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Abstract

We show that the Anderson model has a transition from localization to delocalization
at exactly 2 dimensional growth rate on antitrees with normalized edge weights which are
certain discrete graphs. The kinetic part has a one-dimensional structure allowing a description
through transfer matrices which involve some Schur complement. For such operators we
introduce the notion of having one propagating channel and extend theorems from the theory
of one-dimensional Jacobi operators that relate the behavior of transfer matrices with the
spectrum. These theorems are then applied to the considered model. In essence, in a certain
energy region the kinetic part averages the random potentials along shells and the transfer
matrices behave similar as for a one-dimensional operator with random potential of decaying
variance. At d dimensional growth for d > 2 this effective decay is strong enough to obtain
absolutely continuous spectrum, whereas for some uniform d dimensional growth with d < 2
one has pure point spectrum in this energy region. At exactly uniform 2 dimensional growth
also some singular continuous spectrum appears, at least at small disorder. As a corollary
we also obtain a change from singular spectrum (d ≤ 2) to absolutely continuous spectrum
(d ≥ 3) for random operators of the type Pr∆dPr +λV on Zd. Here, Pr is an orthogonal radial
projection, ∆d the discrete adjacency operator (Laplacian) on Zd and λV a random potential.
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1 Introduction

Anderson models are random Schrödinger operators given by the sum of a kinetic operator and
a random potential. In a discrete setting the kinetic part is typically the adjacency operator or
Laplacian of a discrete graph and the random potential is a multiplication operator with real,
independent, identically distributed random values at each vertex. Most commonly studied are
the Anderson models on the lattices Zd and the Bethe lattices (infinite regular trees). In these cases
and for continuous versions consisting of the negative Laplacian and random potential bumps in
Rd several things are known. The Anderson model typically localizes (has pure point spectrum) at
spectral edges and for high disorder [FS, FMSS, DLS, SW, CKM, DK, Kl1, AM, Aiz, Wa, Klo, BK].
However, so far, the high disorder localization in the discrete setup requires some regularity on the
randomness, localization for the Bernoulli potential in Zd, d ≥ 2 is still an open problem. In one
dimension [GMP, KuS, CKM] and quasi-one dimensional graphs like trees with long line sequences
[Br] and strips [Lac, KlLS] the Anderson model localizes for any disorder. But it is possible that a
built in symmetry prevents localization for a quasi-one dimensional random operator as e.g. in [SS].
For d = 2 one expects localization at any disorder and for d ≥ 3 the existence of some absolutely
continuous spectrum (short a.c. spectrum) is expected for small disorder. These conjectures remain
big open problems.

The existence of a.c. spectrum for the Anderson model has first been proved on Bethe lat-
tices (regular trees) [Kl3] and was extended to other tree-like graphs with exponentially growing
boundary which are all infinite dimensional [ASW, FHS2, FHS3, Hal, KLW1, KLW2, FHH, KS,
AW, Sa1, Sa2, Sha]. It appears that the hyperbolic nature of such graphs leads to conservation
of a.c. spectrum and ballistic dynamical behavior for small disorder [Kl2, KS2, AW2]. Using the
fractional moment method [AM] one finds localization at high disorder also on all these graphs (cf.
[Tau]). We therefore have some Anderson transition (change in spectral behavior) when increasing
the disorder.

Transitions of the spectral type are also known for random decaying potentials on Zd when
changing the decay rate [KiLS, Bou] and similar families of random Jacobi operators [BL, BFS].
Even (at least) two transitions occur when increasing a random transversally periodic potential
which is added to a random radial symmetric potential of fixed disorder on a binary tree, cf.
[FLSSS, Corollary 1.5]. Here we seek for a transition when changing the dimension. In fact, these
results and open conjectures raise the following questions.

Question. Can one find some finite dimensional graph G (in the sense of a polynomial growth
of the graph) such that the Anderson model at small disorder with i.i.d. potential has absolutely
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continuous spectrum and such that the analysis is simpler than the difficult problem on Zd, d ≥ 2?
Can one find a ’nice’ family of graphs Gd of dimension d ≥ 1 such that the spectral type of the
Anderson model changes at some d ∈ [2,3] for low disorder?

1.1 Dimension of discrete graphs

Let G be some graph with countably many vertices which is edge connected and locally finite1.
The graph distance, or better step distance d(x, y) ∈ Z+ is defined by the smallest number of steps
needed to go from x to y along edges, i.e. the smallest number n such that there is a sequence
x = x0, x1, . . . , xn = y where xi and xi+1 are connected by an edge. We define further d(x,x) = 0
and as G is edge connected we have d(x, y) < ∞ for any x, y ∈ G. Let us choose some non-empty,
finite set of vertices S0 ⊂ G which we call the roots of G and let

Sn ∶= {x ∈ G ∶ d(S0, x) = n}, Bn ∶= {x ∈ G ∶ d(S0, x) ≤ n},

Sn ∶= {x ∈ Bn ∶ d(x,Sn+1) = 1} , sn ∶= #(Sn), bn ∶= #(Bn), sn ∶= #(Sn)

Clearly, Bn = ⋃
n
j=0 Sj , bn = ∑

n
j=0 sj and 0 < sj < ∞ as G is connected, has infinitely many vertices

and is locally finite. Sn is the shell or sphere of distance n around S0. The boundary of a set Λ ⊂ G
is given by ∂Λ = {x ∶ d(x,Λ) ≤ 1 and d(x,G∖Λ) ≤ 1}. One has an interior boundary ∂Λ∩Λ and an
exterior boundary ∂Λ ∖Λ. The interior boundary of Bn is Sn and the exterior boundary is Sn+1.

Definition 1. Let d ≥ 1 be some real number.
(a) We say that the volume growth of G is

� d-dimensional, if cnd < bn < Cn
d for C > c > 0 and all n.

� at least (at most) d-dimensional, if bn > Cn
d (resp. bn < Cn

d) for some C > 0 and all n.

(b) We say that (starting from S0) the growth rate of G is

� d-dimensional, if cnd−1 < sn < Cn
d−1 for C > c > 0 and all n.

� uniform d-dimensional, if lim
n→∞

sn /nd−1 = C for C > 0.

� at least (at most) d-dimensional, if sn > Cn
d−1 (resp. sn < Cn

d−1) for C > 0 and all n.

(c) The logarithmic ratio of the interior (resp. exterior) boundary-surface and volume has a d-
dimensional behavior if lim

n→∞
log(sn) / log(bn) = 1 − 1

d
, resp. lim

n→∞
log(sn) / log(bn) = 1 − 1

d

Except for the constant, the bounds on the volume growth do not depend on the choice of the
roots S0. Clearly, the growth rate bounds on sn imply the corresponding volume growth bounds.
A d-dimensional growth rate also implies a d-dimensional behavior for the logarithmic ratio of the
exterior boundary-surface and volume.

The more restrictive concept of a uniform d-dimensional growth-rate will be needed for some
of the presented results. Let us mention that the lattice Zd has a uniform d-dimensional growth
rate for any d and any finite set of roots S0 (cf. Section 7.)

The above concepts do not give much information about the structure of edges. If the vertex
degree is not uniformly bounded one may have strange effects. For graphs with such a uniform
bound the adjacency and Laplace operators are bounded. Therefore, in the general case one should
allow for normalizing edge weights, i.e. we assign some 0 ≠ a(x, y) = a(y, x) ∈ R whenever d(x, y) = 1
and let a(x, y) = 0 if d(x, y) ≠ 1. The weights shall be chosen such that the matrix a(x, y) defines a

1This means that at each vertex the vertex degree, i.e. number of edges at that vertex, is finite. Note that we
do not assume a uniform upper bound
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bounded, self-adjoint operator A on `2(G) with some delocalized energy region, i.e. there should
be a non-empty open set I ⊂ specac(A) such that the spectrum of A is purely a.c. in I. Let us
denote the class of such weighted graphs (G, a) by G.

The Anderson model on (G, a) is then given by the sum of A with a random, independent
identically distributed potential V coupled with some λ > 0 determining the disorder, i.e.

(Hλψ)(x) = ((A + λV)ψ) (x) = ∑
y∶d(x,y)=1

a(x, y)ψ(y) + λv(x)ψ(x) , (1.1)

where the v(x), x ∈ G, are real, independent, identically distributed random variables. Typically
E(v(x)) = 0 and E(v2(x)) < ∞ where E denotes the expectation value.

Problem. Find ’nice’ families of graphs (Gd, ad) ∈ G with d-dimensional growth rates for any d
where the spectral type of the Anderson model changes at some d ∈ [2,3] in some interval.

We give such an example in this work.

1.2 Main result

The main objects are the following graphs which (with standard weights a(x, y) = 1) are called
antitrees in [Woj, KLWo, BrK].

Definition 2. For a sequence s = (sn)n≥0 of positive integers sn > 0 we let As be the following
graph: The n-th shell Sn consists of sn vertices, each vertex in Sn is connected to each vertex in
Sn±1 and for x ∈ Sn, y ∈ Sn+1 the edge from x to y obtains the weight a(x, y) = 1/

√
snsn+1. There are

no edges within Sn (see Figure 1). We call As with these weights the antitree with normalized
edge-weights associated to the sequence s = (sn)n≥0. The corresponding weighted adjacency
operator given by the matrix a(x, y) will be called As. (Recall, a(x, y) = 0 if there is no edge from
x to y, also note that as above, Sn = {y ∶ d(y,S0) = n}.)

S0 S1 S2 S3

Figure 1: Example for an antitree

Breuer and Keller [BrK] calculated the spectrum of the Laplacian and adjacency operator
on antitrees with standard weights (a(x, y) = 1 whenever a(x, y) ≠ 0). They considered general
so-called spherically homogeneous graphs where it is feasible to use the Gram-Schmidt orthonor-
malization procedure on a sequence ψ, Hψ, H2ψ . . . to get a Jacobi operator. Compared to their
paper the presented methods are different and the methods work in principle for any potential and
additional hopping terms within the shells Sn destroying the spherical homogeneity.

The normalization of the edge weights in this way ensures that As is bounded on `2(As) and
the spectrum is [−2,2] independent of the sequence s = (sn)n which corresponds to some remark
in [BrK].
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Proposition 1.1. The spectrum of the weighted adjacency operator As on the antitree with nor-
malized edge-weights As is given by σ(As) = [−2,2] and it is absolutely continuous except for a
(possibly) embedded eigenvalue at 0 with multiplicity ∑

∞
n=0(sn − 1) (which may be infinite).

For a better understanding of the normalization consider the ordinary adjacency operator ∆d

on Zd, its spectrum is [−2d,2d]. The graph distance on Zd is given by the 1-norm ∥ ⋅ ∥1, hence
let sn = #{x ∈ Zd ∶ ∥x∥1 = n}. Now let Pr be the orthogonal projection on the radial subspace
Hr = {ψ ∈ `2(Zd) ∶ ψ(x) = ψ(y) whenever ∥x∥1 = ∥y∥1}. Then, 1

d
Pr∆dPr is basically the adjacency

operator of an antitree As with weights a(x, y) = (1 +O(1/n2)) /
√
snsn+1 if ∥x∥1 = n, ∥y∥1 = n + 1

(cf. Corollary 1.3 and Section 7). Hence, asymptotically 1
d
Pr∆dPr looks like As.

Basically we will show the following: Consider the Anderson model Hλ on the set of antitrees
As with uniform d-dimensional growth rate and certain nice distributions Pv of the singe site
potentials v(x). Then, the spectral type of Hλ in some set Iλ is pure point for d < 2, it is mixed
pure point and singular continuous at d = 2 and it is purely absolutely continuous for d > 2.

Assumptions.

(A1) The distribution Pv of the i.i.d. random potentials v(x) is supported in [−1,1], has mean
zero Ev(v) = 0 and positive variance 0 < σ2 ∶= Ev(v2) ≤ 1 .

(A2) The distribution Pv of the i.i.d. random potentials v(x) is absolutely continuous with respect
to the Lebesgue measure.

Here and below, Ev(f(v)) = ∫ f(v)Pv(dv). Assumption (A1) will be always important, (A2) will
matter for the singular spectrum. We let supp(Pv) denote the support of the measure Pv. Under
assumption (A1) we can define 0 < v+ ≤ 1 and −1 ≤ v− < 0 by

v+ = max(supp(Pv)) and v− = min(supp(Pv)) .

For E/λ /∈ supp(Pv) we define

hE,λ ∶=
1

Ev(1/(E − λv))
and set Iλ ∶= {E ∈ R ∶ E /∈ [λv−, λv+] and ∣hE,λ∣ < 2 } . (1.2)

Note that hE,λ could be technically infinite if Ev(1/(E − λv)) = 0 but this will not happen for
E ∈ Iλ. It is not difficult to see that Iλ = (c′λ, λv−) ∪ (λv+, cλ), however for large λ one or both
of these intervals may be empty (see also Remark 1.5). For concrete examples see Remark 1.5.
Moreover, for E ∈ Iλ we define

σ2
E,λ ∶= Ev (

1

(E − λv)
− h−1

E,λ)

2

, γE,λ ∶=
h4
E,λ σ

2
E,λ

2(4 − h2
E,λ)

> 0 . (1.3)

To get a feeling of these quantities for small disorder, note that for λ→ 0 we have

hE,λ = E +O(λ2
) , σ2

E,λ = O(λ2
) . (1.4)

Last but not least, let us also introduce the canonical injection Pn from `2(Sn) ≅ Csn into `2(As)

so that for ψ ∈ `2(As) one has P ∗
nψ = (ψ(x))x∈Sn ∈ `2(Sn) ≅ Csn . One can identify ψ with the

direct sum ⊕n P
∗
nψ ∈ ⊕n `

2(Sn) ≅ ⊕nCsn . The main result is the following:

Theorem 1.2. Let Hλ = As + λV be the Anderson model on the antitree As as in (1.1) with i.i.d.

potential satisfying (A1) and let λ > 0. Then, Iλ is not empty for λ ≤ 2 + 2σ2

2−σ2 and for the graphs
As with uniform d-dimensional growth rate there is a transition of the spectral type in Iλ at d = 2.
More precisely, we find the following:
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(i) If As has at least d dimensional growth rate for some d > 2 (i.e. sn > cnd−1), and in fact,
whenever ∑n s

−1
n < ∞, then, the spectrum of Hλ is almost surely purely absolutely continuous

in Iλ and Iλ is in the spectrum.

(ii) If As has uniform d-dimensional growth rate for some 1 ≤ d ≤ 2 (sn/n
d−1 converges), then the

spectrum of Hλ in Iλ is almost surely singular and Iλ is in the spectrum.

(iii) If additionally (A2) is satisfied and As has uniform d-dimensional growth rate for some 1 <

d < 2 with limn→∞ sn/n
d−1 = C, then, Hλ has almost surely dense pure point spectrum in Iλ.

Moreover, almost surely the random eigenvectors ψj for the random eigenvalues Ej ∈ Iλ are
sub-exponentially decaying in the sense that

lim
n→∞

log (

√

∥P ∗
nψj∥

2
+ ∥P ∗

n+1ψj∥
2
)

n2−d = −
γEj ,λ

C(2 − d)

(iv) If additionally (A2) is satisfied and limn→∞ sn/n = C, i.e. As has uniform 2-dimensional
growth rate, then, Hλ has almost surely dense pure singular continuous spectrum in Jλ and
dense pure point spectrum in Iλ ∖ Jλ where

Jλ ∶= {E ∈ Iλ ∶ γE,λ /C ≤ 1/2} .

Moreover, almost surely, the random eigenvectors ψj for the random eigenvalues Ej ∈ Iλ ∖Jλ
are polynomially decaying in the sense that

lim
n→∞

log (

√

∥P ∗
nψj∥

2
+ ∥P ∗

n+1ψj∥
2
)

log(n)
= −

γEj ,λ

C
.

Note that by analyticity of γE,λ in E ∈ Iλ it is clear that Jλ is a finite union of intervals. Also
note that for C → ∞ the set Jλ gets larger and converges to Iλ. However, as long as Iλ =

(c′λ, λv−) ∪ (λv+, cλ) is not empty we have for E → cλ or E → C ′
λ that ∣hE,λ∣ → 2 and hence

γE,λ → ∞. Therefore, Iλ ∖ Jλ is not empty if Iλ is not empty. From (1.4) one obtains that for
any energy E ∈ (−2,2) ∩ Iλ and small enough λ we get E ∈ Jλ, so in case (iv) there is singular
continuous spectrum for small disorder. All the results are valid for any disorder λ in principle,
however, for large disorder, the set Iλ may be empty, cf. Remark 1.5.

As explained above one can get this type of antitree model from a random operator on Zd with
radial projections around the adjacency operator. Therefore, one has the following corollary:

Corollary 1.3. Let ∆d be the adjacency operator on Zd, Pr the orthogonal projection on the radial
subspace Hr = {ψ ∈ `2(Zd) ∶ ψ(x) = ψ((∥x∥1,0, . . . ,0)) } and consider the operator

Hλ = 1
d
Pr ∆dPr + λV

where V is a random i.i.d. potential with single-site distribution Pv satisfying (A1). Then, for
d ≥ 3 the spectrum of Hλ is almost surely purely absolutely continuous in Iλ and it is almost surely
purely singular in Iλ for d ≤ 2. Also, Iλ ⊂ specess(Hλ) almost surely.

Part of the statements in Theorem 1.2 is that Iλ is always part of the essential spectrum of Hλ,
almost surely. In fact, even though the models are not ergodic, we obtain an almost sure essential
spectrum.
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Proposition 1.4. Let Hλ = As + λV be the Anderson model on As and let (A1) be satisfied. We
find almost surely that

spec(Hλ) = [−2,2] + λ supp(ν) if sup
n

{sn} < ∞

and
specess(Hλ) = λ supp(Pv) ∪ {E /∈ λ supp(Pv) ∶ ∣hE,λ∣ ≤ 2} ⊃ Iλ

if lim infn→∞ sn/n
α > 0 for some α > 0, i.e. if As has at least 1 + α dimensional growth rate. In

the latter case one may find random eigenvalues in [−2,2] + λ supp(Pv) ∖ specess(Hλ).

Remark 1.5. In general, note that under assumption (A1) for E /∈ [λv− , λv+] and v ∈ supp(Pv) ⊂
[v−, v+] the sign of E−λv ∈ [E−λv+,E−λv−] is determined and it is clear that hE,λ ∈ [E−λv+, E−
λv−]. Moreover, by convexity ∣hE,λ∣ ≤ ∣E∣ and hE,λ is strictly monotonically increasing in E. It is
not difficult to verify dhE,λ/dE > 1. Thus, Iλ generally consists of two intervals

[−2, λv−) ∪ (λv+,2] ⊂ Iλ = (c′λ, λv−) ∪ (λv+, cλ) ⊂ (−2 + λv−, λv−) ∪ (λv+,2 + λv+) ,

where hc′
λ
,λ = −2 and hcλ,λ = 2. For large λ these values c′λ < λv− and cλ > λv+ may or may

not exist in the sense that each of the intervals (c′λ, λv−) and (λv+, cλ) may be empty. More
precisely, if Ev(v+ − v)−1 = ∞ then limE↓λv+ hE,λ = 0 and for any λ > 0, (λv+, cλ) ≠ ∅. However, if
Ev(v+ − v)−1 < ∞, then Iλ ∩R+ is empty for large λ. Correspondingly, Iλ ∩R− is empty for large
λ if Ev(v − v−)−1 < ∞ and it is never empty if Ev(v − v−)−1 = ∞. If supp(Pv) = [v−, v+], then the
essential spectrum has no gap. However, if there is a gap in supp(Pv), then for any value e in that
gap and large enough λ one will have ∣heλ,λ∣ = ∣λhe,1∣ > 2. Hence, a gap in specess(Hλ) will open
at some λ. The intersection of these gaps with [−2,2] + λ supp(Pv) contains random eigenvalues
and can be seen as a Lifshitz tail regime. For illustration, let us consider the following cases where
v+ = 1 and v− = −1.

(i) For the Bernoulli distribution Pv = 1
2
(δ−1 + δ1) which satisfies (A1) but not (A2) (δx denotes

the normalized point measure at x), we find

Iλ = (−1 −
√

1 + λ2 , −λ) ∪ (λ , 1 +
√

1 + λ2) , hE,λ =
E2 − λ2

E

specess(Hλ) = [−1 −
√

1 + λ2 , 1 −
√

1 + λ2] ∪ [1 −
√

1 + λ2 , 1 +
√

1 + λ2]

(ii) For the uniform distribution Pv(dv) = 1
2

1[−1,1](v)dv, where 1A(v) denotes the indicator func-
tion of the set A and dv the Lebesgue measure, we find

Iλ = (−λ
eλ + 1

eλ − 1
, −λ) ∪ (λ , λ

eλ + 1

eλ − 1
) , hE,λ =

2λ

ln(E+λ
E−λ)

specess(Hλ) = [−λ
eλ + 1

eλ − 1
, λ
eλ + 1

eλ − 1
] .

(iii) For Pv(dv) = 1[−1,1](v) (1 − ∣v∣)dv and E /∈ [−λ,λ] we find with x ∶= λ/E ∈ (−1,1) that

hE,λ =
λ x

(1 + x) ln (1 + x) + (1 − x) ln (1 − x)
.

Therefore, ∣hE,λ∣ > λ/(2 ln(2)) for ∣E∣ > λ, and Iλ is empty for λ ≥ 4 ln(2). For 0 ≤ λ < 4 ln(2)
we find Iλ = (−cλ,−λ) ∪ (λ, cλ) and specess(Hλ) = [−cλ, cλ] and for λ ≥ 4 ln(2) we have
specess(Hλ) = [−λ,λ].
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(iv) For general distributions satisfying (A1) we find for 0 < λ ≤ 2 + 2σ2

2−σ2 that

{E ∈ R± ∶ λv± < ∣E∣ ≤ 2 + λ2σ2

10
} ⊂

{E ∈ R± ∶ λv± < ∣E∣ ≤ 1 − λ
2
+

√

(1 + λ
2
)2 + λ2σ2} ⊂ Iλ .

To obtain part (iv) let X = E − λv, h = hE,λ E = Ev and note that h = E(h2/X). Hence,

∣E∣ − ∣h∣ = ∣E − h∣ = ∣E(X − h)∣ = ∣E(
(X − h)2

X
)∣ ≥

E((X − h)2)

∣E∣ + λ
=
λ2σ2 + (E(X − h))2

∣E∣ + λ
.

Thus, ∣hE,λ∣ < ∣E∣ − λ2σ2

∣E∣+λ . Analyzing ∣E∣ − λ2σ2

∣E∣+λ ≤ 2 one finds the second relation in (iv). For the

first relation note that
√
a2 + b2 ≥ a + 1

2
√
a2+b2

b2 and
√

(1 + λ/2)2 + σ2λ2 ≤ 5 for λ ≤ 2 + 2σ2

2−σ2 and

σ2 ≤ 1. Note that part (iv) shows the statement on Iλ being non-empty in Theorem 1.2.

Let me give some overview of the proofs. The operators considered in Theorem 1.2 have a special
structure which allows an analysis through 2 × 2 transfer matrices. We say that such operators
have one propagating channel, for a precise definition see Section 2. In fact, one of the novelties in
this work is the realization that many techniques from one-dimensional theory such as subordinacy
theory by Gilbert-Pearson and Kahn-Pearson [GP, KP] and links between transfer matrices and
spectrum as developed by Kiselev, Last and Simon [LS, KiLS] can be translated to operators with
one propagating channel. The precise theorems are listed in Section 2 and details are carefully
carried out in Appendix A which shows the modifications that have to be made compared to the
Jacobi operator case. For instance, not for all real energies all the transfer matrices will be defined.
The set of energies where some transfer matrix is not defined will be denoted by B∞ and in order
to make a direct translation of the subordinacy theory, one needs to stay away from the closure of
B∞. Moreover, some new technical estimates are needed which are completely trivial in the Jacobi
case (cf. Lemma 2.6 and the proof in Section 3). The kinetic part of Hλ effectively averages the
potentials in the n-th shell within the energy regions Iλ which is expressed in terms of a harmonic
mean of random variables in the transfer matrices (cf. (4.5)). Then one needs some estimates
as done in Section 5 and the spectral analysis tools translated from the one-dimensional theory,
to see that one can treat the problem analogue to random decaying potentials in one dimension
as done in [KiLS]. One important step is to show that it is in principle sufficient to consider the
spectral measure at the roots S0, cf. Theorem 2.3. Here, this is not completely trivial because
unlike in the pure one dimensional case As = Z+ (sn = 1 for all n), the localized states at the roots
are not necessarily cyclic for Hλ, cf. Remark 2.4 (ii). Starting from identities between the Green’s
functions and formal solutions of the eigenvalue equation (cf. Lemma A.1) one can still show that
for the energies where all transfer matrices are defined it is sufficient to consider the measure at a
special vector supported on S0.

The paper is organized as follows. Section 2 lists all adapted theorems from the theory of
one-dimensional Jacobi operators to the more general setup of operators with one propagating
channel, they are deterministic (no randomness enters) and may be interesting on their own. The
translation of subordinacy theory requires some new estimates (Lemma 2.6) proved in Section 3.
Details of the adaption of these theorems are carefully carried out in Appendix A.

In Section 4 we prove Proposition 1.4 based on Proposition 2.2 also proved there. Section 5
summarizes some facts on harmonic means of random variables and in Section 6 we conclude
proving Theorem 1.2. There we combine some of the theorems of Section 2 and techniques as in
[KiLS, Section 8], particularly Theorem 6.1 where some more details are given in Appendix B.
Finally, in Section 7 we prove Corollary 1.3.
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1.3 Some open questions

In the set Iλ ∶= [λv−, λv+] the random variables E −λv(x) do not have a distinct sign. The entries
in the transfer matrices (cf. (2.8), (4.6)) will be harmonic means of such random variables (cf.
(4.5)). Depending on the energy and the distribution of Pv, these harmonic means may not have
an expectation and also hE,λ does not need to exist. Therefore, the transfer matrices have a lot of
randomness and one might expect localization in this region. On the other hand, as sn →∞ the set
B∞ (cf. (2.10)) where not all transfer matrices are defined is dense in the interior of λ supp(Pv).
This sort of also reflects the fact that we have an eigenvalue at 0 with infinite multiplicity for
λ = 0. For positive λ these ’states’ may start to resonate and one could imagine the formation of
some delocalized states. However, similar as in a recent paper by Aizenman, Shamis and Warzel
on resonances and partly delocalized states on the complete graph [AShW], these states may only
delocalize in the `1 but not `2 sense meaning that one could have eigenvectors not lying in `1(As).
A deeper analysis of these resonances might be very interesting. The spectral type may also depend
on the distribution Pv or be random, particularly in the region Iλ ∖ λ supp(Pv).

Even though the set Iλ may not be empty even for large λ and so one may have some a.c.
spectrum if ∑n s

−1
n < ∞, there still should be some sort of large disorder localization:

Conjecture 1. For any compact interval [a, b] and any sequence s, there is a λ0 > 0 such that for
λ > λ0 the spectrum of the Anderson model Hλ on As is almost surely pure point in [a, b].

This conjecture is intertwined with the comment above as for any compact set and large enough
λ one has [a, b] ⊂ Iλ. This conjecture is trivially true if 0 /∈ supp(Pv) because of a gap in the
spectrum for large λ. In terms of the above theorems one may also conjecture the following:

Conjecture 2. If ∑n s
−1
n = ∞, then the spectrum of Hλ = As +λV is almost surely singular at any

disorder.

2 Operators with one propagating channel

Now let us examine the structure of the operator As + λV in more detail. We will use the
equivalence `2(As) = ⊕n `

2(Sn) ≅ ⊕nCsn and can therefore write ψ = ⊕
∞
n=0 ψ(n) where ψ(n) =

(ψ(n,1), . . . , ψ(n, sn))
⊺ ∈ Csn . The transpose shall emphasize that we will consider ψ(n) as a

column vector and the pairs (n, j), n ∈ Z+, j = 1, . . . , sn denote the vertices in As.
Define Dn ∈ Mat(sn × sn−1) by (Dn)jk = ⟨δn,j ∣As δn−1,k⟩ where δn,j is the normalized `2(As)

vector with entry one at (n, j) and entry zero on all other vertices and ⟨⋅∣⋅⟩ denotes the scalar
product. Then, as each vertex in Sn is only connected to vertices in Sn±1, we find (Asψ)(n) =

D∗
n+1ψ(n + 1) +Dnψ(n − 1). Note that

Dn =
1

√
snsn−1

⎛
⎜
⎝

1 ⋯ 1
⋮ ⋮

1 ⋯ 1

⎞
⎟
⎠
= φnφ

∗
n−1 where φn =

1
√
sn

⎛
⎜
⎝

1
⋮

1

⎞
⎟
⎠
∈ Csn , (2.1)

where the term φnφ
∗
n−1 has to be understood as a matrix product of a colum vector with a row

vector. Therefore, the Anderson model can be written as

(Hλψ)(n) = φn(φ
∗
n+1ψ(n + 1) + φ∗n−1ψ(n − 1)) + λVnψ(n) (2.2)

where Vn = diag(vn,1, . . . , vn,sn) and the vn,j are real, independent identically distributed random
variables with distribution Pv. Note, as the φn are vectors, the expression φ∗nψ(n) is the standard
scalar product between φn and ψ(n) in Csn . When necessary we will consider the vn,j as random
variables on an abstract probability space (Ω,A,P). Expectations with respect to P will be denoted
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by E, so E(vn,j) = 0, E(v2
n,j) = σ2. At 0 we have Dirichlet boundary conditions, i.e. formally

s−1 = 1, ψ(−1) = 0 and φ−1 is any number.
We will use some generalizations of well-known one-dimensional transfer matrix techniques and

list the corresponding theorems here. For the proofs one has to go through the one-dimensional
theory and adapt the proofs and results step by step. As the situation here is different from the
pure one-dimensional case we give the details in Appendix A.

Because of the more general nature of these theorems we drop the coupling constant λ and let
Vn ∈ Her(sn) be general Hermitian matrices and φn ∈ Csn be any sequence of non-zero vectors
such that the operator

(Hψ)(n) = φn (φ∗n+1ψ(n + 1) + φ∗n−1ψ(n − 1)) + Vnψ(n) (2.3)

acting on ψ = ⊕n≥0 ψ(n) ∈ ⊕n≥0 Csn ≅ ⊕n≥0 `
2(Sn) = `

2(As) is uniquely self-adjoint and

D0 = {ψ = ⊕
n≥0

ψ(n) ∈ ⊕
n≥0

Csn ∶ ψ(n) = 0 for all but finitely manyn} (2.4)

is a core. By Remark A.3 this condition is satisfied if ∑
∞
n=0 ∥φnφ

∗
n+1∥

−1 = ∞ .
Now for n ∈ Z+ let Φn = ⊕k Φn(k) ∈ `

2(As) be defined by

Φn = Pnφn i.e. Φn(n) = φn and Φn(k) = 0 for n ≠ k , (2.5)

where as above Pn is the canonical injection of Csn ≅ `2(Sn) into ⊕kCsk ≅ `2(As). In the direct
sum notation used above this means Φn = ⊕

n−1
k=0 0⊕ φn ⊕⊕k>n 0.

Definition 3. A self-adjoint operator of the form (2.3) is said to have one propagating channel
defined by the sequence of the vectors φn.

Let us explain this notion. Consider the kinetic part H0 (all Vn equal zero), then the modes of
the n-th shell connected to n−1 shell are given by Ran(P ∗

nH0Pn−1) and the modes of the n-th shell
connecting the n-th with the n + 1-st shell are given by Ran(P ∗

nH0Pn+1). In this case, both are
given by the one-dimensional space spanned by φn, i.e. these modes propagate through the n-th
shell. The sequence (φn)n forms a channel through which quantum waves can travel. An obvious
generalization is to have an operator as in (2.3) where the φn are sn × k matrices of rank k. Then
Ran(P ∗

nH0Pn−1) = Ran(P ∗
nH0Pn+1) would be always a k-dimensional space and one would have k

propagating channels.
Let us start the analysis with the following trivial facts.

Proposition 2.1. Let Vn ⊂ Csn ≅ `2(Sn) be the cyclic space of φn w.r.t. to Vn, i.e. Vn is the
span of V kn φn for k = 0, . . . , sn − 1. Then one has the following:

(i) The direct `2 sum V ∶= ⊕n≥0 Vn ⊂ `2(As) equals the cyclic space generated by the family
(Φn)n≥0. One has V = `2(As) if and only if φn is a cyclic vector for Vn for all n ∈ N.

(ii) H leaves the space V and the orthogonal components in `2(Sn), i.e. V⊥ ∩ `2(Sn) ≅ V⊥n invari-
ant. In particular, the spectrum spec(H) = spec(H ∣V) ∪ ⋃n spec(H ∣V⊥n) where spec(H ∣V⊥n)
consists of finitely many eigenvalues with corresponding eigenvectors in `2(Sn).

For Vn = 0, Vn = φnC and ∥φn∥ = 1 we find that H ∣V is isomorphic to the adjacency operator
on Z+ with pure a.c. spectrum on [−2,2] and Vn∣V⊥n gives an eigenvalue zero with multiplicity
sn − 1. This shows Proposition 1.1.

The eigenvalue equation Hψ = zψ with ψ(n) ∈ Vn can be written as

(z − Vn)ψ(n) = φn (φ∗n+1ψ(n + 1) + φ∗n−1ψ(n − 1)) . (2.6)
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Let us define un = un(ψ) ∶= φ
∗
nψ(n) ∈ C and let z /∈ spec(Vn∣Vn) which is always the case for

non-real energies. Then (z − Vn)
−1φn ∈ Vn is well defined, even if z ∈ spec(Vn∣V⊥n). For a solution

ψ of (2.6) with z /∈ spec(Vn∣Vn), n ≥ 1, we obtain for un = un(ψ) that

un = (φ∗n(z − Vn)
−1φn) (un+1 + un−1) . (2.7)

Assuming φ∗n(z − Vn)
−1φn is not zero, this can be rewritten as

(
un+1

un
) = Tz,n (

un
un−1

) where Tz,n ∶= (
(φ∗n(z − Vn)

−1φn)
−1

−1
1 0

) . (2.8)

The Tz,n are the 2× 2 transfer matrices at stage n associated to the operator H. By this equation
for n = 0 we may also define u−1 for such a solution. Again, for complex z /∈ R, φ∗n(z − Vn)

−1φn
exists and is invertible as the imaginary part will be negative. For α ∈ Vn, Vnα = Eα, multiplying
(2.6) with α∗ from the left gives 0 = α∗φn(un+1 + un−1). Therefore, un+1 = −un−1 for a solution if
E ∈ spec(Vn∣Vn) (then α ∈ Vn, so α∗φn ≠ 0). Hence, define

TE,n = (
0 −1
1 0

) if E ∈ spec(Vn∣Vn). (2.9)

In fact, (2.9) extends z ↦ Tz,n holomorphically to z ∈ spec(Vn∣Vn). Let us define

An ∶= {E ∈ R ∶ φ∗n(E − Vn)
−1φn = 0} , Bn ∶=

n−1

⋃
k=0

Ak , B∞ ∶=
∞
⋃
k=0

Ak . (2.10)

So An is exactly the finite set where TE,n is not defined and consists of dim(Vn)−1 points interlaced
between the eigenvalues2 of Vn∣Vn.

For any complex z /∈ Bn we can define the transfer matrix Tz(n) from 0 to n by

Tz(n) ∶= Tz,n−1⋯Tz,1Tz,0 , then (
un
un−1

) = Tz(n)(
u0

u−1
) . (2.11)

For convenience we also define

az,n ∶=
1

φ∗n(z − Vn)
−1φn

, ψz,n ∶=
(z − Vn)

−1φn
φ∗n(z − Vn)

−1φn
. (2.12)

Note that

Im(az,n) / Im(z) = ∥ψz,n∥
2
≥ ∣

d

dz
az,n∣ ≥

1

∥φn∥2
and ∥ψE,n∥

2
=

d

dE
aE,n . (2.13)

As above, if z = E ∈ spec(Vn∣Vn) then we let aE,n = 0 and ψE,n can be defined by analytic extension
leading to ψE,n = α/(φ∗nα) where α is a unit eigenvector for the eigenvalue E of Vn∣Vn (cf. proof
of Lemma A.2 (ii)). Hence, az,n and ψz,n are defined for z /∈ An.

First let us consider the spectrum as a set. Following the transfer matrices let us define the
corresponding Jacobi operator Jz on `2(Z+) for any z /∈ B∞ by

(Jzu)n = un+1 + un−1 − az,n un. (2.14)

Then Jz has the same transfer matrices at energy 0 and JE is self-adjoint for real energies E /∈ B∞.

2Note that by cyclicity, the eigenvalues of Vn∣Vn are simple.
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Proposition 2.2. Assume supn ∥φn∥ < ∞ and E /∈ B∞. Then, E ∈ spec(JE) ⇒ E ∈ spec(H)

and E ∈ specess(JE) ⇒ E ∈ specess(H). If moreover E /∈ spec(V) where V = ⊕n Vn, then we have
equivalence: E ∈ spec(H) ⇔ 0 ∈ spec(JE) and E ∈ specess(H) ⇔ 0 ∈ specess(JE).

Let µn denote the spectral measure at Φn, i.e.

∫ f dµn = ⟨Φn ∣ f(H) ∣Φn⟩ . (2.15)

Following the relations between Green’s functions and solutions to (2.7) and using arguments by
Carmona [Car, CL] we find the following relations of spectral measures. Part (ii) and (iii) are
analogue to the one-dimensional theory.

Theorem 2.3. We have the following:

(i) Let ϕ ∈ Vn ⊂ Csn and define ϕ = ⊕kϕ(k) ∈ ⊕kCsk by ϕ(n) = ϕ, ϕ(k) = 0 ∈ Csk for k ≠ n.
Moreover, let µn,ϕ denote the spectral measure at ϕ, i.e. ∫ fdµn,ϕ = ⟨ϕ∣f(H)∣ϕ⟩. Then, on
R ∖An the measure µn,ϕ is absolutely continuous with respect to µn and one has

1R∖An(E)µn,ϕ(dE) = 1R∖An(E) ∣ϕ∗ψE,n∣
2 µn(dE)

Moreover, the set of energies where ϕ∗ψE,n = 0 is finite.

(ii) On the set where TE(n) is well defined, R∖Bn, the measure µn is absolutely continuous with
respect to µ0 and we have

1R∖Bn(E) µn(dE) = 1R∖Bn(E) ∣ ( 1 0 )TE(n) ( 1
0 ) ∣

2
µ0(dE) .

In particular, µ0 is a spectral measure for H ∣V on R ∖B∞ = R ∖ (⋃
∞
k=0Ak).

(iii) There exists a positive point measure ν supported on B∞ such that µ0 is given by the weak
limit

µ0(dE) = lim
n→∞

1R∖B∞(E)dE

π ∥TE(n) ( 1
0 ) ∥

2
+ ν(dE).

The measure ν includes a delta measure at E ∈ B∞ if and only if for the smallest integer m
such that E ∈ Am one finds that TE(m) ( 1

0 ) = ( 0
c ) for some c (cf. Remark 2.4 (iii) ).

Remark 2.4.

(i) Note as An is finite, µn is pure point whenever µn,ϕ is pure point for some ϕ ∈ Vn. Similarly,
as B∞ is countable and V⊥n finite dimensional one immediately sees that H has pure point
spectrum, whenever the measure µ0 is pure point.

(ii) One might get the impression that Φ0 should be a cyclic vector for V, however, this does not
need to be the case. It is possible to have an eigenvalue in B∞ with an eigenvector ψ ∈ V
which is orthogonal to Φ0. To see this assume that E ∈ Am, i.e. Φ∗

m(Vm − E)−1Φm = 0 but
E /∈ An for all n > m, thus TE,n exists. Let um = 0, um+1 = 1 and (

un+1
un ) = TE,n (

un
un−1 )

for n > m and assume that ∑n>m ∣un∣
2∥ψE,n∥

2 < ∞. Then let ψ(n) = unψE,n for n > m,
ψ(m) = (E −Vm)−1φmum+1 and ψ(n) = 0 for n <m. It is easy to check that Hψ = Eψ and ψ
is orthogonal to Φn for n = 1, . . . ,m.

(iii) In part (iii) of the above theorem one can construct an eigenvector contributing to ν in a
similar fashion. For TE(m) ( 1

0 ) = ( 0
c ), E ∈ Am ⊂ B∞, let u−1 = 0,u1 = 1 and (

un
un−1 ) =

TE(n) ( 1
0 ). Then set ψ(m) = (E−Vm)−1φm um−1, ψ(n) = 0 for n >m, ψ(n) = unψE,n for n <

m. Using all the assumptions one easily verifies Hψ = Eψ and ⟨Φ0∣ψ⟩ = u1 = 1. Moreover, any
eigenvector must have φ∗mψ(m) = 0 as can be seen from (2.6), thus the condition TE(m) ( 1

0 ) =

( 0
c ) is really needed. This eigenvector is an eigenvector for any cutoff of H at N > m and

any boundary condition and hence contributes to ν (cf. proof in Section A.2).
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(iv) Constructing eigenfunctions similarly as in (ii) and (iii) one sees that E ∈ B∞ can be a
multiple eigenvalue of H ∣V. For E ∈ An ∩ Am, n < m and E /∈ Ak for n < k < m one may
construct an eigenvector ψn,m supported from the n-th to the m-th shell iff a solution of (2.7)
staisfies both boundary conditions un = 0 = um. Allow n = −1 to denote eigenvectors as in
(iii). As ψ−1,n and ψn,m are not orthogonal, more than one such eigenvector can contribute
to ν({E}).

To ensure pure a.c. spectrum we will use the following theorem, a version of [LS, Theorem 1.3].
It follows directly from Theorem 2.3 and [LS, Lemma 3.8] with essentially the same proof as [LS,
Theorem 1.3]

Theorem 2.5. Assume that the transfer matrices TE,n exist for all E ∈ [a, b] and all n ∈ N, i.e.
[a, b] ∩B∞ = ∅, and assume for some p > 2 one has

lim inf
n→∞ ∫

b

a
∥TE(n)∥p dE < ∞ .

Then, the spectrum of H on the cyclic space V generated by the {Φn ∶ n ∈ N} is purely absolutely
continuous in (a, b).

The subordinacy theory of Gilbert-Pearson [GP], or better Kahn-Pearson [KP] also translates
to some extend. However, there are some differences. First, the actual solution of the eigenvalue
equation is ⊕n unψE,n, so we need to adjust the norm of the sequence accordingly and define:

Definition 4. Let E /∈ B∞. A solution w = (wn)n to the modified eigenvalue equation (2.7) at
energy E will be called subordinate iff for all linear independent solutions v = (vn)n one has

lim
n→∞

∥w∥E,n

∥v∥E,n
= 0 where ∥w∥

2
E,n ∶=

n

∑
k=0

∣wk ∣
2
∥ψE,k∥

2 .

But also after this adjustment we require some more estimates for the subordinacy theory.
This is somehow related to the fact that Φ0 may not be cyclic for the space V, the cyclic space
generated by all the Φn. Energies in B∞ may lead to eigenvectors orthogonal to Φ0. Following the
proofs in [KP] closely, it turns out that we need the following estimates which may also be useful
in other circumstances. As this estimate is a new ingredient (which is trivial in the pure 1D case),
we singled out its proof in Section 3.

Lemma 2.6. We find the following estimates:

(i) For any E /∈ B∞ we have

∣aE+iη,n − aE,n∣

∥ψE,n∥2
=

∣aE+iη,n − aE,n∣

∣ ( d
dz
az,n)∣z=E ∣

≤ η , ∥ψz,n∥ ≤ ∥ψE,n∥ . (2.16)

(ii) Assume that (E − 3ε , E + 3ε) ∩ B∞ = ∅ for some ε > 0. Then we find a uniform constant
C > 0 such that for all 0 ≤ η ≤ ε and all n ∈ Z+ one has

1 ≤ ∥ψE,n∥ / ∥ψE+iη,n∥ ≤ C . (2.17)

The second estimate is only available for energies not in the closure B∞ of B∞. Indeed, the ratio
∥ψE,n∥/∥ψE+iη,n∥ may blow up for any η > 0 along subsequences in n where E gets arbitrarily close
to the sets An (in which case E ∈ B∞). So we need to restrict the subordinacy characterization
to the complement of B∞. Together with these estimates one can follow the paper by Kahn and
Pearson [KP] as explained in Appendix A.3. To state the result, let Σac denote the support of the
absolutely continuous spectrum of H and let Σs denote the support of the singular spectrum of
H ∣V, i.e. H restricted to V. The following theorem corresponds to [KP, Theorem 3].

13



Theorem 2.7. Let

Σ′
ac ∶= {E /∈ B∞ ∶ there is no subordinate solution }

Σ′
s ∶= {E /∈ B∞ ∶ un = ( 1 0 )TE(n) ( 1

0 ) is a subordinate solution }

Σ′
0 ∶= {E /∈ B∞ ∶ wn = ( 1 0 )TE(n) ( m−1 ) is subordinate for some m ∈ R} .

Then Σ′
ac is an essential support of the a.c. spectrum of H on R ∖ B∞ and Σ′

s is an essential
support of the singular spectrum of H ∣V on R ∖B∞ which is optimal with respect to the Lebesgue
measure. This means µ0,ac(Σac ∖ (Σ′

ac ∪B∞)) = 0, µ0,s(Σs ∖ (Σ′
s ∪B∞)) = 0, ∣Σ′

ac ∖ Σac∣ = 0 and
∣Σ′
s∣ = 0. Here, µ0,ac and µ0,s denote the a.c. and singular part of µ0 and ∣ ⋅ ∣ denotes the Lebesgue

measure of a set. Moreover, for Lebesgue almost all E ∈ Σ′
0 with subordinate solution wn where

w−1 = −1, w0 =m(E) ∈ R we find

lim
η↓0

⟨Φn ∣ (H − (E + iη))−1
∣Φ0⟩ = wn . (2.18)

The proof of the characterization [LS, Theorem 1.1] of an essential support of the a.c. spectrum
depends on subordinacy theory and a similar identity as Theorem 2.3 (ii). So after establishing
these theorems one might think that at least away from B∞ one should have a similar characteri-
zation of an essential support of µ0,ac, the a.c. part of µ0. Unfortunately, following the arguments
in [LS] does not quite give this result, unless one finds uniform constants 0 < c < C such that3

1 ≤ ∥ψE,n∥ ∥φn∥ < C and c < ∥ψE,n∥ ∥ψE,n−1∥ < C uniformly in n and E (locally). In that case the
sets ΣΦ and ΣΨ as defined below are equal. We find that [LS, Theorem 1.1 and 1.2] generalize to
the presented situation in the following way.

Theorem 2.8. Let Σac be the support of the absolutely continuous spectrum of H as before and
let Φk = diag(∥φk∥ , ∥φk−1∥) and ΨE,k = diag(∥ψE,k∥ , ∥ψE,k−1∥). Moreover, define the sets

ΣΦ ∶= {E ∈ R ∶ lim inf
n→∞

1

n

n

∑
k=1

∥Φ−1
k TE(k) ∥

2
< ∞} ,

ΣΨ ∶=

⎧⎪⎪
⎨
⎪⎪⎩

E ∈ R ∶ lim inf
n→∞

∑
n
k=1 ∥ΨE,k TE(k) ∥

2

∑
n
k=1 det(ΨE,k)

< ∞

⎫⎪⎪
⎬
⎪⎪⎭

.

Then, one has the following:

(i) For Lebesgue almost all E ∈ Σac we find E ∈ ΣΦ.

(ii) For E ∈ ΣΨ there is no subordinate solution at E and thus for Lebesgue almost all E ∈ ΣΨ∖B∞
we find E ∈ Σac.

(iii) Defining the transfer matrix from k to m by TE(k,m) = TE(k)TE(m)−1 we find for any fixed
sequences kn, mn and Lebesgue almost every E ∈ Σac that

lim inf
n→∞

∥Φ−1
kn TE(kn,mn)Φmn / det(Φmn) ∥ < ∞ .

Let us finally give some remark on a possible extension of the above theorems. In general one
may also want to consider operators as in (2.3) with some infinite dimensional fibers, i.e. allowing
sn = ∞ in the sense C∞ ≅ `2(N). Then, Vn should be a Hermitian operator on `2(N). As long as
all the Vn have pure point spectrum without accumulation point, similar techniques apply, only
the sets An defined above are possibly countably infinite. However, more care must be taken when

3The bound ψE,n∥ ≥ 1/∥φn∥ is trivial and already mentioned in (2.13)
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Vn has some continuous spectrum or dense point spectrum. These cases might be interesting for
further investigation.

Now, for the singular spectrum we will essentially use the Simon-Wolff criterion in combination
with (2.18) in Theorem 2.7. To show how this leads to the pure point or pure singular continuous
spectrum, let us finish this section by proving the following general statement:

Theorem 2.9. Let ϕ = ϕ⊕⊕n≥1 0 with ϕ ∈ V0.

(i) Assume that for Lebesgue almost every energy E ∈ (a, b) we find a subordinate solution wE,n
to (2.7) at E such that

∞
∑
n=0

∣wE,n∣
2
∥ψE,n∥

2
< ∞ .

Then, for Lebesgue almost every c, the operator H+c ∣ϕ⟩⟨ϕ∣ has pure point spectrum in (a, b).

(ii) Let (a, b) ∩B∞ = ∅ and assume that for Lebesgue almost all E ∈ (a, b) there is a subordinate
solution wE,n to (2.7) at E such that

∞
∑
n=0

∣wE,n∣
2
∥ψE,n∥

2
= ∞ .

Then, for Lebesgue almost every c, the spectral measure of H + c ∣ϕ⟩⟨ϕ∣ at ϕ (i.e. µ0,ϕ as in
Theorem 2.3) is purely singular continuous in (a, b).

Proof. For part (i) first note that if wn is a subordinate solution of (2.7) for E /∈ B∞ such that

∑n ∣wn∣
2∥ψE,n∥

2 < ∞, then either w−1 = 0 and ψ ∶= ⊕nwnψE,n is an eigenvector of H for the
eigenvalue E, or w−1 ≠ 0 and (H −E)ψ = −w−1 Φ0. In the latter case one finds

sup
η>0

∥(H −E − iη)−1 Φ0∥
2
= sup

η>0
∥

H −E

H −E − iη
ψ/w−1∥

2

≤ ∥ψ∥2
/ ∣w−1∣

2
< ∞ .

Using the Green’s function identities in Lemma A.1 one finds

(H − z)−1ϕ = ((V0 − z)
−1

(ϕ − φ0ψ
∗
z̄,0ϕ)) ⊕

∞
⊕
n=1

((ψ∗z̄,0ϕ)gz(n,0)ψz,n) .

where gz(n,m) = ⟨Φn∣(H − z)−1Φm⟩ (Our scalar product ⟨⋅∣⋅⟩ is linear in the second and anti-linear
in the first component.) Comparing the general case with ϕ = φ0 (i.e. ϕ = Φ0) we see that for
E /∈ spec(V0∣V0) ∪A0 it follows that

sup
η>0

∥(H −E − iη)−1ϕ ∥ < ∞ .

As there are only countably many eigenvalues of H and V0, the latter equation is true for Lebesgue
almost all E ∈ (a, b). Using the Simon-Wolff criterium, Theorem 2’ in [SW], we find for c ∈ L1,
a set of full Lebesgue measure, that the spectral measure at ϕ of H + c∣ϕ⟩⟨ϕ∣ in [a, b] is pure
point. Clearly, for another set L2 of full Lebesgue measure, φ0 is cyclic for V0 + c ϕϕ

∗. Hence,
by Theorem 2.3 (Remark 2.4 (i)) the operator H + c∣ϕ⟩⟨ϕ∣ has pure point spectrum in [a, b] for
c ∈ L1 ∩L2.

For part (ii) note that for (a, b) ∩B∞ = ∅ we can apply Theorem 2.7 and (2.18). We will use
the notations as in Theorem 2.7. By assumption, the Lebesgue measure of Σ′

ac ∩ (a, b) is zero,
therefore, there is no a.c. spectrum in (a, b).

15



As the Lebesgue measure of Σ′
0 is zero, there is still a set of energies of full Lebesgue measure

where w−1 = −1 and wn = limη↓0 gz(n,0) is a subordinate solution with ∑n ∣wn∣
2∥ψE,n∥

2 = ∞. This
implies

sup
η>0

∥(H −E − iη)Φ0∥
2
= ∞ and sup

η>0
∥(H −E − iη)−1

∣ϕ∥
2
= ∞

for Lebesgue almost all energies E ∈ [a, b]. By the Simon-Wolff criterium this means that for
Lebesgue almost every c the spectral measure of H + c∣ϕ⟩⟨ϕ∣ at ϕ is purely continuous in (a, b).
As there can be no a.c. spectrum in (a, b) as mentioned above, it has to be purely singular
continuous.

3 Proof of Lemma 2.6

The proof of part (ii) of Theorem 2.9 depends heavily on the subordinacy theory and in particular
on (2.18). This theorem in turn is the key for the pure point and pure singular continuous spectrum
part in Theorem 1.2. As we mentioned above, the estimates given in Lemma 2.6 are crucial which
we prove in this section. They may also be useful in other circumstances. Recall that we want to
show:

(i) For any E ∈ R ∖B∞ we have ∣aE+iη,n − aE,n∣ / ∥ψE,n∥
2 ≤ η and ∥ψz,n∥ ≤ ∥ψE,n∥.

(ii) If (E − 3ε , E + 3ε) ∩B∞ = ∅ then we find a uniform constant C > 0 independent of n (and in
fact of Vn) such that for all 0 ≤ η ≤ ε one has 1 ≤ ∥ψE,n∥ / ∥ψE+iη,n∥ ≤ C .

One may note that these estimates are completely trivial in the one dimensional Jacobi matrix
case4.

Proof of Lemma 2.6. For part (i) note that for z = E + iη

∣az,n − aE,n∣ ≥ ∣ Im(az,n)∣ = η ∥ψz,n∥
2
≥ η ∣

d

dz
az,n∣ ≥ η ∣

d

dη
(∣aE+iη − aE ∣ )∣ .

Using the mean value theorem it follows that for any η > 0 there is 0 < η′ < η such that

∣ d
dη

(∣aE+iη′ − aE ∣)∣ ≥ ∣ d
dη

(∣aE+iη − aE ∣)∣ and hence the maximum derivative must be at η = 0. Thus,

by the mean value theorem,

∥ψE+iη,n∥
2
≤ η−1

∣aE+iη − aE ∣ = ∣
d

dη
(∣aE+η′,n − aE,n∣)∣ ≤ ∣

d

dE
aE,n∣ = ∥ψE,n∥

2

proving (2.16).
For part (ii) note that the first inequality is proved in part (i) and we only need to worry about

an upper bound for ∥ψE,n∥
2 / ∥ψE+iη,n∥

2 uniformly in Vn and φn. Without loss of generality we may
assume E = 0 by changing Vn to Vn −E. Let us further use an orthonormal basis of eigenvectors
in Vn such that Vn∣Vn = diag(−x1, . . . ,−xk, y1, . . . , yl) where xi ≥ 0 and yj > 0. All these values are
different as φn is a cyclic vector. Moreover, we let φn = (α1, . . . , αk, β1, . . . , βl)

⊺ in this basis and
let ai = ∣αi∣

2 > 0 and bj = ∣βj ∣
2 > 0. By cyclicity, none of these values is zero. Then we define

f(x) ∶= φ∗n(x − Vn)
−1φn = ∑

i

ai
xi + x

− ∑
j

bj

yj − x
.

By assumption (−3ε,3ε) ∩B∞ = ∅ and hence f(x) ≠ 0 for ∣x∣ < 3ε. Moreover, f(x) is decreasing
from +∞ to −∞ between single poles located at the −xi and yj . So f(x) has at most one pole

4Indeed, in that case one simply has sn = 1, az,n = (z − vn)/(∣φn∣2) and ψz,n = 1/(∣ψn∣2)
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inside (−3ε,3ε) which we may assume to be −x1 (the case of a pole at a different −xi or some yj
inside (−3ε,3ε) is completely analogue). Thus, without loss of generality we may assume f(δ) ≥ 0
for all 0 < δ ≤ 3ε and yj > 3ε for all j and at most one xi in [0,3ε) (possibly equal 0).
Case 1: We have one pole in [−ε,0], say x1 ≤ ε, and xj > 3ε for j ≥ 2. Then f(−3ε) ≤ 0 and
f(3ε) ≥ 0 and for any 0 ≤ η ≤ 3ε we find

a1

4ε
≥

a1

x1 + 3ε
≥

l

∑
j=1

bj

yj − 3ε
−

k

∑
i=2

ai
xi + 3ε

≥
l

∑
j=1

bjyj

y2
j + η

2
−

k

∑
i=2

aixi
x2
i + η

2
(3.1)

a1

2ε
≥

a1

3ε − x
≥

k

∑
i=2

ai
xi + 3ε

−
l

∑
j=1

bj

yj − 3ε
≥

k

∑
i=2

aixi
x2
i + η

2
−

l

∑
j=1

bjyj

y2
j + η

2
. (3.2)

Combining both equations gives

RRRRRRRRRRR

l

∑
j=1

bjyj

y2
j + η

2
−

k

∑
i=2

a2
ixi

x2
i + η

2

RRRRRRRRRRR

≤
a1

2ε
≤

a1

2x1

and summing both equations and dividing by 6ε gives

a1

8ε2
≥

k

∑
i=2

ai
x2
i − 9ε2

+
l

∑
j=1

bj

y2
j − 9ε2

>
k

∑
i=2

ai
x2
i + η

2
+

l

∑
j=1

bj

y2
j + η

2

for any 0 ≤ η ≤ ε. Using these estimates one finds

∥ψ0,n∥
2
=

∑
k
i=1 ai/x

2
i +∑

l
j=1 bj/y

2
j

(∑
k
i=1 ai/xi −∑

l
j=1 bj/yj)

2
≤

a1/x
2
1 + a1/(8x

2
1)

(a1/x1 − a1/(2x1))
2
≤

9

2a1

and

1

∥ψiη,n∥2
=

(∑
k
i=1

aixi
x2
i+η2

−∑
l
j=1

bjyj
y2j+η2

)
2

∑
k
i=1

ai
x2
i+η2

+∑
l
j=1

bj
y2j+η2

+
k

∑
i=1

aiη
2

x2
i + η

2
+

l

∑
j=1

bjη
2

y2
j + η

2

≤
( a1x1

x2
1+η2

+ a1
2ε

)
2

a1
x2
1+η2

− a1
8ε2

+ η2
(

a1

x2
1 + η

2
+
a1

8ε2
) ≤

2a21x
2
1

(x2
1+η2)2

+
a21
ε2

3
4

a1
x2
1+η2

+
9a1

8

≤ a1 (
8

3

x2
1

x2
1 + η

2
+

4

3

x2
1 + η

2

ε2
+

9

8
) ≤ a1 (

16

3
+

9

8
)

where we used η, x1 ≤ ε at several places. Both estimates together give the required uniform upper
bound on ∥ψ0,n∥ / ∥ψiη,n∥ which also remains valid in the limiting case x1 → 0.
Case 2: xi > ε for all i, recall that also yj > 3ε for all j. We find for x ∈ (0, ε) that

∣f ′(x)∣ =
k

∑
i=1

ai
(xi + x)2

+
l

∑
j=1

bj

(yj − x)2
≥

1

4

⎛

⎝

k

∑
i=1

ai
x2
i

+
l

∑
j=1

bj

y2
j

⎞

⎠
=

∣f ′(0)∣

4
.

Combining this estimate with the fact that f is decaying on (0, ε) and f(ε) > 0 we find f(0) ≥
ε
4
∣f ′(0)∣. Using ∣ ai

xi+η2/xi −
ai
xi

∣ ≤ ε ai
x2
i

coming from η2/xi < ε, we obtain

RRRRRRRRRRR

∑
i

aixi
x2
i + η

2
−∑

j

bjyj

y2
j + η

2
− f(0)

RRRRRRRRRRR

≤ ε∣f ′(0)∣
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for η ≤ ε. With this estimate and the expressions for ∥ψ0,n∥
2 and ∥ψiη,n∥

−2 as above we then find
for η ∈ [0, ε] that

∥ψ0,n∥
2
=

∣f ′(0)∣

(f(0))2
,

1

∥ψiη,n∥2
≤

(f(0) + ε∣f ′(0)∣)
2

1
2
∣f ′(0)∣

+ ε2
∣f ′(0)∣

which using ε∣f ′(0)∣/f(0) ≤ 4 gives ∥ψ0,n∥ / ∥ψiη,n∥ ≤
√

66.

4 The essential spectrum

4.1 Relation of resolvents of H and the Jacobi operators JE

We first prove Proposition 2.2 and will then apply it to the Anderson model Hλ on As. Let us
introduce the following notations:

Definition 5. For a sequence w = (wn)n, wn ∈ CZ+ we define

ψE ⊙w ∶=
∞
⊕
n=0

(wnψE,n) and φ⊙w ∶=
∞
⊕
n=0

(wn φn) .

If the resulting direct sums do not give `2 vectors, then one may still understand it formally as a
collection of vectors (wnφn)n ∈ ⨉nCsn .

A crucial part is now the following equation that is easy to verify,

(H − z) (ψz ⊙w) = φ⊙ (Jz(w)) , (4.1)

with Jz as in (2.14). Another important point which is not hard to check is that (H− z)ψ = φ⊙ u
for some sequence u implies ψ = ψz ⊙w, JE(w) = u and wn = φ

∗
nψ(n).

Proof of Proposition 2.2. Recall that we assumed ∥φn∥ < C for some C uniformly in n. First,
assume E /∈ spec(H), then (H −E)−1 exists as a bounded operator. Then by uniform boundedness
of ∥φn∥, the operator

(Rw)n ∶= ⟨Φn ∣ (H −E)
−1

(φ⊙w) ⟩

is bounded on `2(Z+). Moreover, it is not hard to check that (H −E)−1(φ ⊙ w) = ψE ⊙Rw and
hence φ ⊙ w = (H − E)(ψE ⊙ Rw) = φ ⊙ JE(Rw). Hence, JERw = w for all w and therefore
JER = 1, R∗JE = 1 and R∗ = R∗JER = R. Thus, R = J −1

E and 0 /∈ spec(JE). Thus, we have
shown 0 ∈ spec(JE) ⇒ E ∈ spec(H).

Now let 0 /∈ spec(JE), i.e. J −1
E exists and assume E /∈ spec(V). Then,

(H −E)(V −E)
−1 ψ = ψ − φ⊙w(ψ) where (4.2)

w(ψ)n = φ∗n+1(E − Vn+1)
−1ψn+1 + φ

∗
n−1(E − Vn−1)

−1ψn−1 . (4.3)

It follows that (H −E)(AE ψ) = ψ for

AE ψ ∶= (V −E)
−1 ψ + ψE ⊙J

−1
E (w(ψ)) . (4.4)

Hence, E is in the resolvent set and AE = (H−E)−1 if AE defines a bounded operator on H. Now,
(V −E)−1 is bounded and ∥w(ψ)∥2 ≤ 2(supn ∥φn∥)∥(V −E)−1∥ ∥ψ∥. Therefore, it is enough to show
that AE(w) = ψE ⊙J

−1
E (w) is bounded from `2(Z+) to ⊕nCsn .

By our assumptions, ∥ψE,n∥ = ∥(Vn −E)−1φn∥∣aE,n∣ ≤ C ∣aE,n∣ for some constant C. Define the
scalar product norm ∥v∥2

aE
= ∑n(1 + a

2
E,n)∣vn∣

2 for sequences v = (vn)n. This norm is equivalent
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to the norm ∥v∥2
JE = ∥v∥2

2 + ∥JEv∥
2
2. Therefore, the domain of JE is exactly the set where ∥ ⋅ ∥aE

is bounded and JE has an inverse on `2(Z+) (i.e. 0 is in the resolvent set), if and only if JE is
invertible as an operator from `2(Z+, ∥ ⋅ ∥aE) to `2(Z+). In particular, in this case one has a bound
for the norm ∥J −1

E (w)∥aE in terms of ∥w∥2. Hence, if 0 /∈ spec(JE), i.e. J −1
E exists, then

∥ψE ⊙J
−1
E (w)∥ ≤ C ∥J

−1
E (w)∥aE ≤ C∥J

−1
E ∥2→aE ∥w∥2 .

This shows boundedness of AE , and hence of AE and E /∈ spec(H). Therefore we have shown

E ∈ spec(H) ⇔ 0 ∈ spec(JE). Now let J
(n)
E denote the restriction of JE to `2({m ∈ Z ∶ m ≥ n}

and let H(n) denote the restriction of H to ⊕m≥nCsm . Then,

0 ∈ specess(JE) ⇔ 0 ∈ spec(J
(n)
E ) for all n ∈ Z+ ⇔

E ∈ spec(H(n)
) for all n ∈ Z+ ⇔ E ∈ specess(H).

The first equivalence is a special case of the last equivalence when setting sn = 1 for all n and
the second equivalence was proved above5, so let us consider the last claimed equivalence. The
direction ’⇐’ is clear as finite rank perturbations like formally changing φn−1 to 0, do not change
the essential spectrum. Assume E ∈ spec(H(n)) for all n and E /∈ specess(H). This would imply
that E is an isolated eigenvalue of finite multiplicity for any H(n). As E /∈ B∞ ∪ spec(V) and
∥ψE,n∥ ≥ 1/∥φn∥ > c > 0 uniformly, this means one finds two linear independent solutions (un)n
and (vn)n to (2.7) that are both `2 at infinity. This contradicts the invariance6 of the Wronskian
W = un+1vn − vn+1un that can not go to zero.

4.2 Essential spectrum of the Anderson model

In this subsection we will prove Proposition 1.4. From now on (except for the appendix) we will

consider the random operator Hλ as in (2.2). Recall that for Hλ we have φn = s
−1/2
n (1,1, . . . ,1)⊺

and λVn = λdiag(vn,1, . . . , vn,sn) which replaces Vn in the definitions of aE,n, ψE,n, TE,n and
TE(n), i.e.

aE,n = (φ∗n(E − λVn)
−1φn)

−1
=

1
1
sn
∑
sn
j=1

1
E−λvn,j

, (4.5)

ψE,n = aE,n(E − λVn)
−1 φn and TE,n = (

aE,n −1
1 0

) . (4.6)

These are now random objects as (vn,j)n,j is a family of independent identically distributed random
variables supported in [−1,1] with mean zero, E(vn,j) = 0, and positive variance. As before we let
V = ⊕n Vn so that Hλ = As + λV. Similar as in (2.14) above we define the Jacobi operator with
potentials −aE,n on `2(Z+) which is now a random, λ-dependent Jacobi operator which we call
JE,λ. Let us start with the following Lemma.

Lemma 4.1. Let s = (sn)n be any sequence of positive integers characterizing the antitree As and
the operator As. Let E be an energy that is almost surely not in B∞ such that there exists a real
k so that for any ε > 0 we have lim infn→∞ P(∣aE,n − 2 cos(k)∣ < ε) > 0, formally

E ∈ R , P(E ∈ B∞) = 0 and ∃k ∈ R ∀ ε > 0 ∶ lim inf
n→∞

P(∣aE,n − 2 cos(k)∣ < ε) > 0 .

Then almost surely E ∈ spec(Hλ).

5If E ∈ spec(V) then we have only the implication ’⇒’ in the middle
6The invariance can be easily checked, comes from the fact that the determinant of the transfer matrices is 1
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Proof. It is sufficient to show that we have 0 ∈ spec(JE,λ) almost surely. For this we follow the usual
proof as for the almost sure spectrum of the one-dimensional Anderson model by constructing a
Weyl sequence. Let ε > 0, then there is δ > 0 and N > 0 such that for all n > N we have
P(∣aE,n − 2 cos(k)∣ > ε) > δ. Therefore, with probability one we find arbitrarily long sequences
where aE,n is ε-close to 2 cos(k), i.e. there is a (random) sequence nm, m ∈ Z+ such that for all m
and all 1 ≤ j ≤m we have ∣aE,nm+j − 2 cos(k)∣ < ε. Define

wm,n =

⎧⎪⎪
⎨
⎪⎪⎩

0 for n > nm +m or n ≤ nm

eikn for nm < n ≤ nm +m
and consider wm = (wm,n)n ∈ `

2
(Z+)

Then ∥wm∥2
2 = m and ∥JE,λwm∥2

2 ≤ 2 + ε2m, thus lim supm→∞ ∥JE,λwm∥2 / ∥wm∥2 ≤ ε showing
[E − ε,E + ε] ∩ spec(Jλ) ≠ ∅ almost surely, for any fixed ε > 0. Now take a sequence εj → 0 and
one obtains almost surely that E ∈ spec(JE,λ).

We also need the following

Lemma 4.2. Let sn > cn
α for some c > 0, α > 0 and let the single site distribution Pv be compactly

supported. We have almost surely for n → ∞ that a−1
E,n → h−1

E,λ for all E /∈ λ supp(Pv), i.e.
aE,n → hE,λ if E(1/(E − λvn,j)) ≠ 0 and ∣aE,n∣ → ∞ if E(1/(E − λvn,j)) = 0.

Proof. Let the Xi be independent identically distributed random variables with compactly sup-
ported distribution in [−a, a] and zero expectation. Let Y = 1

n ∑
n
i=1Xi. Then

E(Y 2m
) =

1

n2m

n

∑
i1,...,i2m=1

E(Xi1⋯Xi2m) ≤
1

n2m

(2m)!

2mm!

n

∑
j1,...,jm=1

E(X2
j1⋯X

2
jm) ≤

(2m)!

2mm!

a2m

nm

where we use that (2m)!
2mm!

is exactly the number of pairings on the set {1, . . . ,2m} and any unpaired
index leads to zero expectation. Choosing Xj = 1/(E − λvn,j) − h

−1
E,λ for j = 1, . . . , sn and using

Markov’s inequality this gives

P(∣a−1
E,n − h

−1
E,λ∣ > ε) ≤

E(a−1
E,n − h

−1
E,λ)

2m

ε2m
≤

C

ε2ms2m
n

≤
C ′

nmα

Choosing m large enough the right hand side is summable over n. Hence, by Borel-Cantelli
P(∣a−1

E,n − h
−1
E,λ∣ > ε infinitely often) = 0. Taking a sequence εj → 0 the akmost sure convergence

follows for a single energy. Hence we have almostsurely a−1
E,n → h−1

E,λ for all E ∈ Q∖λ supp(Pv). As

h−1
E,λ and all a−1

E,n are continuous and monotone decreasing in R∖λ supp(Pv) the claim follows.

Proof of Proposition 1.4. First note that one always has spec(Hλ) ⊂ spec(λV) + [−2,2] = [−2,2] +
λ supp(Pv). Consider first the case that the sequence sn is bounded, i.e. sn < N and let E ∈

([−2,2] ∖ {0}) + λ supp(Pv), i.e. E = 2 cos(k) + t where cos(k) ≠ 0. Then we find for ε < 2 cos(k)
that

P(∣aE,n − 2 cos(k)∣ < ε) ≥ P(∥λVn − t1∣ < ε) > [Pv(λ−1
(t − ε, t + ε))]N > 0

uniformly in n. For the first inequality note that if ∥E −λVn − 2 cos(k)∥ < ε then each summand in
(4.5) lies between 1/(2 cos(k) + ε) and 1/(2 cos(k) − ε). Moreover, the probability of E ∈ B∞ can
only be positive for at most countably many energies, for the rest we can apply Lemma 4.1 showing
E ∈ spec(Hλ) almost surely. Taking a countable dense set of energies we find [−2,2]+λ supp(Pv) ⊂
spec(Hλ) almost surely, showing the first part.

Now let sn > cnα and consider first E ∈ λ supp(Pv). We find with probably one a strictly
increasing sequence nk such that ∣E −λvnk,1∣ < 1/k and ∣E −λvnk,2∣ < 1/k. Set ψk = δnk,1 − δnk,2 i.e.
ψk(n) = 0 for n ≠ nk and ψk(nk) = (1,−1,0, . . . ,0)⊺ ∈ Csnk . Then,

∥(Hλ −E)ψk∥ = ∥ (λvnk,1 −E) δnk,1 − (λvnk,2 −E) δnk,2 ∥ ≤ 2/k → 0 .
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Hence, ψk is an orthogonal Weyl sequence and E ∈ specess(Hλ) almost surely. Taking a countable
dense set of energies we get λ supp(Pv) ⊂ specess(Hλ) almost surely.

Let E /∈ λ supp(Pv). By Lemma 4.2, P(∣aE,n − hE,λ∣ < ε) → 1 for n → ∞ whenever ∣hE,λ∣ < ∞.
Hence, we can use Lemma 4.1 for a countable dense set of energies to find {E ∶ ∣hE,λ∣ ≤ 2} ⊂

specess(Hλ) almost surely.7 By Lemma 4.2 almost surely we find for all E with ∣hE,λ∣ > 2 some
random N = N(E) > 0 such that ∣aE,n∣ > 2 for n ≥ N(E). This shows 0 /∈ ⋃n≥N [−2+ aE,n,2+ aE,n]

which includes the spectrum of spec(J
(N)
E ) and hence 0 /∈ specess(JE) ⊂ spec(J

(N)
E ). Thus,

{E ∶ ∣hE,λ∣ > 2} ∩ specess(Hλ) = ∅ almost surely.

5 Harmonic mean estimates

Recall that for E ∈ Iλ we either have that for all vn,j , E > λvn,j or that for all vn,j , E < λvn,j .
Moreover, we have ∣hE,λ∣ < 2, where

hE,λ = [E(1/(E − λvn,j))]
−1

=∶ 2 cos(kE,λ) . (5.1)

The latter equation is the definition of kE,λ ∈ (−π,π). In order to use the machinery in [KiLS] we
need some explicit moment estimates. Therefore, let us start with the following general theorem:

Theorem 5.1. Let Xj ∈ [a, b], 0 < a < b, be independent identically distributed random variables.
Define the harmonic mean Mn and the harmonic average h by

Mn ∶=
1

1
n ∑

n
j=1

1
Xj

, h ∶=
1

E(1/Xj)
.

Moreover, define the following moments of the centered random variable 1/Xj − 1/h

σm ∶= E((1/Xj − 1/h)m)

and note that σ1 = 0 and σ2 is the variance. Then, there exists a continuous function C =

C(a, b, h, σ2, σ3) such that uniformly in n,

0 < E(Mn − h) ≤
bh2 σ2

n
, ∣E(Mn − h) −

h3σ2

n
∣ ≤

C

n2
. (5.2)

a2 h2 σ2

n
≤ E((Mn − h)

2
) ≤

b2 h2 σ2

n
, ∣E((Mn − h)

2
) −

h4σ2

n
∣ ≤

C

n2
. (5.3)

Moreover, for the higher moments we find

∣E((Mn − h)
3
) ∣ ≤

C

n2
, and E((Mn − h)

2m
) ≤

(2m)!h2m b2m

2mm!a2m

1

nm
for m ≥ 2 . (5.4)

Proof. Clearly, as a > 0, we find Mn ∈ [a, b] and Mn ≤
1
n ∑j=1Xj as well as h < E(Xj) by convexity.

Let Y = 1/Mn−1/h = 1
n ∑

n
j=1(

1
Xj
−1/h), then one finds E(Y ) = 0, E(Y 2) = σ2/n, and E(Y 3) = σ3/n

2.

A similar calculation as in the proof of Lemma 4.2 shows E(Y 2m) ≤
(2m)!
2mm!

1
a2m nm

. Moreover, one
finds Mn = h − hYMn and therefore

Mn − h = −hYMn = −h
2Y + h2Y 2Mn = −h

2Y + h3Y 2
− h3Y 3Mn . (5.5)

7By monotonicity properties of hE,λ this set has no isolated points so it must be in the essential spectrum.
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As Mn ∈ [a, b] we can estimate E(h2Y 2Mn) ≤ h
2bσ2/n and

∣E(Y 3Mn)∣ ≤ ∣E(hY 3
)∣ + ∣E(hY 4Mn)∣ ≤

h(∣σ3∣ + 3ba−4)

n2

which with (5.5) (using the second-last and last term) gives (5.2). Taking powers of (5.5) and
using similar estimates lead to (5.3) and (5.4). For the general moment bound note that 1 −
YMn =Mn/h ∈ [a/h, b/h], so ∣1 − YMn∣ ≤ b/h and hence E((Mn − h)

2m) ≤ (b/h)2mE((h2Y )2m) =

h2m b2mE(Y 2m) .

Clearly, for E ∈ Iλ all the transfer matrices TE,n exist and we may define the family of inde-
pendent random variables

xn ∶=
aE,n − hE,λ

sin(kE,λ)
=

⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝

1

sn

sn

∑
j=1

1

E − λvn,j

⎞

⎠

−1

− hE,λ

⎤
⎥
⎥
⎥
⎥
⎦

/ sin(kE,λ) . (5.6)

The introduced factor sin(kE,λ) will simplify some formulas later.
For many calculations we will fix some λ and E ∈ Iλ, therefore, we will now often omit the

indices E and λ in future calculations and use

h = hE,λ , k = kE,λ , σ2
= σ2

E,λ = Var(1/(E − λvn,j)) .

Note that all this quantities depend continuously on (E,λ) for E ∈ Iλ. Without loss of generality we
may assume E > 0 which also corresponds to E > h > 0, k > 0 and E(xn) > 0. The considerations for
E < 0 are completely analogue. Then, in the notations of the above theorem we find that sin(k)xn
corresponds to Msn −h, the Xj correspond to E −λvn,j , a = E −λv+ and b = E −λv−, and we have

xn ∈ [
E − λv+
sin(k)

,
E − λv−
sin(k)

] , 0 < E(xn) =
h3 σ2

sin(k) sn
+O(s−2

n ) , (5.7)

E(x2
n) =

h4 σ2

sin2
(k) sn

+O(s−2
n ) , E(x3

n) = O(s−2
n ) , E(x2m

n ) = O(Cm s
−m
n ) . (5.8)

The error terms O(s−2
n ) and O(Cms

−m
n ) mean that the absolute value of the reminder terms are

bounded by Cs−2
n and Cms

−m
n , respectively, where C = CE,λ and Cm = Cm,E,λ depend continuously

on (E,λ) for E ∈ Iλ. In particular, the error terms are uniform in E on compact subsets of Iλ.
Note that from Lemma 4.2 we get for E ∈ Iλ

Lemma 5.2. Let sn > cn
α for some α > 0. Then, for P-almost all ω ∈ Ω we have

lim
n→∞

xn = lim
n→∞

xn(ω) = 0 .

6 Modified Prüfer variables and results

We established that for E ∈ Iλ and sn → ∞ the random transfer matrices behave like in the case
of a one-dimensional operator with random potentials of decaying variance. The conclusions can
now be obtained in a similar way as in [KiLS] with some slight differences. One minor difference
is the fact that E(xn) is not zero and depends on n. Another difference for the case of the pure
point spectrum is the fact that unlike in [KiLS] the support of the distribution of xn is not getting
smaller in n. But this input can be replaced by Lemma 5.2.
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Let us now briefly mention the appropriate basis change for the transfer matrices that leads
to the modified Prüfer variables that were also used in [KiLS, LS]. By the definition of transfer
matrices TE,n in (4.6), the definition of k = kE,λ as in (5.1) and xn as in (5.6) one obtains

MTE,nM
−1

= (
1 xn
0 1

)(
cos(k) − sin(k)
sin(k) cos(k)

) where M ∶= (
1 − cos(k)
0 sin(k)

) .

Next define the modified Prüfer variables θn = θn(θ) ∈ R mod 2π and Rn = Rn(θ,E) ∈ R+ by

Rnu⃗θn =M
−1TE(n)Mu⃗θ where u⃗θ = (

cos(θ)
sin(θ)

) , (6.1)

then some simple calculation shows Rn+1u⃗θn+1 = Rn (
cos(θn+k)+xn sin(θn+k)

sin(θn+k) ) which gives

R2
n+1 = R

2
n (1 + xn sin(2 θ̄n) + x

2
n sin2

(θ̄n)) , cot(θn+1) = cot(θ̄n) + xn (6.2)

for θ̄n ∶= θn +k. Note that the random variables Rn, θn, θ̄n depend on the starting value θ = θ0 and
x0, . . . , xn−1 and are therefore independent of xn. By equivalence of norms one finds for any two
linear independent angles u⃗θ, u⃗θ′ some positive constants c,C such that

c max(Rn(θ), Rn(θ
′
)) ≤ ∥TE(n)∥ ≤ C max(Rn(θ), Rn(θ

′
)) .

Therefore, it will be enough to study the Rn in order to investigate ∥TE(n)∥.

6.1 The absolutely continuous spectrum

Now assume ∑
∞
n=0 s

−1
n < ∞. By (5.7) and (6.2) we find for any starting angle θ = θ0 that

E(R4
n+1) ≤ E(R4

n) +E(2 sin(2θ̄n)R
4
n)E(xn) +E(R4

n)E(3x2
n + 2∣xn∣

3
+ x4

n)

≤ E(R4
n) (1 + 2∣E(xn)∣ +E(4x2

n + 2x4
n)) ≤ E(R4

n) (1 +CE s
−1
n )

where the bound CE can be chosen continuously in E ∈ Iλ. As CEs
−1
n is summable it follows

sup
n

E(∥TE(n)∥4
) ≤ C sup

n
sup
θ

E(R4
n(E, θ)) ≤ C

∞
∏
n=0

(1 + CE s
−1
n ) < ∞

where the bound is uniform in E on compact sets E ∈ [a, b] ⊂ Iλ. Using Fatou’s lemma and Fubini
we realize that P-almost surely

lim inf
n→∞ ∫

b

a
∥Tn(E)∥

4 dE < ∞

which by Theorem 2.5 used for any [a, b] ⊂ Iλ, a, b ∈ Q, implies that the spectrum of Hλ (restricted
to the space V) is almost surely purely absolutely continuous in Iλ. For the proof of Theorem 2.5
see Section A.2. As ∣E∣ > λ ≥ ∥λVn∥ for E ∈ Iλ we also see that there are no eigenvalues in Iλ with
eigenvectors in V⊥. This proves Theorem 1.2 (i).

6.2 The singular spectrum

In this section we want to prove Theorem 1.2 parts (ii), (iii) and (iv). All will be based on the
following observation which is a variant of [KiLS, Theorem 8.2 and Lemma 8.8]. We set α = d − 1
where d is the growth-rate dimension8.

8Note that α corresponds to 2α in [KiLS]
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Theorem 6.1. Assume limn→∞ s−1
n nα = c > 0 for some 0 < α ≤ 1, E ∈ Iλ such that k = kE,λ /∈ π/4Z.

Then one has almost surely

lim
n→∞

log ∥TE(n) ∥

∑
n
j=0 s

−1
j

= lim
n→∞

log ∥TE(n) ∥

∑
n
j=1 c j

−α =
h4
E,λ σ

2
E,λ

8 sin2
(kE,λ)

= γE,λ . (6.3)

Moreover, almost surely, there is a real, subordinate solution wE,n, i.e. (
wE,n
wE,n−1 ) = TE(n) (

wE,0
wE,−1 ),

such that

lim
n→∞

1
2

log(∣wE,n∣
2 + ∣wE,n−1∣

2)

log ∥TE(n)∥
= −1 . (6.4)

Remark. The first equation is trivial provided the limit exists as (∑
n
j=0 s

−1
j ) / (∑

n
j=1 j

−α) → c for

n → ∞. Moreover, note that for α < 1 we have ∑
n
j=1 j

−α ∼ (1 − α)−1 n1−α whereas for α = 1,

∑
n
j=1 j

−1 ∼ log(n). The last equation follows from (1.3) and (5.1).

The proof can be done using the techniques of [KiLS]. Differences are firstly that E(xn) varies
with n which will give some additional oscillatory term to take care of and secondly that the
support of the distribution of xn is not getting smaller which can be replaced in the proofs by
Lemma 5.2. For convenience of the reader, some more details are carried out in Appendix B.

Proof of Theorem 1.2. Part (i) is already proved above. The remaining proof is based on subordi-
nacy theory9 mainly in the form of Theorem 2.9 which is proved at the end of Section 2.

For α = 0 the formula (6.3) does not hold. However, if sn/n
0 = sn → C then sn is constant

for large n and then the corresponding transfer matrices are independent, identically distributed.
Therefore, by standard arguments, one has a positive Lyapunov exponent and a limit as in (6.3)
does exist, only the formula on the right hand side is not valid. It is also well known that a
solution wE,n satisfying (6.4) will exist almost surely. Note that for E ∈ Iλ ∩ R+ one also has

that ∥ψE,n∥ = ∥(E − λVn)
−1φn∥ / ∣φ

∗
n(E − λVn)

−1φn∣ ≤
E+λv+
E−λv+ < ∞, and a similar bound holds for

E ∈ Iλ ∩R−. Hence, the solutions wE,n of (2.7) are subordinate in the sense of Definition 4.
By a Fubini argument we find for 0 ≤ α ≤ 1 almost surely such subordinate solutions for

Lebesgue-almost all E ∈ Iλ. By Theorem 2.7 this implies that there is no a.c. spectrum in Iλ
proving Theorem 1.2 (ii).

For 0 < α < 1 we find limn→∞ nα−1 1
2

log (∣wE,n∣
2 + ∣wE,n+1∣

2 ) = −c γE,λ and ⊕nwE,nψE,n is an

`2 vector where the decay rate is given by the decay rate of the sequence wE,n. Under assumption
(A2) (Pv is absolutely continuous), we can use Theorem 2.9 (i) with the basis vector10 ϕ = δ0,j to
obtain the almost sure pure point spectrum in Iλ (see also Remark 2.4 (i)). Finally, the almost
sure decay rate of the subordinate solutions gives the decay rate of the Green’s functions and hence
also the decay rate of the eigenfunctions almost surely (cf. [SW, Theorem 9]). By Proposition 1.4
the point spectrum also has to be dense (almost surely), finishing the proof of Theorem 1.2 (iii).

For d = 2 or α = 1 we find limn→∞
1
2

log (∣wE,n∣
2 + ∣wE,n+1∣

2 ) / log(n) = −c γE,λ for the sub-

ordinate solutions wE,n. However, the vector ⊕nwE,nψE,n is in `2(As) only for E ∈ Iλ ∖ Jλ. If
E ∈ Jλ it is not in `2(As). Again, using Fubini, assumption (A2), Theorem 2.9 (ii) and similar
arguments as above we obtain the following: The spectrum is almost surely pure point with the
corresponding decay of the eigenfunctions in Iλ ∖ Jλ, and the spectral measures at δ0,j (for all j)
and at Φ0 = ∑j δ0,j/

√
s0 are almost surely singular continuous in Jλ for all j = 1, . . . , s0. Note that

possible eigenvectors in V⊥ (cf. Proposition 2.1) are outside Jλ and Jλ ∩B∞ = ∅. By Theorem 2.3
we therefore obtain that the spectrum of Hλ is almost surely singular continuous in Jλ, finishing
the proof of Theorem 1.2 (iv).

9Theorem 2.7, for the proof see Section A.3
10δ0,j = ψ is defined by ψ(n) = δ0,nej , ej the j-th basis vector of Cs0 , the Dirac notation would be ∣0, j⟩)
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7 The operator Pr ∆dPr + λV on Zd

Finally let us prove Corollary 1.3. On Zd the adjacency operator is given by ∆d ψ (x) = ∑y∶y∼x ψ(y)
where y ∼ x means that y is a nearest neighbor of x, i.e. ∥x − y∥1 = 1. Let

Sn ∶= {x ∈ Zd ∶ ∥x∥1 = n} , sn = #(Sn) for n ∈ Z+

and note that ⟨x∆d∣y⟩ ≠ 0 can only happen if the difference of ∥x∥1 and ∥y∥1 is one. Therefore,
there are sn × sn−1 matrices Dn such that using spherical coordinates ψ = ⊕n ψ(n) ∈ ⊕nCsn ≅

⊕n `
2(Sn) = `

2(Zd) one has

(∆d ψ)(n) = D∗
n+1ψ(n + 1) + Dn ψ(n − 1)

where the entries of Dn are zero or one giving the edges from Sn−1 to Sn.

Lemma 7.1. Pr∆dPr − dAs is trace-class on the Hilbert space ⊕∞
n=0 Csn .

Proof. Let φn = 1/
√
sn(1, . . . ,1)

⊺ ∈ Csn as above, the radial projection is given by (Prψ)(n) =

φnφ
∗
n ψ(n) or in Dirac notation Pr = ∑n ∣Φn⟩⟨Φn∣ where Φn = Pnφn is the natural embedding of

φn into `2(Zd). Therefore,

(Pr ∆dPr ψ)(n) = φn (an+1 φ
∗
n+1ψ(n + 1) + an φ

∗
n−1 ψ(n − 1)) with an = φ

∗
nDnφn−1 .

Now let αn be the total number of edges between Sn and Sn+1, then

αn =
sn

∑
j=1

sn−1
∑
k=1

(Dn)jk and an =
1

√
snsn−1

αn−1 .

To estimate αn define for k = 0,1, . . . , d

Sn,k = {x ∈ (Z)
d
∶ ∥x∥1 = n and #{j ∶ xj = 0} = k} , sn,k = #(Sn,k) .

In words, Sn,k ⊂ Sn is the subset of vectors where exactly k entries are zero. Clearly, sn = ∑k sn,k.
Each vector x = (x1, x2, . . . , xd) ∈ Sn,0 can be mapped to an increasing sequence of d positive
integers (∣x1∣, ∣x1∣ + ∣x2∣, . . .) and a vector of signs (sgn(x1), . . . , sgn(xn)). This is a bijection,
therefore one obtains sn,0 = 2d(n−1

d−1
). Similar reasoning shows for n ≥ d > k (note sn,d = 0 for n > 0)

sn,k = (
d

k
)2d−k (

n − 1 − k

d − 1 − k
) .

Moreover, each x ∈ Sn,k has exactly d + k edges to Sn+1 and d − k edges to Sn−k, thus αn =

∑k(d + k)sn,j = ∑j(d − k)sn+1,j . Up to errors of order O(nd−3) we find

sn,0 =
2d nd−1

(d − 1)!
−

2d−1dnd−2

(d − 2)!
+ O, sn,1 =

2d−1dnd−2

(d − 2)!
+ O, sn =

2d nd−1

(d − 1)!
+ O

and

αn =
d−1

∑
k=0

(d + k) sn,k =
d2d

(d − 1)!
(nd−1

+
1

2
(d − 1)nd−2

) + O(nd−3
) .

This gives

a2
n+1 =

α2
n

sn sn+1
=
d2 (n2d−2 + (d − 1)n2d−3) +O(n2d−4)

n2d−2 + (d − 1)n2d−3 +O(n2d−4)
= d2

+O(n−2
)
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which implies an = d +O(n−2) and

∥Pr∆dPr − dAs∥1 = ∥
∞
∑
n=1

(an − d) (∣Φn⟩⟨Φn−1∣ + ∣Φn−1⟩⟨Φn∣)∥
1

≤ 2
∞
∑
n=0

∣an − d∣ < ∞ .

Thus, the difference is trace-class.

Proof of Corollary 1.3. The cases d ≤ 2 follow immediately as a trace-class perturbation does not
change the a.c. spectrum. For the purity of the a.c. spectrum in the case d ≥ 3 note that
when exchanging As by 1

d
Pr∆Pr we have to change φn by φ′n = (1 + bn)φn with bn > −1 where

(1 + bn)(1 + bn−1) = an/d. We have a free choice of b0 > −1 and it determines all other bn. By
the formulas above it is clear that a2

n is a rational function in n converging to 1 and so it has to
be monotone for large n. As an+1/an = (1 + bn+2)/(1 + bn) we find that the sequences (1 + b2n)
and (1 + b2n+1) are either both increasing or both decreasing and converging. Adjusting b0 we
can arrange for bn → 0 and then for some n > N all bn have the same sign and one must have
bn = O(n−2) as an/d = 1 +O(n−2). The upper right entries of the transfer matrices would change
to a′E,n = aE,n / (1 + bn)

2 = aE,n(1 +O(n−2). Therefore, in the proof of the pure a.c. spectrum in

Section 6.1, xn would change to x′n = xn(1+O(n−2))+O(n−2). As n−2 is summable, we still obtain

lim infn ∫
b
a ∥TE(n)∥4 dE < ∞ almost surely. Therefore, we get the almost sure a.c. spectrum as

before.

A Operators with one propagating channel

In this appendix we will prove the theorems of Section 2 and consider the operator H as in (2.3),

(Hψ)(n) = φn (φ∗n+1ψ(n + 1) + φ∗n−1ψ(n − 1)) + Vnφn

with Dirichlet boundary conditions ψ(−1) = 0 where ψ = ⊕
∞
n=0 ψ(n) ∈ ⊕nCsn = `2(As), and

φn ∈ Csn . The sequences φn, Vn are chosen such that H restricted to D0 as in (2.4) is essentially
self-adjoint. As in (2.5) we let Φn = Pnφn = ⊕

n−1
k=0 0 ⊕ φn ⊕ ⊕

∞
k=n+1 0. For the spectral theory

recall Proposition 2.1 which states some possibly trivial eigenvalues and eigenvectors of H in the
orthogonal complement of V = ⊕nVn, the cyclic space generated by all the Φn. We may therefore
restrict the investigation of the spectral theory and Green’s functions to this space. Recall from
(2.8) that we defined the transfer matrices

Tz,n ∶= (
(φ∗n(z − Vn)

−1φn)
−1

−1
1 0

) and Tz(n) = Tz,nTz,n−1⋯Tz,1Tz,0 .

For z = E in the spectrum of Vn we have the holomorphic extension TE,n = ( 0 −1
1 0 ). As the

introduction of the transfer matrices in (2.8) suggests one can use the arsenal of transfer matrix
methods developed for one-dimensional Jacobi operators in this setup.

A.1 Green’s function identities

Let us start with the Green’s functions and consider truncated operators with different boundary
conditions. Hence, let HN,β denote the operator H restricted to ⊕N

n=0 `
2(Sn) ≅ ⊕

N
n=0 Csn with the

boundary condition φ∗N+1ψ(N + 1) = −βφ∗Nψ(N) at N , i.e. for β = 0 we have Dirichlet boundary
conditions and HN,β = HN,0 − β∣ΦN ⟩⟨ΦN ∣. For Im z > 0 we define the radial components of the
resolvent by

gz(m,n) ∶= ⟨Φm ∣ (H − z)−1
∣Φn⟩ , gz,N,β(m,n) ∶= ⟨Φm ∣ (HN,β − z)

−1
∣Φn⟩ . (A.1)
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Clearly, HN,βψ → Hψ for any ψ ∈ D0 and hence, HN,β → H in strong resolvent sense. Therefore,
gN,β(m,n) → g(m,n) for N →∞ and varying β.

Let uz,n and vz,n be solutions of the modified eigenvalue equation (2.7) with uz,−1 = 0 = vz,0
and uz,0 = vz,−1 = 1, then

Tz(n) = (
uz,n vz,n
uz,n−1 vz,n−1

) . (A.2)

Moreover, let w
(N,β)
z be a solution with β-boundary condition at N , i.e.

w
(N,β)
z,N = 1 , w

(N,β)
z,N+1 = −β ,

⎛

⎝

w
(N,β)
z,n+1

w
(N,β)
z,n

⎞

⎠
= Tz,n

⎛

⎝

w
(N,β)
z,n

w
(N,β)
z,n−1

⎞

⎠
. (A.3)

By self-adjointness and hence existence of (H − z)−1, for Im(z) > 0 there exists a unique solution

w
(∞)
z such that

w
(∞)
z,−1 = −1 ,

∞
∑
n=0

∣w(∞)
z,n ∣

2
∥ψE,n∥

2
< ∞ .

In particular one finds for ψ = ⊕n≥0w
(∞)
z,n ψE,n that (H − z)ψ = Φ0. For two solutions u, v of (2.7)

we further define the Wronskian

W (u, v) = un+1vn − unvn+1 (A.4)

which is independent of n.

Lemma A.1. For Im(z) > 0 we find the following identities:

(i) Any solution wz (in particular, uz, vz,w
(N,β)
z ,w

(∞)
z ) of the modified eigenvalue equation (2.7)

satisfies

Im(z)
N

∑
n=0

∣wz,n∣
2

∥φn∥2
≤ Im(z)

N

∑
n=0

∣wz,n∣
2
∥ψz,n∥

2
= Im(wz,N+1wz,N −wz,0wz,−1) . (A.5)

(ii) We have

gz,N,β(m,n) =

⎧⎪⎪
⎨
⎪⎪⎩

[W (w
(N,β)
z , uz)]

−1w
(N,β)
z,m uz,n for N ≥m ≥ n ≥ 0

[W (w
(N,β)
z , uz)]

−1uz,mw
(N,β)
z,n for N ≥ n ≥m ≥ 0

(A.6)

and similarly

gz(m,n) =

⎧⎪⎪
⎨
⎪⎪⎩

w
(∞)
z,muz,n for m ≥ n ≥ 0

uz,mw
(∞)
z,n for n ≥m ≥ 0

(A.7)

For the last equation, note that W (w
(∞)
z , uz) = w

(∞)
z,0 uz,−1 −w

(∞)
z,−1uz,0 = 1.

(iii) Let Pn ∶ Csn → `2(Sn) ⊂ `
2(As) be the canonical injection so that Pnφn = Φn. Then P ∗

n is the
canonical projection from `2(As) to Csn ≅ `2(Sn) and for m ≠ n one finds

P ∗
m(H − z)−1Pn = gz(m,n)

(Vm − z)−1φmφ
∗
n(Vn − z)

−1

(φ∗m(Vm − z)−1φm)(φ∗n(Vn − z)
−1φn)

= gz(m,n)ψz,mψ
∗
z̄,n (A.8)

and for m = n,

P ∗
n(H − z)−1Pn = gz(n,n) ψz,nψ

∗
z̄,n + (Vn − z)

−1 (1 − φn ψ
∗
z̄,n)

= (Vn − z +
φnφ

∗
n

gz(n,n)
−

φnφ
∗
n

φ∗n(Vn − z)
−1φn

)

−1

. (A.9)

Changing H with HN,β one has the same formulas with gz changed to gz,N,β.
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Note that the φn, ψz,n are column vectors, hence expressions like φmφ
∗
n or ψz,mψ

∗
z̄,n are sm×sn

matrices that may also be written as ∣ψz,m⟩⟨ψz̄,n∣, but we only want to use the Dirac notation for
operators on the complete Hilbert space `2(As). Also note that ψ∗z̄,n = az,nφ

∗
n (z − Vn)

−1 as the
complex conjugation included in the adjoint changes z̄ back to z.

Proof. For (i) note that (2.7) and (2.12) imply

wz,n+1wz,n +wz,n−1wz,n = (φ∗n(z − V )
−1φn)

−1
∣wz,n∣

2
= az,n ∣wz,n∣

2 .

Taking imaginary parts, summing over n and using (2.13) yields (A.5).

For parts (ii) and (iii), let ψ be the solution of (HN,β − z)ψ = Φ or (H − z)ψ = Φ respectively,

where Φ = Pnϕ, i.e. Φ(l) = δn,lϕ, ϕ ∈ Csn . Then, for m ≥ n one must have Φ∗
mψ = c1w

(N,β)
z,m , or

c1w
(∞)
z,m , respectively, and for m ≤ n one has Φ∗

mψ = c2uz,m. Moreover, for m ≠ n,

ψ(m) = (z − Vm)
−1φm(⟨Φm+1∣ψ⟩ + ⟨Φm−1∣ψ⟩) = ψz,m ⟨Φm∣ψ⟩ ,

where you should note that ⟨Φm∣ψ⟩ = φ∗mψ(m). Furthermore,

ψ(n) = (z − Vn)
−1(φn(⟨Φn+1∣ψ⟩ + ⟨Φn−1∣ψ⟩ ) − ϕ)

= (Vn − z)
−1

(φn
⟨Φn∣ψ⟩

φ∗n(Vn − z)
−1φn

− φn ψ
∗
z̄,nϕ + ϕ) ,

note that ψ∗z̄,nϕ = (φ∗n(z − Vn)
−1ϕ) / (φ∗n(z − Vn)

−1φn). This implies in the case of the operator
HN,β that

⎛

⎝

c1w
(N,β)
z,n+1

c1w
(N,β)
z,n

⎞

⎠
= (

⟨Φn+1∣ψ⟩
⟨Φn∣ψ⟩

) = Tn,z (
⟨Φn∣ψ⟩

⟨Φn−1∣ψ⟩
) + (

ψ∗z̄,nϕ
0

) = (
c2uz,n+1 + a
c2uz,n

) .

Some algebra then gives

c1 = ψ
∗
z̄,nϕuz,n/W (w(N,β)

z , uz) and c2 = ψ
∗
z̄,nϕw

(N,β)
z,n /W (w(N,β)

z , uz) .

The analogue equations hold when replacing HN,β with H. Noting that ψ∗z̄,nφn = 1 the case ϕ = φn
gives (A.6) and (A.7). Together with the expressions for ψ(m), ψ(n) above, (A.8) and (A.9)
follow.

A.2 Proof of Theorem 2.3

An immediate consequence of the above calculations is the following lemma which also proves parts
(i) and (ii) of Theorem 2.3. As the sets An and Bn in Theorem 2.3 are finite, it will be enough to
consider compact intervals inside the complements.

Lemma A.2. We let µn denote the spectral measure at Φn, i.e. ∫ f dµn = ⟨Φn∣f(H)∣Φn⟩.

(i) Assume that for all E ∈ [a, b] and k = 0,1, . . . , n − 1 the transfer matrices TE,k exist in the
sense as in (2.8) and (2.9), i.e. [a, b] ∩ Bn = ∅. Then restricted to the interval [a, b] one
finds

1[a,b](E) µn(dE) = 1[a,b](E)u2
E,n µ0(dE) .

In particular, in the interval [a, b] the measure µn is continuous with respect to µ0.
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(ii) For ϕ ∈ Vn let µn,ϕ denote the spectral measure at Pnϕ, i.e. ∫ fdµn,θ = ⟨Pnϕ∣f(H)∣Pnϕ⟩.
Assume that for all E ∈ [a, b] the matrix TE,n exists (as expressed above). Then, one finds

1[a,b](E) µn,ϕ(dE) = 1[a,b](E) ∣ϕ∗ψE,n∣
2
µn(dE)

where ϕ∗ψE,n has only finitely many zeros in [a, b] for ϕ ≠ 0.

Proof. By Lemma A.1 one has µn(dE) = limη→0
1
π

Im(w
(∞)
E+iη,nuE+iη,n)dE where the limit has to

be understood in the vague sense. For the case n = 0 note that uz,0 = 1 for all z. Now, by the

definitions one easily sees w
(∞)
z,n = w

(∞)
z,0 uz,n − vz,n and hence w

(∞)
z,n uz,n = w

(∞)
z,0 u

2
z,n − vz,nuz,n. Thus

we find

∣ Im(w(∞)
z,n uz,n) −Re(u2

z,n) Im(w
(∞)
z,0 )∣ ≤ ∣Re(w

(∞)
z,0 )∣ ∣ Im(u2

z,n)∣ + ∣ Im(uz,nvz,n)∣ .

Using w
(∞)
z,0 = ∫ (E

′ − z)−1dµ0(dE), and splitting the integral one finds for any ε that ∣Re(w
(∞)
z,0 ∣ ≤

1/ε Im(w
(∞)
z,0 )+ε/η. Moreover, by the assumption, uE,n and vE,n are well defined for E ∈ [a, b] and

holomorphic in E, therefore ∣ Im(u2
z,n)∣, ∣ Im(uz,nvz,n)∣ < Cη for small imaginary part η uniformly

in [a, b]. Putting these estimates together, one finds ηε for any ε such that

∣ Im(w
(∞)
E+iη,nuE+iη,n) − u

2
E,n Im(w

(∞)
E+iη,0)∣ < ε + ε Im(w

(∞)
E+iη)

for any 0 < η < ηε and any E ∈ [a, b]. Therefore, for any f ∈ C([a, b]) one finds

∣∫

b

a
f(E)µn(dE) − ∫

b

a
f(E)u2

E,nµ0(dE)∣ < ∫

b

a
∣f(E)∣ (εdE + εµ0(dE))

which goes to zero for ε→ 0 as µ0 is a bounded measure. This finishes part (i).
For part (ii) let us first see that ψz,n indeed extends holomorphically to [a, b]. The only critical

values are the eigenvalues of Vn restricted to Vn. Thus, let the eigenvalue decomposition be given
by Vn∣Vn = ∑k ekvkv∗k where the vj form an orthonormal basis of Vn. As φn is a cyclic vector, all
the eigenvalues ej are different. Then

ψz,n =
∑j αjα

∗
jφn/(ej − z)

∑j ∣α
∗
jφn∣

2/(ej − z)
giving the extension ψek,n = αk/(φ

∗
nαk) .

As φn is a cyclic vector for Vn∣Vn, φ∗nαk ≠ 0 and ψz,n is holomorphic at z = ek. From (A.9) we find

⟨Pnϕ∣(H − z)−1
∣Pnϕ⟩ =

gz(n,n)ϕ
∗ψz,nψ

∗
z̄,nϕ + ϕ

∗
(Vn − z)

−1ϕ − (ϕ∗ψz,n ψ
∗
z̄,nϕ) (φ

∗
n(Vn − z)

−1φn)

Using ψek+z,n = αk/(φ
∗
nαk) + O(z) and the spectral decomposition of Vn∣Vn as above one easily

checks that the sum of the last two terms extends holomorphically to z = ek and hence defines
an analytic function for z = E ∈ [a, b] with zero imaginary part. Moreover, f(z) = ϕ∗ψz,nψ

∗
z̄,nϕ

is holomorphic for z /∈ R and for z = E ∈ [a, b]. By cyclicity of φn, f(z) is not the zero function,
and f(E) = ∣ϕ∗ψE,n∣

2 has only finitely many zeros in [a, b]. A similar argument as in (i) now gives
µn,ϕ(dE) = f(E)µn(dE) for the measures restricted to [a, b].

In order to prove Theorem 2.3 (iii) (part (i) and (ii) are Corollaries of Lemma A.2) we will
consider an average over the boundary conditions β for the finite matrices HN,β . By the definition

of w
(n,β)
z as in (A.3) one finds

Tz(n + 1) (
w
(n,β)
z,0

w
(n,β)
z,−1

) = (
−β
1

) .
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Using this equation together with (A.2), (A.6), the fact that the transfer matrices have determinant

one, as well as W (w
(n,β)
z , uz) = −w

(n,β)
z,−1 , one obtains

mn,β(z) ∶= gz,n,β(0,0) = ⟨Φ0 ∣ (Hn,β − z)
−1

∣Φ0⟩ =
βvz,n + vz,n+1

βuz,n + uz,n+1
.

The first equation defines mn,β(z), the second one reminds of the definition of gz,n,β in (A.1).
For fixed z with Im(z) > 0 and β varying along R, mn,β(z) forms a circle, the Weyl circle, in
the upper half plane. Moreover, by (A.5) we have Im(uz,n+1uz,n) > 0 and Im(β) > 0 implies
Im(β∣un,z ∣

2 + uz,n+1uz,n) > 0 showing that the denominator will not be 0. Hence, mn,β(z) can be
extended to Im(β) ≥ 0 and for Imβ > 0, mn,β(z) lies inside the Weyl circle. Now, setting β = i,
mn,i(z) is a Herglotz function in z for Im(z) > 0. The corresponding measure, µn,i, equals the
integration of the measures µn,β associated to mn,β(z) over the Cauchy distribution in β. The
measure µn,i is also given by the distributional limit of limη→0

1
π

Im(mn,i(E + iη))dE. We find

lim
η→0

Im(mn,i(E + iη)) = Im(
ivE,n + vE,n+1

iuE,n + uE,n+1
) =

1

u2
E,n + u

2
E,n+1

for energies E /∈ Bn+1 where all TE,m for m ≤ n exist. Here we used that the Wronskian is one,
W (uE , vE) = 1.

This measure is absolutely continuous except for possibly some points E′ in the set Bn+1. It
is clear from rank one perturbation theory that these delta measures in µn,i can only come from
energies that are eigenvalues of Hn,β for all β with eigenvectors that are fixed in β and orthogonal
to Φn. As shown in Remark 2.4 (iii) and (iv) one can indeed construct such eigenvectors under
certain conditions. Thus, we may define νn to be the pure point part of µn,i (and in fact of all µn,β)
supported on Bn+1. As these eigenvectors will remain compactly supported eigenvectors for n→∞

and n = ∞, the sequence νn is increasing and has a limit ν supported on B∞. Remark 2.4 (iii) also
clasifies when ν({E}) > 0.

As Hn,βn →H in strong resolvent sense, there must be a unique limit point limn→∞mn,βn(z) =

⟨Φ0∣(H−z)−1∣Φ0⟩ = w
(∞)
z,0 for all Imβ ≥ 0. Hence, one also has limn→∞mn,i(z) = w

(∞)
z,0 and therefore

it follows in the weak sense that µn,i → µ0 and by the considerations above,

µ0(dE) = lim
n→∞

(
1

π

1R∖B∞(E) dE

∣uE,n∣2 + ∣uE,n+1∣
2
+ νn(dE)) = lim

n→∞

1R∖B∞(E) dE

π ∥TE(n + 1) ( 1
0 ) ∥

2
+ ν(dE) .

This completes the proof of Theorem 2.3.

Remark A.3. The radius rn(z) of the Weyl circle is given by

2rn(z) = sup
β∈R

∣
βvz,n + vz,n+1

βuz,n + uz,n+1
−
vz,n

uz,n
∣ = sup

β∈R

1

∣uz,n∣

1

∣βuz,n + uz,n+1∣
≤

1

Im(uz,nuz,n+1)

where we used W (u, v) = 1 and ∣uz,n∣ = ∣uz,n∣. Using uz,0 = 0 and (A.5) we get

2rn(z) Im(z) ≤ (
n

∑
k=0

∣uz,k ∣
2

∥φn∥2
)

−1

≤ (
n−1

∑
k=0

∣uz,kuz,k+1∣

∥φk∥ ∥φk−1∥
)

−1

≤ (
n−1

∑
k=0

C

∥φk∥ ∥φk−1∥
)

−1

.

Therefore, if ∑n ∥φnφn−1∥
−1 = ∞, then rn(z) → 0 for Im(z) > 0 (limit point case), Hn,β → H in

strong resolvent sense and the compactly supported vectors D0 form a core.
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A.3 Subordinacy theory

Analogue to above let us now define the m-function for the infinite operator H by

m(z) ∶= gz(0,0) implying w(∞)
z,n = m(z)uz,n − vz,n

or short w
(∞)
z =m(z)uz − vz. Note that uz and vz play the role of ψ(z) and −ϕ(z) as in [KP].

An essential support of the a.c. part of the measure µ0 (spectral measure at Φ0), and hence of
the a.c. spectrum of H, is given by the set of energies

Σ′
ac ∶= {E ∈ R ∶ m(E) ∶= lim

η↓0
m(E + iη) exists and Imm(E) > 0} .

Similarly, an essential support of the singular part of µ0 is given by

Σ′
s ∶= {E ∈ R ∶ lim

η↓0
Im m(E + iη) = ∞} .

Recall that we call a non-zero solution w = (wn)n of (2.7) at energy E subordinate if for any linear
independent solution w̃ one finds limn→∞ ∥w∥E,n / ∥w̃∥E,n = 0 where we define

∥w∥
2
z,n ∶=

n

∑
k=0

∣wk ∣
2
∥ψz,k∥

2

for any complex energy z ∈ C ∖B∞ and sequence wn. Following Kahn-Pearson one can show the
following analogue to [KP, Theorem 1 and Theorem 2].

Theorem A.4. Let E ∈ R ∖B∞, i.e. all transfer matrices exist in a neighborhood of E ∈ R.

(i) If m(E) exists and is real, then m(E)uE − vE is subordinate.

(ii) If limη→0 ∣m(E + iη)∣ = ∞ then uE is subordinate.

(iii) If w
(∞)
E ∶=muE − vE is subordinate, then m is real and along some sequence ηj → 0 we find

lim
j→∞

m(E + ηj) = m and hence lim
j→∞

w
(∞)
E+ηj ,n = w

(∞)
E,n .

(iv) If uE is subordinate, then limj→∞ ∣m(E + iηj)∣ = ∞ .

Note that by general theory about Herglotz functions the limit m(E) does exist for Lebesgue
almost every E, hence the limits along sequences ηj are limits η ↓ 0 for Lebesgue almost all E
where one has a subordinate solution. Using the fact that m(z) = ∫ (E −z)−1µ0(dE), Theorem 2.7
immediately follows by standard arguments as in [KP].

For the proof we focus on (i) and (iii), parts (ii) and (iv) follow similarly by considering

w
(∞)
z /m(z) = uz − vz/m(z), which replaces the role of m(z) by 1/m(z) and reverses the role

of uz and vz. As in [KP] the following estimate is important. Note that by (A.5) and the fact that

w
(∞)
z,n → 0 for n→∞ one finds

∥uzm(z) − v(z)∥z,n =
n

∑
k=0

∣w
(∞)
z,k ∣

2
∥ψz,k∥

2
≤

Im(m(z))

Im(z)
. (A.10)

This estimate and Lemma 2.6 are crucial to make the proof of [KP, Theorem 1] work. So let
E ∈ R ∖B∞ and for η > 0 define the operator L = Lη acting on a sequence w = (wn)n≥0 by

(Lw)n ∶= −vE,n
n

∑
k=0

(uE,k(aE+iη,k − aE,k)wk) + uE,n
n

∑
k=0

(vE,k(aE+iη,k − aE,k)wk) . (A.11)
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Then it is straight forward to verify that w
(∞)
z =m(z)uz−vz =m(z)uE−vE+Lw

(∞)
z with z = E+iη.

Using Lemma 2.6 (i) and Cauchy-Schwarz we find

∣
n

∑
k=0

vE,k∥ψE,k∥
(aE+iη,k − aE,k)

∥ψE,k∥2
wk∥ψE,k∥∣ ≤ η ∥vE∥E,n ∥w∥E,n

and (cf. [KP, eq. (27), (28)]

∥Lw∥E,n ≤ 2η ∥uE∥E,n ∥vE∥E,n ∥w∥E,n and hence ∥L∥E,n ≤ 2η ∥uE∥E,n ∥vE∥E,n . (A.12)

Assume now m(E + iη) → m(E) ∈ R for η ↓ 0 and as in Lemma 3 (i) of [KP] define ηn to be the
smallest positive number such that

ηn =
√

Im(m(E + iηn)) / (
√

∥uE∥E,n∥vE∥E,n [∥uE∥E,n + ∥vE∥E,n]) .

Then ηn → 0 and for zn = E + iηn we find as in [KP, Theorem 1] (cf. [KP, eq. (29)]

lim
n→∞

∥uznm(zn) − vzn∥E,n

∥uEm(zn) − vE∥E,n
= 1 , lim

n→∞
(

Im(m(zn))

ηn
)

1/2
1

∥uE∥E,n + ∥vE∥E,n
= 0 .

The latter estimate corresponds to the term F3 in [KP]. The term corresponding to F2, how-
ever, needs a slight modification here at first sight, which is that we have to use the norm
∥ ⋅ ∥zn,n in the numerator. More precisely, combining the above estimates with (A.10) now gives

∥w
(∞)
zn,n∥zn,n / (∥uE∥E,n + ∥vE∥E,n) → 0 . It is precisely at this point that Lemma 2.6 (ii) is crucial

to change the ∥ ⋅ ∥zn,n norm to the ∥ ⋅ ∥E,n norm and to obtain

lim
n→∞

∥uznm(zn) − vzn∥E,n

∥uE∥E,n + ∥vE∥E,n
= 0 and lim

n→∞

∥uEm(E) − vE∥E,n

∥uE∥E,n + ∥vE∥E,n
= 0 , (A.13)

giving the subordinacy of uEm(E) − vE . This proves part (i) of Theorem A.4.
For part (iii) let uEm − vE be a subordinate solution, then clearly, m ∈ R. We can basically

follow the proof of [KP, Theorem 2]. In order to get to the equivalent of [KP, equation (33)] we
need to use both estimates of Lemma 2.6 again (part (i) for the bound on the operator L similar
to above and part (ii) to replace the ∥ ⋅ ∥z,n norm by the ∥ ⋅ ∥E,n norm in (A.10)) and obtain

lim
n→∞

∥uEm(zn) − vE∥E,n

∥u∥E,n (1 + Im(m(zn))
= 0

where zn = E + iηn with

ηn =

√
Im(m(E + iηn))

∥uE∥
3/2
E,n

√
1 + Im m(E + iηn) [∥uE∥E,n + ∥vE∥E,n]

.

Using the subordinacy of uEm − vE we then obtain m(zn) →m as in [KP].
As mentioned above, parts (ii) and (iv) follow analogously to (i) and (iii), respectively.

A.4 Proof of Theorem 2.8

Theorem 2.8 now follows from the subordinacy theory and Theorem 2.3 (ii).
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Proof of Theorem 2.8. From Theorem 2.3 (ii) we obtain that

∫ 1R∖B∞(E)u2
E,n µ0(dE) ≤ ∥Φn∥

2
= ∥φn∥

2 .

Following the arguments in [LS] we also look at the ’Neumann’ boundary conditions at n = 0. Thus,
let H(1+) denote the operator H restricted to the ⊕n≥1 `

2(Sn) with Dirichlet boundary conditions

at n = 1. Moreover, let µ
(1+)
1 denote the spectral measure at Φ1 of H(1+). As vE,0 = 0, vE,1 = −1

we obtain completely analogously that ∫ 1R∖B∞v
2
E,n µ

(1+)
1 (dE) ≤ ∥φn∥

2 . The standard Green’s
function recursion in spherical coordinates (cf. [FHS1]) coming from the resolvent identity gives in

this case for g′z ∶= ⟨Φ1∣(H
(1+)−z)−1∣Φ1⟩ that gz(0,0) = −(g′z + (φ∗0(z − V0)

−1φ0)
−1)

−1
. This relation

can also be obtained using (A.7) for H and H(1+). It shows that the singular parts of µ0 and

µ
(1+)
1 are mutually singular whereas the a.c. spectrum has the same support. Now we follow the

proof of Proposition 3.3 of [LS], defining the absolutely continuous measure µac ∶= min(µ0, µ
(1+)
1 )

given by µac(S) ∶= infA,B;S⊂A∪B (µ0(A) + µ
(1+)
1 (B) ) . Then the above inequalities show that

∫
1
n ∑

n
k=1 ∥Φ−1

k TE(k) ∥
2
µac(dE) < 4. Fatou’s lemma then implies Theorem 2.8 (i). Furthermore,

∥Φ−1
k TE(k)TE(m)

−1 Φm / det(Φm) ∥ ≤ ∥Φ−1
k TE(k) ∥ ∥Φ−1

m TE(m) ∥

which together with the Cauchy Schwarz inequality ∫ ∣fg∣µac ≤ (∫ ∣f ∣2µac)
1
2 (∫ ∣g∣2µac)

1
2 shows

uniform boundedness of the integral of the left hand side over µac(dE). Again, Fatou’s lemma
then yields part (iii).

So it is only left to show part (ii) analogue as in [LS, Section 3]. As above let u⃗θ = (
cos(θ)
sin(θ) ) and

define
u⃗θ(n) = ΨE,n TE(n) u⃗θ and v⃗θ(n) = ΨE,n TE(n) u⃗θ+π2 .

Then, clearly ∑
n
k=1 ∥v⃗θ(k)∥

2 ≤ ∑
n
k=1 ∥ΨE,k TE(k)∥2. Moreover, let J = ( 0 1

−1 0 ) be the symplectic
form. Then ΨE,kJΨE,k = det(ΨE,k)J and as TE(k) leaves the symplectic form invariant, one
obtains ⟨u⃗θ(k) , J v⃗θ(k)⟩ = detΨE,k. This leads to

(
n

∑
k=1

detΨE,k)

2

≤
n

∑
k=1

∥u⃗θ(k)∥ ∥v⃗θ(k)∥ ≤ (
n

∑
k=1

∥u⃗θ(k)∥
2
) (

n

∑
k=1

v⃗θ(k)∥
2
)

which together with the above estimate gives the following analogue of [LS, Lemma 3.1]

∑
n
k=1 ∥v⃗θ(k)∥

2

∑
n
k=1 ∥u⃗θ(k)∥2

≤ (
∑
n
k=1 ∥ΨE,k TE(k)∥2

∑
n
k=1 detΨE,k

)

2

. (A.14)

Now, letting uθ,n = ( 1 0 )TE(n)u⃗θ be the solution of (2.7) we see that ∥u⃗θ(n)∥
2 = ∣uθ,n∣

2∥ψE,n∥
2 +

∣uθ,n−1∣
2∥ψE,n−1∥

2. By similar arguments as in [LS, Section 3] we see that the right hand side of
(A.14) must go to infinity if a subordinate solution uθ,n exists in the sense of Definition 4. Hence,
for E ∈ ΣΨ no such solution exists.

B Proof of Theorem 6.1

The proof is pretty much the same as in [KiLS]. One slight difference is that the support of the
distribution of the random variable xn is not shrinking in n. Therefore, we use Lemma 5.2 instead.
It will be enough to show the limit for Rn for any starting angle θ. From (6.2) we obtain

log(Rn+1) = log(Rn) + f(xn, θ̄n) and hence log(Rn+1) =
n

∑
j=0

f(xj , θ̄j) (B.1)
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where

f(x, θ̄) ∶=
1

2
log (1 + xn sin(2θ̄) + x2

n sin2
(θ̄) )

=
1

2
log((1 +

1

2
xn sin(2θ̄))

2

+ x2
n sin4

(θ̄)) . (B.2)

By uniform boundedness of xn (cf. (5.7)) the expression inside the logarithm is uniformly bounded
and uniformly bounded away from zero. Using f (m) for ∂fm/∂xm, a Taylor expansion gives

f(xn, θ̄n) = f (1)
(0, θ̄n)xn + 1

2
f (2)

(0, θ̄n)x
2
n + 1

6
f (3)

(0, θ̄n)x
3
n + 1

4!
f (4)

(ξn, θ̄n)x
4
n

where ξn depends on xn and θ̄n. By compactness of the support of xn, ∣ 1
4!
f (4)(ξn, θ̄n)x

4
n∣ ≤ Cx

4
n

for some uniform constant C.
As sn ∼ n−α we have E(xmn ) = O(n−α) and by [KiLS, Lemmas 8.3 and 8.4] we can replace xmj

by its expectation E(xmj ) with errors of order o (∑
n
j=1 s

−1
j ). Furthermore, note

n

∑
j=0

C E(x4
j) +

RRRRRRRRRRR

n

∑
j=0

1
6
f (3)

(0, θ̄j)E(x3
j)

RRRRRRRRRRR

≤ C̃
n

∑
j=0

s−2
j = o

⎛

⎝

n

∑
j=1

j−α
⎞

⎠
.

Thus, up to errors of order o (∑
n
j=1 s

−1
j ) = o (∑

n
j=1 j

−α) one has

n

∑
j=0

f(xj , θ̄j) =
2

∑
m=1

n

∑
j=0

1

m!
f (m)

(0, θ̄j)E(xmj ) =
2

∑
m=1

n

∑
j=0

1

m!
f (m)

(0, θ̄j)
h2+mσ2

sinm(k)sj

=
n

∑
j=0

h3σ2

sin(k)sj
sin(2θ̄j) +

n

∑
j=0

h4σ2

sin2
(k) sj

(
1

8
−

1

4
cos(2θ̄j) +

1

8
cos(4θ̄j)) .

Therefore, (6.3) follows from

RRRRRRRRRRR

n

∑
j=1

s−1
j sin(2θ̄)

RRRRRRRRRRR

+

RRRRRRRRRRR

n

∑
j=1

s−1
j cos(2θ̄)

RRRRRRRRRRR

+

RRRRRRRRRRR

n

∑
j=1

s−1
j cos(4θ̄)

RRRRRRRRRRR

= o
⎛

⎝

n

∑
j=1

j−α
⎞

⎠
. (B.3)

Using Lemma 5.2 and the existence of the limit limn→∞ s−1
n n

α, this can be proved analogously as
in [KiLS]. To see this, let us recall the following Lemma:

Lemma B.1 (∼ Lemma 8.5 in [KiLS]). Let k0 ∈ R be not in πZ. Then there exists integers ql →∞

such that for any θ0, . . . , θql ,

RRRRRRRRRRR

ql

∑
j=1

eiθj
RRRRRRRRRRR

≤ 1 +

ql

∑
j=1

∣θj − θ0 − jk0∣ .

◻

For illustration how to obtain (B.3) let us pick the first term. Also note that by convergence
of sn /nα and ∑n s

−1
n = ∑n n

−α = ∞ one obtains

n

∑
j=0

s−1
j sin(θ̄j) =

n

∑
j=1

c j−α sin(θ̄j) + o
⎛

⎝

n

∑
j=1

j−α
⎞

⎠
,

thus, we can consider ∑j j
−α sin(2θ̄j).
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So let ql be the sequence as in Lemma B.1 for k0 = 2k. By Lemma 5.2 we find almost surely a

random sequence nl > q
2
l such that for any n > nl one has ∣xn∣ < q−2

l and q
1−α/2
l (n + ql)

−α ≥ n−α.
Then one obtains for n > nl that

∣θ̄n+j − θ̄n − jk∣ ≤
j

∑
i=1

∣xn+i∣ ≤ j q
−2
l .

Let N = nl +Kql, then

N

∑
j=nl+1

j−α sin(2θ̄j) ≤
K−1

∑
m=0

ql

∑
j=1

[(nl +mql)
−α 2 ∣θ̄nl+mql+j − θ̄nl+mql − jk∣ +

∣(nl +mql + j)
−α

− (nl +mql)
−α

∣ ]

≤
K−1

∑
m=0

(3 + α) (nl +mql)
−α

≤ 4 q−αl

N

∑
j=nl+1

j−α .

In the second estimate we used concavity of the function −x−α for the second term giving that
tangents always lie above the graph and hence for N > q2

l ,

ql

∑
j=1

N−α
− (N + j)−α ≤

ql

∑
j=1

αN−α−1 j ≤ αN−α q2
l /N ≤ αN−α .

The last estimate comes from q
−α/2
l ∑

ql
j=1(n+ j)

−α ≥ q
1−α/2
l (n+ ql)

−α ≥ n−α for all n > nl which was
one of the conditions on nl. Therefore,

lim sup
N→∞

⎛

⎝

N

∑
j=1

j−α sin(2θ̄j)
⎞

⎠
/
⎛

⎝

N

∑
j=1

j−α
⎞

⎠
≤ q−αl → 0 for ql → ∞ .

Repeating these arguments for the second and third term in (B.3) finishes the proof of (6.3).
For α < 1, (6.4) follows directly from (6.3) and [LS, Theorem 8.3]. In the case α = 1, i.e. d = 2,

we need to use [KiLS, Lemma 8.7] and verify the conditions following the arguments of the proof
of [KiLS, Lemma 8.8].

So let α = 1, d = 2 and β = c γE,λ, then we have log ∥TE(n)∥ / log(n) → β. Moreover, let R
(j)
n

and θ̄
(j)
n = θ

(j)
n + k for j = 1,2 be defined as Rn and θ̄n = θn + k in (6.1) and (6.2) with starting

angles θ
(1)
0 = 0 and θ

(2)
0 = π/2. As in [KiLS] we get almost surely log ∣θ

(1)
n − θ

(2)
n ∣ / log(n) → −2β.

Then, using f(x, θ̄) as in (B.2), define the random variable

L(n) ∶= f(xn, θ̄
(1)
n ) − f(xn, θ̄

(2)
n ) .

Following the proof of [KiLS, Lemma 8.8] the main point is to show that for any ε > 0 we have (cf.
[KiLS, eq. (8.22)])

∣
∞
∑
n=N

L(n)∣ ≤ CωN
−2β+ε (B.4)

almost surely, for some random variable Cω (recall that ω ∈ Ω denoted the randomness). There
are some differences in the setup here to arrive at this estimate.

Taking J > 2 + 2β and noting that sn ∼ n in this case (d = 2), we have by (5.8) that E(x2J
n ) =

O(n−J) = o(n−2−2β). A Borel Cantelli argument as in Lemma 5.2 shows that x2J
n = o(n−2β−1+ε)

almost surely. Furthermore, we have ∣θ
(1)
n − θ

(2)
n ∣ = o(n−2β+ε) almost surely. Taking a Taylor
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expansion of f(x, θ̄) in the first variable up to reminder term O(x2J
n ) we see that E(L(n)) =

o(n−2β−1+ε) and

L(n) =
2J−1

∑
j=1

(xjn −E(xjn)) [f (j)
(0, θ̄(1)n ) − f (j)

(0, θ̄(2)n )] + o(n−2β−1+ε
) .

θ̄
(1)
n , θ̄

(2)
n depend only on x0, . . . , xn−1 and the variance of each term is of order o(n−4β−1+2ε).

Therefore, we can use [KiLS, Lemma 8.4 part(3) with 2α = 1 + 4β − 2ε] to obtain (B.4). After this
estimate we can conclude as in [KiLS, Lemma 8.8] and obtain that the assumptions for [KiLS,
Lemma 8.7] are fulfilled almost surely. This gives (6.4) in the case d = 2.
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