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Abstract

In a recent paper with Thomas Hoffmann-Ostenhof, we proved that
the number of critical points νk in the boundary set of a k-minimal
partition tends to +∞ as k → +∞. In this note, we show that νk
increases linearly with k as suggested by a hexagonal conjecture about
the asymptotic behavior of the energy of these minimal partitions. As
the original proof by Pleijel, this involves Faber-Krahn’s inequality
and Weyl’s formula, but this time, due to the magnetic characteriza-
tion of the minimal partitions, we have to establish a Weyl’s formula
for Aharonov-Bohm operator controlled with respect to a k-dependent
number of poles.

1 Introduction

We consider the Dirichlet Laplacian in a bounded regular domain Ω ⊂ R2.
In [10] we have analyzed the elations between the nodal domains of the real-
valued eigenfunctions of this Laplacian and the partitions of Ω by k disjoint
open sets Di which are minimal in the sense that the maximum over the
Di’s of the ground state energy (or smallest eigenvalue) of the Dirichlet
realization of the Laplacian in Di is minimal. We denote by (λj(Ω))j∈N
the non decreasing sequence of its eigenvalues and by φj some associated
orthonormal basis of real-valued eigenfunctions. The groundstate φ1 can be
chosen to be strictly positive in Ω, but the other eigenfunctions φj (j >
1) must have non empty zeroset in Ω. By the zero-set of a real-valued

continuous function u on Ω, we mean N(u) = {x ∈ Ω
∣∣ u(x) = 0} and call
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the components of Ω \N(u) the nodal domains of u. The number of nodal
domains of u is called µ(u). These µ(u) nodal domains define a k-partition
of Ω, with k = µ(u).

We recall that the Courant nodal Theorem [6] says that, for k ≥ 1, and
if E(λk) denotes the eigenspace associated with λk , then, for all real-valued
u ∈ E(λk) \ {0} , µ(u) ≤ k .

A theorem due to Pleijel [15] in 1956 says that this cannot be true when
the dimension (here we consider the 2D-case) is larger than one. In the next
section, we describe the link of these results with the question of spectral
minimal partitions which were introduced by Helffer–Hoffmann-Ostenhof–
Terracini [10].

2 Minimal spectral partitions

We now introduce for k ∈ N (k ≥ 1), the notion of k-partition. We call
k-partition of Ω a family D = {Di}ki=1 of mutually disjoint sets in Ω.
We denote by Ok(Ω) the set of open connected partitions of Ω. We now
introduce the notion of energy of the partition D by

Λ(D) = max
i
λ(Di) . (2.1)

Then we define for any k the minimal energy in Ω by

Lk(Ω) = inf
D∈Ok

Λ(D). (2.2)

and call D ∈ Ok a minimal k-partition if Lk = Λ(D). We associate with a
partition its boundary set:

N(D) = ∪i (∂Di ∩ Ω) . (2.3)

The properties of the boundary of a minimal partition are quite close to the
properties of nodal sets can be described in the following way:

(i) Except for finitely many distinct Xi ∈ Ω ∩N in the neighborhood of
which N is the union of νi = ν(Xi) smooth curves (νi ≥ 3) with one
end at Xi, N is locally diffeomorphic to a regular curve.

(ii) ∂Ω∩N consists of a (possibly empty) finite set of points Yi. Moreover
N is near Yi the union of ρi distinct smooth half-curves which hit Yi.
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(iii) N has the equal angle meeting property1

The Xi are called the critical points and define the set X(N). A particular
role is played by Xodd(N) corresponding to the critical points for which νi
is odd.

It has been proved by Conti-Terracini-Verzini (existence) and Helffer–
Hoffmann-Ostenhof–Terracini (regularity) (see [10] and references therein)
that for any k, there exists a minimal regular k-partition, and moreover that
any minimal k-partition has a regular representative2.

In a recent paper with Thomas Hoffmann-Ostenhof [9], we proved that
the number of odd critical points of a minimal k-partition Dk

νk := #Xodd(N(Dk)) (2.4)

tends to +∞ as k → +∞.

In this note, we will show that it increases linearly with k as suggested
by the hexagonal conjecture as discussed in [2, 4, 3, 9]. This conjecture says
that

A(Ω) lim
k→+∞

Lk(Ω)

k
= λ(Hexa1) , (2.5)

where Hexa1 denotes the regular hexagon of area 1 and A(Ω) denotes the
area of Ω.
Behind this conjecture, there is the idea that k-minimal partitions will look
(except at the boundary where one can imagine that pentagons will appear)
as the intersection with Ω of a tiling by hexagons of area 1

kA(Ω).
The proof presented here gives not only a better result but is at the end
simpler, although based on the deep magnetic characterization of minimal
partitions of [8] which will be recalled in the next section.

3 Aharonov-Bohm operators and magnetic char-
acterization.

Let us recall some definitions about the Aharonov-Bohm Hamiltonian in an
open set Ω (for short ABX-Hamiltonian) with a singularity at X ∈ Ω as
considered in [11, 1]. We denote by X = (x0, y0) the coordinates of the
pole and consider the magnetic potential with flux at X: Φ = π, defined in

1The half curves meet with equal angle at each critical point of N and also at the
boundary together with the tangent to the boundary.

2possibly after a modification of the open sets of the partition by capacity 0 subsets.

3



Ω̇X = Ω \ {X}:

AX(x, y) = (AX1 (x, y), AX2 (x, y)) =
1

2

(
−y − y0

r2
,
x− x0

r2

)
. (3.1)

The ABX-Hamiltonian is defined by considering the Friedrichs extension
starting from C∞0 (Ω̇X) and the associated differential operator is

−∆AX := (Dx−AX1 )2+(Dy−AX2 )2 with Dx = −i∂x and Dy = −i∂y. (3.2)

Let KX be the antilinear operator KX = eiθX Γ , with (x−x0) + i(y− y0) =√
|x− x0|2 + |y − y0|2 eiθX , θX such that dθX = 2AX , and where Γ is the

complex conjugation operator Γu = ū . A function u is called KX -real, if
KXu = u . The operator −∆AX is preserving the KX -real functions and we
can consider a basis of KX -real eigenfunctions. Hence we only analyze the
restriction of the ABX-Hamiltonian to the KX -real space L2

KX
where

L2
KX

(Ω̇X) = {u ∈ L2(Ω̇X) , KX u = u } .

This construction can be extended to the case of a configuration with `
distinct points X1, . . . , X` (putting a flux π at each of these points). We
just take as magnetic potential

AX =
∑̀
j=1

AXj , where X = (X1, . . . , X`) .

We can also construct the antilinear operator KX , where θX is replaced by
a multivalued-function φX such that dφX = 2AX . We can then consider the
real subspace of the KX -real functions in L2

KX
(Ω̇X). It was shown in [11]

and [1] that the KX -real eigenfunctions have a regular nodal set (like the
eigenfunctions of the Dirichlet Laplacian) with the exception that at each
singular point Xj (j = 1, . . . , `) an odd number of half-lines meet.
The next theorem which is the most interesting part of the magnetic char-
acterization of the minimal partitions given in [8] will play a basic role in
the proof of our main theorem.

Theorem 3.1 [Helffer–Hoffmann-Ostenhof]
Let Ω be simply connected. If D is a k-minimal partition of Ω, then, by
choosing (X1, . . . , X`) = Xodd(N(D)), D is the nodal partition of some k-th
KX-real eigenfunction of the Aharonov-Bohm Laplacian associated with Ω̇X .

4 Analysis of the critical sets in the large limit
case

We can now state our main theorem, which improves (2.4) as proved in [9].
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Theorem 4.1 (Main theorem)
Let (Dk)k∈N be a sequence of regular minimal k-partitions. Then there exists
c0 > 0 and k0 such that for k ≥ k0,

νk := #Xodd(N(Dk)) ≥ c0k .

Proof
The proof is inspired by the proof of Pleijel’s theorem, with the particularity
that the operator, which is now the Aharonov-Bohm operator will depend
on k. Hence the known Weyl asymptotics for the Aharonov-Bohm operators
[13] can not be used here.
For each Dk, we consider the corresponding Aharonov-Bohm operator as
constructed in Theorem 3.1.
We come back to the proof of the lower bound of the Weyl’s formula but we
will make a partition in squares depending on λ = Lk .
We introduce a square Qp of size t/

√
λ with t ≥ 1 which will be chosen large

enough (independently of k) and will be determined later. Having in mind
the standard proof of the Weyl’s formula (see for example [7]), we recall the
following proposition

Proposition 4.2
If D is a partition of Ω, then∑

i

n(λ,Di) ≤ n(λ,Ω) . (4.1)

Here n(λ,Ω) is the counting function of the eigenvalues < λ of H(Ω).
This proposition is actually present in the proofs of the asymptotics of the
counting function. We will apply this proposition in the case of Aharonov-
Bohm operators H := −∆AX restricted to KX -real L2 spaces. H(D) means
the Dirichlet realization (obtained via the Friedrichs extension theorem) of
−∆AX in an open set D ⊂ Ω.

Remark 4.3 Note that if no pole belongs to D (a pole on ∂D is permitted)
and if D is simply connected, then H(D) is unitary equivalent (the magnetic
potential can be gauged away) to the Dirichlet Laplacian in D. We refer to
[1, 12, 14] for a careful analysis of the domains of the involved operators.

We now consider a maximal partition of Ω with squares Qp of size t/
√
λ

with the additional rule that the squares should not contain the odd critical
points of Dk.
The area A(Ωk,t,λ), where Ωk,t,λ is the union of these squares, satisfies

A(Ωk,t,λ) ≥ A(Ω)− `t2/λ− C(t,Ω)
1√
k
.
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The second term on the right hand side estimates from above the area of
the squares containing a critical point and the last term takes account of
the effect of the boundary.
Note that this lower bound of A(Ωk,t,λ) leads to the estimate of the cardinal
of the squares using #{Qp} = A(Ωk,t,λ) λ

t2
. In each of the squares, because

(as recalled in Remark 4.3) the magnetic Laplacian is isospectral to the usual
Laplacian, we have (after a dilation argument) :

n(λ,Qp) = n
(
t, (0, 1)2

)
.

Hence we need to find a lower bound of n(t) := n(t, (0, 1)2), the number
of eigenvalues less than t2 for the standard Dirichlet Laplacian in the fixed
unit square.
We know, that for any ε > 0 there exists t such that

n(t) ≥ (1− ε) 1

4π
t2 . (4.2)

This leads, using Proposition 4.2 for H = −∆AX (remember that X is given
by the magnetic characterization of Dk) and applying (4.2) in each square,
to the lower bound as k → +∞,

k = n(Lk,Ω) ≥
(

1

4π
(1− ε)t2

) (
A(Ω)− `t2/Lk + o(1)

) (Lk
t2

)
(4.3)

Let us recall from [10] the following consequence of Faber-Krahn’s inequality

A(Ω)
Lk(Ω)

k
≥ πj2 , (4.4)

where j ∼ 2.405 is the first zero of the first Bessel function.

Dividing (4.3) by k and using (4.4), we get, as k → +∞

1 ≥ j2

4
(1− ε)(1− `

k
t2π−1j−2)(1 + o(1)).

If we assume that the number ` of critical points satisfies

` ≤ αk , for some α > 0 ,

we get

1 ≥ j2

4
(1− ε)(1− αt2π−1j−2)(1 + o(1)). (4.5)

We see that if ε is small enough (this determines t = t(ε)) and αt2 is
small enough such that

j2

4
(1− ε)(1− αt2π−1j−2) > 1
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(this gives the condition on α), we will get a contradiction for k large.

As recalled in [9], Euler’s formula implies that for a minimal k-partition
D of a simply connected domain Ω the cardinal of Xodd(N(D)) satisfies

#Xodd(N(D)) ≤ 2k − 4 . (4.6)

This estimate seems optimal and is compatible with the hexagonal conjec-
ture, which, for critical points, will read

Conjecture 4.4

lim
k→+∞

#Xodd(N(Dk))
k

= 2 . (4.7)

5 Explicit lower bounds

Looking at the proof of the main theorem, the contradiction is obtained if
(4.5) is satisfied. Using the universal lower bound for n(t) (see for example
[15]), we have, if t ≥ 2

n(t) >
1

4π
t2 − 2

π2
t+

1

π2
. (5.1)

We look for t = t(ε) ≥ 2 such that

1

4π
t2 − 2

π2
t+

1

π2
≥ (1− ε) 1

4π
t2 ,

which leads to the condition

ε
1

4π
t2 − 2

π2
t+

1

π2
≥ 0 . (5.2)

We can choose t(ε) = max(2, 8
επ ) . We then get a condition on α through

(4.5). For some admissible ε, i.e satisfying:

j2

4
(1− ε) > 1 ,

the proof works if α < c0(ε), with c0(ε) solution of

1 =
j2

4
(1− ε)(1− c0(ε)t(ε)2π−1j−2) . (5.3)

Hence the c0 announced in the theorem can be chosen as

c0 := sup
ε∈(0,1−4/j2)

c0(ε) ,
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It remains to determine this sup. Note that 1− 4/j2 ∼ 0, 36 . Hence we can
assume t(ε) = 8

επ and get for c0(ε) the equation

c0(ε) = ε22−6π3j2
(

1− 4

j2(1− ε)

)
. (5.4)

But c0(ε) being 0 at the ends of the interval (0, 1− 4/j2)), the maximum is
obtained inside by looking at the zero of the derivative with respect to ε.
We get

εmax = (1− j−2)−
√

(1− j−2)2 − (1− 4j−2) = (1− j−2)− j−2
√

1 + 2j2 .
(5.5)

and
c0 = 2−6j−2π3

(
(j4 + 10j2 − 2)− 2(2j2 + 1)

√
1 + 2j2

)
. (5.6)

Numerics with j replaced by its approximation gives c0 ∼ 0.014 . This is
extremely small and very far from from the conjectured value 2 !

Remark 5.1 One can actually in (5.6) replace j2 by A(Ω)
π lim inf Lk

k . The
constant j2 appears indeed only through (4.4). Because of the monotonicity
of c0 as a function of j2 which results of the definition of c0 as a sup. any
improvement of a lower bound for A(Ω)

π lim inf Lk
k will lead to a corresponding

improvment of c0.
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