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Abstract

We show, by molecular simulation, that for a range of standard, coarse-grained, nematic liquid

crystal models, the director bend fluctuation is a propagating mode. This is in contrast to the

generally-accepted picture of nematic hydrodynamics, in which all the director modes (splay, twist,

bend, and combinations thereof) are overdamped. By considering the various physical parameters

that enter the equations of nematodynamics, we propose an explanation of this effect, and conclude

that propagating bend fluctuations may be observable in some experimental systems.

PACS numbers: 83.10.Rs, 83.80.Xz, 47.11.Mn, 47.57.Lj
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Most of the interesting properties of nematic liquid crystals [1–3] are determined by

the Frank elastic constants K1, K2 and K3 appearing in the static continuum theory [4–

6], and the various Leslie coefficients α1 . . . α6 (viscosities) which enter the equations of

nematodynamics [7–11]. The orientational relaxation of the space- and time-dependent

nematic director n(r, t), and its coupling to the hydrodynamic velocity field v(r, t), may be

accessed experimentally at low wavenumber k and frequency ω by dynamic light scattering.

Ever since the first analysis of such experiments, it has been argued on the basis of the

relative orders of magnitudes of the elastic and viscosity coefficients [12, 13], that these

modes decay exponentially, rather than oscillating in time. For example, the review of

Stephen and Straley [13] states: “The orientation fluctuations of the director are coupled

to the fluid velocity by viscous effects, and in fact are overdamped: the modes which the

elastic theory . . . predicts do not propagate”. Similar statements appear in the textbook

derivations [1, 2] and this view has been supported by experiment over subsequent years

[14–17].

Particle-based molecular simulations allow us to connect the values of the coefficients

of orientational elasticity and viscosity to molecular structure and interactions, and verify

the assumptions of the continuum theory. We have recently conducted molecular dynamics

simulations, using several variants of the Gay-Berne potential [18], a well-established coarse-

grained model of mesogens. In order to reliably establish the limiting low-(k, ω) behaviour,

and distinguish it from effects occurring at the molecular scale, we employed system sizes

significantly larger than previous studies of elastic phenomena. By measuring equilibrium

thermal director fluctuations as a function of wave-vector, we obtained accurate estimates

of the Frank elastic constants K1 – K3. Full details will be given in a separate publication

[19], but the techniques are quite standard [20–22]. We also calculated the equilibrium time

correlation functions of pure splay, twist and bend director fluctuations at low k. Once

more, full details will be given separately [19], but since these are our key results, we give a

brief account here.

In a Cartesian coordinate system (e1, e2, e3), we define e3 to lie along the equilibrium

director n [12, 13]; fluctuations of the director are then written δn = (δn1, δn2, 0). The

wave-vector k = (k1, 0, k3) is taken to lie in the e1–e3 plane. Denoting spatial Fourier
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components by δñ(k, t), where t is the time, we define

ci(k, t) =
〈
δñi(k, t)δñi(−k, 0)

〉
/
〈∣∣δñi(k)

∣∣2〉 , i = 1, 2,

and the time correlation functions of interest are

csplay(k, t) = c1(ke1, t) , ctwist(k, t) = c2(ke1, t) ,

cbend(k, t) = c1(ke3, t) = c2(ke3, t) .

The Gay-Berne potential [18, 23, 24] describes the interaction between roughly ellipsoidal

particles, and is widely used to simulate liquid crystals. For a pair of identical uniaxial

particles i, j, it has a shifted, Lennard-Jones form

U(ui,uj, rij) = 4εij
[
%−12ij − %−6ij

]
,

and it depends on the orientation (unit) vectors ui, uj, and the center-center separation

vector rij = ri − rj, as follows:

%ij = %(ui,uj, r̂ij) =
rij − σ(ui,uj, r̂ij) + σ0

σ0
,

εij = ε(ui,uj, r̂ij) = ε0 ε
ν
1(ui,uj) ε

µ
2(ui,uj, r̂ij) .

Here r̂ij = rij/rij and rij = |rij|. The parameter σ0 represents the width of the particle,

while ε0 determines the overall strength of the potential; units of length and energy are

chosen such that σ0 = 1 and ε0 = 1. The range function σ(ui,uj, r̂ij) and energy functions

ε1(ui,uj), ε2(ui,uj, r̂ij), depend on relative orientations:

σ(ui,uj, r̂ij) = σ0

[
1− χ

2

(
(r̂ij · ui + r̂ij · uj)2

1 + χui · uj
+

(r̂ij · ui − r̂ij · uj)2

1− χui · uj

)]−1/2
,

ε1(ui,uj) =
[
1− χ2(ui · uj)2)

]−1/2
,

ε2(ui,uj, r̂ij) = 1− χ′

2

[
(r̂ij · ui + r̂ij · uj)2

1 + χ′ui · uj
+

(r̂ij · ui − r̂ij · uj)2

1− χ′ui · uj

]
.

Here

χ =
κ2 − 1

κ2 + 1
, χ′ =

κ′1/µ − 1

κ′1/µ + 1

where κ is the length-to-width ratio of the particle and κ′ is the ratio of well depths for

the side-to-side and end-to-end configurations of two molecules. ν and µ are two adjustable
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exponents which allow considerable flexibility in defining a family of Gay-Berne potentials.

Different versions of the potential are identified by the GB(κ, κ′, µ, ν) notation of Bates and

Luckhurst [25].

We have simulated GB(3.0, 5.0, 2, 1), the original suggestion of Gay and Berne [18], for

which the phase diagram has been well studied [26], and GB(3.0, 5.0, 1, 3), proposed by

Berardi et al. [23], which has the advantage of a wider nematic range. For all simulations

the cutoff for the interactions was chosen to be 5σ0. N = 512 000 particles were used, in

cubic periodic boundaries, giving simulation box lengths L > 100σ0. The particle mass m0

is taken to be unity, leading to a basic unit of time τ0 = σ0
√
m0/ε0. All results reported

here are referred to these units. The moment of inertia corresponded to uniform mass

distribution within the ellipsoidal particle. Each system was equilibrated for 4× 105 steps,

followed by a production run of 1.9× 106 steps, with a timestep ∆t = 0.004τ0. We also

analyzed a trajectory of N = 221 184 particles of GB(3.0, 1.25, 2, 1), of length 1.7× 106

steps with ∆t = 0.002τ0, provided by the Bologna group [27].

Typical results are shown in Fig. 1. The splay and twist correlations are well fitted by

an exponential form c(k, t) = exp(−νt), with the decay rate found to be accurately given

by ν = λk2, λ being a constant. However, we see oscillatory decay of bend correlations in

all the simulations,

cbend(k, t) = exp(−νt) cosωt , (1)

with ν = λrk2 and ω = λik2. The k2 behaviour of the decay rate ν and the frequency ω is

illustrated in Fig. 2, and the fitted λ coefficients are summarized in Table I.

To explain these results, we reprise the standard derivation of the coupled, time-

dependent, differential equations in Fourier space for hydrodynamic flow and director re-

orientation [3, 12, 13]. These equations determine the relaxation in time of each Fourier

component δñ(k, t) and ṽ(k, t) from an initial value towards equilibrium, at low k; by

linear response theory, the same decay rates and oscillation frequencies will determine the

forms of the corresponding equilibrium time correlation functions [1–3]. For twist and splay

deformations, k1 = k, k3 = 0, and the velocity component ṽ1 ≡ 0 by the condition of incom-

pressibility ∇ ·v = 0. Neglecting nonlinear inertial terms in the flow, and director inertia, as
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FIG. 1. Color online. Time correlation functions c(k, t) plotted versus time t for model

GB(3.0, 5.0, 1, 3) at ρ = 0.3, T = 3.4. (a) splay; (b) twist; (c) bend. Points with error bars

are simulation results. Lines are the fits to an exponential decay, or to eqn (1), as discussed in the

text. Different curves correspond to different wavenumbers k = n2π/L where L is the simulation

box length: n = 1 (diamonds, cyan); n = 2 (down-triangles, red); n = 3 (up-triangles, grey); n = 4

(circles, blue); n = 5 (squares, green). All quantities are in simulation units defined in the text.

is usual, the relaxation equations for twist, involving the pair of variables {δñ2, ṽ2} become

(
γ1 ∂t +K2k

2
)
δñ2 = 0 , (2a)(

ρ ∂t + η3k
2
)
ṽ2 = 0 , (2b)
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FIG. 2. Decay rates ν and oscillation frequencies ω, obtained by fitting eqn (1) to cbend(k, t), as

functions of k2, for the same system as Fig. 1. Points with error bars are simulation results. Lines

are linear least-squares fits. All quantities are in simulation units defined in the text. We also give

a schematic illustration of the director variation n and coupled velocity field v for the bend mode.

where ∂t denotes the time derivative, and those for splay, in the variables {δñ1, ṽ3}, are

(
γ1 ∂t +K1k

2
)
δñ1 + ikα3 ṽ3 = 0 , (3a)

−ikα3 ∂t δñ1 +
(
ρ ∂t + η1k

2
)
ṽ3 = 0 . (3b)

K1 and K2 are respectively the splay and twist elastic constants, and ρ is the mass density.

The remaining quantities are determined by the Leslie coefficients αi: γ1 = α3 − α2 is

the rotational viscosity, while η1 = 1
2
(α3 + α4 + α6) and η3 = 1

2
α4 are Miesowicz (shear)

viscosities. In eqn (2) the director twist δñ2 and the transverse velocity ṽ2 are completely

decoupled. The director relaxes according to δñ2 ∝ exp(−νtwistt); the rate is given by

νtwist = λtwistk
2 = K2k

2/ηtwist, where the rotational (twist) viscosity ηtwist ≡ γ1. The velocity

relaxes according to ṽ ∝ exp(−ν ′twistt) with a rate ν ′twist = λ′twistk
2 = η3k

2/ρ. Assuming that

η3 ∼ ηtwist ∼ 10−3 Pa s – 10−2 Pa s, K2 ∼ 10−11 N, and ρ ∼ 103 kg m−3, the two timescales
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TABLE I. Elastic constants K1, K2, K3, and time correlation function fit parameters λ, from MD

simulations of three GB models at the indicated densities and temperatures. All quantities are in

simulation units. Estimated errors in the last quoted digit are given in parentheses.

ρ T K1 K2 K3 λsplay λtwist λrbend λibend

GB(3.0, 5.0, 2, 1)

0.32 0.9 0.70(2) 0.69(1) 1.51(4) 0.15(1) 0.17(1) 1.4(1) 1.5(1)

0.33 1.0 1.04(2) 1.02(2) 2.65(4) 0.15(1) 0.17(1) 1.6(1) 2.5(1)

0.35 2.0 1.59(3) 1.38(2) 4.00(4) 0.17(1) 0.16(1) 2.1(1) 2.4(1)

0.38 3.0 3.81(7) 3.29(5) 11.5(1) 0.22(1) 0.21(1) 2.9(1) 4.9(1)

GB(3.0, 5.0, 1, 3)

0.3 3.4 3.17(3) 2.84(2) 6.01(4) 0.66(1) 0.64(1) 1.96(2) 4.81(3)

0.3 3.45 2.88(2) 2.52(2) 4.95(3) 0.70(1) 0.70(1) 2.11(6) 4.08(6)

GB(3.0, 1.25, 2, 1)

0.333 0.53 1.93(4) 2.50(3) 5.24(13) 0.05(4) 0.04(3) 0.63(8) 1.55(6)

are well separated:
νtwist

ν ′twist

=
λtwist

λ′twist

=
ρK2

η3ηtwist

∼ 10−4 – 10−2 .

For the splay mode, eqn (3), a secular equation for the decay rates is obtained by substi-

tuting ∂t → −ν = −λk2: ∣∣∣∣∣∣−νγ1 +K1k
2 ik α3

ik να3 −νρ+ η1k
2

∣∣∣∣∣∣ = 0

⇒ λ2ργ1 + λ
(
α2
3 − γ1η1 − ρK1

)
+K1η1 = 0 . (4)

If the timescale separation still applies, the two roots will be real, and will obey λ� λ′, in

which case

λ′splay ≈
η1 − α2

3/γ1 + ρK1/γ1
ρ

,

λsplay ≈
K1

γ1 − α2
3/η1 + ρK1/η1

≡ K1

ηsplay
,

where ηsplay = γ1 − α2
3/η1 + ρK1/η1 ≈ γ1 − α2

3/η1. Director splay fluctuations are expected

to be dominated by this slow mode λsplay, relaxing exponentially at a rate νsplay = λsplayk
2 =

K1k
2/ηsplay.
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Our twist and splay results are almost indistinguishable from each other (see Table I);

from them we may conclude that α3 is very small, that ηsplay ≈ ηtwist = γ1, and that

ρK1/γ
2
1 ≈ ρK2/γ

2
1 . 10−2 for GB(3.0, 5.0, 2, 1), and ≈ 5× 10−2 for GB(3.0, 5.0, 1, 3), at the

state points studied. These ratios are at the high end of the anticipated range, probably

because coarse-grained rigid molecular models have lower viscosities and higher mobilities

than more realistic ones. Nonetheless, they are still much less than 1, and all of this is in

accord with the standard view.

For bend fluctuations, k1 = 0, k3 = k, and ṽ3 ≡ 0 by incompressibility. The coupled

relaxation equations for the pair {δñ1, ṽ1} (and similarly for {δñ2, ṽ2}) are

(
γ1 ∂t +K3k

2
)
δñ1 + ikα2 ṽ1 = 0 , (5a)

−ikα2 ∂t δñ1 +
(
ρ ∂t + η2k

2
)
ṽ1 = 0 , (5b)

where η2 = 1
2
(α4 +α5−α2) is the remaining Miesowicz viscosity, and K3 is the bend elastic

constant. This mode is illustrated in Fig. 2. Substituting ∂t → −ν = −λk2 gives the secular

equation ∣∣∣∣∣∣−νγ1 +K3k
2 ik α2

ik να2 −νρ+ η2k
2

∣∣∣∣∣∣ = 0

⇒ λ2ργ1 + λ
(
α2
2 − γ1η2 − ρK3

)
+K3η2 = 0 . (6)

A similar argument to the splay case would give well-separated real roots

λ′bend ≈
η2 − α2

2/γ1 + ρK3/γ1
ρ

,

λbend ≈
K3

γ1 − α2
2/η2 + ρK3/η2

≡ K3

ηbend
,

where ηbend = γ1−α2
2/η2+ρK3/η2 ≈ γ1−α2

2/η2. This leads to the usual prediction that bend

relaxation is overdamped, occurring at a rate νbend = K3k
2/ηbend. However, our simulation

results clearly do not conform to this: instead the oscillations correspond to complex roots

λbend = λrbend + iλibend .

To see how these arise, it is helpful to define two dimensionless quantities

µ =
ρK3

γ1η2
, α = 1− α2

2

γ1η2
.
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We expect µ ∼ 10−2 like the similar quantities defined above for twist and splay. Certainly,

in both experiment [3, Table D.3], and simulation [28], typically η2 & γ1, but also K3 & K2,

so µ = ρK3/γ1η2 ≈ ρK2/γ
2
1 . The discriminant of the quadratic equation (6) gives complex

roots if

(α + µ)2 < 4µ ⇒ |α| . 2
√
µ ,

assuming that µ � 1. This is quite possible, depending on how close the viscosities γ1, η2,

and α2 happen to be to each other. We already know that γ1 = α3 − α2 ≈ |α2|, since α3 is

typically small, so if η2 ≈ |α2|, a small value of α will indeed result.

If µ ∼ 10−4, then complex roots will only result if |α| < 0.02; however, if µ ∼ 10−2,

complex roots will arise if |α| < 0.2. To put this in context, Table D.3 of Ref. [3] gives

typical experimental values of α = 0.18, 0.19, 0.23 for MBBA near 25 ◦C, 5CB near 26 ◦C,

and PAA near 122 ◦C, respectively. Wang et al. [29] have estimated the Leslie coefficients

for the standard mixture E7, from which α = 0.06 near 20 ◦C. Even smaller values come

from theories, and from molecular simulation measurements of viscosities [28, 30–33]. The

simulation results of Wu et al. [34], for the model GB(3.0, 5.0, 1, 2) [35], at T = 2.5, ρ = 0.295,

give α ≈ 0.01. The theory of Kuzuu and Doi [36] for rodlike molecules predicts a value of

α < 0.004 over the entire nematic range. An affine transformation theory [37, 38] predicts

values α < 0.1 for molecules of elongation κ ≥ 3 at modest nematic order parameters, and

α ≡ 0 in the perfectly aligned limit.

The parameter α appears in the continuum theory of switching phenomena, such as

the homeotropic to planar-bend Freedericksz transition (see e.g. Chapter 5 of Ref. [3]).

The influence of small values of α on backflow and kickback effects in such cases is well

understood, but the generation of oscillatory director fluctuations in the bulk at low k

seems to have been overlooked. Our results show that these are easily observed in computer

simulations of a range of coarse-grained molecular models. Moreover, they suggest that, even

though overdamped decay is the norm in experiments, real-life examples might be found for

which the secular equation (6) has complex roots, and the bend mode propagates. In this

event, the roots are given by

λrbend = (α + µ)

(
η2
2ρ

)
,

λibend =
√

4µ− (α + µ)2
(
η2
2ρ

)
,
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both the prefactors being significantly smaller than 1. From the ratios λibend/λ
r
bend measured

in our simulations we can estimate 0.5 . µ/(µ + α)2 . 2, which is completely consistent

with α ∼ √µ. The velocity field, of course, will be governed by the same dynamics as the

director: there is no separation of timescales.

In conclusion, we have observed propagating director bend fluctuations in our simulations

(and those of others) of different variants of the Gay-Berne nematic liquid crystal. We have

shown that such modes are consistent with the equations of nematodynamics [7–11]. They

may occur without violating the (traditionally assumed) condition µ = ρK3/γ1η2 � 1.

Values of µ ∼ 10−2 may be sufficient to generate such modes, and seem to be quite typical

in these Gay-Berne particle-based simulations. We may speculate that the relatively smooth

nature of the Gay-Berne forces, compared with the full complexity of multiple atom-atom

interactions, results in lower viscosities, and hence a value of µ near the high end of the

expected range. The design of systems with low viscosities is one of the aims in liquid

crystal device engineering, resulting in faster switching times, so these are prime candidates

to observe the effect. The wider the “target window” determined by µ, the more likely

is the bend mode to propagate. The key requirement is that the dimensionless viscosity

combination α = 1 − α2
2/γ1η2 satisfies α . 2

√
µ. This may be attainable, even for the

somewhat smaller values of µ typically seen in experiment, depending on the precise values

of the viscosities α2, γ1, and η2. Therefore, it may not be out of the question to observe such

propagating bend modes in real-life experimental systems. Taking these modes into account

may be important for the accurate description of director field relaxation, and defect motion,

in low-viscosity nematics. Similar conditions are unlikely to be satisfied for the splay modes,

because the analogous key quantity is 1− α2
3/γ1η1, and the Leslie coefficient α3 is typically

quite small compared with the others.
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