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Abstract

We extend the techniques and results of the multi-particle variant of the
Fractional Moment Method, developed by Aizenman and Warzel, to disor-
dered quantum systems in general finite or countable graphs with polyno-
mial growth of balls, in presence of an exponentially decaying interaction.
In the strong disorder regime, we prove complete exponential multi-particle
strong localization. Prior results, obtained with the help of the multi-scale
analysis, proved only a sub-exponential decay of eigenfunction correlators.

1 Introduction. The motivation and the model
The rigorous multi-particle Anderson localization theory is a relatively recent di-
rection in the spectral theory of disordered media. The first results in this direc-
tion, establishing the stability of Anderson localization in a two-particle system
in Zd with respect to a short-range interaction [16], have been immediately fol-
lowed by the proofs of exponential spectral localization (cf. [5,17]) and exponen-
tial strong dynamical localization (cf. [5]) in N -particle systems, for any fixed
N ≥ 2.

In the multi-particle models with finite-range interaction, the MPFMM, when
applicable, provides the strongest decay bounds upon the eigenfunction correla-
tors (EFC), as does its original, single-particle variant. In particular, such bounds
are stronger than those proved with the help of the multi-particle MSA (MPMSA),
provided both methods apply to the same model. However, the relations between
the two approaches are more complex in the realm of multi-particle, interactive
models than for the systems with no interaction. In particular, in the situation
where the interaction potential decays slower than exponentially, the existing
techniques (based on the MPFMM or the MPMSA) allow one to prove only a
sub-exponential decay of the EFCs; in the case of the MPFMM this results in a



similar – sub-exponential – decay of the eigenfunctions, for the latter is derived
from the analysis of the fractional moments and, ultimately, of the eigenfunction
correlators. The MPMSA is free from this limitation, since one can carry out in-
dependent analyses of the EFC and of the EFs. Exponential decay of the EFs in
presence of a sub-exponentially decaying interaction was proved in discrete N -
particle Anderson models (cf. [19]) and in a class of continuous models with the
so-called alloy-type random potential (cf. [11]).

For these reasons, we consider in the present paper only the case of expo-
nentially decaying interactions, where an extension of the MPFMM techniques
developed by Aizenman and Warzel [5] allows us to prove exponential decay of
the eigenfunctions and of their correlators.

1.1 The multi-particle Hamiltonian
Consider a finite or countable connected graph (Z, E) without cyclic edges en-
dowed with the canonical graph distance d = d(Z): d(x, y) is the length of the
shortest path from x to y over the graph edges; d(x, x) = 0. We assume that

∀L ≥ 1 sup
x∈Z

card BL(x) ≤ CdL
d.

Further, consider the Cartesian power ZN , N ≥ 2, with the graph structure de-
fined as follows: x = (x1, . . . , xN) and y = (y1, . . . , yN) form an edge iff there
exists j such that d(xj, yj) = 1 and xi = yi for all i ∈ {1, . . . , N} \ {j}. The
graph with the vertex set ZN and the defined edge set will be denoted by ZN .
For Z = Zd, this construction gives rise to the graph (Zd)N ∼= ZNd with the usual
graph structure.

The vertices of ZN represent the configurations ofN distinguishable quantum
particles in Z . An important characteristics of x = (x1, . . . , xN) is its support
Πx := {x1, . . . , xN}. (Notice that in a system of N indistinguishable Fermi-
particles, Πx is the configuration.) We define the diameter of a configuration by

diam x ≡ diam Πx = max
y,z∈Πx

d(y, z). (1.1)

It will be convenient to use also the max-distance in ZN ,

ρ(x,y) = max
1≤i≤N

d(xi, yi), (1.2)

and the so-called Hausdorff (pseudo-)-distance, defined actually for the supports
Πx, Πy and formally extended to the configurations:

dH(x,y) = max

[
max
x∈Πx

d(x,Πy), max
y∈Πy

d(y,Πx)

]
. (1.3)
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A more natural object than the max-distance is its symmetrized counterpart

dS(x,y) = min
π∈SN

ρ
(
x, π(y)

)
; (1.4)

here the elements π of the symmetric group SN act on configurations by permu-
tations of the particle positions. As we explain below, the localization bounds in
our model can be established only in terms of a permutation-invariant metric in
the N -particle configuration space. Note that dH is also permutation-invariant.
An important relation between dS and dH is the following inequality:

dH(x,y) ≥ dS(x,y)−min[diam x, diam y]. (1.5)

We study a random bounded self-adjoint operator in `2(ZN ), of the form

H(ω) =
N∑
j=1

(
−∆(j) + gV (xj;ω)

)
+ U(x),

where V : Z × Ω → R is a random field on Z (the single-particle configuration
space), relative to some probability space (Ω,F,P), U is the operator of multipli-
cation by the function

x = (x1, . . . , xN) 7→
∑
i 6=j

U(|xi − xJ |) ,

generated by a two-body interaction potential N 3 r 7→ U(r), and ∆(j) are repli-
cas of the canonical graph Laplacian on Z , acting on the respective variables
(particle positions) xj .

1.2 Assumptions
We assume that the interaction potential satisfies the following condition.

(U1) ∀ r ≥ 0 |U(r)| ≤ Ce−ar, C, a ∈ (0,+∞).

Our main assumption on the external (random) potential is as follows.

(V1) The random field V : Z × Ω→ R is IID, a.s. bounded, with

P {V (x;ω) ∈ [0, 1] } = 1,

and admits a bounded marginal probability density pV (·).

The assumption of positivity is not essential, for a bounded random potential
V , since one can introduce a new potential Ṽ (x;ω) := V (x;ω)− inf V ≥ 0, and
this simply results in a global energy shift, leaving invariant all eigenfunctions.
Restricting the support to the interval [0, 1] is convenient, but does not result in a
loss of generality, due to the presence of the amplitude g in the random potential
gV (·;ω).
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1.3 Main results
Theorem 1.1. Assume that the interaction potential U in the Hamiltonian H(ω)
decays exponentially fast at infinity (cf. Assumption (U2)) and the external ran-
dom potential satisfies Assumption (V1). For g0 large enough and for all g with
|g| ≥ g0, H(ω) exhibits exponential decay of the fractional moments of the Green
functions. Specifically, let I ⊂ R be an interval of length |I| < ∞, then there
exists some m = m(g) > 0 such that for any pair of N -particle configurations
x,y one has ∫

R
E
[
|G(x,y;E)|s

]
dE ≤ |I| e−mdH(x,y). (1.6)

Remark 1.1. m(g)→ +∞ as |g| → +∞.

Theorem 1.2. Consider an N -particle Anderson model with the single-particle
configuration space Z1 and the Hamiltonian

Hh(ω) = −∆ + gV(x;ω) + hU(x), h ∈ R.

Assume that the inter-particle interaction potential U decays exponentially fast at
infinity (cf. Assumption (U2)) and the external random potential satisfies Assump-
tion (V1). For any g 6= 0 there exists h◦ = h◦(|g|, FV , ‖U‖) > 0 and m > 0 such
that for all h ∈ [−h◦, h◦], the random Hamiltonian Hh(ω) exhibits exponential
decay of the fractional moments of the Green functions: for any bounded interval
I ⊂ R, ∫

I

E
[
|G(x,y;E)|s

]
dE ≤ |I|e−mdH(x,y). (1.7)

Theorem 1.3. The exponential decay of the fractional moments of the form (1.6)–
(1.7) implies complete exponential strong dynamical localization: for any config-
urations x,y

E
[

sup
t∈R
〈1y | e−itH(ω) |1x

]
≤ C(x)e−m

′dS(x,y). (1.8)

Our proofs are closer to the original technique from [5] than to a more ad-
vanced method developed by Fauser and Warzel [21].

2 Basic notation and preliminary remarks
We will systematically make use of the elementary inequality which is one of the
cornerstones of the FMM technique: ∀ s ∈ (0, 1)

∣∣∑
n an

∣∣s ≤∑n |an|s.
Another standard ingredient of the localization analysis is the second resol-

vent identity, (A+ B)−1 = A−1 − A−1B(A+ B)−1 = A−1 − (A+ B)−1BA−1,
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valid as long as A and (A + B) are invertible elements of some algebra. It
will be always used in a situation where A and B are linear operators in finite-
dimensional (Hilbert) spaces, so there is no need to address the issue of bound-
edness and domains. Often, albeit not always, it will be used in the case where
A = A1 ⊕ A2 : H → H,

H = `2(Λ1)⊕ `2(Λ2) ∼= `2(Λ1 t Λ2), Aj : `2(Λj)→ `2(Λj),

Λj ⊂ Z being finite subsets with the boundariesDj = ∂−Λj , D1∩D2 =: D 6= ∅.
As to the operator B, it has the form (in Dirac’s "ket-bra" notation)∑

〈xy〉

(
|1x〉〈1y|+ |1y〉〈1x|

)
,

where 〈xy〉 runs over all pairs with x ∈ D1, y ∈ D2 and d(x, y) = 1. In this case
the resolvent equation takes the form often called the Geometric Resolvent Equa-
tion (GRE) and implies the Geometric Resolvent Inequality (GRI), sometimes
also referred to as the Simon–Lieb Inequality (SLI). Its FMM-flavoured variant
(which will be referred to as the FGRI = Fractional GRI) reads as follows:

|GΛ(x, y;E)|s ≤
∑

〈w,w′〉∈D1×D2

|GΛ1(x,w;E)|s|GΛ(w′, y;E)|s.

Following [5], we introduce the energy-disorder expectation ÊI [ · ]: given an
interval I ⊂ R of length |I| ≥ 1 and a measurable function f : R× Ω, we set

ÊI [ f(E,ω) ] := |I|−1

∫
I

E [ f(E,ω) ] dE,

where E [ · ] is the conventional expectation relative to (Ω,P). The benefits of
averaging over the augmented, energy-disorder probability space are two-fold:

1. In the fractional moment analysis of the Green functions, it allows one to
focus on the decay properties of the eigenfunction correlators and prove a
crucial result on finiteness of the fractional moments by a “soft” argument,
based on the Boole identity (cf. Appendix C) and an explicit integration in
the energy.

2. The derivation of the decay bounds on the eigenfunction correlators from
the bounds on the fractional moments of the Green functions, used in the
present paper (cf. Sect 2.1), employs a Chebyshev-type argument in the
energy-disorder space rather than in the disorder space, so the bounds in
terms of the expectations ÊI [ · ] turn out to be a natural tool for such a
derivation.
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The following elementary statement explains what makes the 2-particle sys-
tems special in the framework of our analysis:

∀x,y ∈ Z2 dH(x,y) = dS(x,y).

For example, with Z = Zd, the Hausdorff distance is the symmetrized version
of the genuine norm-distance in (Zd)2 ∼= Z2d. Thus the 2-particle decay es-
timates established in the Hausdorff distance imply those in the (symmetrized)
norm-distance.

2.1 Finiteness of the fractional moments
A priori bounds on the fractional moments of the resolvents have been one of the
inescapable ingredients of the FMM since its inception in [1]. Their adaptation
to the multi-particle models (cf. [5]) is, however, more involved than in the 1-
particle theory. Both Ref. [5] and a more recent work [21], as well as [4] dedicated
to the FMM for differential random operators, refer to some general results on
maximally dissipative operators and related topics; cf., e.g., [4], [7, 8, 30].

We will need the following statement.

Lemma 2.1. For any s ∈ (0, 1) there exists Cs < ∞ such that for any finite
connected subset Λ ⊂ Z , any two sites u1, u2 ∈ Z , with n := card {u1, u2} ∈
{1, 2}, and any pair of configurations x,y ∈ Λ2 with Πx 3 u1, Πy 3 u2, the
following bound holds:

E
[
|G(x,y;E)|s

∣∣F6=u1,u2

]
≤Ms < +∞, (2.1)

where
Ms = Ms(s, g, FV , n) ≤ C(FV , n) |g|−s, (2.2)

for some C(FV , n) <∞.

In Ref. [5], the proof of such an a priori bound has been clearly outlined, with
direct references to prior works containing necessary analytic and probabilistic
results and making the proof complete; it does not rely on any specific form of
the interaction potential, be it of finite or infinite range, since only the random
potential is used in the main argument. However, for the reader’s convenience,
we provide in Appendix D a detailed, self-contained proof of Lemma 2.1 relying
on a bare minimum of analytic tools, including the Birman–Schwinger relation
for finite-dimensional operators and the Boole formula [6] (proved in Appendix
C; the remarkably short and elementary argument is due to Loomis [27]). The
proof shows that Ms is a continuous function of the interaction potential. In par-
ticular, for the interaction of the form hU(x), with fixed U(·) and h ∈ R, it
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depends continuously on h; this fact is used in the application of the MPFMM to
the perturbations of the non-interacting N -particle system by weak interactions
hU, |h| � 1.

2.2 From the fractional moments to the EFCs
This subsection may prove to be of limited interest to a reader familiar with mod-
ern methods of derivation of strong dynamical localization from the suitable esti-
mates, in probability or in expectation, obtained through a fixed-energy localiza-
tion analysis. The main goal here is to show that the scaling analysis performed in
Section 3 implies indeed N -particle dynamical localization for any given N > 1,
provided the localization for the single-particle systems is sufficiently strong.

We employ an argument developed by Elgart et al. [20]; this is in essence an
advanced version of an older Chebyshev-type argument given by Martinelli and
Scoppola [28] in the general context of the MSA (the FMM was not known yet in
1985). Its form given below appeared in [9] and [18].

Given a ball BL(z), introduce a function

(E,ω) 7→ Fz(E;ω) ≡ Fz,L(E;ω) := max
y∈∂−BL(z)

|GBL(z)(z,y;E;ω)|.

In a number of formulae below, the radius L will be fixed (and clear from the
context), so it will be often omitted from notation Fz,L for brevity.

We denote by Σ(HBL(z)(ω)) the (finite) spectrum of the operator HBL(z)(ω).

Lemma 2.2. Let be given a ball BL(z), a bounded interval I ⊂ R, and real
numbers aL, bL, cL, qL > 0 satisfying

bL ≤ min{aLc2
L, cL} (2.3)

and
P {Fz(E;ω) > aL } ≤ qL. (2.4)

Then there exists an event Sb,z such that P { Sb,z } ≤ b−1
L qL and for any ω 6∈ Sb,z,

the set {E ∈ I : Fz(E;ω) > 2aL} is covered by a union of intervals

Kz⋃
i=1

Ij, Ij = {E : |E − λj| ≤ 2cL}, Kz ≤ |BL(z)|,

centered at the eigenvalues λj ∈ Σ(HBL(z)(ω)) ∩ I .

Proof. Consider the random Borel1 subsets of I parameterized by a′ > 0,

Ea′,z(ω) = {E ∈ I : Fz(E) > a′}
1Recall that Fz is continuous outside the finite spectrum of HBL(z).
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and, with aL satisfying (2.3), the events parameterized by b′ > 0:

Sb′,z := {ω : mes (EaL,z) > b′}.

Assuming (2.3)–(2.4), apply Chebyshev’s inequality and the Fubini theorem:

P { SbL,z } ≤ b−1
L E

[ ∫
I

1Fz(E)>aL dE

]
= b−1

L

∫
I

E
[
1Fz(E)>aL

]
dE

= b−1
L

∫
I

P {Fz(E) > aL } dE ≤ b−1
L |I| qL.

(2.5)

Fix any ω 6∈ SbL,z, so that mes (Ez(aL;ω)) ≤ bL, and consider the random sets
parameterized by c′ > 0:

R(c′) := {λ ∈ R : min
j
|λj(ω)− λ| ≥ c′}.

Note that for 0 < bL ≤ cL, AbL := {E : dist(E,R(2cL)) < bL} ⊂ R(cL), hence
the set A c

bL
is a union of sub-intervals at distance ≥ cL from the spectrum. Let us

show that

∀ω 6∈ SbL,z {E : Fz(E;ω) ≥ 2aL} ∩R(2cL) = ∅.

Assume otherwise and pick any point λ∗ in the non-empty intersection figuring in
the LHS. Let J := {E ′ : |E ′ − λ∗| < bL} ⊂ AbL ⊂ R(cL), so for any E ∈ J we
have ‖G(E)‖ ≤ c−1

L . Further, by the second resolvent identity, for any E ∈ J we
have

‖G(E)‖ ≥ ‖G(λ∗)‖ − |λ∗ − E| ‖G(λ∗)‖ ‖G(E)‖
≥ 2aL − bc−2

L ≥ aL,

owing to (2.3). Therefore, Eb ⊃ J , which is impossible, since mes EbL,z(ω) ≤ bL
while mes J = 2bL.

The obtained contradiction completes the proof.

Theorem 2.1. Let be given a bounded interval I ⊂ R and real numbers aL, bL,
cL, qL > 0 satisfying (2.3) and

max
z∈{x,y}

sup
E∈I

P {Fz(E) > aL } ≤ qL. (2.6)

Assume also that for some function f : [0, 1]→ R+ one has

P
{

dist
(
Σ(HBL(x)),Σ(HBL(y))

)
≤ s

}
≤ f(s). (2.7)

Then

P { ∃E ∈ R : min{Fx(E),Fy(E)} > aL } ≤ 2|I|b−1qL + f(4cL). (2.8)
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Proof. Introduce the events SbL,z =
{
ω : mes {E ∈ I : Fz(E) > aL} > bL

}
,

and the random sets EaL,z(ω) := {E ∈ I : Fz(E;ω) > aL}, for z ∈ {x,y}, as
in Lemma 2.2. By Lemma 2.2, we have P { SbL,z } ≤ b−1

L |I| qL, so for the event
SbL := SbL,x ∪ SbL,y one has P { SbL } ≤ 2b−1

L |I|. For any ω 6∈ SbL , each of the
two sets EaL,x(ω), EaL,y(ω) has Lebesgue measure bounded by bL, thus

P
{

sup
E∈I

min
z∈{x,y}

Fz(E) > aL

}
≤ P {Ex,aL ∩ Ey,aL 6= ∅ }

≤ P { S }+ P
{{

Ex,aL ∩ Ey,aL 6= ∅
}
\ SbL

}
≤ 2b−1

L |I|+ P
{{

Ex,aL ∩ Ey,aL 6= ∅
}
\ SbL

}
.

By construction of the set Ez,aL , z ∈ {x,y}, for any ω 6∈ SbL it is contained in the
2cL-neighborhood of the spectrum Σz(ω) of HBL(z)(ω), hence

P
{{

Ex,aL ∩ Ey,aL 6= ∅
}
\ SbL

}
≤ P

{
dist
(
Σx(ω),Σy(ω)

)
≤ 4cL

}
≤ f(4cL),

by virtue of the eigenvalue comparison bound (2.7). This completes the proof.

It is readily seen that the condition (2.3) is fulfilled with

aL = e−
1
3
mL, bL = e−

2
3
mL, cL = e−

1
8
mL, qL = e−mL,

The proof of the above theorem relies on the EV comparison bound (2.7). For
our purposes, it would suffice to quote Ref. [15] where a suitable bound was
proved.

Note also that in the context of multi-particle Anderson models in a contin-
uous configuration space (Rd), Klein and Nguyen [26] recently improved and
extended the multi-particle two-volume bound to a large class of alloy-type An-
derson Hamiltonians; in particular, this class is larger than the one considered in
Refs. [12, 21].

Proposition 2.2 (Cf. [25, Corollary 2.4]). Assume that the marginal probability
distribution of the random potential V admits a bounded density pV . Then for any
pair of N -particle configurations x,y with dH(x,y) > 2L, one has

P
{

dist
(
Σ(HBL(x)),Σ(HBL(y))

)
≤ ε

}
≤ C(N)L2Nd‖pV ‖∞ ε. (2.9)

The next statement is given in the form presented in [9] and [18], but the
credit goes essentially to Germinet and Klein [22] who proved a stronger and more
general result. It refers to an interval I ⊂ R, to be consistent with the previous
discussion. However, unlike Theorem 2.1 where integration over I is performed,
here the boundedness of I is not important; for example, one could take I = R,
provided the validity of the hypothesis (2.10) is established in I = R.

9



Theorem 2.3 (Cf. [9, Lemma 9]). Given a positive integer L, assume that the
following bound holds true for a pair of disjoint balls BL(x),BL(y) and some
aL, hL > 0:

P
{

sup
E∈I

min
[
Fx(E),Fy(E)

]
> aL

}
≤ hL. (2.10)

Then for any finite connected graph G ⊃ BL(x) ∪BL(y) one has

E

[
sup

φ∈B1(R)

∣∣〈1x|φ(HΛ)|1y〉
∣∣ ] ≤ 2aL + hL. (2.11)

Proof. Fix a finite graph G ⊃ BL(x)∪BL(y). The random operator HG(·) has a
finite orthonormal basis {Ψi(·)} with associated EVs {Ei(·)}. Let

SL =
{
ω : sup

E∈I
min

[
Fx(E),Fy(E)

]
> aL

}
.

By hypothesis, P { SL } ≤ hL. Fix some ω ∈ Sc
L = Ω \ SL and suppose that for

each eigenvalue Ei = Ei(ω) there is zi ∈ {x,y} such that BL(zi is Ei-NS; let
{vi} = {x,y} \ {zi}. Denote Yx,y :=

∣∣〈1x|φ(HΛ)|1y〉
∣∣, then by the GRI for the

ball BL(zi) we have, with ω fixed and omitted from notation for brevity,

Yx,y ≤ ‖φ‖∞
∑
Ei∈I

∣∣Ψi(x) Ψi(y
∣∣ ≤∑

Ei∈I

∣∣Ψi(vi) Ψi(zi)
∣∣

≤
∑
Ei∈I

∣∣Ψi(vi)
∣∣hL(CLNd)−1

∑
(u,u′)∈∂−

∣∣Ψi(u)
∣∣

≤ hL
CLNd

∑
Ei∈I

∣∣Ψi(u)
∣∣ ∑

(u,u′)∈∂−

(∣∣Ψi(x)
∣∣+
∣∣Ψi(y)

∣∣)
≤ hL|B|
CLNd

max
u∈G

1

2

∑
Ei∈I

(∣∣2Ψi(u)
∣∣2 +

∣∣Ψi(u)
∣∣+
∣∣Ψi(u)

∣∣)
≤ hL

2
max
u∈G

(
2
∥∥1u

∥∥2
+
∥∥1x

∥∥2
+
∥∥1y

∥∥2) ≤ 2aL,

where the last line follows from Bessel’s inequality. Hence

E [ Yx,y ] ≤ E
[
1Sc

L
Yx,y

]
+ E [ 1SLYx,y ] ≤ 2aL + hL.

Collecting Theorems 2.1 and 2.3 and Proposition 2.2, we come to the follow-
ing conclusion.
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Theorem 2.4. Suppose that the following condition is fulfilled: for some R0 ∈ N
and all N 3 R ≥ R0, for any configurations x,y ∈ ZN with dH(x,y) > 2R

max
z∈{x,y}

sup
E∈I

P
{

Fz(E) > e−
1
3
mR
}
≤ e−mR. (2.12)

Then for any pair of configurations x,y ∈ ZN with dH(x,y) > 2R ≥ 2R0 and
finite connected subgraph G ⊃ BR(x) ∪BR(y) one has

E

[
sup

φ∈B1(R)

∣∣〈1x|φ(HG)|1y〉
∣∣ ] ≤ (C1|I|+ C2) e−

1
3
mR + C3e−

δ
8
mR. (2.13)

Furthermore, on account of the geometrical inequality

dH(x,y) ≥ dS(x,y)− diam Πx = dS(x,y)− C(x) ,

one has, therefore,

E

[
sup

φ∈B1(R)

∣∣〈1x|φ(HG)|1y〉
∣∣ ] ≤ Const(x)e−µdS(x,y) .

The dependence of the RHS factor on x, through diam Πx, renders the dy-
namical localization bound non-uniform in the N -particle configuration space,
for N ≥ 3, while for N = 2 one can actually replace Const(x) by an absolute
constant, owing to the equivalence between dS and dH in this particular case.

2.3 From EFCs to GFs
In this subsection we provide a detailed proof of a fairly general relation between
the resolvents and the EF correlators, which had been used in numerous works
on the FMM. The single- or multi-particle nature of the Hamiltonian at hand is
irrelevant, as long as the fractional moments of the EFC can be effectively assessed
in the intended application(s) of the general relation. Recall that it suffices for our
purposes to establish strong dynamical localization in arbitrarily large but finite
domains in the configuration space (with the remaining work to be done with the
help of the Fatou lemma, as in [2–4]), so we can indeed restrict our analysis to the
finite-dimensional operators.

Lemma 2.3. Let H = HG be an N -particle Hamiltonian in a finite graph G, and
G(x,y;E) the kernel of its resolvent G(E) =

(
HΛ − E

)−1 and Q(x,y) the EF
correlators2

Q(x,y) =
∑
i

ψi(x)ψi(y).

2We choose the eigenfunctions real.
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Then for any bounded interval I ⊂ R and any s ∈ (0, 1)∫
I

|G(x,y;E)|s dE ≤ 2|I|1−s

1− s
(Q(x,y))s. (2.14)

Proof. In this deterministic statement, the EFs are fixed, and the only relevant
variable is E. Fix the points x and y. The GF is a rational function, and we divide
it into the sum of two terms, according to the signs of the numerators:

G(x,y;E) =
∑

Ei: ci≥0

ci
Ei − E

+
∑

Ei: ci<0

ci
Ei − E

=: G+x,y;E) + G−x,y;E).

We have ∫
I

|G(E)|s dE ≤
∫
I

|G+(E)|s dE +

∫
I

|G−(E)|s dE

Both integrals are assessed in the same way, so we focus on the first one.
It is convenient at this point to introduce probabilistic language, as we are go-

ing to apply a standard technique for the probability distribution functions (PDF),
and consider the probability space (I,BI ,mesI), where BI is the Borel sigma-
algebra and mesI := |I|−1mes the normalized (i.e., probability) Lebesgue mea-
sure in I ⊂ R. Further, consider the measurable function G± : E 7→ G±(E) (i.e.,
a "random variable" on (I,mesI)), and let F±(t) be the PDF of its absolute value:

F±(t) = mesI{E : |G±x,y;E)| ≤ t}.

Then∫
I

|G±(x,y;E)|s dE = |I| ÊI
[
|G±(x,y;E)|s

]
= |I|

∫ ∞
0

ts dF±(t).

Using integration by parts for the Stiltjes integral, we obtain for any s > 0∫ ∞
0

ts dF±(t) = s

∫ ∞
0

ts−1 (1− F±(t)) dt,

where both integrals converge or diverge simultaneously. The goal of this trans-
formation is to reduce the estimate to that of the tail distribution function t 7→
1 − F±(t) = mesI{E : G±(E) > t}, with the help of the Boole identity (cf.
Proposition C.1), applicable to any rational function with simple, real poles and
positive expansion coefficients, f : t 7→

∑n
i=1

ci
ti−t , and stating that

mes {λ : |f(λ)| > t} =
2
∑n

i=1 ci
t

,
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hence

mesI{λ : |f(λ)| > t} ≤ 2
∑n

i=1 ci
|I|t

,

Recall that, in fact, ci = ψi(x)ψi(y) (we choose the EFs real), so that∑
i: ci≥0

ci ≤ Q+(x,y),
∑
i: ci<0

(−ci) ≤ Q−(x,y),

where Q±(x,y) are components of the EF correlator:

Q+(x,y) + Q−(x,y) =
∑
i:Ei∈I

|ci| ≤ Q(x,y).

Thus, denoting for brevity Q± ≡ Q±(x,y), we have

1− F±(t) ≤ min
(
1, 2Q±(|I|t)−1

)
= 1[0,2Q±/|I|](t) +

2Q±
|I|t

1[2Q±/|I|,+∞)(t)

and ∫ ∞
0

ts dF±(t) ≤ s

∫ ∞
0

ts−1 (1− F±(t)) dt.

≤ s

∫ 2Q/|I|

0

ts−1 dt+ 2sQ±

∫ ∞
2Q/|I|

ts−2 dt

=

(
2Q±
|I|

)s
+ 2sQ±

(2Q±)s−1

|I|s(1− s)

=
(2Q±)s|I|−s

1− s
.

Therefore,∫
I

|G(x,y;E)|s dE ≤ |I| · 2s|I|−s

1− s
(Q+(x,y))s + Q−(x,y))s)

≤ 2(Q(x,y))s|I|1−s

1− s
,

where the last inequality follows from αs+βs

2
≤
(
α+β

2

)s
, s < 1.

3 Decay of the fractional moments of the GFs
Following [5], we will use the sequence of length scales {Lk, k ≥ 0} defined by

Lk+1 := 2(Lk + 1), k = 0, 1, . . . , (3.1)

13



or, explicitly,
Lk = 2k(L0 + 2)− 2. (3.2)

We consider two N -particle configurations x,y with R := dH(x,y) ∈ (Lk, Lk+1]
for some k ∈ N, and choose some a ∈ Πx, y ∈ Πy such that R = d(a, y). Such
points a, y exist by definition of the Hausdorff distance.

On Fig. 1, where the case Z = Z1 is illustrated, we set a = 0, by translation
invariance of the random potential in the 1-particle configuration space.

Introduce the following notation:

XΛ
L(u) = XΛ,N

L (u) = {x ∈ ΛN : Πx 3 u, diam Πx ≤ L}. (3.3)

Equivalently, setting u = (u, u, . . . , u), XΛ
L(u) = ΛL(u) ∩ ΛN is the set of all

N -particle configurations in the "physical" domain Λ at distance ≤ L from the
position u.

For notational brevity, the Green functions G(x,y) with no subscript (and the
energy E usually omitted from notation, as we perform a fixed-energy analysis
in the scaling procedure) refer to the Hamiltonian in the above mentioned large –
and fixed – domain Λ.

In order to successfully carry out the scale induction, one needs of course
some technical assumptions relative to the fractional moments and eigenfunction
correlators at a (properly chosen) initial scale L0. Such initial scale estimates will
appear in the course of the induction step; their validity at the scale L0 is discussed
in Section 4 below.

As to the magnitude of L0 suitable for the induction, it can be arbitrary for
the proof of localization at large disorder: the larger L0, the larger must be the
amplitude |g| of the random potential guaranteeing the onset of the N -particle
localization. The strong disorder manifests itself in a very clear way – through a
small constant Ms ≤ C|g|−s figuring in a number of formulae.

However, in the case of an N -particle system in one dimension, with possibly
small disorder amplitude |g|, one has to choose L0 large enough, to ensure that
the decay of GFs/EFs/EFCs at distance L0 is perceptible. See a brief discussion
of the Lyapunov exponents in one dimension in Section 4.2.

Assumption for the step N − 1 N , N ≥ 2.
For all n ∈ [1, N − 1], the EF correlators Q(n)(x,y) of n-particle systems in
the domain Λ fulfill the following condition: for some A,mN−1 > 0 and all
x,y ∈ XΛ,n

L

E
[
Q(n)(x,y)

]
≤ Ae−mN−1dH(x,y). (3.4)

Observe that the expectation in (3.4) is relative only to the disorder, since the EFCs
do not depend upon energy.

The rest of this section is the central part of the paper. Its role and relations
with other sections can be described as follows.
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1. Below we focus on the derivation of exponential decay bounds on the frac-
tional moments of the N -particle system in Λ, with some mN ∈ (0,mN−1)
to be chosen appropriately.

2. The validity of the assumption (3.4) forN = 2, i.e., relative to the 1-particle
systems, is discussed in Section 4. It follows from the well-known results
of the single-particle fractional moment analysis.

3. Once the exponential decay bounds on the fractional moments of the N -
particle GFs are established, the corresponding exponential bounds on the
N -particle EFCs (required for the next step of the induction on the number
of particles, N  N + 1) will follow from the general arguments given in
Sect. 2.2. An important (and unfortunate) feature of the existing methods
of the multi-particle Anderson localization theory, including the MPFMM,
is a deterioration of the decay rate mn at each induction step n n+ 1:

m1 > m2 · · · > mN−1 > mN . (3.5)

In fact, both the MPMSA and the MPFMM result in mN ∼ O(m1/(N − 1)!).
For notational brevity, below we often drop the subscripts from the notations

for the decay rates like mn. We work here with the N -particle systems and their
subsystems of n ≤ N − 1 particles in Λ, so the minimal decay rate is given by
mN−1 > 0 which we denote by m.

Theorem 3.1. Fix N ≥ 2 and assume that for all n = 1, . . ., N − 1, the ex-
ponential decay of theEFCs is established, in the Hausdorff distance(s) for n-
particle Hamiltonians H(n)(ω) with decay exponents m1 > m2 > · · · > mn−1.
Then for some c > 0, the N -particle Hamiltonian H(N)(ω) also feature ex-
ponential decay of the EFCs in the Hausdorff distance, with decay exponent
mN ≥ cmN−1/(N − 1).

Proof. The argument given below relies heavily on Theorem 3.2. The analysis of
the case where max

[
diam x, diam y

]
> Lk/2 can be performed separately, and

we do so in Section 5. By Lemma 5.1, the assumption diam x > Lk/2 along with
(3.1) and the inductive hypothesis (3.4) imply

EI
[
|G(x,y)|s

]
≤ Ae−cNmLk = Ae−

cmN−1
N−1

Lk , c > 0. (3.6)

Hence we can focus on the pairs of configurations of diameter ≤ Lk/2.
Since Πx 3 a and diam x ≤ Lk/2, we have x ∈ BLk/2(a), where we denote

a = (a, a, . . . , a). By construction,

min
i

d(xi, y) = d(Πx, y) = dH(x,y) = R > Lk, (3.7)

15



R

x

x = 0 yw

w w′

y

Figure 1. An example for the proof of Theorem 3.1. Here d = 1, N = 2.

thus y 6∈ ΠBLk/2(a). By the FGRI applied to the cube BLk/2(a),

ÊI [ |G(x,y)|s ]

≤
∣∣∂BLk/2(a)

∣∣ max
(w,w′)∈∂BLk/2

(a)
ÊI
[
|GBLk/2

(a)(x,w)|s |G(w′,y)|s
]
.

(3.8)

Here Πw′ = {w′, w′2, . . . , w′N−1} with d(0, w′) = 1
2
Lk + 1. Set u1 = w′, u2 = y.

Then u1, u2 6∈ ΛLk/2(0), so GBLk/2
(a)(x,w) is F6=u1,u2-measurable, with F6=u1,u2

generated by {V (z; ·), z ∈ Ω \ {u1, u2}}, so for any fixed pair w,w′ as above,

ÊI
[
|GBLk/2

(a)(x,w)|s |G(w′,y)|s
]

≤ ÊI
[
|GBLk/2

(x)(x,w)|s ÊI
[
|G(w′,y)|s

∣∣FΩ\{u1,u2}
] ]
.

(3.9)

Applying Lemma 2.1 (cf. Eqn. (2.1)), we obtain a uniform upper bound

ÊI
[
|G(w′,y)|s

∣∣FΩ\{u1,u2}
]
≤ Cs|g|−s, (3.10)

thus

ÊI [ |G(x,y)|s ] ≤ Cs|g|−s
∣∣∂BLk/2(a)

∣∣ ÊI [ |GBLk/2
(x)(x,w)|s

]
.
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Aplying the bound (3.13), we conclude that

ÊI [ |G(x,y)|s ] ≤ Cs|g|−s
∣∣∂BLk/2(a)

∣∣ e−cmLk .

Assessing the RHS expectation in (3.9) is the most tedious task, and it is en-
trusted to the multi-scale induction in Theorem 3.2. Introduce the following nota-
tions, to be used below with L = Lj+1) (cf. (3.3):

Υ(L) := |∂BL(a)| sup
Λ⊆BL(a)

∑
d(a,u)=L

x∈XΛ
L/2(a)

w∈XΛ
L/2(w)

ÊI [ |GΩ(x,w)|s ] . (3.11)

We also need a slightly modified3 quantity, defined for L = Lj+1, j ≥ 0:

Υ̃(Lj+1) := |∂BLj+1
(a)| sup

Λ⊆BLj+1

∑
d(a,u)=Lj+1

x∈XΛ
Lj/2

(a)

w∈XΛ
Lj/2

(w)

ÊI [ |GΛ(x,w)|s ] . (3.12)

The correlators Υ(Lj),Υ(Lj+1) are required to carry out the scale induction, but
Υ̃(Lj+1) are simpler to assess4.

Theorem 3.2. For all k ≥ 0,

Υ(Lk) ≤ e−cmLk . (3.13)

Proof. Unlike Theorem 3.1, we consider now the pairs x,y with Πx 3 a, Πw 3
w with specific values of the distance d(a, w) = Lj , j ≥ 1, so the scale induction
will be carried out only for such distances. To avoid confusion with the previously
used notation and arguments, the scales will be labeled by the index j.

We have x ∈ BLj/2(a) ⊂ BLj(a), w ∈ ∂−BLj(a). Here w is Lj/2-split and
distant from x: diam w > Lj/2, dS(x,w) ≤ Lj/2, thus by Lemma 5.1,

ÊI
[
|GBL(a)(x,w)|s

]
≤ Const e−cmLj

From this point on, we consider the configurations w of restricted diameter.
3Observe that, in the definition of Υ(L) with L = Lj+1, the diameter Lj/2 figuring in (3.12)

would have to be replaced by a larger one: Lj+1/2.
4As mentioned in the Introduction, we always work with energy intervals I of length |I| ≥ 1,

and while a more detailed definition of the correlators Υ, Υ̃ would include the supremum over all
I with |I| ≥ 1 (cf. [5]), we drop it from the equations (3.11)–(3.12) which are already excessively
cumbersome. In any case, the supremum in question is finite.
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We aim to show first that the quantities Υ(Lj), j ≥ 0, satisfy the recursion

Υ
(
2(Lj + 1)

)
≤ A′

|g|s
Υ2
(
Lj
)

+ AL2q
j+1e−2νLj , (3.14)

and then infer from (3.14) that Υ(Lj) decay exponentially.
Approximation by truncated correlators. Let us show that (cf. (3.11)–(3.12))

0 ≤ Υ(Lj+1)− Υ̃(Lj+1) ≤ 2A · (Lj+1)2 e−cmLj . (3.15)

Consider any term ÊI [ |GΛ(x,w)|s ] figuring in the sum for Υ(Lj+1) but absent
in Υ̃(Lj+1). Its exclusion from Υ̃(Lj+1) implies that

1

2
Lj < diam w ≤ 1

2
Lj+1 ;

here the RHS inequality is due to the constraint figuring in the definition of Υ(Lj+1).
Both bounds on diam w are important. First, Πx 3 a and Πw 3 w with d(a, w) =
Lj+1, so it follows from the upper bound diam x ≤ Lj+1/2 that

dH(x,w) ≥ d(a, u)− 1

2
Lj+1 =

1

2
Lj+1.

Next, the lower bound diam w > Lj/2 enables us to apply Lemma 5.1 on R-
distant configurations at least one of which is R-split; here we have R = Lj/2
with Lj = 1

2
Lj+1 − 1 ≥ 1

3
Lj+1, thus

ÊI [ |GΛ(x,w)|s ] ≤ A e−cmLj = A e−
c
3
mLj+1 ,

so it remains only to assess the number of relevant terms.
There are≤ CL

2(N−1)d
j+1 choices for the pair (x,w), since Πw 3 uwith u fixed,

Πx 3 a, and diam x, diam w ≤ 1
2
Lj+1. Thus the number of terms which consti-

tute the difference Υ(Lj+1)− Υ̃(Lj+1) is bounded by CL2(N−1)d
j+1 . This completes

the proof of (3.15).
Recursion with truncated correlators. Consider the correlator Υ̃(Lj+1). In-
troduce the configuration ŵ = (w,w, . . . , w) (it plays the role similar to that
of a = (a, a, . . . , a), and denote for brevity B′ = BLj(a), B′′ = BLj(ŵ),
Λ′ = BLj/2(0), Λ′′ = BLj/2(u). By the FGRI, we can write

ÊI [ |G(x,w)|s ]

≤
∑

〈z,z′〉∈∂BLj
(a)

〈v,v′〉∈∂BLj
(w)

E
[
|GB′(x, z)|s |GB′′(v,w)|sÊI

[
|G(z′,v′)|s

∣∣FΛ′∪Λ′′
] ]
,
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x u u′

w

v

v′

ŵ

a

BLk(0)

BLk(w)

u′

v′

Zd

B′′ = BLk(ŵ)

B′ = BLk(a)

aiming, of course, to obtain a uniform upper bound on the conditional expectation
in the RHS. To this end, notice that d(z′, a) = 1 + Lj/2, thus Πz′ 3 z′ with
z′ 6∈ Λ′. Similarly, Πv′ 3 v′ with v′ 6∈ Λ′′.

Therefore, the sigma-sub-algebra F6=z′,v′ generated by the random potential
in Z \ {z′, v′} is larger than FΛ′∪Λ′′ , and applying Lemma 2.1 to the expectation
ÊI
[
·
∣∣F6=z′,v′ ], we obtain

ÊI
[
|G(z′,v′)|s

∣∣FΛ′∪Λ′′
]

= EI
[
EI
[
|G(z′,v′)|s

∣∣F6=z′,v′ ] ∣∣FΛ′∪Λ′′

]
≤ C

gs
.

Thus

ÊI [ |G(x,w)|s ] ≤ C

gs

∑
〈z,z′〉∈∂BLj

(a)

〈v,v′〉∈∂BLj
(w)

ÊI [ |GB′(x,u)|s ] ÊI [ |GB′′(v,w)|s ] .

Now consider ÊI [ |GB′(x,u)|s ]; the remaining expectation in the RHS is as-
sessed similarly. This is done in two steps:

(a) For z with diam u ≤ Lj/2 we use the scale induction:∑
〈z,z′〉∈∂BLj

(a)

diam u≤Lj/2

ÊI [ |GΛ′(x, z)|s ] ≤ Υ(Lj).
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(b) If diam z > Lj/2, then we apply Lemma 5.1:

ÊI [ |GΛ′(x, z)|s ] ≤ Ae−
m
2
Lj .

Collecting all possible vertices z of the categories (a) and (b), and upper-
bounding the number of vertices from each category by |∂−Λ(x)|, we obtain∑

z

ÊI [ |GΛ′(x, z)|s ] ≤ C
(
Υ(Lj) + C ′Lqje

−mLj
)
, q = 2(N − 1)d.

Similarly, ∑
v

ÊI [ |GΛ′′(v,w)|s ] ≤ C|g|−s
(
Υ(Lj) + C ′Lqje

−m
2
Lj
)
.

Denote Ms = 2C|g|−s, then

Υ̃(Lj+1) ≤ 1

2
Ms

(
Υ(Lj) + C ′Lqje

−m
2
Lj
)2
.

where
Applying the approximation formula (3.15), we obtain

Υ(Lj+1) ≤ 1

2
Ms

(
Υ(Lj) + C ′e−

m
2
Lj
)2

+ ALpj+1e−
m
2
Lj

≤ 1

2
Ms

(
Υ(Lj) + e−

m
3
Lj
)2

+
1

2
e−

m
3
Lj ,

(3.16)

provided L0 is large enough (depending on m > 0).
Let Υ̂j = Υ(Lj) + e−

m
3
Lj , then (3.16) can be re-written as follows:

Υ̂j+1 ≤
1

2
MsΥ̂

2
j +

1

2
e−

m
4
Lj . (3.17)

In order to complete the induction step, we have to assume that

M1/2
s Υ̂0 < 1, (3.18)

thus
∃ ν > 0 : β0 := e2νM1/2

s Υ̂0 ≤ e−νL0 . (3.19)

The validity of the assumption (3.18) (hence, that of (3.19)) is established in Sec-
tion 4: (i) for strongly disordered systems, and (ii) for sufficiently weak perturba-
tions of localized non-interacting systems in one dimension.
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Denote βk = e2νM
1/2
s Υ̂k, k ≥ 0, then we have the recursion

βk+1 ≤
1

2
e−2νβ2

k +
1

2
e2νM1/2

s e−
m
4
Lk

≤ 1

2
e−2νβ2

k +
1

2
e−

m
5
Lk ,

(3.20)

provided that L0 is large enough. A simple calculation (cf. Lemma A.1) shows
that (3.20) implies

∀ k ≥ 0 Υ(Lk) ≤ Const e−µ̃Lk ,

with some µ̃ ≥ cm > 0 (specified in Lemma A.1). This completes Step 4 and
the proof of exponential decay of the fractional moments of the N -particle Green
functions. As was explained before, the output from the induction stepN−1 N
for the GFs implies exponential decay of the N -particle EFCs (cf. Sect. 2.2). This
makes possible the next induction step N  N + 1, but only if the initial decay
rate m1 (cf. (3.5)) is large enough, or, more to the point, if the obtained decay rate
mN for the N -particle systems is not too small – this is why the induction in N
cannot be continued indefinitely.

4 Initial scale estimates for the N -parictle system

4.1 Strongly disordered systems in any dimension
The bounds for 1-particles Hamiltonians, sufficient for our purposes, are estab-
lished in a number of papers on the conventional Fractional Moment Method;
cf. [1–3]. The scaling procedure in Section 3 allows one to establish the expo-
nential decay bounds on the fractional moments of the N -particle Green func-
tions. Section 2.2 provides then the derivation of the exponential decay bounds
on the N -particle eigenfunction correlators, thus completing the logical cycle
EFC(N − 1) → GF (N) → EFC(N), i.e., the induction step N − 1  N
for the EFCs.

4.2 One-dimensional systems with arbitrarily small disorder
Apart from the strongly disordered Anderson models in any dimension, Aizenman
and Warzel [5] considered also the situation where the non-interacting system
(formally speaking, in any dimension) features strong localization properties, and
proved stability of Anderson localization under weak perturbations, i.e., with an
interaction (of finite range) of sufficiently small amplitude; the latter may depend
upon quantitative characteristics of localization in the non-interactive system.

21



The most appealing case is the N -particle system in Z1, for Anderson local-
ization in one dimension is non-perturbative, i.e., occurs for arbitrarily small but
nonzero disorder amplitude; cf. [24]. In fact, it occurs for any nontrivial proba-
bility distribution of the IID random potential, but the Fractional Moment Method
can only be applied under a much more restrictive assumption of Hölder continu-
ity of some order β ∈ (0, 1].

Below we consider only the extension to the one-dimensional N -particle sys-
tems with exponentially decaying interaction, but it will be clear from the argu-
ments that general result on stability under weak interactions remains valid in any
dimension.

Recall that in order to carry out the inductive procedure and, in particular, to
apply Lemma A.1, it suffices to find m > 0 and L0 ∈ N∗ such that (cf. (3.18)–
(3.20))

Υ(L0) + e−
m
3
L0 < M−1/2

s , (4.1)

for some s ∈ (0, 1) and Ms defined in (2.2). It follows from the results of the frac-
tional moment analysis of the one-dimensional lattice Anderson model that for
any amplitude |g| 6= 0 of the random potential (x, ω) 7→ gV (x;ω), the eigenfunc-
tion correlators for the single-particle HamiltonianH(ω) decay exponentially fast,
with rate m1(g) > 0. It is closely related to the upper Lyapunov exponent γ(E)
for the one-dimensional lattice Schrödinger operator, the asymptotical behaviour
of which, for |g| ↘ 0, is well-known; cf. [13, 14, 23, 29, 31, 32].

The bottom line is that for h = 0, i.e., in absence of interaction, Υ(L0) ≤
e−µL0 for some µ > 0, thus both terms in the LHS of (4.1) can be made arbitrary
small by choosing L0 large enough, thus guaranteeing the validity of (4.1) (for
h = 0). Since for L0 fixed, the EFCs are continuous functions of the parameters
of the Hamiltonian, the strict inequality of the form (4.1) is preserved for all h
with |h| ≤ h◦, provided h◦ > 0 is small enough. This provides the required
starting point for the quadratic recursive inequality for the sequence βk, studied in
Appendix A.

5 Tunneling from split configurations
Here we establish a key ingredient of the multi-scale inductive procedure, Lemma
5.1, allowing one to extend the techniques from [5] to the interactions of infinite
range. The main argument does not use scale induction carried out in Section 3,
which is one of the reasons we prove Lemma 5.1 separately.

Lemma 5.1. Suppose that

min
[
dH(x,y), diam (x) ∨ diam (y)

]
≥ R > 0.
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Assume also that the n-particle EF correlators feature an exponential decay, with
a positive decay exponent m (= m(N − 1)). Then for some c > 0, one has

EI
[
|G(x,y)|s

]
≤ Ae−cmR. (5.1)

In other words, the EFC decay with exponent m(N − 1) in subsystems of up to
N − 1 particles results in exponential decay of the fractional moments of the N -
particle Green functions, with exponent m(N) ≥ cm(N − 1).

Proof. Without loss of generality, assume that diam x ≥ max
[
diam y, R

]
. Then

for some partition of the index set {1, . . . , N} = J tJ c, we have x = (xJ ,xJ c)
with dist(ΠxJ ,ΠxJ c) ≥ `(x) := R/(N − 1), and, respectively,

H = HJ ⊗ 1 + 1⊗HJ
c

+ UJ ,J
c

= HJ ,J
c

+ UJ ,J
c

.

We shall treat UJ ,J
c as a perturbation of HJ ,J

c . By the second resolvent identity,

|G(x,y)|s ≤ |GJ ,J c

(x,y)|s + |
(
GJ ,J

c

UJ ,J
c

G
)
(x,y)|s. (5.2)

• Let us show first that

∀u,v ∈ ZN ÊI
[
|GJ ,J c

(u,v)|2s
]
≤ Ae−m dS(u,v). (5.3)

Indeed, by induction in the number of particles we know that

ÊI
[
QJ (xJ ,yJ ;R)

]
≤ Ae−m dH(xJ ,yJ ),

ÊI
[
QJ

c

(xJ c ,yJ c ;R)
]
≤ Ae−m dH(xJ c ,yJ c ),

and by (B.1), using the deterministic bounds 0 ≤ QJ , QJ
c ≤ 1,

ÊI
[
QJQJ

c ] ≤ e−mmin[dH(xJ ,yJ ),dH(xJ c ,yJ c )] ≤ e−mdH(x,y)).

It follows from Lemma 2.3 that

ÊI
[
|GJ ,J c

(u,v)|s
]
≤ C

1− s
ÊI
[
|QJ ,J c

(u,v)|s
]
≤ C

1− s
Ae−m dH(u,v).

• Consider the perturbation term in (5.2). Setting `J (w) := dH(wJ ,wJ c), we
have

εR = εR(ω) :=
∣∣GJ ,J c

UG)(Bx,y)
∣∣s

≤

 ∑
`J (w)≤R/4

+
∑

`J (w)>R/4

 ÊI
[
|GJ ,J c

(x,w)|s |U(w)|s G(w,y|s
]

≤ ‖U‖S1 + e−aRs/4 S2,

(5.4)

23



where e−asR/4 is an upper bound on |UJ ,J c |s over the set {w : `J (w) > R/4},
and

S1 =
∑

`J (w)≤R/4

ÊI
[
|GJ ,J c

(x,w)|s |G(w,y)|s
]
,

S2 =
∑

`J (w)>R/4

ÊI
[
|GJ ,J c

(x,w)|s |G(w,y)|s
]
.

Using the Cauchy–Schwarz inequality and an a priori bound (2.1), we get

S2 ≤
∑

`J (w)>R/4

(
ÊI
[
|GJ ,J c

(x,w)|2s
])1/2 (

ÊI
[
|G(w,y)|2s

])1/2

≤
∑

w∈ZN

(
ÊI
[
|GJ ,J c

(x,w)|2s
])1/2

· Const

(1− 2s)1/2|g|s
,

(5.5)

provided 2s < 1, so the above expectations are finite. By (5.3) and Lemma B.2,∑
w∈ZN

ÊI
[
|GJ ,J c

(x,w)|s
]
≤ A

∑
w∈ZN

e−m dH(x,w) =: A′ < +∞, (5.6)

thus
e−asR/4S2 ≤ C(s) |g|−se−asR/4. (5.7)

Next, assess S1. Denote

dJH(x,w) := max
[
dH(xJ ,wJ ), dH(xJ c ,wJ c)

]
. (5.8)

By Lemma B.1,

min
w: `J (w)≤R/4

dJH(x,w) ≥ `(x)−R/4
2

≥ 3R

8(N − 1)
=: r0. (5.9)

For any r ≥ r0, the number of configurations w with

dJH(x,w) = r (5.10)

is bounded by O(rNd). Indeed, we have R = ar0 with a = 8(N − 1)/3, so each
wi ∈ Πw must be inside the ball in Z centered at x1 (or at any other particle
position in x) of radius

r + diam x = r +R ≤ cr, c = 1 +
8(N − 1)

R
.

By assumption on the graphZ , the cardinality of such ball is bounded by Cd(cr)d,
yielding the required bound.∑

`J (w)≤R′
ÊI
[
|GJ ,J c

(x,w)|2s
]
≤
∑
r≥R′

CrNde−mdJH(x,w)

≤ C1e−c
−1
1 mR

(5.11)
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with C1, c
−1
1 depending upon N, d,m and uniformly bounded for all m ≥ 1, R ≥

1 and N ≤ N∗, with fixed N∗.
Taking into account (5.7), (5.6) and (5.11), we obtain

ÊI [ εR ] ≤ ConstR

|g|s
e−mR +

Const

(1− 2s)|g|2s
e−

as
4
R ≤ C(s)

|g|s
e−

as
4
R. (5.12)

Collecting (5.3) and (5.12), the claim follows.

Appendix A Perturbed quadratic dynamics
Lemma A.1. Let the sequence {Lk, k ≥ 0} satisfy the recursion Lk+1 = 2Lk +2.
Consider a sequence of positive numbers {βk} with β0 < eν , for some ν > 0, and
satisfying

∀ k ∈ N βk+1 ≤
1

2
e−2νβ2

k +
1

2
e−2νe−2νLk . (A.1)

Then for all k ≥ 1

βk ≤ max
{

e−νLk , e−µLk
}
, (A.2)

µ :=
ν + ln β−1

0

1 + L0

2

. (A.3)

Proof. • First, note that if there exists j ∈ N such that

βj ≤ e−νLj , (A.4)

then by induction, for all k ≥ j we have, using Lk = 1
2
Lk+1 − 1,

βk+1 ≤
1

2
e−2νe−2νLk +

1

2
e−2νe−2νLk = e−2νe−2νLk = e−νLk+1 . (A.5)

• Next, suppose that (A.4) never occurs, so for all k we have

βk+1 > e−νLk . (A.6)

Then 1
2
e−2νβ2

k + 1
2
e−2νe−νLk < e−2νβ2

k , and by (A.1),

∀ k ≥ 0 βk+1 <
(
e−νβk

)2
.

By induction, with µ given by (A.3) and 2k = Lk/(L0 + 2), for all k ≥ 0,

βk ≤
(
e−νβ0

)2k
=
(
e−νβ0

) Lk
L0+2 = e−µLk , (A.7)
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with µ = − ln(a2β2
0)/(L0 + 2) = ln(a−1β−1

0 )/(1 + L0/2).
• Finally, if (A.6) holds on a finite integer interval [[0, j − 1]], and then one

has (A.4), the inequality (A.7) is still valid for k ∈ [[0, j − 1]], while the bounds
(A.4), (A.5) take over for the remaining values k ≥ j.

Consequently,

Υ̂k ≤ e2νM1/2
s e−µ̃Lk , µ̃ := min(ν, µ).

A reader familiar with the work by Germinet and Klein [22] can notice that
the above proof is a variant an argument used in the proof of [22, Theorem 5.1];
cf. Eqns. (5.30)–(5.32) in [22].

Appendix B Some geometrical inequalities
Note first that we have the following simple inequality for arbitrary configurations
x,y ∈ ZN and any partition (J ,J c) of the index set {1, . . . , N}:

min
[
dH(xJ ,yJ ), dH(xJ c ,yJ c)

]
≥ dH(x,y). (B.1)

Indeed, assume w.l.o.g. that dH(x,y) = d(x◦,Πy) for some x◦ ∈ Πx (otherwise
exchange x↔ y). Fix any partition (J ,J c, then

min
x∈ΠxJ

d(x,ΠyJ ) ≥ min
x∈Πx

d(x,Πy) = d(x◦,Πy) = dH(x,y),

thus dH(xJ ,yJ ) ≥ dH(x,y). Similarly,

min
x∈ΠxJ c

d(x,ΠyJ c) ≥ min
x∈Πx

d(x,Πy) = dH(x,y),

which proves dH(xJ c ,yJ c) ≥ dH(x,y) and (B.1).
Further, one has

dH(x,w) ≥ ρ(x,w)−min
[
diam x, diam w

]
. (B.2)

For the proof, take xcirc ∈ Πx, w◦ ∈ Πw such that R := d(x◦, w◦) = ρ(x,w);
then

dH(x,w) ≥ max
x∈Πx

dist(x,Πw) ≥ d(x◦,Πw) ≥ d(x◦, w◦)− diam w

= R− diam w,

and similarly dH(x,w) ≥ R− ≥ diam w.
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Lemma B.1. Given any configuration u ∈ ZN and an arbitrary partition of the
index set {1, . . . , N} = J t J c, denote

`J (u) = dist(uJ ,uJ c).

Then for all x,w ∈ ZN the following inequality holds (cf. (5.8)):

dJH(x,w) ≥ `J (x)− `J (w)

2
. (B.3)

Proof. Let
R := `J (x), r := `J (w),

so for some j ∈ J and k ∈ J c we have d(wj, wk) = r. Recalling the definition
of the distance dJH (cf. (5.8)),

dJH(x,w) := max
[
dH(xJ ,wJ ), dH(xJ c ,wJ c)

]
, (B.4)

we then have for some j′ ∈ J and k′ ∈ J c

d(xj′ , wj) ≤ dJH(x,w), d(xk′ , wk) ≤ dJH(x,w),

so by the triangle inequality for the graph-distance,

R ≤ d(xj′ , xk′) ≤ d(xj′ , wj) + d(wj, wk) + d(wk, xk′) ≤ r + 2dJH(x,w).

Therefore,

dJH(x,w) ≥ R− r
2

=
`J (x)− `J (w)

2
.

Example. Let Z = Z1, N = 2, x = (−5, 5), w = (−1, 1). Then for the unique
nontrivial partition of {1, 2} into J = {1} and J c = {2}, we have `J (x) = 10,
`J (w) = 2, and

dJH(x,w) = 5− 1 = 4 =
`J (x)− `J (w)

2
.

Lemma B.2.

sup
x∈ZN

∑
w∈ZN

e−m dH(x,w) ≤ C(m,Z) < +∞. (B.5)
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Proof. Fix r ≥ 1 and consider the set

Ar := {y : dH(x,y) = r}.

Let y ∈ Ar, then

∀ y ∈ Πy y ∈
n⋃
j=1

Br(xj),

thus

|Ar| ≤
n∏
j=1

|∪jBr(xj)| ≤ C(N, d)(rd)N .

Finally, ∑
w∈ZN

e−m dH(x,w) ≤
∑
r≥1

e−mrC(N, d)rNd ≤ C(m,N, d) < +∞.

Appendix C Boole’s identity
While there seems to be a consensus that the result stated below was first dis-
covered and proved by George Boole in 1857, we hesitate to refer to the original
work [6] as the source of the most comprehensive proof. Instead, we provide a
very short (10 lines) and elementary proof given almost a century later by Lynn
H. Loomis [27]. Boole’s identity was rediscovered more than once and extended
in various ways in the theory of the Hilbert transform, giving rise to a number of
interesting applications.

Proposition C.1. Let be given real numbers λ1 < · · · < λn and positive real
numbers c1, . . . , cn. Then

∀ t > 0 mes

{
x ∈ R :

∣∣∣∣∣∑
i

ci
λi − x

∣∣∣∣∣ > t

}
=

2
∑

i ci
t

.

Proof. [Cf. [27, Proof of Lemma 1]]. We assess first the Lebesgue measure of the
set S+ where f(x) :=

∑
i

ci
x−λi > t. Since for all x 6∈ {λ1, . . . , λn}

f ′(x) =
∑ −ci

(λi − x)2
< 0,

there are exactly n roots κi of the equation f(x) = t, and one has λi < κi < λi+1,
κn > λn, thus S+ = tni=1Ii, Ii = (λi, κi), and mesS+ =

∑
i(κi − λi).
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Next, multiplying the equation f(x) :=
∑

i
ci

λi−x = t by
∏

i(x − λi), we see
that κi are the roots of the polynomial admitting two equivalent representations

t
∏
i

(x− λi)−
n∑
i=1

ci
∏
j 6=i

(x− λj) ≡ t
∏
i

(x− κi).

The identity for the sub-principal coefficients gives t
∑

i λi +
∑

i ci = t
∑

i κi,
yielding mesS+ =

∑
i(κi − λi) = t−1

∑
i ci. Similarly, mes {x : f(x) < −t} =

t−1
∑

i ci.

Appendix D Proof of Lemma 2.1
We focus on the case where u1 6= u2. The remaining case with u1 = u2 is quite
similar and even simpler; see the complete proof for u1 = u2 in the manuscript
[10].

As we shall see, the relevant representation of the random operator at hand is
gV(ω) + A, with the nonrandom component A = H0 + U, and we work with
the resolvent Gg(E) = (gV(ω) + A − E)−1. The random field V is assumed
bounded, ‖V (x; ·)‖∞ < +∞, and it suffices to assume that ‖V (x; ·)‖∞ ≤ 1, for
larger values are simply obtained by taking |g| larger. In fact, even the particular
model where V ∼ Unif([0, 1]) is of great interest, and it is one of the most popular
models of disorder in physics. Then we can extract the factor g and note that, with
Bg := g−1A, λ = g−1E,

Ê
[
|Gg(x,y;E)|s

∣∣F6=u1,u2

]
= |g|−s Ê

[
(1y,

(
V(ω) + Bg − λ

)−1
1x)
]
.

In the rest of the proof, we work with the resolvent of the operator V(ω) + Bg, at
a rescaled energy λ (which is fixed in the proof, anyway).
• Reduced probability space. Now the r.v. V (x;ω) vary inside I = [0, 1] and
admit a bounded probability density pV , ‖pV ‖∞ = p < ∞. The conditional
distribution of V given F6=u1,u2 gives rise to the reduced probability space (A, P̃),
where A = I2, P̃ is absolutely continuous with respect to the Lebesgue measure
mes I ⊗ mes I on A, with density (v1, v2) 7→ p(v1, v2) = pV (v1) pV (v2) ≤ p2.
Then for any non-negative random variable ζ̃ on (Ω,P) and any s ∈ (0, 1), the
conditional expectation of ζ̃s given F6=u1,u2 has the form (below we allow the
expectation to be +∞)

0 ≤ Ê
[
ζ̃s(ω)

∣∣F6=u1,u2

]
=

∫
I

dv1

∫
I

dv2 pV (v1) pV (v2) ζs(v1, v2; ·)

≤ p2

∫
A

dv1 dv2 ζ
s(v1, v2; •),

(D.1)
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where ζ(v1, v2; •) is obtained from ζ̃(ω) by identifying vj ≡ V (uj;ω), with the
remaining degrees of freedom fixed by conditioning (they are symbolically repre-
sented by •). Now ζ can be considered as a random variable on the square I2 with
the normalized Lebesgue measure. For the rest of the argument, P { } and Ê [ ]
refer to this new probability space. Let Fζ(t) = P { ζ ≤ t }, then

Ê [ ζs ] =

∫
A

dv1 dv2 ζ
s(v1, v2; ·) =

∫ ∞
0

tsdFζ(t) = s

∫ ∞
0

ts−1(1− Fζ(t)) dt.
(D.2)

We shall return to (D.2), once we obtain a suitable upper bound of the tail proba-
bility distribution function (below mes is the Lebesgue measure on A)

1− Fζ(t) = mes {(v1, v2) ∈ A : ζ(v1, v2) > t}.

• The Birman–Schwinger relation. Introduce the sets

Sj =
((
{uj} × Z

)
∪
(
Z × {uj}

)
∩ Λ, j = 1, 2,

the (multiplication) operators

0 6= C = 1S1 + 1S2 ≥ 0, D = 1S1 − 1S2 ,

and the random variables

ξ =
1

2
(V (x1;ω) + V (x2;ω)), η =

1

2
(V (x1;ω)− V (x2;ω)).

Then
V (u1;ω)1S1 + V (u2;ω)1S2 = ξC + ηD

and
H(ω) = K̃(ω) + gV (u1;ω)1S1 + gV (u2;ω)1S2 ,

= K̃ + gξC + gηD = K + gξC,

where K̃(ω) is F6=u1,u2-measurable and K(ω) = K̃(ω) + η(ω)D.
The operator C is non-negative and not identically zero, so we can use the

Birman–Schwinger identity for KE = K− E:

C1/2(KE + gξC)−1C1/2 =
(
C1/2K−1

E,CC1/2 + gξ1
)−1

,

where the operator

KE,C := C1/2(KE + gξC)−1C1/2
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is considered acting in the subspace ofH,

H{u1,u2} = (Ker C)⊥ = Span {1w : w ∈ Λ2, Πw ∩ {u1, u2} 6= ∅},

containing in particular 1x and 1y. Its relevance is explained by the fact that both
1x and 1y are eigenvectors of C with positive eigenvalues,

C1x = 1S11x + 1S21x =
(
Nu1(x) + Nu2(x)

)
1x = αx1x,

with
Nw(u) := card {j ∈ {1, 2} : uj = w}

(the number of particles in u at the position u), hence

C1/21x = α1/2
x 1x,

C1/21y = α1/2
y 1y,

(D.3)

with 1 ≤ αx, αy ≤ 2. Therefore, with α := (αxαy)−1/2 ∈ [1, 1/2],

G(x,y;E) = (1y, (KE + gξC)−11x)

= α (1y,C
1/2(KE + gξC)−1C1/21x)

= α
(
1y,
(
C1/2K−1

E,CC1/2 + gξ1
)−1

1x

)
.

Since α ≤ 1, one has an implication: for any t > 0,

|G(x,y;E)| > t =⇒
∣∣∣ (1y,

(
C1/2KE,CC1/2 + gξ1

)−1
1x

) ∣∣∣ > t,

where the RHS refers to the (finite-dimensional) spaceH{u1,u2}.
• The tail tale and the Boole formula. Consider the linear change of variables
Φ : (v1, v2) 7→ (ξ, η) = ((v1 + v2)/2, (v1 − v2)/2) with Jacobian = 2. Note that
with (v1, v2) ∈ A, ξ varies in [0, 1] and η in [−1/2, 1/2].

Let A′ := Φ(A) ⊂ [0, 1]× [−1/2, 1/2], then by the Fubini theorem,∫
R2

dv1 dv2 1A1Mt = 2

∫ 1/2

−1/2

dη

∫
R
dξ 1A′(ξ, η)1Mt ◦ Φ−1(ξ, η)

≤ 2

∫ 1/2

−1/2

dη

∫
R
dξ 1Mt ◦ Φ−1(ξ, η)

≤ 2 · sup
η∈R

mes
(
Mt(η)

)
,

(D.4)

where

Mt(η) =
{
ξ ∈ R :

∣∣∣ (1y,
(
C1/2K−1

E,C,ηC
1/2 + gξ1

)−1
1x

) ∣∣∣ > t
}
.
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The function

R : ξ 7→
(
1y,
(
C1/2K−1

E,C,ηC
1/2 + gξ1

)−1
1x

)
≡ g−1

(
1y,
(
g−1C1/2K−1

E,C,ηC
1/2 + ξ1

)−1
1x

)
is rational, with real simple poles,

R(ξ) =
∑
j

g−1cj
λj − ξ

,
∑
j

|g−1cj| ≤ |g|−1 (by Bessel’s inequality),

so we can again apply the Boole formula,

mes {ξ : |R(ξ)| > t} =
2
∑

i ci
t
≤ 2

gt
.

Therefore,

1 = mesA ≥
∫
R2

dv1 dv2 1A1Mt ≤ 2 · 2

gt
=

4

gt
,

yielding for the tail probability distribution function

1− Fζ(t) ≤ min
[
1, 4g−1t−1

]
.

• Calculation of the fractional moment. Return to the fractional moment in
(D.2):

Ê [ ζs ] = s

∫ ∞
0

ts−1(1− Fζ(t)) dt ≤ s

∫ ∞
0

ts−1 min(1, 4g−1t−1) dt

= s

∫ 4/g

0

ts−1 dt+ s

∫ +∞

4/g

ts−2 dt

=
4s

gs(1− s)
.

Finally, for the conditional fractional moment in (2.1), we obtain the claim:

Ê
[
|G(x,y;E)|s

∣∣F6=u1,u2

]
≤ p2Ê [ ζs ] ≤ C

|g|s(1− s)
.
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