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Abstract. Consider the 3-dimensional Laplacian with a potential described by point
scatterers placed on the integer lattice. We prove that for Floquet-Bloch modes with
fixed quasi-momentum satisfying a certain Diophantine condition, there is a subse-
quence of eigenvalues of positive density whose eigenfunctions exhibit equidistri-
bution in position space and localisation in momentum space. This result comple-
ments the result of Ueberschär and Kurlberg [15] who show momentum localisation
for zero quasi-momentum in 2-dimensions, and is the first result in this direction in
3-dimensions.

1. Introduction

The phase space distribution of quantum eigenfunctions for large energies re-
mains in general an unsolved problem - specifically, one would like to know whether
the eigenfunctions of a given system exhibit equidistribution or some degree of lo-
calisation (or indeed both). We are motivated by the physical problem concern-
ing propagation through a cubic crystal lattice of scatterers. It is well known that
when considering a scattering problem in which the wavelength is much larger than
the radius of the scatterer, we can replace the scattering potential with a Dirac δ
point potential. This approach is perhaps most famously used in the 1-dimensional
Kronig-Penney model [5] which considers the one dimensional Schrödinger equa-
tion with a Dirac comb potential. Periodic problems of this sort can be tackled
with Floquet-Bloch theory which allows us to reduce a periodic problem in Rd to
a family of quasiperiodic problems on Td parametrised by their Bloch vector or
quasimomentum k ∈ Td.

For zero quasimomentum the problem of limiting phase space distributions has
been studied in two dimensions by Rudnick and Ueberschär [9], and Ueberschär
and Kurlberg [15, 6], who showed that almost all eigenfunctions equidistribute in
position space for all tori, and that almost all eigenfunctions either equidistribute
or localise in momentum space dependent on the diophantine properties of the ra-
tio of side lengths. These results were partially generalised to three dimensions by
Yesha [16, 17] who showed that for the cubic torus that all eigenfunctions equidis-
tribute in position space, and that almost all eigenfunctions equidistribute in phase
space. In this paper we aim to generalise the results on the cubic torus to include
nonzero quasimomentum.

Problems of this type have been studied extensively in the Quantum Chaos liter-
ature since Šeba [14] who considered a rectangular billiard with a point scatterer at
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some given point. The Šeba billiard was constructed as an example of an intermedi-
ate system, meaning one that is classically integrable (the point scatterer affects only
a zero measure set of trajectories) yet exhibits properties typical of chaotic systems
[3, 10, 11, 12], this is interesting in view of Shnirelman’s theorem [2, 13, 18] which
states that for classically ergodic systems a density one subsequence of eigenfunc-
tions equidistributes in phase space, yet when the classical dynamics is integrable
eigenfunctions tend to localise or scar.

We study the Laplacian on R3 with potential described by point scatterers placed
on 2πZ3 which is described by the formal operator

−∆ + c ∑
j∈2πZ3

δj+x0 .(1)

This operator is unitarily equivalent via a gauge transformation to a direct inte-
gral over quasimomenta k. That is, we can instead consider a related quasiperiodic
problem on the torus which is then realised via Von Neumann self-adjoint exten-
sion theory [1]. We first show that almost all of the eigenfunctions of this operator
equidistribute in position space. We then prove that there is a positive density se-
quence of eigenfunctions which do not equidistribute in momentum space, specifi-
cally we can find a subsequence that partially localises in a given direction.

(a) λ100 ≈ 100.03 (b) λ101 ≈ 100.04

(c) λ102 ≈ 100.06 (d) λ103 ≈ 100.09

(e) λ104 ≈ 100.11 (f) λ105 ≈ 100.13

Figure 1. A sequence of six consecutive eigenfunction density plots
on the plane (θ, φ) showing the distribution of momentum directions.
We use fixed quasimomentum k = ( 1√

2
, 1√

3
, 1√

5
).
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(a) λ14322 ≈ 203.630 (b) λ23985 ≈ 292.147

(c) λ45414 ≈ 454.925 (d) λ65109 ≈ 583.445

Figure 2. A collection of non-consecutive eigenfunctions in momen-
tum space with eigenvalue λ showing partial localisation in the
fixed direction (1,−1, 0). We again use fixed quasimomentum k =
( 1√

2
, 1√

3
, 1√

5
).

2. Setup

Consider the positive operator −∆k on T3 = R3/(2πZ3) defined by

∆k =

(
∂

∂x
+ ik1

)2

+

(
∂

∂y
+ ik2

)2

+

(
∂

∂z
+ ik3

)2

.(2)

The eigenfunctions of this operator are the complex exponentials

1
(2π)3/2 ei〈ξ, x〉(3)
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with eigenvalue |ξ + k|2, ξ ∈ Z3. We will write N = {nk | k ∈ N} to denote the or-
dered sequence of these eigenvalues. Equivalently, we could consider the standard
Laplacian on T3 on functions that satisfy the quasiperiodic boundary conditions
ψ(x + γ) = ei〈γ,k〉ψ(x) for γ in 2πZ3. In this case the eigenfunctions are propor-
tional to the exponentials ei〈ξ+k,x〉 and again have corresponding eigenvalue |ξ + k|2
- it turns out that the first formulation is more convenient in our case. It is worth
noting that this operator occurs naturally when considering the Laplacian on R3

with some periodic potential. It is known that provided V(x + γ) = V(x) for all
γ ∈ 2πZ3 then the operator on R3 given by −∆ + V(x) has a direct integral decom-
position into operators on T3 of the form −∆k +V(x). Full details of this procedure
for a general operator can be found in [8]. We consider the perturbation of the
operator −∆k by a δ potential at a given point x0 ∈ T3. We realise the perturbed
operator

Hk = −∆k + δx0(4)

via self-adjoint extension theory. Details of this calculation can be found in e.g. [?].
The idea is that if we restrict our operator to functions vanishing at the point x0,
it should act like −∆k. This operator is then symmetric but not self-adjoint, so we
extend the domain of functions in such a way that self-adjointness is regained. If
we define the restricted Laplacian, −∆0 := −∆ |D0 with

D0 := C∞(T3/{x0}),(5)

then the deficiency indices are (1, 1) and the deficiency elements are the Green’s
functions, G±i(x, x0), where we define Gλ by

Gλ(x, x0) := (∆k + λ)−1δ(x− x0)
L2
= − 1

8π3 ∑
ξ∈Z3

ei〈ξ, x−x0〉

|ξ + k|2 − λ
.(6)

There therefore exists a 1-parameter family of self-adjoint extensions parametrised
by φ which we denote by ∆k,φ. The domains of these operators consist of functions
f such that

f (x) = C
(

cos(φ/2)
1

4π|x− x0|
+ sin(φ/2)

)
+ o(1)(7)

as x → x0. The domain of ∆k,φ can be written

Dφ =
{

g + cGi(·, x0) + ceiφG−i(·, x0) | g ∈ D0, c ∈ C, φ ∈ (−π, π)
}

,(8)

and the action of ∆k,φ is given by

−∆k,φ f = −∆k g + ciGi(·, x0)− ceiφiG−i(·, x0).(9)

The new perturbed eigenvalues are given by solutions of the equation

∑
ξ∈Z3

(
1

|ξ + k|2 − λ
− |ξ + k|2
|ξ + k|4 + 1

)
= c0 tan(φ/2),(10)

where

c0 = ∑
ξ∈Z3

1
|ξ + k|4 + 1

.(11)
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The set of perturbed eigenvalues will be denoted by Λ.

3. Statement of Results

We state the main results as two separate theorems, the first concerning pure
position observables, the second concerning full phase space observables. To deal
with phase space we first need to define quantisation. We follow the approach used
in [17]. Consider a classical symbol a ∈ C∞(S∗T3), where S∗T3 ' T3 × S2. We
define the quantisation Op(a) by

(Op(a) f )(x) = ∑
ξ∈Z3

ei〈ξ,x〉a(x, ξ + k) f̂ (ξ),(12)

where we use the notation ξ = ξ
|ξ| . We can then expand a in functions eζ,l,m(x, ξ) =

Yl,m(ξ)ei〈ζ,x〉, where Yl,m(ξ) is the (normalised) spherical harmonic of degree l and
order m. Specifically we consider some finite polynomial P defined by

P(x, ξ) = ∑
|ζ|≤N1

∑
l≤N2

∑
|m|≤l

cζ,l,meζ,l,m(x, ξ),(13)

and claim that for all a ∈ C∞(S∗T3) there exist N1 and N2 such that for all (x, ξ) ∈
S∗T3 and multi-indices α with |α| < 2 we have

|∂α
x(a(x, ξ)− P(x, ξ))| < ε.(14)

In light of this it suffices to prove our theorem only for these finite polynomials
(see [17] for details). We are now able to state the main results. Let Λ denote the
sequence of perturbed eigenvalues.

Definition 3.1. A vector k ∈ Rd is said to be Diophantine of type κ if there exists a
constant C such that for all m ∈ Rd, q ∈N we have

max
j

∣∣∣∣k j −
mj

q

∣∣∣∣ > C
qκ

.(15)

The first theorem concerns position space equidistribution and is proved in Sec-
tion 5.

Theorem 3.1. Fix φ ∈ (−π, π). Assume the components of (1, k) are linearly independent
over Q. Then, there is a density one subset Λ′ ⊂ Λ such that for all observables a ∈ C∞(T3)
we have

lim
λ→∞
〈a(x)gλ(x), gλ(x)〉 = 1

8π3

∫
T3

a(x) dx(16)

with λ ∈ Λ′.

The second theorem concerns simultaneous equidistribution in position space and
partial localisation in momentum space and is proved in Section 6.

Theorem 3.2. Fix φ ∈ (−π, π). Let k be diophantine of type κ ∈ [4/3, 2) and assume
the components of (1, k) are linearly independent over Q. Then, for all ε > 0 there is a
subset Λε ⊂ Λ of density at least 1− ε such that for all subsequences (λn)n∈N there exists
a further subsequence (λnj)j∈N such that for all observables a ∈ C∞(S∗T3) we have

lim
j→∞
〈Op(a(x, ξ))gλnj

(x), gλnj
(x)〉 = 1

vol(S∗T3)

∫
S∗T3

a(x, ξ) dx dµ(u)(17)
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where µ has a positive proportion of its mass supported on a finite number of points.

4. Truncation

In order to consider only finite sums we define a truncated Green’s function.
Define A(λ, L) by

A(λ, L) = {ξ ∈ Z3 : ||ξ + k|2 − λ| < L},(18)

we then define the truncated Green’s function by

Gλ,L(x, x0) = −
1

8π3 ∑
ξ∈A(λ,L)

ei〈ξ, x−x0〉

|ξ + k|2 − λ
.(19)

We want to show that for L = λ−δ for some δ this truncation is a good approxima-
tion for large λ. We first need a lower bound on the full Green’s function. Define

N (x) = {n ∈ N | n ≤ x}.(20)

If the components of (1, k) are linearly independent over Q then we know the as-
ymptotic behaviour of N (x) to be

N(x) = #N (x) =
4
3

πx3/2 + O(xθ).(21)

It is conjectured that θ = 1
2 + ε for all ε, and for k = 0 the current best explicit

bound due to Heath-Brown [4] gives θ = 21
32 + ε for all ε > 0. For our purposes it

is required that θ < 1, in fact we will show in the Appendix that we have θ < 3
4 + ε

independent of k.

Lemma 4.1. Let the components of (1, k) be linearly independent over Q. Then, there is a
density one subsequence of eigenvalues λ ∈ Λ such that

‖Gλ‖ � λ1/2−ε.(22)

Proof. We have from (21) that

1
N(x) ∑

nk≤x
(nk − nk−1) �

x
N(x)

� x−1/2.(23)

Thus, since nk − nk−1 > 0 we must have that for a subsequence of density one that

nk+1 − nk � n−1/2+ε
k+1 .(24)

Let nk+1 > λ > nk and we see

‖Gλ‖2 � ∑
n∈N

1
(n− λ)2 >

1
(nk+1 − λ)2 >

1
(nk+1 − nk)2 � n1−ε

k+1 > λ1−ε.(25)

�

Lemma 4.2. Let L = λ−δ, then ‖gλ,L − gλ‖ → 0 as λ→ ∞.
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Proof. First we see that

‖gλ,L − gλ‖ =
∥∥∥∥ Gλ

‖Gλ‖
− Gλ,L

‖Gλ,L‖

∥∥∥∥(26)

=

∥∥∥∥ Gλ

‖Gλ‖
− Gλ,L

‖Gλ‖
+

Gλ,L

‖Gλ‖
− Gλ,L

‖Gλ,L‖

∥∥∥∥(27)

≤ ‖Gλ − Gλ,L‖
‖Gλ‖

+ ‖Gλ,L‖
∣∣∣∣ 1
‖Gλ‖

− 1
‖Gλ,L‖

∣∣∣∣(28)

≤ 2
‖Gλ − Gλ,L‖
‖Gλ‖

.(29)

Then we have

‖Gλ − Gλ,L‖2 � ∑
||ξ+k|2−λ|>L

1
(|ξ + k|2 − λ)2 .(30)

We evaluate the lattice sum via Abel summation, which tells us that for a smooth
function f we have

∑
nA<|ξ+k|2<nB

f (|ξ + k|2) = N(nB) f (nB)− N(nA) f (nA+1)−
∫ nB

nA+1

f ′(t)N(t) dt.(31)

Integrating by parts we see

∑
nA<|ξ+k|2<nB

f (|ξ + k|2) = 2π
∫ nB

nA+1

f (t)t1/2 dt(32)

+ O(nθ
B f (nB)− nθ

A f (nA+1)) + O(
∫ nB

nA+1

| f ′(t)|tθ dt).(33)

Applying this to f (n) = 1
(n−λ)2 with nA = n0 and nB < λ− L < nB+1 we see

∑
n<λ−L

1
(n− λ)2 = 2π

∫ nB

n1

n1/2

(n− λ)2 dn + O

(
nθ

B
(nB − λ)2

)
+ O

(∫ nB

n1

nθ

(λ− n)3 dn
)

.

(34)

We can bound the integral by∫ nB

n1

n1/2

(n− λ)2 dn ≤ λ1/2
∫ nB

n1

1
(n− λ)2 dn(35)

≤ λ1/2

L
≤ λθ

L2 .(36)

Similarly we see

nθ
B

(nB − λ)2 ≤
λθ

L2 ,(37)

and also ∫ nB

n1

nθ

(λ− n)3 �
λθ

L2 .(38)
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Now repeating this procedure with nA < λ + L < nA+1 and nB = ∞ we obtain

∑
n>λ−L

1
(n− λ)2 = 2π

∫ ∞

nA+1

n1/2

(n− λ)2 dn + O

(
nθ

A
(nA − λ)2

)
+ O

(∫ ∞

nA

nθ

(λ− n)3 dn
)

.

(39)

For the first integral we write∫ ∞

nA+1

n1/2

(n− λ)2 dn =
∫ ∞

nA+1−λ

(s + λ)1/2

s2 ds

≤
∫ λ

L

(s + λ)1/2

s2 ds +
∫ ∞

λ

(s + λ)1/2

s2 ds

� λ1/2

L
� λθ

L2 .(40)

For the second term we have immediately

nθ
A

(nA − λ)2 �
λθ

L2 .(41)

For the third term we see∫ ∞

nA

nθ

(λ− n)3 dn =
∫ ∞

nA+1−λ

(s + λ)θ

s3 ds

�
∫ ∞

nA+1−λ

s + λ

s3 ds� 1
λ

.(42)

Putting all of this together we see

‖Gλ − Gλ,L‖2 � λθ

L2 ,(43)

and hence that for the normalised Green’s functions

‖gλ,L − gλ‖ �
λ−

1−θ
2

L
= λ−(1−θ)/2+ε+δ(44)

which tends to 0 for all δ < 1−θ
2 − ε. �

Corollary 4.1. Define gλ,L as above with L = λ−δ and 0 < δ < 1−θ
2 − ε then

|〈Op(eζ,l,m)gλ,L, gλ,L〉 − 〈Op(eζ,l,m)gλ, gλ〉| → 0.(45)

Proof. We have

|〈Op(eζ,l,m)gλ,L, gλ,L〉 − 〈Op(eζ,l,m)gλ, gλ〉|(46)

≤ |〈Op(eζ,l,m)gλ,L, gλ,L − gλ〉|+ |〈Op(eζ,l,m)(gλ − gλ,L), gλ〉|.(47)

Taking each term and using Cauchy-Schwarz gives

|〈Op(eζ,l,m)gλ,L, gλ,L〉 − 〈Op(eζ,l,m)gλ, gλ〉| ≤ ‖Op(eζ,l,m)‖∞‖gλ − gλ,L‖ → 0.(48)

�
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5. Equidistribution in Position Space

The following proposition is key to the proof.

Proposition 5.1. Fix ζ 6= 0 and let L = λ−δ for some δ > 0. Let the components of (1, k)
be linearly independent over Q. Then, for a subsequence of λ of density one we have

〈Op(eζ,l,m)gλ,L, gλ,L〉 → 0.(49)

In order to prove this we first need a lemma.

Lemma 5.1. Let the components of (k, 1) be linearly independent over Q and fix ζ ∈ Z3.
Then, there exists some ε > 0 such that for all ξ ∈ Z3 we have

|2〈ξ + k, ζ〉+ |ζ|2| > ε.(50)

Proof. First write ξ = aζ‖ + bζ⊥, and ζ = cζ‖ where ζ‖ and ζ⊥ are primitive lattice
vectors and a, b, c ∈ Z. Then we assume for contradiction that |2〈ξ + k, ζ〉+ |ζ|2| < ε.
We see then that

− c
2
− ε

2c|ζ‖|2
−
〈k, ζ‖〉
|ζ‖|2

< a < − c
2
+

ε

2c|ζ‖|2
−
〈k, ζ‖〉
|ζ‖|2

.(51)

Thus we see that unless the quantity

− c
2
−
〈k, ζ‖〉
|ζ‖|2

(52)

is an integer, we can always find ε small enough such that this inequality cannot be
satisfied by integer a. Since the components of (k, 1) are linearly independent over
Q, we have for all m ∈ 1

2Z that

〈k, ζ‖〉 −m|ζ‖|2 6= 0,(53)

so
〈k,ζ‖〉
|ζ‖|2

/∈ 1
2Z, and we conclude that

|2〈ξ + k, ζ〉+ |ζ|2| > ε.(54)

�

Proof of Proposition 5.1. First write

|〈Op(eζ,l,m)Gλ,L, Gλ,L〉|

=
1

64π6‖Gλ‖2 |〈 ∑
ξ∈A(λ,L)

ei〈ξ,x−x0〉

|ξ + k|2 − λ
ei〈ζ,x〉Yl,m(ξ + k), ∑

η∈A(λ,L)

ei〈η,x−x0〉

|η + k|2 − λ
〉|(55)

=
1

64π6‖Gλ‖2 |
∫

T̃3
∑

ξ,η∈A(λ,L)

ei〈η−ξ,x−x0〉

(|ξ + k|2 − λ)(|η + k|2 − λ)
e−i〈ζ,x〉Y∗l,m(ξ + k) dx|(56)

Note then by Lemma 5.1 that for ξ ∈ A(λ, L),

||ξ + ζ + k|2 − λ| = ||ξ + k|2 − λ + 2〈ξ + k, ζ〉+ |ζ|2| � ε(57)

so ξ + ζ /∈ A(λ, L) for λ sufficiently large. Thus the integral in (56) vanishes. �
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We are now able to show equidistribution for position space observables.

Proof of Theorem 3.1. Let a ∈ C∞(T3), then the operator Op(a) is just given by multi-
plication by a. We consider a to be some finite polynomial

a(x) = ∑
|ζ|<N

â(ζ) ei〈ζ,x〉,(58)

and see from Proposition 5.1 that along some density one subsequence of λ,

〈a(x)gλ,L, gλ,L〉 → 〈â(0)gλ,L, gλ,L〉(59)

=

(∫
T3

a(y)
dy

8π3

)(∫
T3
|gλ,L(x)|2 dx

8π3

)
=
∫

T3
a(y)

dy
8π3 .

The result then follows from Corollary 4.1. �

6. Localisation in Momentum Space

Throughout this section we will assume k is diophantine of type κ < 2. Let a be
defined by

a(x, ξ) = ∑
|ζ|≤N1,l≤N2,|m|≤l

â(ζ, l, m)eζ,l,m(x, ξ)(60)

where â(ζ, l, m) is given by

â(ζ, l, m) =
1

8π3

∫
S2

∫
T3

a(x, ξ)e−i〈x,ζ〉Y∗l,m(ξ) dxdσ(ξ).(61)

We thus have that

〈Op(a)gλ,L, gλ,L〉 ∼ 〈∑
l,m

â(0, l, m)Op(e0,l,m)gλ,L, gλ,L〉(62)

= ‖Gλ‖−2 1
16π6 ∑

l,m
∑

ξ∈A(λ,L)
â(0, l, m)

Yl,m(ξ + k)
(|ξ + k|2 − λ)2

� ∑
ξ∈A(λ,L)

∫
S∗T3

a(x, η) dx
δ(η̄ − ξ̄)

(|ξ + k|2 − λ)2 dσ(η).

Thus the component of the spectral measure for each fixed |ξ + k|2 = m on T3 × S2

consists of Leb×δξ+k. The full (unnormalised) spectral measure is thus a weighted
sum of a growing number of δ masses that become dense on S2. We aim to show
that for a positive density subsequence of λ, the tails of this sum can be bounded
uniformly in λ such that a positive proportion of its density will be supported on a
finite number of points.

Lemma 6.1. We have that #{ni ∈ N (T) : ni+1 − ni > G/
√

ni+1} < T3/2/G.

Proof. We see that

∑
ni≤T

√
ni+1(ni+1 − ni) ≤ ∑

ni≤T
(n3/2

i+1 − n3/2
i )(63)

� T3/2.(64)
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Thus by Chebyshev’s inequality we see

#{ni ≤ T : si = ni+1 − ni > G/
√

ni+1} < T3/2/G.(65)

�

Lemma 6.2. Given D > 0, E ≥ 1,

#{n ∈ N (T) : |N (T) ∩ [n− D√
n , n + D√

n ]| > E + 1} � D(2T)3/2

E
.(66)

Proof. We have that

∑
n∈N (T)

(|N (T) ∩ [n− D√
n , n + D√

n ]| − 1)(67)

= #{n, m ∈ N (T) : m 6= n,
√

n|n−m| ≤ D}(68)

� #{n, m ∈ N (2T)\N (T) : m 6= n,
√

T|n−m| ≤ D}.(69)

Since we assumed k was diophantine, by [7] Theorem 1.6 we have

#{n, m ∈ N (2T)\N (T) : m 6= n,
√

T|n−m| ≤ D} ∼ D(2T)3/2.(70)

Again by Chebyshev’s inequality we conclude

#{n ∈ N (T) : |N (T) ∩ [n− D√
n , n + D√

n ] > E + 1} � D(2T)3/2

E
.(71)

�

Lemma 6.3. For all A > 1

∑
n,m∈N (x)√
m|n−m|>A

1
m(n−m)2 �

x3/2

A1/3 .(72)

Proof. We first define

M(k) := |{n ∈ N : n3/2 ∈ [k, k + 1]}|.(73)

Then we deduce an L2 bound on M(k) by

∑
k≤T

M(k)2 = ∑
k≤T
|{m, n ∈ N : m3/2, n3/2 ∈ [k, k + 1]}|(74)

≤ |{m, n ∈ N : m3/2, n3/2 ≤ T + 1, m3/2 − n3/2 ∈ [−1, 1]}|(75)

which again by Theorem 1.6 in [7] gives us

∑
k≤T

M(k)2 � T.(76)

Note that we can write
√

m|n−m| =
√

m√
m +
√

n
(
√

m|n−m|+
√

n|n−m|) ≥
√

m√
m +
√

n
|n3/2 −m3/2|,
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and also that
√

m|n−m| < |n3/2 −m3/2|. Hence, we can bound the sum in (72) by

∑
n,m∈N (x)√
m|n−m|>A

1
m(n−m)2 � ∑

n,m∈N (x)
|n3/2−m3/2|>A

(1 +
√ n

m )2

(n3/2 −m3/2)2(77)

=
x3/2

∑
k=A

∑
n,m∈N (x)

|n3/2−m3/2|∈[k,k+1]

(1 +
√ n

m )2

(n3/2 −m3/2)2 .

Now, when m > n we can immediately conclude

x3/2

∑
k=A

∑
n,m∈N (x)

|n3/2−m3/2|∈[k,k+1]

(1 +
√ n

m )2

(n3/2 −m3/2)2 < 4
x3/2

∑
k=A

1
k2 |{m, n ∈ N (x) : (n3/2 −m3/2) ∈ [k, k + 1]}|

≤ 4
x3/2

∑
k=A

1
k2 ∑

m≤x3/2

M(m)(M(m + k) + M(m + k + 1))(78)

� x3/2
x3/2

∑
k=A

1
k2 �

x3/2

A
.

When m < n, we see that

n3/2 −m3/2 ∈ [k, k + 1] =⇒
( n

m

)3/2
≤ 1 +

k + 1
m3/2 .(79)

We know that m is bounded away from zero, say m > C, then we must have( n
m

)1/2
≤ C−1/2(k + 1 + C3/2)1/3.(80)

Repeating the previous argument is this regime yields

x3/2

∑
k=A

∑
n,m∈N (x)

|n3/2−m3/2|∈[k,k+1]

(1 +
√ n

m )2

(n3/2 −m3/2)2 �
x3/2

∑
k=A

1
k4/3 |{m, n ∈ N (x) : (n3/2 −m3/2) ∈ [k, k + 1]}|

≤
x3/2

∑
k=A

1
k4/3 ∑

m≤x3/2

M(m)(M(m + k) + M(m + k + 1))(81)

� x3/2
x3/2

∑
k=A

1
k4/3 �

x3/2

A1/3 .

�

We are now ready to prove the second main theorem.

Proof of Theorem 3.2. Define N ′ as follows, first remove all points m whose nearest
left neighbour is further than G/

√
m, by Lemma 6.1 we are left with a subsequence

of density at least 1− 1/G. Now choose D and fix E large enough such that

|{m ∈ N (T) : |N (T) ∩ [m− D√
m , m + D√

m ] > E + 1}| ≤ T3/2

G
(82)
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which is possible by Lemma 6.2. Removing these points leaves us with a subse-
quence of density at least 1 − 2/G. Finally, by Lemma 6.3, and Chebyshev’s in-
equality we choose F large enough such that

|{m ∈ N (T) : ∑
n∈N (T)√

m|n−m|>D

1
(n−m)2 > F m}| ≤ T3/2

G
.(83)

Removing these points leaves us with a subsequence of density at least 1− 3/G.
Thus if we consider pure momentum observables and for m ∈ N ′ denote by µm the
delta measure on the point corresponding to the direction ξ + k with |ξ + k|2 = m,
we see that the unnormalised measure associated to Gλm is

∑
n∈N

µn

(n− λm)2 =
µm

(m− λm)2 + ∑
n∈N

0<|n−m|< D√
m

µn

(n− λm)2 + ∑
n∈N

|n−m|> D√
m

µn

(n− λm)2 .(84)

We know that the first term is� m/G, the second sum has at most E terms, and the
third is bounded above by F m. Thus the normalised measure will have a positive
proportion of its mass on a finite number of points. The theorem then follows from
compactness of S∗T3 and by setting ε = 3/G and defining Λε by λm ∈ Λε ⇐⇒
m ∈ N ′. �
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Appendix A.

Proposition A.1. Let S(R) = #{|ξ + k| < R | ξ ∈ Z3} denote the number of shifted
lattice points inside a ball of radius R. Then we have that

S(R) =
4
3

πR3 + O(R3/2+ε).(85)

Proof. We bound the quantity S(R) above and below by sums over the indicator
function of a shifted ball convolved with some smooth bump function with smooth-
ing parameter δ. We can then employ Poisson summation and tune δ in such a way
that the error terms vanish. Let Bk(R) denote the ball of radius R centred at k, and
write ψδ(x) = δ−3ψ(x/δ) where ψ is some smooth function with compact support
in B0(1) normalised such that ψ̂(0) = 1. Define Sδ(R) to be the smoothed sum

Sδ(R) = ∑
x∈Z3

χBk(R) ∗ ψδ(x).(86)

Note that we have S(R− δ) ≤ Sδ(R) ≤ S(R + δ). By Poisson summation we see

∑
x∈Z3

χBk(R) ∗ ψδ(x) = ∑
ξ∈Z3

χ̂Bk(R)(ξ)ψ̂δ(ξ).(87)

Computing the term ξ = 0 yields∫
R3

χBk(R)(x) dx =
4
3

πR3.(88)

For ξ 6= 0, the Fourier coefficients χ̂Bk(R)(ξ) are given by

χ̂Bk(R)(ξ) = e−2πi〈k,ξ〉 1
2π2|ξ|3 (sin(2πR|ξ|)− 2πR|ξ| cos(2πR|ξ|)) .(89)

We also have that∫
R3

δ−3ψ(x/δ)e−2πi〈x,ξ〉 dx =
∫

R3
δ−3ψ(x/δ)(4π2|ξ|2)−1(−∆)e−2πi〈x,ξ〉 dx

= (4π2|ξ|2)−1
∫

R3
δ−3e−2πi〈x,ξ〉(−∆)ψ(x/δ) dx(90)

= (4π2|ξ|2δ2)−1
∫

R3
e−2πiδ〈y,ξ〉(−∆)ψ(y) dy.

We thus have that |ψ̂δ(ξ)| � min{1, (δ|ξ|)−2} ≤ (δ|ξ|)−(1+ε). Plugging these
asymptotics in to the sum gives

∑
x∈Z3\{0}

χBk(R) ∗ ψδ(x)� Rδ−(1+ε) ∑
ξ∈Z3\{0}

|ξ|−(3+ε)(91)

� Rδ−(1+ε).

We thus have that

S(R) ≤ Sδ(R + δ) =
4
3

π(R + δ)3 + O(Rδ−(1+ε))(92)

=
4
3

πR3 + O(R2δ + Rδ−(1+ε)),

and similarly that

S(R) ≥ Sδ(R− δ) =
4
3

πR3 + O(R2δ + Rδ−(1+ε)).(93)
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Setting δ = R−1/2 yields the result. �
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