1

σk lnLk
≥ 1− d ln a1

σ0 lnL0
= 1− d ln a1

ln p−1
0

=
1 + 3θ0

2
.

Therefore, with Sk+1 = Sk = · · · = S1 = 1,

ln p−1
k+1

lnLk+1
= σ̃k+1 ≥ σk · (Sk+1 + 1)

(
1− d ln ak+1

σk lnLk

)
lnLk

lnLk+1
(4.27)

≥ σk · (1 + 3θ0) ·
(

1− lnY1

lnLn + lnY1

)
(4.28)

≥ σk · (1 + 3θ0) · (1− τ0) (4.29)

≥ σk · (1 + θ0)
by induction

= σ0 · (1 + θ0)k. (4.30)
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I Now let k ≥ K, so Bk ≥ 2d/σ0. Then we have, with Yk+1 = bLτk+1

k c ≤ Lτk+1

k ,

τk+1 = 1/8,
2d lnYk+1

σk lnLk
≤ 2dτk+1 lnLk

σ0Bk lnLk
≤ 1

8
.

Therefore,

ln p−1
k+1

lnLk+1
= σ̃k+1 ≥ σk · (Sk+1 + 1)

(
1− d ln ak+1

σk lnLk

)
lnLk

lnLk+1
(4.31)

≥ σk · (Sk+1 + 1) ·
(

1− 1

8

)
lnLk

lnLk+1(1 + τk+1)
(4.32)

≥ σk · (Sk+1 + 1) · 7

8
· 8

9
(4.33)

≥ σk ·
7

9
(Sk+1 + 1) ≥ 14

9
σk >

3

2
σk. (4.34)

by definition of σk.

Further, Aj = 7
12Nj , with Nj = Yj − 5Sj − 1 ≥ 9Sj − 6Sj = 3Sj , thus

Aj ≥ 7
12 · 3Sj = 7

4Sj .

Aj ≥
7

4
Sj >

14

9
Sj ≥ max

[
7

9
(Sj + 1), 1 + θ0

]
≥ Bj .

Therefore, using b0 ≥ d/β ≥ 1, σ0 ≤ 1/16 (cf. (4.6)),

%k=
b0
16

Ak ≥ σ0Bk = σk.

The asserted inductive bound (4.25) is proved. ut

5 Exponential scaling limit

We have shown that

P
{

BLk is (E,L−bkk -S
}
≤ L−σkk .

Our aim now is to show that the above bound can be re-written as follows:

P
{

BLk is (E, e−(Lk)δk -S
}
≤ e−(Lk)κk ,

where δk, κk ↗ 1 as k → +∞. This is a matter of simple calculations.

Indeed, by induction, bk = Akb0. Since Sj ≤ Yj/9, we have

Aj =
7

12
Nj ≥

7

12
(Yj − 5Sj − 1) ≥ 7

12
· 3

9
Yj >

1

4
Yj . (5.1)
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Therefore,

bk > b04−k
k∏
j=1

Yj =
b0
L0

4−kLk,

= L
1− 1

lnLk

(
ln
L0
b0

+k ln 4
)

k > L
1− lnL0+2k

lnLk

k = L
1−o(1)
k

(5.2)

since Yj ↗ +∞, thus k/ lnLk → 0. Consequently,

L−bkk ≤ e− lnLk·L1−o(1)
k = e−ck L

1−o(1)
k , ck −→

k→+∞
+∞.

More precisely, Lk ≈ L9/8
k−1 for k > K, so for some 1 < q ≈ 9/8,

lnLk ≥ C + C ′qk−K ≥ C ′′qk.

Thus
ln lnL−bkk

lnLk
≥ 1− C ′′′

(1 + ε)k
, ε ≈ 1/8.

Similarly, for the probabilities pk ≤ L−σkk we have

ln p−1
k ≥ σk lnLk ≥ σ0B1 . . . Bk,

where Bj ≥ CSj ≥ C ′Yj , C,C ′ > 0, for all j ≥ K. By taking a sufficiently small

constant C ′′ > 0, one can extend this lower bound to B1, . . . , BK:

ln p−1
k ≥ C

′′ckY1 · · ·Yk ≥ C ′′′ckLk ≥ L1−α(k)
k ,

with α(k) ≤ hk, h ∈ (0, 1).

6 ESL for the eigenfunctions and their correlators

It is well-known by now that a sufficiently fast decay of the Green functions,

proved with sufficiently high probability at each energy E in a given interval

I ⊆ R, implies both spectral localization (a.s. pure point spectrum in I with

rapidly decaying eigenfunctions) and strong dynamical localization, with rapidly

decaying averaged EF correlators. Such implications can be established with the

help of different methods. For example, in the bootstrap method presented in

Ref. [25], the fixed-energy estimates in probability, proved at a given energy E0,

are extended to an interval I0 = [E0 − ε, E0 + ε] with sufficiently small ε > 0,



21

by means of the energy-interval (a.k.a. variable-energy) MSA induction; the core

procedure goes back to earlier works [18,31,19].

In our work [14] (cf. also the book [16]), we proposed an alternative approach

based on an argument employed by Elgart et al. [21] in the general context of the

FMM and encapsulated in a fairly general, abstract spectral reduction (FEMSA

⇒ VEMSA). Similar ideas, in essence going back to the work by Martinelli and

Scoppola [28], were used in other papers; cf., e.g., [9].

We formulate the spectral reduction in the following way (cf. [14,16]). (Notice

that the boldface bL are unrelated to the sequence of scaling exponents bk.)

Theorem 1 Let be given a bounded interval I ⊂ R, an integer L ≥ 0, two disjoint

balls BL(x), BL(y), and the positive numbers aL,bL, cL, QL satisfying

bL ≤ min
[
aLb2

L, cL
]

(6.1)

and such that

∀E ∈ I max
z∈{x,y}

P {Fz > aL} ≤ QL. (6.2)

Assume also that, for some function f : (0, 1]→ R+,

∀ ε ∈ (0, 1] P
{

dist
(
Σ(HBL(x)), Σ(HBL(y))

)
≤ ε
}
≤ f(ε) (6.3)

Then

P
{

sup
E∈I

max [Fx(E), Fy(E)] > aL

}
≤ |I|QL

bL
+ f(2cL) (6.4)

Consequently, taking into account the results of Section 4, for some δk ↗ 1 as

k → +∞, one has

P
{
∃E ∈ I : BL(x) and BL(y) are (E,L−bkk )-S

}
≤ e−L

δk
.

The proof given below is based on the following

Lemma 7 Let be given positive numbers aL,bL, cL, QL such that

bL ≤ min
[
aLb2

L, cL
]

(6.5)

and

∀E ∈ I P {Fx(E) > aL} ≤ QL. (6.6)

There is an event Bx such that P {Bx} ≤ b−1Q and for any ω 6∈ Bx, the set

Ex(2a) := {E : Fx(E) > 2aL} is contained in a union of intervals ∪Nj=1, Ij :=

{E : |E − Ej | ≤ 2cL}, centered at the eigenvalues Ej ∈ Σ(H(ω)) ∩ I .
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Proof Consider the random subsets of the interval I parameterized by a′ > 0,

E (a′;ω) = {E : Fx(E) ≥ a′}

and the events parameterized by b′ > 0,

B(b′) = {ω ∈ Ω : mes(E (a) > b′} =

{
ω ∈ Ω :

∫
I

1Fx(E)≥aL dE > b′
}
.

Using the hypotheses (6.5)-(6.6), apply Chebyshev’s inequality and the Fubini

theorem:

P {B(bL)} ≤ b−1
L E [ mes(E (aL)) ]

= b−1

∫
I

dE E
[
1Fx(E)≥aL

]
≤ b−1

L P {Fx(E) ≥ aL} .

Fix any ω 6∈ B(b), so mes(E (aL;ω)) ≤ bL.

Further, consider the random sets patameterized by c′ > 0,

R(c′) = {λ ∈ R : min
j
|λj(ω)− λ| ≥ c′}.

Note that for aL ∈ (0, cL), AbL := {E : dist(E,R(2cL)) < bL} ⊂ R(cL),

hence the complementAc
bL

is a union of sub-intervals at distance at least cL from

the spectrum.

Let us show by contraposition that, for any ω 6∈ B(bL), one has

{E : Fx(E;ω) ≥ 2aL} ∩ R(2cL) = ∅.

Assume otherwise and pick any point λ∗ in the non-empty intersection on the

LHS. Let J := {E′ : |E − λ∗| < b} ⊂ Ab ⊂ R(c). By the first resolvent identity

‖G(E′)‖ ≥ ‖G(λ∗)‖ − |E′ − λ∗| ‖G(E′)‖‖G(λ∗)‖

≥ 2aL − bL · (2cL)−1(cL)−1 ≥ aL,

owing to the assumption (6.1) on aL,bL, cL. We also used here the bounds ‖G(λ∗)‖ ≤
(2cL)−1 and

‖G(E′)‖ ≤ (dist(E′, Σ))
−1 ≤ (dist(λ∗, Σ)− |E′ − λ∗|)−1 ≤ (2cL − bL)

−1
,

with bL ≤ cL. Consequently, the entire interval (λ∗ − bL, λ
∗ + bL) of length

2aL > bL is a subset of E (aL;ω), which is impossible for any ω 6∈ B(bL). This

contradiction completes the proof. ut
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Proof of Theorem 1 Define the events Bx,By related to the points x, y in the same

way as the event Bx relative to x in the proof of Lemma 7, and let B = Bx ∪ By.

Let ω 6∈ B. Then for both values of z ∈ {x, y}, the set Ez(a) is contained in the

union of at most K intervals Jz,i = [E
(z)
i −2cL, E

(z)
i +2cL]. Therefore, the event

P
{
ω : inf

E∈I
max

[
Fx(E),Fy(E)

]
> aL

}
≤ P {ω : dist(Σx, Σy) ≤ 4cL} ;

the latter probability is bounded with the help of the Wegner-type estimate. ut

Now the derivation of strong dynamical localization from the VEMSA esti-

mates can be made in the same way as in Ref. [25], directly in the entire lattice

Zd. This requires an a priori, Shnol–Simon polynomial bound (cf., e.g., [29,30])

on the growth rate of spectrally a.e. generalized eigenfunction; the latter becomes

unnecessary in arbitrarily large finite balls (cf. [14,16,17]).

Theorem 2 (Cf. [14, Theorem 7] ) Assume that the following bound holds true

for a pair of disjoint cubes BL(x),BL(y):

P
{
∃E ∈ I : BL(x) and BL(y) are (E, ε)-S

}
≤ h(L).

Then for any cube BL′(w) ⊃ (BL+1(x) ∪ BL+1(x)) one has

E
[ ∣∣〈1x |φ (HB) |1y

∣∣ ] ≤ 4ε+ h(L).

The extension of the EFC decay bounds to the entire lattice can be done with

the help of the Fatou lemma on convergent measures; such a path was laid down

in earlier works by Aizenman et al. [4,5,6].

Summarizing, one can say that the essential equivalence of various forms of

Anderson localization (decay of the GFs, EFs, EFCs) is firmly established by now

for a large class of random Hamiltonians.

7 Lower regularity

Theorem 3 The results of Section 4 remain valid for the marginal probability

distributions with continuity modulus sV (·) satisfying the following condition:

sV (ε) ≤ C ′ε
C

ln | ln ε| . (7.1)
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Proof Consider first the situation where Yk+1 = bLτkc, hence Lk+1 ≥ CL1+τ
k ,

τ > 0.

The regularity of the marginal distribution of the random potential V must be

sufficient for proving a Wegner-type estimate

P
{
‖GBLk

(E)‖ > Lskk
}
≤ L−βkskk ,

where βksk, replacing βsk used in the previous section, has to be compatible with

our main estimates. Denoting εk = L−skk , we thus should have

P
{
‖GBLk

(E)‖ > εk
}
≤ εβk .

Up to some inessential factors (depending on Lk), the above estimate can be in-

ferred in a standard way from the continuity of the marginal PDF FV with the

continuity modulus of the form sV (ε) ≤ CεC′βk .

Next, observe that one has ε−1
k = Lskk ≤ ec1Lk : indeed, our estimates by L−bkk

and L±skk are not truly exponential in Lk (although that would be very welcome),

so we only have εk ∼ e±L
1−o(1)
k lnLk = e±L

1−o(1)
k . Thus

ln ln ln ε−1
k = ln ln lnLskk ≤ ln ln(c1Lk) ≤ ln ln(c2L

qk

0 ) ≤ c3k.

At the same time, with βk = β0

(1+κ)k
, we have lnβ−1

k ≥ c4k, hence one can

proceed with the scaling algorithm even in the case where

lnβ−1
k ≥ c5 ln ln ln ε−1

k =⇒ βk ≤
c6

ln | ln εk|
.

We conclude that the Wegner-type estimates compatible with the adaptive scaling

scheme employed in Section 4 can be inferred from the following condition upon

the continuity modulus sV :

sV (ε) ≤ C ′ε
C

ln | ln ε| ,

which is – just marginally – weaker than Hölder regularity of any positive order.

Pictorially, it can be qualified as Hölder continuity of ”almost zero” order.

The proof in the general case can be reduced to the above analysis, since the

double-exponential growth Lk ∼ Lq
k

0 takes over the exponential one, Lk = L0Y
k
1 ,

after a finite number of steps K = K(p0). Observe that all intermediate calculations

and bounds can be re-written in terms of strict inequalities (for this is the case with
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the principal hypothesis, p0 < a−2
1 ), and these strict inequalities can be preserved

by replacing β = Const with βk = Const/(1 + κ)k during the K steps, provided

κ > 0 is small enough – depending of course on K. The auxiliary constants clearly

depend upon the proximity of p0 to the Germinet-Klein threshold 841−d. After K

steps, one can start the scaling procedure with L′0 := LK. In fact, this would be

very close in spirit to the Germinet-Klein first bootstrapping step. ut

Appendix A Proof of Lemma 1

Consider the `k-skeleton graph B of the cube B. For r ≥ 0, denote by Br = Br(u)

the balls {c ∈ Ck : dCk(u, c) ≤ r}; then B = B3K+1. To avoid any confusion,

recall that the vertices of B represent the Lk/3-cells of the original lattice Zd.

We will reduce our analysis of the function B 3 c 7→ |GB(c, y;E)| to that of a

monotone function of one integer variable

F : r 7→ max
c: dB(u,c)≤r

|GB(c, y;E)|;

here r ∈ I := [0, 3K + 1] =
[
0, Y−1

2 + Y
]
. More precisely, we have to assess the

decay of F as r runs across the sub-interval [R− Y − 1, R− 2], R := 3K + 1.

It is convenient to introduce the spherical layers Lr := {c ∈ B : dB(u, c) = r}
and the function

f : r 7→ max
c∈Lr

|GB(c, y;E)|,

so that F (r) = maxr′≤r f(r′).

Call a vertex c ∈ B non-singular if the associated ball BLk(c) ⊂ Zd is

(E,L−bkk )-NS, and singular, otherwise. Respectively, call r ∈ [R− Y − 1, R− 2]

non-singular if all vertices c with distB(u, c) are non-singular, and singular, other-

wise. The notions of singularity/non-singularity do not apply to r ∈ [R−1, R−2].

Notice that we have the following inequalities:

(A) for any non-singular r ∈ I ,

f(r) ≤ max
r′∈[r−1,r+1]

(3Yk+1)−dL−bkk f(r′);

(B) owing to the assumed CNR-property of BLk+1
(u), for any r ≤ r′ ≤ R− 2

one has, by an application of the GRI,

f(r) ≤ (3Yk+1)dLskk+1 f(r′). (A.1)
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

α1 β1 β1 + 1

r0 r1 r2 r3 r4 r8 r9

Fig. 2 In this example, K = 7, Y = 2 · K + 1 = 15, S = 1, N = Y − 5S − 1 = 9,
and one has no pair of disjoint singular intervals of the form [ρ − 1, ρ + 1]. r3 is the smallest
integer in I = [0, 3K + 1] which is singular; it is the projection of the center c of a singular
ball in the skeleton graph. It is this minimality property which implies that r2 = r3 − 1 must
be non-singular, despite the fact that the intervals [r2 − 1, r2 +1] and [r3 − 1, r3 +1] overlap.
On the other hand, due to the overlap of [r3 − 1, r3 + 1] with [r3, r3 + 2], the point r3 + 1
may (or might) be singular, without producing a disjoint singular pair. Therefore, we still can
use the property (A) starting off the point r2 (and aiming at r2 + 1 = r3), but leaving from r3,
we have to make a longer flight with possible ”destinations” (i.e., reference points) ranging in[
(r3+4)−2, (r3+4)+2

]
=[r3+2, r3+6]. The longest flight consumes the distance 6, instead

of 1 that we would have for a non-singular departure point; this results in a loss of 5 points. The
thick gray intervals indicate the points which provide the factors q ≤ (3Y − 1)−dL−b < 1 in
the ”radial descent” induction: F (ri−1) ≤ qF (ri). The point r9 is used as the last reference
point, but we can only bound F (r9) by the global maximum of F , since the GRI cannot be
applied at a center c of the skeleton graph B with dB(u, c) ≥ 3K. Here we have the guaranteed
decay bound F (r0) ≤ q9F (r9) ≤ q9F (3K + 1).

(A crude bound (3Y )d can be replaced by C(d)Y d−1.) To be more precise, an

application of the GRI is required for r ≤ r′ − 1, while for r = r′ the inequality

(A.1) follows trivially from (3Yk+1)dLskk+1 ≥ 1.

Combining (A) and (B), we come to the following statement:

(C) Assume that for some r ≤ r′ ≤ R − 2, all points ρ ∈ [r′ + 3, r′ + 5] are

non-singular. Then for all r ∈ [0, r′ + 5]

F (r) ≤ (3Yk+1)−dL−2bk
k Lskk+1 F (r′ + 6). (A.2)

Notice that for r = r′ + 5, (A.2) follows immediately from the assumed non-

singularity of the point r′ + 5, so it remains to be established only for r ≤ r′ + 4.

For the proof, we first apply (B):

F (r′ + 4) = max
ρ≤r′+4

f(ρ) ≤ (3Y )dLskk+1 f(r′ + 4). (A.3)

Next, apply (A) to r′ + 4 (which is non-singular by assumption):

f(r′ + 4) ≤ (3Yk+1)−d L−bkk max
r′′∈[r′+3,r′+5]

f(r′′), (A.4)
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thus

F (r′ + 4) ≤ (3Yk+1)−d Lskk+1 L
−bk
k max

r′′∈[r′+3,r′+5]
f(r′′). (A.5)

Apply (A) once again to the three points r′′ ∈ [r′ + 3, r′ + 5] (all of which are

non-singular by assumption):

max
r′′∈[r′+3,r′+5]

f(r′′) ≤ (3Yk+1)−d L−bkk max
r′′∈[r′+3,r′+5]

max
r′′′∈[r′′−1,r′′+1]

f(r′′′)

≤ (3Yk+1)−d L−bkk max
r′′′∈[r′+2,r′+6]

f(r′′′)

≤ (3Yk+1)−d L−bkk F (r′ + 6).
(A.6)

Collecting (A.5) and (A.6), the assertion (C) follows, since F (r) ≤ F (r′) for

r ≤ r′.
Pick any maximal collection of disjoint singular cubes BLk(ci), i = 1, . . . , n ≤

S, denote ρi = dB(u, cj), and associate with each ci an interval [α̃i, β̃i] = [ρi −
1, ρi + 5. Next, decompose the union of intervals [α̃i, β̃i] into a disjoint union

of maximal non-overlapping intervals Ji = [αi, βi], 1 ≤ i ≤ n′ ≤ n, so that

βi ≤ αi+1 − 1; the equality αi+1 = βi + 1 is permitted.

Note that for any i, every points r ∈ [βi−3, βi−1] are non-singular, otherwise

we would have to augment Ji by including the interval [r − 1, r + 5] overlapping

with Ji, which contradicts the maximality of Ji.
Let I ′ = I \ ∪iJi and enumerate the points of I ′ = {r0, r1, . . . , rM} in the

natural increasing order; in other words, I ′ is obtained by collapsing each interval

Ji to a single point, and then we enumerate the new points some of which are

images of single points of I and others represent the entire intervals Ji.
If ri is the image of a non-singular point, then we have ri+1 = ri + 1 and

F (ri) ≤ (3Yk+1)−d L−bkk F (ri+1);

otherwise, we can apply (C) and obtain

F (ri) ≤ (3Yk+1)−d L−2bk
k Lskk+1F (ri+1)

≤
(
L
−(bk−sk)
k (3Yk+1)sk

)
· (3Yk+1)−dL−bkk F (ri+1),

≤ (3Yk+1)−dL−bkk F (ri+1),

since sk = bk/2 for k ≥ K, while for k < K this bound holds true with Yk = Y1 =

9 and L0 large enough.
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Finally, note that collapsing the intervals Ji into single points eliminates from

I at most 5Sk+1 points; this bound becomes sharp if the radial projections of all

singular Lk-balls in the collection (fixed at the beginning) are non-overlapping.

Hence |I ′| ≥ (Yk+1 − 1)− 5Sk+1.

This completes the proof. ut
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