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Counting things is a great favorite of children, and
mathematicians as well, whatever the things are

The primary aim of this short note† is, commemorating the 150th anniver-
sary of Riemann’s death, to explain how the idea of Riemann sum is linked
to other branches of mathematics. The materials I treat are ones available
to the “mathematician in the streets” except for a few. However one may
still see interesting inter-connection and cohesiveness in mathematics.

1 Riemann sums

In December of 1853, Bernhard Riemann (1826–1866) presented the epoch-
making paper “Über die Darstellbarkeit einer Function durch eine trigonomet-
rische Reihe” (On the representability of a function by a trigonometric series)
to the Council of Göttingen University as his Habilitationsschrift (Qualifi-
cation to become an instructor), in which he gave a rigorous definition of
integrals.

What plays a significant role in Riemann’s definition of integrals is the
notion of Riemann sum, which, if we use his notations, is expressed as

S = δ1f(a+ ϵ1δ1) + δ2f(x1 + ϵ2δ2) + δ3f(x3 + ϵ3δ3) + · · ·+ δnf(xn−1 + ϵnδn).
∗The author(s) would like to thank the Isaac Newton Institute for Mathematical Sci-

ences, Cambridge, for support and hospitality during the programme “Periodic and Er-
godic Spectral Problems” where work on this paper was undertaken.

†This was presented at the workshop “Random and other ergodic problems” held at
Newton Institute, University of Cambridge (22 June). and at the conference “Geometry in
History” held at Institut de Recherche Mathématique Avancée, University of Strasbourg
(12 June). This is alos the keynote address at Symposium of Geometry in 2015 held at
Tokyo University of Science.
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Here f(x) is a function on the closed interval [a, b], a = x0 < x1 < x2 <
· · · < xn−1 < xn = b, and δi = xi − xi−1 (i = 1, 2, . . . , n). If S converges to
A as maxi δi goes to 0 whatever ϵi with 0 < ϵi < 1 (i = 1, . . . , n) are chosen

(thus xk−1+ ϵkδk ∈ [xk−1, xk]), then the value A is written as

∫ b

a

f(x)dx, and

f(x) is called Riemann integrable. For example, every continuous function
is Riemann integrable as we learn in calculus.

The notion of Riemann sum is immediately generalized to functions of
several variables as follows.

Let ∆ = {Dα}α∈A be a partition of Rd by a countable family of bounded
domains Dα with piecewise smooth boundaries satisfying

(i) mesh(∆) := sup
α∈A

d(Dα) < ∞, where d(Dα) is the diameter of Dα,

(ii) there are only finitely many α such that K∩Dα ̸= ∅ for any compact
set K ⊂ Rd.

We select a point ξα from each Dα, and put Γ = {ξα| α ∈ A}. The
Riemann sum σ(f,∆,Γ) for a function f on Rd with compact support is
defined by

σ(f,∆,Γ) =
∑
α

f(ξα)vol(Dα),

where vol(Dα) is the volume of Dα. Note that f(ξα) = 0 for all but finitely
many α because of Property (ii).

If the limit
lim

mesh(∆)→0
σ(f,∆,Γ) (1)

exists, independently of the specific sequence of partitions and the choice of
{ξα}, then f is said to be Riemannian integrable, and this limit is called the

(d-tuple) Riemann integral of f , which we denote by

∫
Rd

f(x)dx.

In particular, we take the sequence of partitions given by∆ϵ = {ϵDα| α ∈
A} (ϵ > 0). Then for a Riemann integrable function f , we have

lim
ϵ→+0

∑
α∈A

ϵdf(ϵξα)vol(Dα) =

∫
Rd

f(x)dx. (2)

Here we look at Eq. (2) from a different angle. We think that ω(ξα) :=
vol(Dα) is a weight of the point ξα, and that (2) is telling how the weighted
discrete set (Γ, ω) are distributed in Rd; more specifically we may consider
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that (2) implies uniformity of (Γ, ω) in Rd. This view motivates us to propose
the following definition.

In general, a weighted discrete subset (Γ, ω) in Rd is a discrete set Γ ⊂ Rd

with a map ω : Γ → C\{0}. Given a compactly supported function f on Rd,
define the Riemann sum associated with (Γ, ω) by setting

σϵ(f,Γ, ω) =
∑
z∈Γ

ϵdf(ϵz)ω(z).

We say that (Γ, ω) is uniformly arranged if there exists a constant c(Γ, ω) ̸=
0 such that

lim
ϵ→+0

σϵ(f,Γ, ω) = c(Γ, ω)

∫
Rd

f(x)dx.

holds for any bounded Riemannian integrable function f on Rd with compact
support. In the case ω ≡ 1, we simply say that Γ is uniformly arranged‡,
and write c(Γ) for c(Γ, ω).

Well, what is the usability of the notion of uniform arrangement? Ad-
mittedly our formulation of uniformity is not profound. It may be, however,
of great interest if we would focus our attention on the constant c(Γ). In
the subsequent sections, we give two “arithmetical” examples for which the
constant c(Γ) is explicitly computed.

2 Classical example 1

Let Zd
prim is the set of primitive lattice points in the d-dimensional standard

lattice Zd, i.e. the set of lattice points visible from the origin (note that Z2
prim

is the set of (x, y) ∈ Z2 such that |x| and |y| are coprime, together with
(±1, 0) and (0,±1)).

Theorem 1 Zd
prim is uniformly arranged with c(Zd

prim) = ζ(d)−1;
that is,

lim
ϵ→+0

∑
z∈Zd

prim

ϵdf(ϵz) = ζ(d)−1

∫
Rd

f(x)dx. (3)

‡In [7], the term “constant density” is used.
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Here ζ(s) =
∞∑
n=1

n−s is the zeta function.

Noting ζ(2) = π2/6 and applying this theorem to the indicator function
f for the square {(x, y)| 0 ≤ x, y ≤ 1}, we obtain the following well-known
statement, which is equivalent to the 31st entry§ dated 1796 September 6 in
Gauss’s Mathematisches Tagebuch, a record of the mathematical discoveries
of C. F. Gauss from 1796 to 1814.

Corollary The probability that two randomly chosen positive inte-
gers are coprime is 6/π2. More precisely

lim
N→∞

1

N2

∣∣{(a, b) ∈ N× N| gcd(a, b) = 1, a, b ≤ N
}∣∣ = 6

π2
, (4)

where gcd(a, b) stands for the greatest common divisor of a, b.

3 Classical example 2

Primitive Pythagorean triples, the name stemming from the Pythagorean
theorem for right triangles, have a long history since the Old Babilonian
period in Mesopotamia nearly 4000 years ago [11].

A Pythagorean triple is a triple of positive integers (ℓ,m, n) satisfying the
equation ℓ2+m2 = n2. Since (ℓ/n)2+(m/n)2 = 1, a Pythagorean triple yields
a it rational point (ℓ/n,m/n) on the unit circle S1 = {(x, y)| x2 + y2 = 1}.
Conversely any rational point on S1 is derived from a Pythagorean triple.
Furthermore the well-known parameterization of S1 given by x = (1−t2)/(1+
t2), y = 2t/(1 + t2) tells us that the set of rational points S1(Q) = S1 ∩ Q2

is dense in S1.
A Pythagorean triple (x, y, z) is called primitive if x, y, z are pair wise

coprime. “Primitive” is so named because any Pythagorean triple is gen-
erated trivially from the primitive one, i. e., if (x, y, z) is Pythagorean,
there are a positive integer ℓ and a primitive (x0, y0, z0) such that (x, y, z) =
(ℓx0, ℓy0, ℓz0).

The way to produce primitive Pythagorean triples (PPT) is described as
follows: If (x, y, z) is a PPT, then there exist positive integer such that

§In Latin, it says “Numero fractionum inaequalium quorum denomonatores certum
limitem non superant ad numerum fractionum omnium quarum num[eratores] aut de-
nom[inatores] sint diversi infra limitem in infinito ut 6 : ππ”
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(i) m > n,

(ii) m and n are coprime,

(iii) m and n have different parity,

(iv) (x, y, z) = (m2−n2, 2mn,m2+n2) or (x, y, z) = (2mn,m2−n2,m2+
n2).

Conversely, if m and n satisfy (i), (ii), (iii), then (m2−n2, 2mn,m2 +n2)
and (2mn,m2 − n2,m2 + n2) are PPTs.

We enumerate PPTs (x, y, z) in ascending order with respect to z, and let
(xN , yN , zN) be the N -th PPT (we do not discriminate between (x, y, z) and
(y, x, z)). What we have interest in is the asymptotic behavior of zN as N
goes to infinity. The numerical observation tells us that the sequence {zN}
almost linearly increase asN increases. Indeed z100/100 = 6.29, z1000/1000 =
6, 277, z1500/1500 = 6.28333 · · · , which convinces us that lim

N→∞
zN/N exists

(though the speed of convergence is very slow), and the limit is expected
to be equal to 2π = 6.2831853 · · · . This is actually true (D. N. Lehmer
[6], 1900), though the proof is by no means trivial. One can prove this by
counting coprime pairs (m,n) satisfying the condition that m− n is odd.

A key of our proof is the following theorem.

Theorem 2 Z2,∗
prim = {(m.n) ∈ Z2

prim| m − n is odd} is uniformly

arranged with c(Z2,∗
prim) = 4/π2; namely

lim
ϵ→+0

∑
z∈Z2,∗

prim

ϵ2f(ϵz) =
2

3
ζ(2)−1

∫
R2

f(x)dx =
4

π2

∫
R2

f(x)dx. (5)

We apply this to the indicator function f for the set {(x, y)| x ≥ y, x2 +
y2 ≤ 1}. Then∑

z∈Z2,∗
prim

ϵ2f(ϵz) = ϵ2
∣∣{(m,n) ∈ N2| gcd(m,n) = 1, m > n,

m2 + n2 ≤ ϵ−2, m− n is odd
}∣∣.

Therefore we obtain

lim
N→∞

1

N

∣∣{(m,n) ∈ N2| gcd(m,n) = 1, m > n, m2 + n2 ≤ N,

m− n is odd
}∣∣ = 2

3
· 6

π2
· π
8
=

1

2π
.
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Note that
∣∣{(m,n) ∈ N2| gcd(m,n) = 1, m > n, m2+n2 ≤ N, m−n is odd

}∣∣
coincides with the number of PPT (x, y, z) with z ≤ N . This observation
leads us to

Corollary (Lehmer) lim
N→∞

zN
N

= 2π.

One may also establish

Corollary For a rational point (p, q) ∈ S1(Q)(= S1∩Q2), define the
height h(p, q) to be the minimal positive integer h such that (hp, hq) ∈
Z2. Then for any arc A in S1, we have∣∣{(p, q) ∈ A ∩Q2| h(p, q) ≤ h

}∣∣ ∼ 2 · length(A)
π2

h (h → ∞),

and hence rational points are equidistributed on the unit circle, i. e.

lim
h→∞

∣∣{(p, q) ∈ A ∩Q2| h(p, q) ≤ h
}∣∣∣∣{(p, q) ∈ S1 ∩Q2| h(p, q) ≤ h}
∣∣ = length(A)

2π
.

This theorem is stated in Duke’s paper [3]. He suggests that this can be
proved by using tools from the theory of L-functions combined with Weyl’s
famous criterion for equidistribution on the circle [12].

4 How to prove the theorems

I gave two examples of uniform arrangement. The proof that these arrange-
ments are uniform relies on the identities derived from the so-called Inclusion-
Exclusion Principle (IEP), which is a generalization of the obvious equality
|A ∪ B| = |A| + |B| − |A ∩ B| for two finite sets A,B, and was, for the
first time, used by Nicholas Bernoulli (1687–1759) to solve a combinatorial
problem related to permutations. The IEP is a powerful tool to approach
general counting problems involving aggregation of things that are not mu-
tually exclusive [1].

For instance, it is an easy exercise of IEP (see [10] for instance) to prove∑
z∈Zd

prim

f(z) =
∞∑
k=1

µ(k)
∑

w∈Zd\{0}

f(kw), (6)
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where f is a function on Rd with compact support (thus both sides are finite
sums), and µ(k) is the Möbius function:

µ(k) =


1 (k = 1)

(−1)r (k = pi1 · · · pir ; i1 < · · · < ir)

0 (otherwise),

where p1 < p2 < · · · are all primes enumerated into ascending order. Theo-
rem 1 is easily derived from Eq. (6).

As for Theorem 2, we consider(
Zodd)2prim =

{
(m,n) ∈ Zodd × Zodd| gcd(m,n) = 1

}
,

where Zodd is the set of odd integers. Then

Z2,∗
prim = Z2

prim\
(
Zodd)2prim.

Therefore it suffices to show that
(
Zodd)2prim is uniformly arranged with

c
((
Zodd)2prim

)
= 2/π2. This is done by using the following formula for which

we need a bit sophisticated use of the IEP.∑
z∈(Zodd)2prim

f(z) =
∞∑
k=1

µ(k)
∞∑
i=0

∑
w∈(Zodd)2

f(k2iw).

It is interesting to treat a general “arithmetically defined” subset of Zd
prim

(i.e. the set of solutions of a congruence equation), and to ask whether it is
uniformly arranged.

5 “Near”-quasicrystals

Our criterion of uniformity is rather weak in the sense that it does not say
anything about a regular spacing of a uniformly arranged Γ. For instance, if
Γ is uniformly arranged, then so is any bounded perturbation of Γ.

To give a more precise notion of uniformity, we shall introduce the notion
of exponential Riemann sum defined by

σϵ(f,Γ, ξ) =
∑
z∈Γ

ϵdf(ϵz)e2πi⟨z,ξ⟩ (ξ ∈ Rd).

Note that this is nothing but the Riemann sum associated with the weighted
discrete set (Γ, ωξ) where ωξ(z) = e2πi⟨z,ξ⟩.
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Definition Γ is said to be “near”-quasicrystal (of Poisson type) if
there exists a countable set Λ ⊂ Rd and c(Γ, ξ) ̸= 0 (ξ ∈ Λ) such that

lim
ϵ→+0

σϵ(f,Γ, ξ) =

{
c(Γ, ξ)

∫
Rd f(x)dx (ξ ∈ Λ)

0 (ξ ̸∈ Λ)

for every compactly supported smooth function f .

The reason why I named such Γ “near” quasicrystal will be given in the
next section.

A typical example is given by a lattice (group) Γ, which is defined to be a
subgroup of Rd generated by a basis of Rd. The Poisson summation formula
tells us ∑

z∈Γ

f(x+ z) = vol(DΓ)
−1

∑
ξ∈Γ∗

f̂(ξ)e2π
√
−1⟨x,ξ⟩. (7)

Here Γ∗ is the dual lattice of Γ, i. e. Γ∗ = {ξ ∈ Rd| ⟨ξ, z⟩ ∈ Z for every z ∈
Γ}, and f̂ is the Fourier transform of a rapidly decreasing smooth function
f :

f̂(ξ) =

∫
Rd

f(x)e−2π
√
−1⟨x,ξ⟩dx.

DΓ is a fundamental domain for Γ. Note that Eq. (7) is nothing but the

Fourier series expansion of the periodic function
∑
z∈L

f(x + z). Applying

Eq. (7) to
∑
z∈Γ

ϵdf(ϵz)e2πi⟨z,ξ⟩, we get

σϵ(f,Γ, ξ) = vol(DΓ)
−1

∑
η∈Γ∗

f̂
(η − ξ

ϵ

)
,

from which it follows that

lim
ϵ→+0

σϵ(f,Γ, ξ) =

{
vol(DΓ)

−1
∫
Rd f(x)dx (ξ ∈ Γ∗)

0 (ξ ̸∈ Γ∗)
.

Thus the lattice Γ is a “near”-quasicrystal.
Now what about Zd

prim?
For ξ ∈ Q, we write ξ = (b1/a1, . . . , bd/ad) with ai > 0, bi ∈ Z, and

gcd(ai, bi) = 1, and put nξ = lcm(a1, . . . , ad).
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Theorem Zd
prim is a “near”-quasicrystal with Λ = {ξ ∈ Qd| nξ is

square free}, and c(Γ, ξ) =
µ(nξ)

nξ
d
ζ(d)−1

∏
p|nξ

(
1− p−d

)−1
.

This is a consequence of the following formula which is obtained by ap-
plying the Poisson formula to the right-hand side of Eq. (6).

∑
z∈Zd

prime

f(x+ z) =
N∑
k=1

µ(k)k−d
∑
ξ∈Qd

nξ|k

f̂(ξ)e2πi⟨x,ξ⟩ −
( N∑

k=1

µ(k)
)
f(x), (8)

where suppf is supposed to be contained in BN(x), the ball of radius N with
the center x. Notice that if we ignore the last term, Eq. (8) looks like the
Poisson formula.

6 Quasicrystals

A quasicrystals is a form of solid matter whose atoms are arranged like those
of a crystal but assume patterns that do not exactly repeat themselves.

The interest in quasicrystals arose when in 1984 Schechtman and others
[8] discovered materials whose X-ray diffraction spectra had sharp spots in-
dicative of long range order. Soon after the announcement of their discovery,
material scientists and mathematicians began intensive studies of quasicrys-
tals from empirical and theoretical sides. On the other hand, the theoretical
discovery of quasicrystal structures was already made by R. Penrose in 1973.

At the moment, there are several ways to define quasicrystals mathemat-
ically (see []sene). As a matter of fact, an official nomenclature has not yet
been agreed upon. In many reference, however, the Delone property for the
discrete set Γ representing the location of atoms is adopted as a minimum
requirement for the characterization of quasicrystals.

A Delone set Γ is defined to be a discrete set satisfying the following two
conditions [2].

(1) There exists R > 0 such that every ball BR(x) has a nonempty inter-
section with Γ, i. e. Γ is relatively dense,

(2) There is r > 0 such that each ball Br(x) contains at most one element
of Γ, i. e. Γ is uniformly discrete.
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In addition to the Delone property, many authors assume that a gener-
alized Poisson summation formula holds for Γ, which embodies the patterns
of X-ray diffractions for a real quasicrystal, namely there exist a countable
subset Λ ⊂ Rd and a sequence {a(ξ)}ξ∈Λ such that∑

z∈Γ

f(x+ z) ∼
∑
ξ∈Λ

c(ξ)f̂(ξ)e2π
√
−1⟨x,ξ⟩ (9)

for every compactly supported smooth function f .
What we have to point out is that Eq. (9) is not an equality in the or-

dinary sense, and that the series on the right-hand side is not supposed to
be absolutely convergent in general, and hence the following calculation is
formal, and is not really permitted:

∑
z∈Γ

ϵdf(ϵz)e2πi⟨z,ξ⟩ =
∑
η∈Λ

c(η)f̂
(η − ξ

ϵ

)
→

{
c(ξ)

∫
Rd f(x)dx (ξ ∈ Λ)

0 (ξ ̸∈ Λ)
.

But this gives us a formal justification for the naming “near-quasicrystal”.

Another remark is that Zd
prim is by no means a quasicrystal of Poisson

type because of the extra term in Eq. (8).

7 Is the set of zeta-zeros a 1-dimensional qua-

sicrystal?

An interesting problem related to quasicrystals comes up in the study of
non-trivial zeros of the Riemann zeta function ζ(s), which is related to the
counting problem of prime numbers. Thus we come across another Riemann’s
work which were to change the direction of mathematical research in a most
significant way.

We take a look at the set of imaginary parts of non-trivial zeros of ζ(s) ,
that is, we consider

Γ = {Im s ∈ R| ζ(s) = 0, 0 < Re s < 1}.

The Riemann Hypothesis (RH) says that all zeros are located on the critical
line Re s = 1/2. Moreover all known zeros are simple, and it may well be
that they are all simple (the simple zero conjecture).
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Questions about how Γ is distributed in R have a long history, and was
renewed when the theory of quasicrystals was well developed. In his essay
“Birds and Frogs” [4], famous physicist F. Dyson claimed that if the RH is
assumed, then the set Γ is a one-dimensional quasicrystal. Actually a version
of Riemann’s explicit formula looks like a generalized Poisson formula (see
[5]): ∑

ρ

f

(
ρ− 1/2√

−1

)
= f

( 1

2
√
−1

)
+ f

(
− 1

2
√
−1

)
+

1

2π

∫ ∞

−∞
f(u)Re

Γ′

Γ

(1
4
+

√
−1u

2

)
du

− 1

2π
f̂(0) log π − 1

2π

∞∑
m=1

∑
p

log p

pm/2

(
f̂
( log pm

2π

)
+ f̂

(
− log pm

2π

))

where {ρ} is the set of zeros of ζ(s) with 0 < Reρ < 1,
∑
p

is the sum over all

primes, and Γ′/Γ is the logarithmic derivative of the gamma function. Under
RH together with the simple zero conjecture, the sum in the left-hand side

is written as
∑
z∈Γ

f(z).

But it should be pointed out that the test function f(s) is not arbitrary,
and is supposed to be analytic in the strip |Im s| ≤ 1/2 + ϵ for some ϵ > 0,
and to satisfy |f(s)| ≤ (1 + |s|)−(1+δ) for some δ > 0 when |Re s| → ∞. This
restriction on f together with the extra terms in the formula above says that
Γ is not a quasicrystal of Poisson type. Furthermore Γ does not have the
Delone property, and is not a near quasicrystal in our sense.

It is an interesting problem to find an appropriate formulation of qua-
sicrystals which includes Γ.
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[7] J. Marklof and A. Strömbergsson, Visibility and directions in quasicrys-
tals, Int. Math. Res. Not., first published online September 2, 2014
doi:10.1093/imrn/rnu140.

[8] D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Metallic phase with
long-range orientational order and no translational symmetry, Phys.
Rev. Lett. 53(1984), 1951–1953.

[9] M. Senechal and J. Taylor, Quasicrystals: The View from Les Houches,
Math. Intel. 12(1990), 54–64.

[10] I. M. Vinogradov, Elements of Number Theory, Mineola, NY: Dover
Publications, 2003.

[11] A. Weil, Number Theory, An approach through history from Hammurapi
to Legendre, Birkhäuser, 1984.
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