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Abstract. We prove the existence of ballistic transport for the Schrödinger op-
erator with limit-periodic or quasi-periodic potential in dimension two. This is
done under certain regularity assumptions on the potential which have been used
in prior work to establish the existence of an absolutely continuous component and
other spectral properties. The latter include detailed information on the structure
of generalized eigenvalues and eigenfunctions. These allow to establish the crucial
ballistic lower bound through integration by parts on an appropriate extension of
a Cantor set in momentum space, as well as through stationary phase arguments.

1. Introduction

1.1. Prior results on ballistic transport. A rough qualitative correspondence of
spectral and dynamical properties of Schrödinger operators H = −∆ + V , either
discrete in H = `2(Zd) or continuous in H = L2(Rd), is given by the RAGE theorem,
e.g. [29]: It says that solutions Ψ(·, t) = e−iHtΨ0 of the time-dependent Schrödinger
equation are ‘bound states’ if the spectral measure µΨ0 of the initial state Ψ0 is pure
point, while Ψ(·, t) is a ’scattering state’ if µΨ0 is (abolutely) continuous. However,
knowing the spectral type is not sufficient to quantify transport properties more
precisely, for example in terms of diffusion exponents β. The latter, if they exist,
characterize how time-averaged moments

〈〈Xm
Ψ0
〉〉T :=

2

T

∫ ∞
0

exp

(
−2t

T

)
〈Ψ(·, t), XmΨ(·, t)〉H dt (1.1)

of the position operator X grow as a power Tmβ of time T , where (Xu)(x) = |x|u(x).
The special cases β = 1, β = 1/2 and β = 0 are interpreted as ballistic transport,
diffusive transport, and dynamical localization, respectively.

Restricting to the most frequently considered case of the second moment m = 2,
the ballistic upper bound 〈Ψ(·, t), X2Ψ(·, t)〉H ≤ C1(Ψ0)T 2 + C2(Ψ0) and, thus, also
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its averaged version

〈〈X2
Ψ0
〉〉T ≤ C1(Ψ0)T 2 + C2(Ψ0) (1.2)

are known to hold for general relatively bounded potentials V and large classes of
initial states Ψ0 [28]. As most authors, we will work here with the Abel mean used
in (1.1), but mention that the existence of a ballistic upper bound can be used to

show that Abel means and Cesaro means T−1
∫ T

0 . . . dt lead to the same diffusion
exponents.

In the late 1980s and 1990s methods were developed which led to more concrete
bounds on diffusion exponents by also taking fractal dimensions of the associated
spectral measures into account. In particular, again for the special case of the second
moment, the Guarneri-Combes theorem [14, 15, 5, 24] says that

〈〈X2
Ψ0
〉〉T ≥ CΨ0T

2α/d. (1.3)

for initial states Ψ0 with uniformly α-Hölder continuous spectral measure (and satis-
fying an additional energy bound in the continuum case [5]). In dimension d = 1 this
provides the equivalence of absolutely continuous spectral measures (α = 1) with bal-
listic transport, as the bounds (1.2) and (1.3) combine to 〈〈X2〉〉T ∼ T 2. In particular,
this means that in cases where the spectra of one-dimensional Schrödinger operators
with limit or quasi-periodic potentials were found to have an a.c. component, e.g.
[2, 4, 10, 11, 25, 26, 27], one also gets ballistic transport.

One can not conclude ballistic transport from the existence of a.c. spectrum in di-
mension d ≥ 2. In fact, examples of Schrödinger operators with absolutely continuous
spectrum, but slower than ballistic transport have been found: A two-dimensional
’jelly-roll’ example with a.c. spectrum and diffusive transport is discussed in [23],
while [3] provides examples of separable potentials in dimension d ≥ 3 with a.c.
spectrum and sub-diffusive transport.

In general, growth properties of generalized eigenfunctions have to be used in
addition to spectral information for a more complete characterization of the dynamics.
General relations between eigenfunction growth and spectral type as well as dynamics
were found in [23]. A series of works studied one-dimensional models with α < 1 and
related the dynamics to transfer matrix bounds, e.g. [6, 7, 8, 9, 13, 17, 31]. In
particular, these methods can establish lower transport bounds in models with sub-
ballistic transport, such as the Fibonacci Hamiltonian and the random dimer model.

Much less has been done for d ≥ 2. Ballistic lower bounds and thus the existence
of waves propagating at non-zero velocity are known only for V = 0, where this
is classical, e.g. [29], and for periodic potentials [1]. Scattering theoretic methods
show that this extends to potentials of sufficiently rapid decay, or sufficiently rapidly
decaying perturbations of periodic potentials. However, to our knowledge there are
no prior results on ballistic lower bounds for multidimensional Schrödinger operators
with bounded potentials which are not asymptotically periodic. Providing two such
results in dimension d = 2, one for a class of limit-periodic potentials and one for a
class of quasi-periodic potentials, is our main goal here.

For both of these examples, the existence of an absolutely continuous component
in the spectrum has been shown in earlier works [20, 21, 22]. Essentially, what we do
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here is to show that the properties of generalized eigenfunctions which were obtained
in these works can be used to also conclude ballistic transport.

1.2. Main Results. We study the initial value problem:

i
∂Ψ

∂t
= HΨ, Ψ(~x, 0) = Ψ0(~x) (1.4)

for the Schrödinger operator

H = −∆ + V (~x) (1.5)

in two dimensions, ~x ∈ R2. For the potential V (~x) we consider two cases, limit-
periodic potentials and quasi-periodic potentials.

In the limit-periodic case, we assume that the potential can be written as

V (~x) =

∞∑
r=1

Vr(~x), (1.6)

where {Vr}∞r=1 is a family of periodic potentials with doubling periods. More precisely,

Vr has orthogonal periods 2r−1 ~d1, 2r−1 ~d2. Without loss of generality, we assume that
~d1 = (d1, 0), ~d2 = (0, d2) and

∫
Qr
Vr(~x)d~x = 0, where Qr = [0, 2r−1d1] × [0, 2r−1d2]

is the elementary cell of periods corresponding to Vr. We also assume that all Vr
are real trigonometric polynomials with the lengths growing at most linearly in the
period. Namely, there exists a positive number R0 < ∞ such that each potential
admits the Fourier representation

Vr(~x) =
∑

q∈Z2\{0}, 2−r+1|q|<R0

vr,qe
i〈2−r+1q̃,~x〉, q̃ = 2π

(
q1

d1
,
q2

d2

)
, (1.7)

〈·, ·〉 being the canonical scalar product and | · | the corresponding norm in R2. We
assume that the series (1.6) converges super-exponentially fast:∑

q

|vr,q| < Ĉ exp(−2ηr) (1.8)

for some η > η0 > 3 · 104 uniform in r. Without loss of generality we can set Ĉ = 1.
In the quasi-periodic case, we assume that V is real and can be written in the form

V (~x) =
∑

s1,s2∈Z2, s1+αs2∈SQ

Vs1,s2e
2πi〈s1+αs2,~x〉, (1.9)

where α is an irrational number and SQ = SQ(α) a finite set depending on a posi-
tive integer Q. To simplify the construction we will assume that α and SQ are not
degenerate in some sense. More precisely, we impose the following conditions:

C1 0 < α < 1 is irrational and its irrationality measure µ is finite: µ < ∞ (in
other words, this means that α is not a Liouville number). Note also that µ ≥ 2 for
any irrational number α.

C2 There are N0, N1 > 0 such that if |n1|+ |n2|+ |n3| > N1 then

n1 + αn2 + α2n3 = 0 or |n1 + αn2 + α2n3| > (|n1|+ |n2|+ |n3|)−N0 . (1.10)
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Note that C2 (and also C1) is automatically satisfied for a quadratic irrational α:
If a triple (n′1, n

′
2, n
′
3) exists such that

n′1 + αn′2 + α2n′3 = 0, (1.11)

then this triple is unique up to trivial multiplication (otherwise α is rational). If
n1+αn2+α2n3 6= 0 for some other triple (n1, n2, n3), then (1.10) holds automatically,
since otherwise µ = ∞. C2 allows to estimate from below the angle between two
non-colinear vectors s1 + αs2 and s′1 + αs′2 (with s1, s2, s

′
1, s
′
2 ∈ Z2) by a negative

power of |s1 + αs2|+ |s′1 + αs′2|.
We further require that, given α satisfying C1 and C2, there exists a positive

integer Q and a finite set SQ = SQ(α) ⊂ R2 with the following properties:
C3 If s1, s2 ∈ Z2 are such that s1 + αs2 ∈ SQ then |s1|+ |s2| ≤ Q.
C4 If s1, s2, s

′
1, s
′
2 ∈ Z2 are such that s1 + αs2, s′1 + αs′2 ∈ SQ and s1 + αs2 =

c∗(s
′
1 + αs′2), then c∗ is rational. This means that if there are several vectors in SQ

with the same direction then they form a subset of a periodic one-dimensional lattice.
As α is irrational, the generating vector of this one-dimensional lattice is also of the
form s1 + αs2, s1, s2 ∈ Z2. Thus, without loss of generality, we will assume that SQ
contains generating vectors s1 +αs2 of all present directions as well as all their integer
multipliers n(s1 + αs2), n ∈ Z, such that |n|(|s1|+ |s2|) ≤ Q (to satisfy C3).

In particular, the set SQ is symmetric with respect to 0 and 0 ∈ SQ. We will assume
though that V0,0 = 0. It is shown in [21] that the period of every one-dimensional
sublattice in SQ is not smaller than CQ−µ.

A basic example of a quasi-periodic potential satisfying the above assumptions and
not being periodic in any direction is

V (x1, x2) = λ1 cos(2πx1)+λ2 cos(2πx2)+λ3 cos(2π(αx1 +x2))+λ4 cos(2π(x1 +αx2)),

for arbitrary nonzero coupling constants λ1, ..., λ4 and Liouville number α satisfying
C2, in particular for a quadratic irrational α1.

Now we consider (1.4), V being limit-periodic or quasi-periodic with assumptions
as above. Clearly, the ballistic upper bound of [28] applies and we have (1.2), for
example for Ψ0 ∈ C2

0 , the C2-functions of compact support.
In our two main results we prove that under the above assumptions, both in

the limit-periodic and quasi-periodic case, one also has corresponding ballistic lower
bounds:

Theorem 1.1. There is an infinite-dimensional projector E∞ in L2(R2) such that
for any Ψ0 ∈ E∞C∞0 , Ψ0 6= 0, the solution Ψ(~x, t) of (1.4) satisfies the estimate

2

T

∫ ∞
0

e−2t/T
∥∥XΨ(·, t)

∥∥2

L2(R2)
dt > c1(Ψ0)T 2, c1 > 0, (1.12)

when T > T0(Ψ0).

1Note, however, that the separable V (x1, x2) = cos(2πx1) + cos(2πx2) + cos(2παx1) + cos(2παx2)
does not satisfy C4.
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Theorem 1.2. If Ψ0 ∈ C∞0 with E∞Ψ0 6= 0, where E∞ is as in Theorem 1.1, then
the solution Ψ(~x, t) of (1.4) satisfies the estimate

2

T

∫ ∞
0

e−2t/T
∥∥XΨ(·, t)

∥∥2

L2(R2)
dt > c1(Ψ0)T 2, c1 > 0, (1.13)

when T > T0(Ψ0).

The constant c1 is defined explicitly in (3.19) and (4.1).
The operator E∞ is a spectral projector of H. As will be seen from its explicit

construction in Section 2.1.2, it is close to the operator of multiplication by the
characteristic function of an extensive set in Fourier space.

Note the subtle but important difference in the choice of initial conditions in The-
orems 1.1 and 1.2. The latter shows that suitable C∞0 -initial states lead to ballistic
transport, while Theorem 1.1 requires to project onto the range of E∞. In fact, we
believe that E∞Ψ0 6= 0 for any 0 6= Ψ0 ∈ C∞0 and thus Theorem 1.2 holds for any
such Ψ0, but at the moment we do not have a proof.

As already remarked in Section 1.1, both results remain true if the Abel means are
replaced by Cesaro means.

The proofs for the limit-periodic case (1.6) and the quasi-periodic case (1.9) are
analogous. For the sake of definiteness, we present all the details for the limit-
periodic case only. Where necessary, we provide some comments about the quasi-
periodic setting. Also, some statements in the paper [20] on the limit-period case
were presented in a form not very convenient for what we need here and thus need
some technical adjustments, while the corresponding results for the quasi-periodic
case in [22] are more directly applicable. This provides another reason for mostly
focusing on the limit-periodic case here.

In Section 2 we start by recalling results on the spectral properties of the operator
H which were obtained in [20] for the limit-periodic case and in [22] for the quasi-
periodic case. Some of these results will also be adjusted and refined to make them
more suitable for the proof of our main results. In particular, we recall how generalized

eigenvalues λ∞(~k) and generalized eigenfunctions Ψ∞(~k, ~x) of H can be constructed

for momenta ~k in an asymptotically large Cantor-type subset G∞ of R2. We also
provide a useful construction which allows to extend the functions λ∞ and Ψ∞(·, ~x)

to smooth functions of ~k ∈ R2. Theorem 1.1 is proven in Section 3 and Theorem 1.2
is proven in Section 4. Having the technical background from [20] and [22] available,
these proofs use rather elementary analysis methods, such as integration by parts and
stationary phase estimates. In Section 5 we collect several appendices which provide
technical details for some of the arguments from earlier sections.

2. Spectral Properties of the Operator H

Our proof of Theorems 1.1 and 1.2 is based on the results and properties of two-
dimensional limit and quasi-periodic Schrödinger operators derived in the papers [20]
and [22]. While those works derived, in particular, the existence of an absolutely
continuous component of the spectrum, we will show here how the bounds obtained
can be used and, in part, improved, to also conclude ballistic transport. In this section
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we give a thorough discussion of the results and methods from [20] and [22], mostly
focusing on the limit-periodic case. In particular, we give a detailed construction of
the spectral projection E∞ used in our main theorems.

2.1. The Case of a Limit-Periodic Potential.

2.1.1. Prior results. To describe E∞, we recall the spectral properties of H, obtained
in [20]:

(1) The spectrum of the operator (1.5), (1.6) contains a semiaxis. A proof of an
analogous result by different means can be found in the paper [30]. In [30],
the authors consider the operator H = (−∆)l + V , 8l > d+ 3, d 6= 1(mod 4).
This obviously includes our case l = 1, d = 2. However, there is an additional
rather strong restriction on the potential V (~x) in [30], which we don’t have
here: In [30] all the period lattices of the potentials Vr need to have a nonzero
vector γ in common, i.e., V (~x) is periodic in direction γ.

(2) There are generalized eigenfunctions Ψ∞(~k, ~x), corresponding to the semiaxis,

which are close to plane waves: for every ~k in an extensive subset G∞ of R2,

there is a solution Ψ∞(~k, ~x) of the equation HΨ∞ = λ∞Ψ∞ which can be
described by the formula:

Ψ∞(~k, ~x) = ei〈
~k,~x〉

(
1 + u∞(~k, ~x)

)
, (2.1)

‖u∞‖L∞(R2) =|~k|→∞ O(|~k|−γ1), γ1 > 0, (2.2)

where u∞(~k, ~x) is a limit-periodic function, as the potential. The eigenvalue

λ∞(~k) corresponding to Ψ∞(~k, ~x) is close to |~k|2:

λ∞(~k) =|~k|→∞ |~k|
2 +O(|~k|−γ2), γ2 > 0. (2.3)

The “non-resonant” set G∞ of the vectors ~k, for which (2.1) – (2.3) hold, is
an extensive Cantor type set: G∞ = ∩∞n=1Gn, where {Gn}∞n=1 is a decreasing
sequence of sets in R2. Each Gn has a finite number of holes in each bounded
region. More and more holes appears when n increases, however holes added
at each step are of smaller and smaller size. The set G∞ satisfies the estimate:

|(G∞ ∩BR)|
|BR|

=R→∞ 1 +O(R−γ3), γ3 > 0, (2.4)

where BR is the disk of radius R centered at the origin, | · | is the Lebesgue
measure in R2.

(3) The set D∞(λ), defined as a level (isoenergetic) set for λ∞(~k),

D∞(λ) =
{
~k ∈ G∞ : λ∞(~k) = λ

}
,

is proven to be a slightly distorted circle with an infinite number of holes. It
can be described by the formula:

D∞(λ) = {~k : ~k = κ∞(λ, ~ν)~ν, ~ν ∈ B∞(λ)}, (2.5)
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where B∞(λ) is a subset of the unit circle S1. The set B∞(λ) can be inter-
preted as the set of possible directions of propagation for the almost plane
waves (2.1). The set B∞(λ) has a Cantor type structure and an asymptotically
full measure on S1 as λ→∞:

L (B∞(λ)) =λ→∞ 2π +O
(
λ−γ3/2

)
, (2.6)

here and below L(·) is Lebesgue measure on S1. The value κ∞(λ, ~ν) in (2.5) is

the “radius” of D∞(λ) in a direction ~ν. The function κ∞(λ, ~ν)−λ1/2 describes

the deviation of D∞(λ) from the perfect circle of radius λ1/2. It is proven that
the deviation is asymptotically small, uniformly in ~ν ∈ B∞(λ):

κ∞(λ, ~ν) =λ→∞ λ1/2 +O
(
λ−γ4

)
, γ4 > 0. (2.7)

(4) Absolute continuity of the branch of the spectrum (the semiaxis) correspond-

ing to Ψ∞(~k, ~x) is proven, see details below.

2.1.2. Description of methods: To prove the above results in [20], the authors con-
sidered the sequence of operators:

H0 = −∆, Hn = H0 +

Mn∑
r=1

Vr, n ≥ 1, Mn →∞ as n→∞.

Obviously, ‖H −Hn‖ → 0 as n→∞, where ‖ · ‖ is the norm in the class of bounded
operators. Clearly,

Hn = Hn−1 +Wn, Wn =

Mn∑
r=Mn−1+1

Vr. (2.8)

Each operator Hn, n ≥ 1, is considered as a perturbation of the previous operator
Hn−1. Every operator Hn is periodic, however the periods go to infinity as n→∞. It
is shown that there is a λ∗, λ∗ = λ∗(V ), such that the semiaxis [λ∗,∞) is contained in
the spectra of all operators Hn. For every operator Hn there is a set of eigenfunctions

(corresponding to the semiaxis) being close to plane waves: for every ~k in an extensive

subset Gn of R2, there is a solution Ψn(~k, ~x) of the differential equationHnΨn = λnΨn,
which can be described by the formula:

Ψn(~k, ~x) = ei〈
~k,~x〉

(
1 + un(~k, ~x)

)
, ‖un‖L∞(R2) =

|~k|→∞
O(|~k|−γ1), γ1 > 0, (2.9)

where un(~k, ·) has periods 2Mn−1~d1, 2
Mn−1~d2. The corresponding eigenvalue λn(~k) is

close to |~k|2:

λn(~k) =|~k|→∞ |~k|
2 +O

(
|~k|−γ2

)
, γ2 > 0. (2.10)

The non-resonant set Gn for which (2.10) holds, is proven to be extensive in R2:

|Gn ∩BR|
|BR|

=R→∞ 1 +O(R−γ3). (2.11)



8 Y. KARPESHINA, Y.-R. LEE, R. SHTERENBERG, G. STOLZ

Estimates (2.9) – (2.11) are uniform in n. The set Dn(λ) is defined as the level

(isoenergetic) set for the non-resonant eigenvalue λn(~k):

Dn(λ) =
{
~k ∈ Gn : λn(~k) = λ

}
.

This set is proven to be a slightly distorted circle with a finite number of holes. The
set Dn(λ) can be described by the formula:

Dn(λ) = {~k : ~k = κn(λ, ~ν)~ν, ~ν ∈ Bn(λ)}, (2.12)

where Bn(λ) is a subset of the unit circle S1. The set Bn(λ) can be interpreted as
the set of possible directions of propagation for almost plane waves (2.9). It is shown
that {Bn(λ)}∞n=1 is a decreasing sequence of sets, since on each step more and more
directions are excluded. Each Bn(λ) has an asymptotically full measure on S1 as
λ→∞:

L (Bn(λ)) =λ→∞ 2π +O
(
λ−γ3/2

)
, (2.13)

the estimate being uniform in n. The set Bn has only a finite number of holes, however
their number is growing with n. More and more holes of a smaller and smaller size
are added at each step. The value κn(λ, ~ν)− λ1/2 gives the deviation of Dn(λ) from

the perfect circle of radius λ1/2 in direction ~ν. It is proven that the deviation is
asymptotically small uniformly in n:

κn(λ, ~ν) = λ1/2 +O
(
λ−γ4

)
,

∂κn(λ, ~ν)

∂ϕ
= O

(
λ−γ5

)
, γ4, γ5 > 0, (2.14)

ϕ being an angle variable ~ν = (cosϕ, sinϕ).
On each step more and more points are excluded from the non-resonant sets Gn

and, thus, {Gn}∞n=1 is a decreasing sequence of sets. The set G∞ is defined as the
limit set: G∞ = ∩∞n=1Gn. It has an infinite number of holes in each bounded region,

but nevertheless satisfies the relation (2.4). For every ~k ∈ G∞ and every n, there is a
generalized eigenfunction of Hn of the type (2.9). It is proven that the sequence of

Ψn(~k, ~x) has a limit in L∞(R2) as n → ∞, when ~k ∈ G∞. The function Ψ∞(~k, ~x) =

limn→∞Ψn(~k, ~x) is a generalized eigenfunction of H. It can be written in the form

(2.1)–(2.2). Naturally, the corresponding eigenvalue λ∞(~k) is the limit of λn(~k) as
n→∞.

We consider the limit B∞(λ) of Bn(λ):

B∞(λ) =

∞⋂
n=1

Bn(λ), Bn ⊂ Bn−1.

This set has a Cantor type structure on the unit circle. It is proven that B∞(λ) has
asymptotically full measure on the unit circle (see (2.6)). We prove that the sequence
κn(λ, ~ν), n = 1, 2, ...,, describing the isoenergetic curves Dn, quickly converges as
n→∞. Hence, D∞(λ) can be described as the limit of Dn(λ) in the sense (2.5), where
κ∞(λ, ~ν) = limn→∞ κn(λ, ~ν) for every ~ν ∈ B∞(λ). It is shown that the derivatives of
the functions κn(λ, ~ν) (with respect to the angle variable ϕ on the unit circle) have a
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limit as n→∞ for every ~ν ∈ B∞(λ). We denote this limit by ∂κ∞(λ,~ν)
∂ϕ . Using (2.14)

we prove that
∂κ∞(λ, ~ν)

∂ϕ
= O

(
λ−γ5

)
. (2.15)

Thus, the limit curve D∞(λ) has a tangent vector in spite of its Cantor type structure,
the tangent vector being the limit of the corresponding tangent vectors for Dn(λ) as
n→∞. The curve D∞(λ) takes the form of a slightly distorted circle with an infinite
number of holes.

Absolute continuity of the branch of the spectrum [λ∗(V ),∞), corresponding to

the functions Ψ∞(~k, ~x), ~k ∈ G∞, follows from continuity properties of the level curves
D∞(λ) with respect to λ, and from convergence of spectral projections corresponding

to Ψn(~k, ~x), ~k ∈ G∞, to spectral projections of H in the strong sense and uniformly
in λ with λ > λ∗(V ).

Let G′n be a bounded Lebesgue measurable subset of Gn. We consider the spectral

projection En (G′n) of H(n), corresponding to functions Ψn(~k, ~x), ~k ∈ G′n. By [12],
En (G′n) : L2(R2)→ L2(R2) can be presented by the formula:

En
(
G′n
)
F =

1

4π2

∫
G′n

(
F,Ψn(~k)

)
Ψn(~k) d~k (2.16)

for any F ∈ Cc(R2), the continuous, compactly supported functions on R2. Here and
below

(
·, ·
)

is the canonical scalar product in L2(R2), i.e.,(
F,Ψn(~k)

)
=

∫
R2

F (x)Ψn(~k, ~x) d~x.

The above formula can be rewritten in the form

En
(
G′n
)

= Sn
(
G′n
)
Tn
(
G′n
)
, (2.17)

Tn : Cc(R2)→ L2
(
G′n
)
, Sn : L∞

(
G′n
)
→ L2(R2),

(TnF )(~k) =
1

2π

(
F,Ψn(~k)

)
for any F ∈ Cc(R2), (2.18)

TnF being in L∞ (G′n), and

(Snf)(~x) =
1

2π

∫
G′n
f(~k)Ψn(~k, ~x) d~k for any f ∈ L∞ (G′n). (2.19)

By [12],
‖TnF‖L2(G′n) ≤ ‖F‖L2(R2) (2.20)

and
‖Snf‖L2(R2) ≤ ‖f‖L2(G′n). (2.21)

Hence, Tn and Sn can be extended by continuity from Cc(R2) and L∞ (G′n) to L2(R2)
and L2 (G′n), respectively. Thus, the operator En (G′n) is described by (2.17) in the
whole space L2(R2).

Let
Gn,λ = {~k ∈ Gn : λn(~k) < λ}. (2.22)

This set is Lebesgue measurable, since Gn is open and λn(~k) is continuous on Gn.
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Let

G∞,λ =
{
~k ∈ G∞ : λ∞(~k) < λ

}
. (2.23)

The function λ∞(~k) is a Lebesgue measurable function, since it is a limit of a sequence
of measurable functions. Hence, the set G∞,λ is measurable. It is shown in [20] that
the measure of the symmetric difference of the two sets G∞,λ and Gn,λ converges to
zero as n→∞, uniformly in λ in every bounded interval:

lim
n→∞

|G∞,λ ∆Gn,λ| = 0.

Next, we consider the sequence of operators Tn(G∞,λ) which are given by (2.18)
and act from L2(R2) to L2(G∞,λ). It is proven in [20] that the sequence Tn(G∞,λ)
has a strong limit T∞(G∞,λ). The operator T∞(G∞,λ) satisfies ‖T∞‖ ≤ 1 and can

be described by the formula (T∞F )(~k) = 1
2π

(
F,Ψ∞(~k)

)
for any F ∈ Cc(R2). The

convergence of Tn(G∞,λ)F to T∞(G∞,λ)F is uniform in λ for every F ∈ L2(R2).
We also consider the sequence of operators Sn(G∞,λ) which are given by (2.19) with
G′n = G∞,λ:

Sn(G∞,λ) : L2(G∞,λ)→ L2(R2). (2.24)

It is proven in [20] that the sequence of operators Sn(G∞,λ) has a strong limit
S∞(G∞,λ). In fact, a slight modification of the proof (see Appendix 1 below) gives
convergence in operator norm sense. The estimate

‖S∞(G∞,λ)− S0(G∞,λ)‖ < cλ−γ6∗ , γ6 > 0, (2.25)

holds for λ > λ∗.
The operator S∞(G∞,λ) satisfies ‖S∞‖ = 1 and can be described by the formula

(S∞f)(~x) =
1

2π

∫
G∞,λ

f(~k)Ψ∞(~k, ~x) d~k (2.26)

for any f ∈ L∞ (G∞,λ). The convergence of Sn(G∞,λ)f to S∞(G∞,λ)f is uniform in λ
for every f ∈ L2 (G∞).

The spectral projections En(G∞,λ) converge in norm to E∞(G∞,λ) in L2(R2) as n
tends to infinity, since Tn = S∗n. The operator E∞(G∞,λ) is a spectral projection of H.
It can be represented in the form E∞(G∞,λ) = S∞(G∞,λ)T∞(G∞,λ), where S∞(G∞,λ)
and T∞(G∞,λ) are limits in norm of Sn(G∞,λ) and Tn(G∞,λ), respectively. For any
F ∈ Cc(R2), we show

E∞ (G∞,λ)F =
1

4π2

∫
G∞,λ

(
F,Ψ∞(~k)

)
Ψ∞(~k) d~k, (2.27)

HE∞ (G∞,λ)F =
1

4π2

∫
G∞,λ

λ∞(~k)
(
F,Ψ∞(~k)

)
Ψ∞(~k) d~k. (2.28)

Absolute continuity of the branch of the spectrum corresponding to the functions

Ψ∞(~k) follows from properties of E∞ (G∞,λ).
The projections E∞(G∞,λ) have a strong limit E∞(G∞) as λ goes to infinity. Hence,

the operator E∞(G∞) is a projection. The projections E∞(G∞,λ), λ ∈ R, and E∞(G∞)
reduce the operator H. The family of projections E∞(G∞, λ) is the resolution of the
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identity of the operator HE∞(G∞) acting in E∞(G∞)L2(R2). Further we denote
E∞(G∞) just by E∞.

In what follows, we may need to increase the parameter λ∗ in a controlled way. We
denote the new λ∗ by λ∗∗. This means a change of the set G∞: G∞,λ∗∗ = G∞,λ∗ \Bk∗∗ ,
where here and below k∗∗ = λ

1/2
∗∗ . However, for any fixed value of λ∗∗ the projec-

tor E∞(G∞) corresponds to a sufficiently rich branch of the absolutely continuous
spectrum covering the half-line [λ∗∗,∞).

2.1.3. Extension of λ∞(~k) from G∞ to R2. First, we extend the function λ∞(~k) from
G∞ to R2, the result being a CM (R2) function. Note that the extended function is
not an eigenvalue outside of G∞.

Indeed, let M be a natural number (in fact, we will need M = 7 later). First,

following [20], we represent λ∞(~k)− k2, k := |~k|, ~k ∈ G∞, in the form:

λ∞(~k)− k2 = λ1(~k)− k2 +

∞∑
n=1

(
λn+1(~k)− λn(~k)

)
.

By Theorem 2.6 in [20], with Dm := ∂m1
1 ∂m2

2 we obtain∣∣∣Dm
(
λ1(~k)− k2

)∣∣∣ < Ck−γ2+γ0|m| (2.29)

when ~k is in the k−γ0-neighborhood of G1 ⊃ G∞ and the constant depends only on V
and m. Moreover, by Theorem 3.8 and e.t.c. in [20],∣∣∣λn+1(~k)− λn(~k)

∣∣∣ < e−k
ηsn
, (2.30)

for any n ≥ 1, where sn = 2n−1s1, s1 being chosen sufficiently small with 0 < s1 <
10−4. The value of s1 is chosen at the beginning of the iteration procedure and,
eventually, λ∗(V ) and the constants in the estimates depend on s1. Estimate (2.30)

is valid in the (εne
−1−δ0)-neighborhood of each ~k ∈ Gn ⊃ G∞, where εn = e−

1
4
kηsn and

δ0 > 0. The constant 1
4 in the definition of εn, see [20], is chosen at random. Instead

of 1
4 , one can take any fraction 1

M+1 , M ≥ 1. This will lead, generally speaking, to

an increase of λ∗(V ), when M > 3. We will denote the new λ∗(V ) by λ∗∗(V,M).

Further we use the notation εn = e−
1

M+1
kηsn and assume k2 > λ∗∗(V,M). Then we

can rewrite (2.30) as ∣∣∣λn+1(~k)− λn(~k)
∣∣∣ < εM+1

n (2.31)

in the (εnk
−1−δ0)-neighborhood of any ~k ∈ Gn. Using analyticity of λn+1(~k) and

λn(~k) in the complex (εnk
−1−δ0)-neighborhood of any ~k ∈ Gn, we obtain (see [20])∣∣∣Dm

(
λn+1(~k)− λn(~k)

)∣∣∣ < εM+1−|m|
n k(1+δ0)|m| (2.32)

in Gn for all m. Next, let η1(~k) be a function in C∞ with support in the (real)

k−γ0-neighborhood of G1, satisfying η1 = 1 on G1 and
∣∣∣Dmη1(~k)

∣∣∣ < kγ0|m|. This is

possible since we can take a convolution of the characteristic function of the 1
2k
−γ0-

neighborhood of G1 with ω(2kγ0~k), where ω is a smooth cut-off function with support
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in the unit disc centered at the origin. Similarly, let ηn(~k), n ≥ 2, be a C∞ function
with support in the (εnk

−1−δ0)-neighborhood of Gn, satisfying ηn = 1 on Gn and∣∣∣Dmηn(~k)
∣∣∣ ≤ (εnk−1−δ0

)−|m|
. (2.33)

In the estimate (2.29), γ2 = 2 − 30s1 − 20δ0, γ0 = 1 + 16s1 + 11δ0. However, (2.29)

can be improved when |m| < ks1/2, see Lemma 2.5 in [20]. In this case, one can take
γ0 = 3s1 + 2δ0. Choose s1 small enough so that 2γ0M < γ2, i.e.,

2(3s1 + 2δ0)M < 2− 30s1 − 20δ0

and for sufficiently large k, M < ks1/2 and so (2.29) holds with γ0 = 3s1 + 2δ0.

Next, we extend λ∞(~k)− k2 from G∞ to R2 using the formula

λ∞(~k)− k2 = (λ1(~k)− k2)η1(~k) +

∞∑
n=1

(
λn+1(~k)− λn(~k)

)
ηn+1(~k). (2.34)

It follows from (2.31) and (2.32) that the series converges in CM (R2). Moreover, the
next lemma follows from (2.31)–(2.33).

Lemma 2.1. For every natural number M , there exists λ∗∗(V,M) > 0 such that the

function λ∞(~k) − k2 can be extended, as a CM function, from G∞,λ∗∗ to R and it
satisfies ∣∣∣Dm

(
λ∞(~k)− k2

)∣∣∣ < CMk
−γ2+γ0|m|, (2.35)

for any m ∈ N2
0 with |m| ≤M , where −γ2 + 2γ0M < 0.

Remark 1. For our needs M = 7 is sufficient and in what follows we assume that
the corresponding s1 and λ∗∗ are chosen for M = 7.

2.1.4. Extension of Ψ∞(~k, ~x) from G∞ to R2. We extend Ψ∞(~k, ~x) by a formula anal-
ogous to (2.34):

Ψ∞(~k, ~x)− ei〈~k,~x〉 =
(

Ψ1(~k, ~x)− ei〈~k,~x〉
)
η1(~k) +

∞∑
n=1

(
Ψn+1(~k, ~x)−Ψn(~k, ~x)

)
ηn+1(~k).

(2.36)

The series converges by (5.5). Using the last formula and (2.26), we define S∞(G̃∞)

for any G̃∞ ⊃ G∞:

(
S∞(G̃∞)f

)
(~x) :=

1

2π

∫
G̃∞

f(~k)Ψ∞(~k, ~x) d~k. (2.37)

It is easy to see that

S∞(G̃∞) = S0(G̃∞) +

∞∑
n=0

(
Sn+1(G̃∞)− Sn(G̃∞)

)
ηn+1, (2.38)

where S0(G̃∞) is defined by

S0(G̃∞)f =
1

2π

∫
G̃∞

f(~k)e−i〈
~k,~x〉d~k,
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ηn+1 is multiplication by ηn+1(~k) and Sn(G̃∞) is given by (2.19) with G′n being the

intersection of G̃∞ with the (εnk
−1−δ0)-neighborhood of Gn for n ≥ 2 and the k−γ0-

neighborhood of G1 for n = 1.
Similarly to (2.25), we show that

‖S∞(G̃∞)− S0(G̃∞)‖ < c(V )λ−γ6∗∗ . (2.39)

In what follows we assume that λ∗∗ is chosen so that, in particular, c(V )λ−γ6∗∗ ≤ 1/2.
Thus we have

‖S∞(G̃∞)‖ ≤ 2. (2.40)

Similarly, with T0 the Fourier transform,

(T∞F )(~k) :=
1

2π
(F (·),Ψ∞(~k, ·))

= (T0F )(~k) +
∞∑
n=0

(
(Tn+1 − Tn)F

)
(~k)ηn+1(~k). (2.41)

.
We need one more auxiliary result.

Lemma 2.2. For any given L ∈ N there exists λ∗∗(V,L) such that for any F ∈
C∞0 (R2), the function T∞F as defined above is in CL(R2). Moreover, if 0 ≤ j ≤ L
and m ∈ N2

0, |m| ≤ L, then∣∣∣|~k|jDm(T∞F )(~k)
∣∣∣ < C(L,F ), (2.42)

for all ~k ∈ R2.

A proof of this lemma is given in Appendix 2 below.

Remark 2. In fact, for our needs L = 6 is sufficient and in what follows we assume
that the corresponding λ∗∗ is chosen for L = 6.

2.2. The Case of a Quasi-periodic Potential. The main results in the case of
quasi-periodic potential [22] are completely analogous to those for limit-periodic po-
tential in Section 2.1.1, the only difference being that u∞ in (2.1) is quasi-periodic,
i.e., has a representation analogous to that for the potential, but not necessarily a
trigonometric polynomial. The operators Hn in the approximation procedure are,
naturally, quite different from (2.8). However, the rest of Section 2.2.2 is completely
analogous for both types of potentials, the quasi-periodic case being even somewhat
simpler, since convergence of the sequence Sn in norm, proven in Appendix 1 for the
limit-periodic case, is already proven in [21], [22] for the quasi-periodic potential. Ex-

tension of λ∞(~k) and E∞(~k) to R2 (Section 2.1.3) are also completely similar in both
cases. Note only that in the quasi-periodic case Lemma 2.1 holds with γ2 = 2−88µδ,
γ0 = (40µ + 1)δ, δ > 0, by Theorem 3.3, Corollary 3.4 and Lemma 3.5 in [22] and

εM+1
n = k−

β
10
krn−1−rn−2

(see (2.31)), here β is a positive constant, rn is an increasing
sequence going to infinity as n→∞, see Corollaries 5.4, 6.4 in [22].
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3. Proof of Theorem 1.1

Let S be the class of functions in T∞C∞0 (R2), see (2.41). As shown in Lemma 2.2,

if Ψ̂0 ∈ S, then ∣∣|~k|jDm(Ψ̂0)(~k)| < C(j,m, Ψ̂0) (3.1)

for any ~k ∈ R2 when j ≤ 6 and |m| ≤ 4.

Let Ψ̂0 ∈ S and

Ψ(~x, t) :=
1

2π

∫
G∞

Ψ∞(~k, ~x)e−itλ∞(~k)Ψ̂0(~k) d~k, (3.2)

then this function solves the initial value problem (1.4), where

Ψ0(~x) =
1

2π

∫
G∞

Ψ∞(~k, ~x)Ψ̂0(~k) d~k (3.3)

and Ψ0(~x) ∈ S∞S = E∞C∞0 . Obviously, S∞S is dense in E∞L
2(R2).

The first step of the proof is replacing G∞ by a small neighborhood G̃∞ and to
estimate the resulting errors in the integrals. This is an important step, since G∞
is a closed Cantor-type set, while G̃∞ is an open set. The second step is integrating
by parts in an integral over G̃∞ with the purpose of obtaining (1.12), the fact that

G̃∞ is open being used for handling boundary terms. All further considerations are
essentially identical for the limit-periodic and quasi-periodic cases. The notations are
mostly identical, in situations where they are different we consider the limit-periodic
case.

To get the lower bound (1.12), we first note that

‖XΨ‖2L2(R2) ≥ ‖XΨ‖2L2(BR) ≥
1

2
‖Xw‖2L2(BR) − ‖X(Ψ− w)‖2L2(BR),

where BR is the open disc with radius R centered at the origin, R = c0T , c0 to be
chosen later, and w(~x, t) is an approximation of Ψ when G∞ is replaced by its small

neighborhood G̃∞. Namely,

w(~x, t) :=
1

2π

∫
G̃∞

Ψ∞(~k, ~x)e−itλ∞(~k)Ψ̂0(~k)ηδ(~k) d~k, (3.4)

ηδ being a smooth cut-off function with support in a δ-neighborhood G̃∞ of G∞ and
ηδ = 1 on G∞. The parameter δ (0 < δ < 1) will be chosen later to be sufficiently

small and depend only on Ψ̂0. We take ηδ to be a convolution of a function ω(~k/2δ)

with the characteristic function of the δ/2-neighborhood of G∞, where ω(~k) is a
nonnegative C∞0 (R2)-function with a support in the unit ball centered at zero and
integral one. Then, ηδ ∈ C∞0 (R2),

0 ≤ ηδ ≤ 1, ηδ(~k) = 1 when ~k ∈ G∞, ηδ(~k) = 0 when ~k 6∈ G̃∞, ‖Dmηδ‖L∞ < Cmδ
−|m|.
(3.5)

To prove (1.12), we will show that there exist a positive constant c1 and constants
c2 and c3 such that

2

T

∫ ∞
0

e−2t/T
∥∥Xw(·, t)

∥∥2

L2(BR)
dt ≥ 6c1T

2 − c2T − c3, (3.6)
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as long as c0 in the definition of R exceeds a certain value depending only on Ψ̂0. In

formula (3.6), the constant c1 = c1(Ψ̂0) depends on Ψ̂0, but not δ or c0, while the

constants c2 = c2(Ψ̂0, δ) and c3 = c3(Ψ̂0, δ) depend on Ψ̂0 and δ, but not c0.
We also prove that

2

T

∫ ∞
0

e−2t/T
∥∥X(Ψ− w)(·, t)

∥∥2

L2(BR)
dt ≤ γ(δ, Ψ̂0)c2

0T
2, (3.7)

γ(δ, Ψ̂0) = o(1) as δ → 0 uniformly in c0.

Proof of (3.7). Since ηδ = 1 on G∞,

Ψ(~x, t)− w(~x, t) = − 1

2π

∫
G̃∞\G∞

Ψ∞(~k, ~x)e−itλ∞(~k)Ψ̂0(~k)ηδ(~k) d~k =: f(~x, t).

Since ‖X‖ ≤ R, it suffices to show that

‖f(·, t)‖2L2(R2) ≤ γ(δ, Ψ̂0). (3.8)

Note that f = S∞(G̃∞)g1, where g1 = e−itλ∞(~k)Ψ̂0(~k)ηδ(~k)χ(G̃∞ \ G∞) and S∞ is
defined by (2.37). Now, the estimate (2.40) and Lebesgue’s Dominated Convergence

Theorem complete the proof, where Lemma 2.2 is used to show that Ψ̂0(~k) decays
sufficiently fast at infinity.

Proof of (3.6). Let

v(~x, t) :=
1

2π

∫
G̃∞

Ψ∞(~k, ~x)e−itλ∞(~k)∇
(

Ψ̂0(~k)ηδ(~k)
)
d~k. (3.9)

Then, using integration by parts and then (2.1), we get

v(~x, t) = − 1

2π

∫
G̃∞

[
∇~kΨ∞(~k, ~x)− itΨ∞(~k, ~x)∇λ∞(~k)

]
e−itλ∞(~k)Ψ̂0(~k)ηδ(~k) d~k

= − i

2π

∫
G̃∞

[
~x− t∇λ∞(~k)

]
Ψ∞(~k, ~x)e−itλ∞(~k)Ψ̂0(~k)ηδ(~k) d~k

− 1

2π

∫
G̃∞

ei〈
~k,~x〉∇~ku∞(~k, ~x)e−itλ∞(~k)Ψ̂0(~k)ηδ(~k) d~k,

where the boundary term is vanishing due to ηδ and the fast decay of Ψ̂0. In short,
v = −iXw + itφ− φs, where

φ(~x, t) :=
1

2π

∫
G̃∞
∇λ∞(~k)Ψ∞(~k, ~x)e−itλ∞(~k)Ψ̂0(~k)ηδ(~k) d~k (3.10)

φs(~x, t) :=
1

2π

∫
G̃∞

ei〈
~k,~x〉∇~ku∞(~k, ~x)e−itλ∞(~k)Ψ̂0(~k)ηδ(~k) d~k,

and, therefore, ‖Xw‖2L2(BR) >
t2

3 ‖φ‖
2
L2(BR)−‖v‖

2
L2(BR)−‖φs‖

2
L2(BR). Integrating the

last inequality with respect to t, we obtain:

2

T

∫ ∞
0

e−2t/T ‖Xw‖2L2(BR) dt
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≥ 1

3
· 2

T

∫ ∞
0

t2e−2t/T ‖φ‖2L2(BR) dt−
2

T

∫ ∞
0

e−2t/T ‖v‖2L2(BR) dt

− 2

T

∫ ∞
0

e−2t/T ‖φs‖2 dt =:
1

3
I1 − I2 − I3. (3.11)

Now we show that:

I1 ≥ 18(c1T
2 − c2T ), (3.12)

I2 ≤ cδ−2‖Ψ̂0‖2W 1
2 (R2), (3.13)

I3 ≤ c(V )‖Ψ̂0‖2L2(R2). (3.14)

Let us prove (3.13) first. From (3.9), we see that v = S∞(G̃∞)g2, where g2 =

e−itλ∞(~k)∇
(
Ψ̂0(~k)ηδ(~k)

)
, and, therefore, by (2.40), we get

‖v‖L2(R2) ≤ 2‖∇
(

Ψ̂0ηδ

)
‖L2(R2)

≤ 2
(
‖∇Ψ̂0‖L2(R2) + ‖Ψ̂0‖L2(R2)‖∇ηδ‖L∞(R2)

)
≤ cδ−1‖Ψ̂0‖W 1

2 (R2)

Now (3.13) is obvious.
Estimate (3.14) can be obtained in the same way as (2.25) or (2.39) with ∇~ku∞

instead of u∞ (see Appendix 3 for details).
Finally, we show the estimate (3.12). Substituting (2.1) into (3.10) yields

φ(~x, t) =
1

2π

∫
G̃∞
∇λ∞(~k)ei〈

~k,~x〉e−itλ∞(~k)Ψ̂0(~k)ηδ(~k) d~k

+
1

2π

∫
G̃∞
∇λ∞(~k)ei〈

~k,~x〉u∞(~k, ~x)e−itλ∞(~k)Ψ̂0(~k)ηδ(~k) d~k

=: φ̃(~x, t) + φ̃s(~x, t).

We use

‖φ‖2L2(BR) ≥
1

2
‖φ̃‖2L2(BR) − ‖φ̃s‖

2
L2(R2) =

1

2
‖φ̃‖2L2(R2) −

1

2
‖φ̃‖2L2(R2\BR) − ‖φ̃s‖

2
L2(R2).

Thus,

2

T

∫ ∞
0

t2e−2t/T ‖φ‖2L2(BR) dt =
2

T

∫ ∞
0

t2e−2t/T

(
1

2
‖φ̃‖2L2(R2) − ‖φ̃s‖

2
L2(R2)

)
dt

− 1

T

∫ ∞
0

t2e−2t/T ‖φ̃‖2L2(R2\BR) dt =: R1 −R2.

(3.15)

To get a lower bound for R1, we notice that

1

2
‖φ̃‖2L2(R2)−‖φ̃s‖

2
L2(R2) =

1

2
‖S0(G̃∞)g3‖2L2(R2)−‖(S∞(G̃∞)−S0(G̃∞))g3‖2L2(R2) (3.16)
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where g3(~k) := ∇λ∞(~k)Ψ̂0(~k)ηδ(~k). Now, using (2.39) with c(V )λ−γ6∗∗ ≤ 1/4 and
noticing that S0 is just the Fourier transform, we get

1

2
‖φ̃‖2L2(R2) − ‖φ̃s‖

2
L2(R2) ≥ (

1

2
− 1

4
)‖g3‖2L2(G̃∞)

=
1

4

∫
G̃∞
|∇λ∞(~k)|2|Ψ̂0(~k)|2ηδ(~k)2 d~k ≥ 1

4

∫
G∞
|~k|2|Ψ̂0(~k)|2 d~k.

(3.17)

Here we also used that on G∞ we have ηδ = 1 and |∇λ∞| ≥ |~k|.
The bound (3.17) immediately implies the main estimate of the paper:

R1 ≥
1

8
T 2

∫
G∞
|~k|2|Ψ̂0(~k)|2 d~k =: 20c1T

2, (3.18)

c1 = c1(Ψ0) :=
1

160

∫
G∞
|~k|2|Ψ̂0(~k)|2 d~k. (3.19)

For R2, let us introduce a new variable ~z := ~x/t and consider

φ̃(~zt, t) =
1

2π

∫
G̃∞

eit(〈
~k,~z〉−λ∞(~k))g3(~k) d~k. (3.20)

We use the method of stationary phase and integration by parts. Considering (2.34)
and Lemma 2.1, we conclude that the equation for a stationary point

~z −∇λ∞(~k) = 0

has a unique solution ~k0(z) := ~k0 and

~k0 =
1

2
~z +O(|~z|−γ5), γ5 > 0.

Let η be a smooth cut-off function satisfying

η(~k) =

0,
∣∣∣~k − ~k0

∣∣∣ ≤ 1

1,
∣∣∣~k − ~k0

∣∣∣ ≥ 2
.

Then,

φ̃(~zt, t) =
1

2π

∫
G̃∞∩{~k : |~k−~k0|<2}

eit(〈
~k,~z〉−λ∞(~k))g3(~k)

(
1− η(~k)

)
d~k (3.21)

+
1

2π

∫
G̃∞∩{~k: |~k−~k0|>1}

eit(〈
~k,~z〉−λ∞(~k))g3(~k)η(~k) d~k (3.22)

=: φ̃1(~zt, t) + φ̃2(~zt, t). (3.23)

To estimate φ̃1(~zt, t), we first note that g3(1−η) ∈ C4
0(R2) and 〈~k, ~z〉−λ∞(~k) ∈ C7(R2),

the estimate (2.35) holding for |m| ≤ 7 with −γ2 + 7γ0 < 0. Therefore, applying
Theorem 7.7.5 in [16] yields:

φ̃1(~zt, t) =
1

2i
eit(〈

~k0,~z〉−λ∞(~k0)) (1 +O(|~z|−γ5)
)
g3(~k0)t−1 + ε(g3)t−2 (3.24)
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for |z|2 > λ∗ and 0 otherwise. Here

|ε(g3)| ≤ c
∑
|m|≤4

sup
|~k−~k0|<2

|Dmg3(~k)| ≤ c
∥∥∥|~k|3Ψ̂0(~k)

∥∥∥
C4(R2)

δ−4|~z|−2,

Next, we consider φ̃2(~zt, t). There is no stationary point. Integrating by parts twice,
we obtain

|φ̃2(~zt, t)| ≤ C(Ψ̂0)(δt)−2(1 + |~z|)−2, (3.25)

where C(Ψ̂0) is a combination of integrals of the type
∫
|~k|j |DmΨ̂0(~k)|d~k, 0 ≤ j ≤ 3,

0 ≤ |m| ≤ 2.

Now, we consider ‖φ̃(~x, t)‖2L2(R2\BR). Using the estimates (3.24) and (3.25), we

obtain

‖φ̃(~x, t)‖2L2(R2\BR) = t2‖φ̃(~zt, t)‖2L2(R2\BR/t) ≤
∫
R2\Bc0T/t

|g3(~k0(~z))|2 d~z +O(t−1)

as t → ∞, the constant in O(t−1) depending on δ and Ψ̂0. Next, substituting the
above estimate into the formula forR2 (see (3.15)) and changing the variables s = t/T ,
we obtain:

R2 ≤ T 2

∫ ∞
0

s2e−2s

∫
R2\Bc0/s

|g3(~k0(~z))|2 d~z ds+O(T ). (3.26)

By Lebesgue’s Dominated Convergence Theorem, the integral on (3.26) goes to zero
when c0 →∞ uniformly in δ. We choose c0 large enough to ensure that

R2 ≤ c1T
2 + cT,

the constant c1 being defined by (3.19). Notice that the choice of c0 depends on Ψ̂0,
but not δ. Considering the last estimate together with (3.18), we obtain (3.12).

Proof of (1.12). After c0 is fixed as above we choose a sufficiently small δ = δ(c0, Ψ̂0)
so that the constant γc20 from (3.7) is smaller than c1. Thus, we obtain:

2

T

∫ ∞
0

e−2t/T
∥∥XΨ(·, t)

∥∥2

L2(R2)
dt > 2c1(Ψ0)T 2 − c2(Ψ0)T − c3(Ψ0), c1 > 0. (3.27)

Taking T sufficiently large, we obtain (1.12) for any non-zero Ψ0 ∈ E∞C∞0 .

4. Proof of Theorem 1.2

Now we prove Theorem 1.2. Let Ψ0 ∈ C∞0 (R2) then by Lemma 2.2, Ψ̂0 ∈ CL decays
faster than any polynomials of degree at most L, where

Ψ̂0(~k) = (T∞Ψ0)(~k) =
1

2π

∫
R2

Ψ∞(~k, ~x)Ψ0(~x) d~x. (4.1)

We denote

Ψ0,ac := E∞(G∞)Ψ0 =
1

2π

∫
G∞

Ψ∞(~k, ~x)Ψ̂0(~k) d~k
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and

Ψ0,s := Ψ0 −Ψ0,ac.

We notice that Ψ0,s ⊥ E∞L2(R2) and ‖Ψ0,s‖L2(R2) ≤ ‖Ψ0‖L2(R2). Assume that Ψ0,ac

is not identically zero. We put

Ψ(~x, t) = Ψac(~x, t) + Ψs(~x, t) := e−itHΨ0,ac + e−itHΨ0,s.

As in the proof of Theorem 1.1, we use

‖XΨ‖L2(R2) ≥ ‖XΨ‖L2(BR)

and approximate Ψac by w defined as in (3.4). Next, we rewrite

‖X(Ψs + w)‖2L2(BR) = ‖XΨs‖2L2(BR) + ‖Xw‖2L2(BR) + 2<(XΨs, Xw)L2(BR).

Let us note that (XΨs, Xw)L2(BR) = (Ψs, X
2w)L2(BR) and consider its integral over

t:

Î :=
2

T

∫ ∞
0

e−2t/T |(Ψs, X
2w)L2(BR)| dt. (4.2)

Considering (3.6), we see that it is enough to show that Î is small compared with the
r.h.s. of (3.6). We achieve this by proving that X2w is orthogonal to Ψs up to minor
terms. Indeed, by (3.4) and (2.1),

(X2w)(~x, t) =
1

2π

∫
G̃∞
|~x|2Ψ∞(~k, ~x)e−itλ∞(~k)Ψ̂0(~k)ηδ(~k) d~k

= − 1

2π

∫
G̃∞

(∆~k
ei〈
~k,~x〉)(1 + u∞(~k, ~x))e−itλ∞(~k)Ψ̂0(~k)ηδ(~k) d~k.

Using g4(~k, ~x) := (1 + u∞(~k, ~x))Ψ̂0(~k)ηδ(~k) and applying integration by parts as
above, we obtain

(X2w)(~x, t) = t2
1

2π

∫
G̃∞

ei〈
~k,~x〉

∣∣∣∇λ∞(~k)
∣∣∣2 e−itλ∞(~k)g4(~k, ~x) d~k

− 1

2π

∫
G̃∞

ei〈
~k,~x〉e−itλ∞(~k)∆~k

g4(~k, ~x) d~k

+ t
i

π

∫
G̃∞

ei〈
~k,~x〉e−itλ∞(~k)

〈
∇λ∞(~k),∇~kg4(~k, ~x)

〉
d~k

+ t
i

2π

∫
G̃∞

ei〈
~k,~x〉

(
∆λ∞(~k)

)
e−itλ∞(~k)g4(~k, ~x) d~k.

The last three integrals can be estimated as in the proof of (3.6) (see (3.13),(3.14)),

and the corresponding contribution to Î is bounded by a linear function of T for every
fixed δ > 0. For the first integral, we have

t2
1

2π

∫
G̃∞

ei〈
~k,~x〉

∣∣∣∇λ∞(~k)
∣∣∣2 e−itλ∞(~k)g4(~k, ~x) d~k

= t2
1

2π

∫
G∞

Ψ∞(~k, ~x)
∣∣∣∇λ∞(~k)

∣∣∣2 e−itλ∞(~k)Ψ̂0(~k) d~k
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+ t2
1

2π

∫
G̃∞\G∞

Ψ∞(~k, ~x)
∣∣∣∇λ∞(~k)

∣∣∣2 e−itλ∞(~k)Ψ̂0(~k)ηδ(~k) d~k

=: t2(J1 + J2).

Obviously, ‖J2‖L2(R2) = o(1) as δ → 0 uniformly in t (cf. (3.8)) and its contribution

to Î is bounded by γT 2, where γ(δ,Ψ0)→ 0 as δ → 0 . To estimate the contribution
from J1 we notice that J1 = E∞(G∞)J1 and, thus, we arrive at the main point of the
proof:

(Ψs, J1)L2(BR) = −(Ψs, J1)L2(R2\BR).

It remains to estimate

Î1 =
2

T

∫ ∞
0

t2e−2t/T |(Ψs, J1)L2(R2\BR)|dt. (4.3)

It is easy to see that

Î1 ≤
2

T

∫ ∞
0

t2e−2t/T (ε‖Ψs‖2L2(R2\BR) +
1

4ε
‖J1‖2L2(R2\BR))dt

≤ εC(Ψ0)T 2 +
1

εT

∫ ∞
0

t2e−2t/T (‖J1 + J2‖2L2(R2\BR) + ‖J2‖2L2(R2\BR))dt.

(4.4)

The estimate for the integral with J1+J2 is similar to the estimate for R2 (see (3.26)),
while the estimate for the integral with J2 repeats the proof for (3.8). Thus, (4.4) is
bounded by

εC(Ψ0)T 2 +
1

2ε

(
T 2γ̂(c0,Ψ0) + C(Ψ0, δ)T + T 2γ(δ,Ψ0)

)
,

where γ̂(c0,Ψ0)→ 0 as c0 →∞ and γ(δ,Ψ0)→ 0 as δ → 0. Now, one chooses small
ε, then large c0, small δ and large T0 to prove (4.2).

5. Appendices

Here we provide detailed proofs of some of the facts which were used in Sections 2
and 3 above.

Remark 3. Using the a priori estimates (see [20]) for the solutions Ψn from (2.9)
and their Fourier coefficients defined by

Ψn(~k, ~x) = ei〈
~k,~x〉

(
1 + un(~k, ~x)

)
, (5.1)

un(~k, ~x) =
∑
r∈Z2

C(n)
r (~k)ei〈~p

(n)
r ,~x〉, (5.2)

~p
(n)
r being vectors of the dual lattice corresponding to Wn, and repeating the arguments

which led to Lemma 2.1, one can obtain that the extended coefficients are sufficiently
smooth and satisfy estimates of the type (2.29), (2.32), (2.35). We omit the details.
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5.1. Appendix 1.

Lemma 5.1. The sequence of operators Sn(G∞,λ) given by (2.24) has a limit S∞(G∞,λ)
in the class of bounded operators. The convergence of Sn(G∞,λ) to S∞(G∞,λ) is uni-
form in λ and estimate (2.25) holds.

Proof. It suffices to prove that Sn(G∞,λ)f is a Cauchy sequence. Given Qn is the cell

of periods of the operator H(n), the function Ψn(~k, x) is quasi-periodic in Qn. It can
be represented as a combination of plane waves (5.1), (5.2). The Fourier transform

of Ψ̂n is a combination of δ-functions:

Ψ̂n(~k, ~ξ) =
∑
r∈Z2

C(n)
r (~k)δ

(
~ξ + ~k + ~pr(0)/Ñn

)
.

From this, we compute easily the Fourier transform of Snf

(Ŝnf)(~ξ) =
1

2π

∑
r∈Z2

C(n)
r

(
−~ξ − ~pr(0)/Ñn

)
f
(
−~ξ − ~pr(0)/Ñn

)
χ
(
G∞,λ,−~ξ − ~pr(0)/Ñn

)
,

where χ(G∞,λ, ·) is the characteristic function on G∞,λ. Since G∞,λ is bounded, the

series contains only a finite number of non-zero terms for every ~ξ. By Parseval’s
identity, triangle inequality and a parallel shift of the variable,

‖Snf‖L2(R2) = ‖Ŝnf‖L2(R2)

≤ 1

2π

∑
r∈Z2

∥∥∥C(n)
r

(
−~ξ − ~pr(0)/Ñn

)
f
(
−~ξ − ~pr(0)/Ñn

)
χ
(
G∞,λ,−~ξ − ~pr(0)/Ñn

)∥∥∥
L2(R2)

=
1

2π

∑
r∈Z2

‖C(n)
r (~k)f(~k)‖L2(G∞,λ).

Assume first that the support of f belongs to a ring Rk,2k for some k such that
k2 > λ∗(V ). Then, the last inequality yields:

‖Snf‖L2(R2) ≤
1

2π
‖f‖L2(Rk,2k)

∑
r∈Z2

‖C(n)
r ‖L∞(Rk,2k). (5.3)

By (5.2), Fourier coefficients C
(n)
r (~k) can be estimated as follows:

p4
r(0)|C(n)

r (~k)| ≤ 2π‖Ψn(~k, ·) exp
(
−i〈~k, ·〉

)
‖W 4

2 (Qn)|Qn|−1/2Ñ4
n

≤ 16π|~k|4‖Ψn(~k, ·)‖W 4
2 (Qn)|Qn|−1/2Ñ4

n.

Considering that
∑

r 6=0 p
−4
r (0) < c, we obtain:∑

r∈Z2

‖C(n)
r ‖L∞(Rk,2k) < c sup

~k∈Rk,2k

(
|~k|4‖Ψn(~k, ·)‖W 4

2 (Qn)|Qn|−1/2Ñ4
n

)
.

Using (5.3), we arrive at

‖Snf‖L2(R2) < ck4‖f‖L2(Rk,2k) sup
~k∈Rk,2k

(
|Qn|−1/2Ñ4

n sup
~k∈Rk,2k

‖Ψn(~k, ·)‖W 4
2 (Qn)

)
.
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Similarly,

‖(Sn+1 − Sn)f‖L2(R2) <

ck4‖f‖L2(Rk,2k) sup
~k∈Rk,2k

(
|Qn+1|−1/2Ñ4

n+1 sup
~k∈Rk,2k

‖
(
Ψn+1(~k, ·)−Ψn(~k, ·)

)
‖W 4

2 (Qn+1)

)
.

It is proven in [23] (Section 5.2) that

‖Ψn+1(~k, ·)−Ψn(~k, ·)‖L2(Qn+1) < cε3n|Qn+1|1/2, n ≥ 1, when ~k ∈ Rk,2k. (5.4)

Applying the equation for eigenfunctions twice, we arrive to:

‖Ψn+1(~k, ·)−Ψn(~k, ·)‖W 4
2 (Qn+1) < ck4ε3n|Qn+1|1/2, n ≥ 1, when ~k ∈ Rk,2k. (5.5)

Using the last estimate, we obtain

‖(Sn − Sn+1)f‖L2(R2) ≤ ck8‖f‖L2(Rk,2k) sup
~k∈Rk,2k

(
Ñ4
nε

3
n

)
. (5.6)

when the support of f is in Rk,2k. Considering that εn decays super-exponentially

with n (see the formula above (2.31) and the estimate Ñn ≈ ksn , we conclude that

‖(Sn − Sn+1)f‖L2(R2) ≤ c‖f‖L2(Rk,2k)ε
2
n(k), (5.7)

i.e., Snf is a Cauchy sequence in L2(R2) for every f ∈ L2 (Rk,2k).
If f ∈ L2(G∞,λ), then we can express it as a sum of functions fk such that fk

has support in Rk,2k. Summing up estimates (5.7) over all k and using the Cauchy-
Schwatz inequality on the right, we easily see that:

‖(Sn − Sn+1)f‖L2(R2) ≤ c‖f‖L2(G∞,λ)εn(k∗), n ≥ 1, (5.8)

i.e., Sn is a Cauchy sequence in the space of bounded operators. We denote the limit
of Sn(G∞,λ)f by S∞(G∞,λ)f . By Theorem 2.3 in [23]

‖(S0 − S1)‖L2(R2) < λ−γ6∗ . (5.9)

Estimate (2.25) easily follows.

5.2. Appendix 2 (Proof of Lemma 2.2). Next, using (5.1), (5.2) and integrating
by parts j times in (2.18), we obtain:

∣∣∣(TnF )(~k)
∣∣∣ ≤

 ∑
r:|~k+~p

(n)
r |≥|~k/4|

|C(n)
r (~k)|

|~k + ~p
(n)
r |j

 ‖F‖W 1
j (R2)

+

 ∑
r:|~k+~p

(n)
r |<|~k/4|

|C(n)
r (~k)|

 ‖F‖L1(R2). (5.10)

Noting that ∑
r

|C(n)
r (~k)| < 2, (5.11)
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we can estimate the first term in the right hand side of (5.10), i.e.,

|~k|j

 ∑
r:|~k+~p

(n)
r |≥|~k/4|

|C(n)
r (~k)|

|~k + ~p
(n)
r |j

 ‖F‖W 1
j (R2) ≤ 22j+2‖F‖W 1

j (R2). (5.12)

Next, since HΨn = λnΨn, we have(
HΨn,

ei〈
~k+~p

(n)
r ,·〉

|Qn|

)
= λn(~k)C(n)

r (~k). (5.13)

Note that(
HΨn,

ei〈
~k+~p

(n)
r ,·〉

|Qn|

)
=

(
Ψn,
|~k + ~p

(n)
r |2ei〈

~k+~p
(n)
r ,·〉

|Qn|

)
+

(
Ψn,Wn

ei〈
~k+~p

(n)
r ,·〉

|Qn|

)
.

Since the length of Vr grows at most linearly with period, i.e., if |~p(n)
r − ~p(n)

r′ | ≥ R0,
then (Wn)r−r′ = 0, we get(

Ψn,Wn
ei〈
~k+~p

(n)
r ,·〉

|Qn|

)
=

∑
r′:|~p(n)

r′ −~p
(n)
r |<R0

Ψn, (Wn)r−r′
ei〈
~k+~p

(n)

r′ ,·〉

|Qn|

 .

Hence,

C(n)
r (~k) = (λn(~k)− |~k + ~p(n)

r |2)−1
∑

r′:|~p(n)
r′ −~p

(n)
r |<R0

(Wn)r−r′C
(n)
r′ (~k). (5.14)

and therefore∑
r:|~k+~p

(n)
r |<|~k/2|

|C(n)
r (~k)| ≤

∑
r:|~k+~p

(n)
r |<|~k/2|

∑
r′:|~p(n)

r′ −~p
(n)
r |<R0

|(Wn)r−r′ ||C
(n)
r′ (~k)|

|λn(~k)− |~k + ~p
(n)
r |2|

≤ C

|~k|2
∑
r,r′

|(Wn)r−r′ ||C
(n)
r′ (~k)| ≤ C(V )

|~k|2
.

By a recursive argument, while j < k∗∗/(4R0), we obtain∑
r:|~k+~p

(n)
r |<|~k/4|

|C(n)
r (~k)| ≤ C(j, V )

|~k|j
. (5.15)

Using (5.12) and (5.15) in (5.10), we obtain∣∣∣|~k|j(TnF )(~k)
∣∣∣ ≤ C(j, V, F ).

The case |m| > 0 can be covered using integration by parts. To obtain the decay

rate for Dm(C
(n)
r (~k)ηn(~k)) one differentiates the recursive version of (5.14) and uses

a priori estimates for
∑

r |Dm(C
(n)
r (~k)ηn(~k))| (see [20] and (5.1), (5.2)).
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5.3. Appendix 3 (Proof of (3.14)). We consider the limit-periodic case. A proof

for the quasi-periodic case is analogous. Indeed, we can write u∞(~k, ~x) as follows:

u∞(~k, ~x) =
∞∑
n=1

ũn(~k, ~x),

where ũn(~k, ~x) =
∑

r∈Z2 C̃
(n)
r ei〈~p

(n)
r , ~x〉, ~p

(n)
r are vectors of the dual lattice correspond-

ing to Wn. We obtain:

‖φs‖2L2(BR) ≤ ‖φs‖
2
L2(R2)

=
1

(2π)2

∫
R2

∫
G̃∞

∫
G̃∞

ei〈
~k−~ξ,~x〉〈∇~kũ∞(~k, ~x),∇~ξũ∞(~ξ, ~x)〉e−it

(
λ∞(~k)−λ∞(~ξ)

)
Ψ̂0(~k)Ψ̂0(~ξ)ηδ(~k)ηδ(~ξ) d~k d~ξ d~x

=
1

(2π)2

∑
n,m∈N

∑
r,q∈Z2

∫
R2

∫
G̃∞

∫
G̃∞

ei〈
~k−~ξ+~p(n)r −~p

(m)
q ,~x〉〈∇C̃(n)

r (~k),∇C̃(m)
q (~ξ)〉

e−it
(
λ∞(~k)−λ∞(~ξ)

)
Ψ̂0(~k)Ψ̂0(~ξ)ηδ(~k)ηδ(~ξ) d~k d~ξ d~x

=
∑
n,m∈N

∑
r,q∈Z2

∫
G̃∞

∫
G̃∞

δ(~k − ~ξ + ~p(n)
r − ~p(m)

q )〈∇C̃(n)
r (~k),∇C̃(m)

q (~ξ)〉

e−it
(
λ∞(~k)−λ∞(~ξ)

)
Ψ̂0(~k)Ψ̂0(~ξ)ηδ(~k)ηδ(~ξ) d~k d~ξ

=
∑
n,m∈N

∑
r,q∈Z2

∫
G̃∞∩(G̃∞−~p(n)r +~p

(m)
q )
〈∇C̃(n)

r (~k),∇C̃(m)
q (~k + ~p(n)

r − ~p(m)
q )〉

e−it
(
λ∞(~k)−λ∞(~k+~p

(n)
r −~p

(m)
q )
)
Ψ̂0(~k)Ψ̂0(~k + ~p

(n)
r − ~p(m)

q )ηδ(~k)ηδ(~k + ~p(n)
r − ~p(m)

q ) d~k

≤ 1

2

∑
n,m∈N

∑
r,q∈Z2

∫
G̃∞∩(G̃∞−~p(n)r +~p

(m)
q )
|∇C̃(n)

r (~k)| |∇C̃(m)
q (~k + ~p(n)

r − ~p(m)
q )| |Ψ̂0(~k)|2 d~k

+
1

2

∑
n,m∈N

∑
r,q∈Z2

∫
G̃∞∩(G̃∞−~p(n)r +~p

(m)
q )
|∇C̃(n)

r (~k)| |∇C̃(m)
q (~k + ~p(n)

r − ~p(m)
q )|

|Ψ̂0(~k + ~p(n)
r − ~p(m)

q )|2 d~k

=

∫
G̃∞

 ∑
n,m∈N

∑
r,q∈Z2

|∇C̃(n)
r (~k)| |∇C̃(m)

q (~k + ~p(n)
r − ~p(m)

q )|χG̃∞(~k + ~p(n)
r − ~p(m)

q )

 |Ψ̂0(~k)|2 d~k

≤ c4(V )‖Ψ0‖2L2(R2),

since
∑

n,m∈N
∑

r,q∈Z2 |∇C̃(n)
r (~k)| |∇C̃(m)

q (~k + ~p
(n)
r − ~p

(m)
q )|χG̃∞(~k + ~p

(n)
r − ~p

(m)
q ) is

bounded uniformly in ~k ∈ G̃∞, say, it is bounded by c4(V ), see [20].
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