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Abstract. This article presents stability analytical results of a two compo-

nent reaction-diffusion system with linear cross-diffusion posed on continuously
evolving domains. First the model system is mapped from a continuously evolv-

ing domain to a reference stationary frame resulting in a system of partial
differential equations with time-dependent coefficients. Second, by employing

appropriately asymptotic theory, we derive and prove cross-diffusion-driven in-

stability conditions for the model system for the case of slow, isotropic domain
growth. Our analytical results reveal that unlike the restrictive diffusion-driven

instability conditions on stationary domains, in the presence of cross-diffusion

coupled with domain evolution, it is no longer necessary to enforce cross nor
pure kinetic conditions. The restriction to activator-inhibitor kinetics to induce
pattern formation on a growing biological system is no longer a requirement.

Reaction-cross-diffusion models with equal diffusion coefficients in the principal
components as well as those of the short-range inhibition, long-range activa-

tion and activator-activator form can generate patterns only in the presence of

cross-diffusion coupled with domain evolution. To confirm our theoretical find-
ings, detailed parameter spaces are exhibited for the special cases of isotropic
exponential, linear and logistic growth profiles. In support of our theoretical
predictions, we present evolving or moving finite element solutions exhibiting
patterns generated by a short-range inhibition, long-range activation reaction-

diffusion model with linear cross-diffusion in the presence of domain evolution.
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1. Introduction. Understanding of biological processes during growth develop-
ment is an unresolved issue in developmental biology that is only starting to be
addressed in the last decade. Introducing domain growth into the modelling re-
sults in non-autonomous systems of partial differential equations whose analytical
tractability is not yet well understood [7, 11, 18, 19, 24]. In the area of develop-
mental biology, partial differential equations for pattern formation take the form of
reaction-diffusion type [13, 30, 37]. On stationary domains, for example, it is well
known that one major criticism of reaction-diffusion theory for pattern formation is
the tight control of the model reaction kinetic parameter values [3]. Underpinning
this theory is the concept of diffusion-driven instability which leads to patterns
that are stationary in time and periodic in space. For a two-component reaction-
diffusion system, a key requirement for diffusion-driven instability is the concept of
long-range inhibition and short-range activation [10]. This implies that one of the
species (the inhibitor) must diffuse faster (typically much faster) than the autocat-
alytic species (activator) thereby fulfilling one of the necessary conditions for the
formation of spatial structure.

Several generalisations of the reaction-diffusion theory for pattern formation have
been undertaken in order to relax some of these constraints. One of these generalisa-
tions involve the introduction of domain growth [7, 18, 19, 24]. It is well-known that
many problems in biology involve growth. In [24] we proved that in the presence of
domain growth, it is no longer necessary to restrict reaction kinetics to an activator-
inhibitor type; a long-range activation and short-range inhibition/activation chem-
ical process are all capable of giving rise to what we termed domain-growth in-
duced diffusion-driven instability. However, this generalisation still requires that
the inhibitor must diffuse much faster than the activator species and therefore equal
diffusion coefficients do not give rise to the formation of spatial structure during
growth.

Another generalisation is the introduction of cross-diffusion. In many multi-
component systems, there are various forms of diffusion depending on the bio-
chemical problem at hand [38]. Diffusive processes can be characterised as self-
diffusion, cross-diffusion, mutual-diffusion, tracer-diffusion, intra-diffusion, inter-
diffusion, uphill-diffusion and negative- or incongruent-diffusion. A detailed review
of the different physicochemical interpretations of these forms of diffusion is given
by Vanag and Epstein [38]. Cross-diffusion is characterised by a gradient in the
concentration of one species inducing a flux of another chemical species. In molec-
ular biology, cross-diffusion processes appear in multicomponent systems contain-
ing at least two solute components [28, 40]. Multicomponent systems containing
nanoparticles, surfactants, polymers and other macromolecules in solution play an
important role in industrial applications and biological functions [28]. In develop-
mental biology, recent experimental findings demonstrate that cross-diffusion can be
quite significant in generating spatial structure [38]. The effects of cross-diffusion
on models for pattern formation (i.e. reaction-diffusion type) have been studied
in many theoretical papers [5, 6, 8, 9, 12, 14, 33, 34, 36, 41, 42, 43]. Recently, in
Madzvamuse [26] we showed that introducing cross-diffusion to a system of reaction-
diffusion equations results in further relaxation of the conditions necessary for the
emergency of patterns. In particular, an inhibitor and activator or two activators
can diffuse at equal rates, however, the product of the rates of the principal diffu-
sion coefficients must be greater than the product of the cross-diffusion rates. For
detailed theoretical analytical and computational results on the effects of domain
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growth on pattern formation, the interested reader is referred to results published
in [7, 11, 15, 16, 17, 19, 24, 27]. In this article our focus is to study, both theoret-
ically and computationally, how cross-diffusion induces patterning in the presence
of domain evolution.

Hence, our paper is organised as follows: in Section 2 we present the model equa-
tions posed on evolving domains and these consists of a system of reaction-diffusion
equations with linear cross-diffusion. Domain evolution terms are modelled through
dilution and convective terms. For analytical purposes, in this section, we map at all
times, the model system from a continuously evolving domain to a reference frame
(which can be taken as the initial domain). As a result, a system of non-autonomous
partial differential equations is obtained. The bulk of our work is detailed in Section
3 where we derive and prove the conditions for cross-diffusion driven instability on
evolving domains. These conditions are a generalisation of the classical Turing and
cross-diffusion driven instability conditions on stationary domains. Cross-diffusion
induced parameter spaces are computed and exhibited in Section 4 for the special
cases of isotropic exponential, linear and logistic growth profiles. It is in this section
that we exhibit several parameter spaces induced by cross-diffusion in the presence
of domain evolution. By selecting model parameter values from the cross-diffusion
induced parameter spaces, in Section 5, we present finite element solutions on two-
dimensional evolving domains demonstrating the emergence of patterns induced by
cross-diffusion and domain growth, for the case of the short-range inhibition, long-
range activation. Such patterns can not be formed in the absence of cross-diffusion.
In Section 6, we conclude and discuss the implications of our findings to the theory
of pattern formation during planar growth development.

2. Reaction-diffusion systems with linear cross-diffusion posed on evolv-
ing domains. Let Ω(t) ⊂ Rm (m = 1, 2, 3) be a simply connected bounded evolv-
ing volume for all time t ∈ I = [0, tF ], tF > 0 and ∂Ω(t) be the evolving boundary

enclosing Ω(t). Also let u = (u (x, t) , v (x, t))
T

be a vector of two chemical concen-
trations at position x ∈ Ω(t) ⊂ Rm. The evolution equations for reaction-diffusion
systems with linear cross-diffusion can be obtained from the application of the law
of mass conservation in an elemental volume using Reynolds transport theorem.
The growth of the volume Ω(t) generates a flow of velocity V to yield the non-
dimensional system [11, 24, 30]


ut +∇ · (V u) = ∇2u+ dv∇2v + γf(u, v),

vt +∇ · (V v) = d∇2v + du∇2u+ γg(u, v),

x ∈ Ω(t), t ≥ 0,

n · ∇u = n · ∇v = 0, x on ∂Ω(t), t ≥ 0,

u(x, 0) = u0(x), and v(x, 0) = v0(x), x on Ω(0),

(1)

where ∇2 is the Laplace operator on domains and volumes, d = Dv
Du

is the ratio of

the diffusion coefficients and du = Duv
Du

and dv = Dvu
Du

are the ratios of the cross-
diffusion, where Du, Dv, Duv and Dvu are dimensional diffusion and cross-diffusion
coefficients, respectively. Here, n is the unit outward normal to Ω(t). In the above,
V (x, t) denotes the flow velocity of the chemical species due to domain evolution.
Initial conditions are prescribed through non-negative bounded functions u0(x) and
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v0(x). The functions, f(u, v) and g(u, v) represent nonlinear reactions. Note that
we have imposed self-organisation on the system through zero-flux (also known as
homogeneous Neumann) boundary conditions.

Remark 1. Domain growth has the effect of introducing extra terms to the clas-
sical model of reaction-diffusion with linear cross-diffusion. For example, for the u
equation these are of the form

∇ · (V u) = V · ∇u+ u(∇ · V )

where V · ∇u represents the transport of the chemical species by the flow velocity
V and u(∇ ·V ) denotes the dilution (or concentration) of the chemical species due
to domain growth (or contraction) if ∇ · V > 0 (or ∇ · V < 0), respectively.

For analytical clarity and simplicity, we will write the model system (1) in
compact-vector form as

ut +∇ · (a : u−D∇u) = γ F (u), (2)

where

u =

(
u
v

)
, F =

(
f(u, v)
g(u, v)

)
, a : u =

(
au
a v

)
, and D =

(
1 dv
du d

)
.

Assumption 2.1 (Flow velocity). We assume that the flow velocity V (x, t) is
identical to the domain velocity, i.e.,

V =
dx

dt
as is standard in the derivation of classical reaction-diffusion models on evolving
domains on application of the Reynold’s Transport Theorem [1].

Lemma 2.1 (Global existence of solutions of reaction-diffusion systems with cross-d-
iffusion on evolving domains). Under suitable assumptions on the reaction-kinetics
f(u, v) and g(u, v), the diffusion matrix D and the domain evolution, problem (1)
admits a global classical solution.

Proof. The proof follows directly from Theorem 4.5 in Venkataraman et al., [39]
(Theorem 4.5, page 50) under suitable assumptions on the reaction-kinetics f(u, v)
and g(u, v), the diffusion matrix D and the domain evolution.

2.2. Mapping to a stationary domain using a Lagrangian transformation.
For analytical convenience we will work with the model system posed on a time-
independent domain. Therefore, we introduce a transformation that maps the model
system (2) from a continuously evolving planar domain to a time-independent (sta-
tionary) domain (see [2, 11, 24] for more details of this approach). In order to do
this, without too many technical complications, we will restrict our attention to a
special class of domain evolution as detailed in the next section.

Assumption 2.3 (Isotropic domain evolution). We assume a spatially linear isotro-
pic evolution of the domain Ω(t) of the form

x = ϕ(t)ξ for all ξ ∈ Ω(0), t ≥ 0 and all x ∈ Ω(t), (3)

where ϕ(t) is a continuously differentiable function with ϕ(0) = 1. In the above, ξ
represents the spatial coordinates of the stationary domain. This assumption and
Assumption 2.1 imply that

V (x, t) = ϕ̇(t)ξ, (4)
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where ϕ̇ := dϕ
dt .

Proposition 1. Assumptions 2.1 and 2.3 imply that the divergence of the flow
velocity is given by

h(t) := ∇ · V = m
ϕ̇(t)

ϕ(t)
, m ≥ 1,

where m defines the number of spatial dimensions.

Proof. The proof can be found in [11, 22, 24].

We are now in a position to state the reaction-diffusion system with linear cross-
diffusion posed on a stationary domain. Assuming uniform isotropic evolution of
the domain, we can write

û(ξ, t) = u(x, t) = u(ϕ(t)ξ, t), ξ ∈ Ω(0), t ≥ 0.

As a result, model (2) simplifies to

ût + h(t)û = 1
ϕ2(t)D∇

2û+ γ F (û), ξ on Ω(0), t > 0,

n · ∇û(ξ, t) = 0, ξ on ∂Ω(0), t ≥ 0,

û(ξ, 0) = û0(ξ), ξ on Ω(0), t = 0,

(5)

where h(t) := ∇ · V .
From here onwards, we will drop the hats ˆfor ease of exposition.

2.3.1. Timescales. For a biological system, growth is typically driven by cell divi-
sion, and thus occurs on the timescale of the cell cycle duration, which is typically
24 hours or greater. In contrast, the biochemical reaction kinetics are typically
considered to occur on a much faster time scale of seconds to minutes, and are
typically constrained by the diffusive dynamics. The length scale associated with
a volume of 104 to 106 cells is about 2 × 10−4m to 10−3m. Given diffusion and
cross-diffusion coefficients of between 10−6cm2s−1 to 10−5cm2s−1, the diffusive and
cross-diffusive timescales occur between 40 seconds to 170 minutes [38]. We will
take advantage of this difference in timescales in our analysis. With Tg denoting
the growth timescale, and Tdyn denoting the maximum of the diffusive timescale and
the biochemical kinetics timescale, we will define and utilise the small parameter

ε
def
=

Tdyn
Tg
� 1, (6)

and therefore we will generally neglect O(ε2) corrections. Following [24], it can be
shown that for the above range of estimates ε ∈ [5× 10−4, 0.12].

3. Analysis of domain-induced cross-diffusion driven instability.

3.1. Definitions. In the following, we carry out cross-diffusion driven instability
analysis of a spatially linear, isotropic evolution of the domain. Given that model
system (5) is a non-autonomous system of partial differential equations with time-
dependent coefficients, the model system does not always admit a uniform steady
state. To this end, we will consider a time-dependent manifold (i.e. spatially inde-
pendent) uS(t) defined as follows.
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Definition 3.1 (A spatially independent time-dependent manifold). A spatially
independent manifold uS(t) is a solution of (5) if it solves the non-autonomous
system of ordinary differential equations

∂uS
∂t

+ h(t)uS = γ F (uS), for t > 0, given uS(0) = u0
S ∈ R. (7)

Remark 2. In all our numerical examples presented in Sections 4 and 5, initial con-
ditions uS(0) are taken as small random perturbations around the uniform steady

state
(
a+ b, b

(a+b)2

)
obtained on stationary domains.

Definition 3.2 (Cross-diffusion driven instability on evolving domains). Cross-
diffusion driven instability on evolving domains occurs when a spatially independent
manifold uS(t), linearly stable in the absence of spatial variations (diffusion and
cross-diffusion terms) becomes unstable in the presence of spatial variations.

3.2. Linear stability analysis of the non-autonomous system. To proceed
in investigating the possibility of a cross-diffusion driven instability during domain
evolution, we will work with a Lagrangian coordinate system and expand u(ξ, t)
about the spatially independent solution uS(t). Thus we substitute

u(ξ, t) = uS(t) + ηw(ξ, t), with η � 1,

into the model system (5), where the components of w are denoted by (u∗(ξ, t),
w∗(ξ, t))

T . On neglect of O(η2) and higher order terms we obtain the following
linearised non-autonomous system of reaction-diffusion equations with linear cross-
diffusion 

wt + h(t)w = 1
ϕ2(t)D∇

2w + γJF

∣∣∣
uS
w, ξ on Ω(0), t > 0,

n · ∇w(ξ, t) = 0, ξ on ∂Ω(0), t ≥ 0,

w(ξ, 0) = w0(ξ), ξ on Ω(0), t = 0.

(8)

In the above, JF (t) is the Jacobian matrix corresponding to the linearisation of
the non-linear reaction kinetics which is evaluated at uS(t). We define ψK(ξ) to be
the time-independent eigenmode of the transport operator satisfying

∇2ψK = −K2ψK , ξ ∈ Ω(0),

n · ∇ψK(ξ) = 0, ξ on ∂Ω(0).

(9)

A standard analysis shows that the eigenvalue must be real and negative, and thus
without loss of generality, we write it as −K2 in the above. We similarly have that
eigenmodes of distinct eigenvalues are orthogonal. Furthermore, we note that the
domain Ω(0) is time-independent because ξ is a Lagrangian coordinate system.

We proceed by expanding w in terms of the eigenmodes

w(ξ, t) =
∑
K

wK(ξ, t) =
∑
K

βK(t)ψK(ξ). (10)

Linearity and the orthogonality of the eigenmodes allow each mode to be consid-
ered separately, which is a substantial simplification. In particular, growth of any
one of the βK(t) with time is sufficient to drive the full solution away from the
time-dependent solution uS(t). Similarly, if all the βK(t) decay with time then a
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sufficiently small perturbation from the time-dependent solution uS(t) will decay,
at least within the resolution of linear theory predictions.

To proceed, we substitute, for eachK, a modewK = βK(t)ψK(ξ) from expansion
(10) into the linearised equation (8) to find[(

β̇K + h(t)βK

)
+

K2

ϕ2(t)
DβK − γ JF (t)

∣∣
uS
βK

]
ψK = 0. (11)

Writing

βK(t) = bK(t)q(t),

where q(t) = exp
[
−
∫ t
t0
h(τ)dτ

]
and t0 is the point the perturbation is applied, we

have [
ḃK +

K2

ϕ2(t)
DbK − γ JF (t)

∣∣
uS
bK

]
ψK q(t) = 0. (12)

One can immediately deduce that

dbK
dt

= MK(t)bK , where MK(t) :
def
=
[
− K2

ϕ2(t)
D + γ JF (t)

∣∣
uS

]
. (13)

Given initial conditions, bK(t0) at time t0 we seek a solution at time t > t0 of the
form

bK(t) = exp

[∫ t

t0

dsλ∗K(s)

]
cK(t), (14)

where λ∗K(t) is either the largest time-dependent real eigenvalue ofMK(t) or the real
part of one of the time-dependent complex conjugate eigenvalues. From equations
(13) and (14) we have

dcK
dt

= QK(t)cK , where QK(t) :
def
=
[
MK(t)− λ∗K(t)I

]
, (15)

with cK(t0) = bK(t0).

3.3. Analysis of solutions of non-autonomous systems of ordinary differ-
ential equations. The analysis of the solutions of the non-autonomous systems of
ordinary differential equations is identical to that derived and presented in Madz-
vamuse et al., [24]. The only difference now is the inclusion of the cross-diffusion
coefficients into the matrix MK(t). We present a summary of the analysis for com-
pleteness’ sake, the reader is referred to [24] for further details. First, we observe
that for a matrix Q, the induced matrix norm is defined as

||Q|| = sup||x||=1||Qx||

and the Lozinskii measure is [29]

µ(Q) = lim
h→0

||I + hQ|| − 1

h
.

It can be easily shown that ||Qx|| ≤ ||Q|| ||x||, for any matrix Q and vector x.

Proposition 2. Assume that MK(t) has real and distinct eigenvalues, then

||bK(t0 + ∆t)||
||bK(t0)||

= exp

[
λ∗K

(
t0 +

∆t

2

)
∆t

] [
1 +O

(
ε2
)]
, (16)

with λ∗K the largest real eigenvalue of MK .
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Proof. First, we prove that cK(t) is bounded from above. The matrix QK(t) pos-
sesses one zero and one negative eigenvalue. Let us denote by e0

K(t) the unit eigen-
vector associated with the zero eigenvalue and let e1

K(t) be the unit eigenvector
associated with the negative eigenvalue, such that the angle between e0

K(t) and
e1
K(t) is acute. These eigenvectors are distinct and are linearly independent and

thus form a spanning set. Hence we can write

cK(t) = αK(t)e0
K(t) + βK(t)e1

K(t), and ||cK(t)|| =
√
α2
K(t) + β2

K(t).

The above satisfies all the axioms required of a norm. It then follows that

d

dt
||cK(t)|| = lim

h→0

||cK(t+ h)|| − ||cK(t)||
h

= lim
h→0

||cK(t) + hQK(t)cK(t)|| − ||cK(t)||
h

≤ lim
h→0

||I + hQK(t)|| ||cK(t)|| − ||cK(t)||
h

= µ(QK(t))||cK(t)||.

Hence

||cK(t)|| ≤ ||cK(t0)|| exp

[∫ t

t0

ds µ(QK(s))

]
= ||cK(t0)||,

noting that a matrix with zero and negative eigenvalues has a zero Lozinskii mea-
sure. Thus a solution to equation (15) does not grow in time.

Next, we prove that cK(t) does not decay to zero. Taking t fixed, with ∆t =
t − t0 ∼ Tdyn, we can find at least one solution of (15) which does not decay on
neglecting O(ε2) corrections. From a Picard iteration we have

cK(t) = GK(t, t0)cK(t0), (17)

where

GK(t, t0) = I +

∞∑
n=1

∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ tn−1

t0

dtn QK(t1)QK(t2) . . .QK(tn). (18)

The existence of GK(t, t0) is guaranteed from Picard’s theorem given the compo-
nents of QK(t) are bounded to ensure that QK(t)cK(t) is Lipschitz. With “dot”
denoting a time derivative, we have

Q̇K ∼ O
(

1

Tgrowth
QK

)
∼ O

(
ε

Tdyn
QK

)
since the change in the matrix Q is driven by growth. We set the initial condi-
tion cK(t0) = e0

K(t0) and consider the solution (17) obtained by expanding each
QK(t) in expression (18). Noting QK(t0)e0

K(t0) is zero and that the nth order time
derivatives of QK(t) scale with εn, we have

cK(t) = e0
K(t0) +

∞∑
n=1

∆tn+1

(n+ 1)!
Qn−1
K (t0)Q̇K(t0)e0

K(t0) +O(ε2). (19)

By differentiating QK (s) e0
K(s) = 0 with respect to s and then setting s = t0 we

have

Q̇K(t0)e0
K(t0) = −QK(t0)ė0

K(t0).



CROSS-DIFFUSION THEORY ON EVOLVING DOMAINS 2141

Let e0P
K (t) be the unit vector which is perpendicular to e0

K(t) where P denotes
perpendicular. Because e0

K(t) is defined to be a unit vector, we have

ė0
K(t) =

ε

τ(t)
e0P
K (t);

where τ(t) has an implicit K dependence. Since the matrix QK(t) changes on the
growth timescale we also have that ε/τ(t) ∼ O(T−1

growth) and hence τ(t) ∼ O(Tdyn).
We also have the kinematic relation

e1
K(t) = cosψ(t)e0P

K (t) + sinψ(t)e0
K(t) (20)

by projecting e1
K(t) onto the e0

K(t) and e0P
K (t) directions. Note that ψ(t) has an

implicit K dependence and that, without loss of generality, ψ(t) ∈ [0, π/2). Hence

QK(t0)ė0
K(t0) =

λ0
K(t0)

τ(t0) cosψ(t0)
e1
K(t),

where λ0
K(t0) < 0 is the negative eigenvalue of QK(t0). By substituting this into

equation (19) we have

cK(t) =
[
1 +O(ε2)

]
e0
K(t0)+ (21)[

ε∆t

τ(t0) cosψ(t0)

(
es − (1 + s)

s

)∣∣∣∣
ls=λ0

K(t0)∆t

+O(ε2)

]
e1
K(t0)

which is not decaying.
From equations (14), (21) and the observation that∫ t0+∆t

t0

dsλ∗K(s) = λ∗K

(
t0 +

∆t

2

)
∆t+ λ̈∗K

(
t0 +

∆t

2

)
×
∫ t0+∆t

t0

ds

(
s−

[
t0 +

∆t

2

])
+ · · ·

≈ λ∗K
(
t0 +

∆t

2

)
∆t

[
1 +O

(
ε2∆t2

T 2
dyn

)]
where we have used the scaling relation λ̈∗K ∼ O(ε2λ∗K/T

2
dyn), it can be easily shown

that
||bK(t0 + ∆t)||
||bK(t0)||

= exp

[
λ∗K

(
t0 +

∆t

2

)
∆t

] [
1 +O

(
ε2
)]
, (22)

with λ∗K the largest real eigenvalue of MK .

Proposition 3. Assume that MK(t) has complex conjugate eigenvalues, then

||bK(t0 + ∆t)||
||bK(t0)||

= exp

[
∆t

{
λ∗K

(
t0 +

∆t

2

)
+ ε|B̂K(t0)|Ĉ(ΩK∆t, χ1)

}]
with

Ĉ(ΩK∆t, χ1) :
def
=

[
1−2 cos(ΩK∆t)

sin(ΩK∆t)

ΩK∆t
+

sin2(ΩK∆t)

[ΩK∆t]2

]1/2

× cos (ΩK∆t+ χ1) ;

where ΩK :
def
= Im(λ(t)) > 0 and B̂K is evaluated at time t0.
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Proof. Let

eK(t) = f0
K(t) + if1

K(t)

be a complex eigenvector of the matrixMK(t) whose associated complex eigenvalue
is given by λ(t), where f0

K(t), f1
K(t) are real, distinct, vectors and thus a spanning

set of the real plane. Without loss of generality we take f0
K(t) to be a unit vector

and let ΩK
def
= Im(λ(t)) > 0. We can write any real vector function of time in the

form

cK(t) = αK(t)f0
K(t) + βK(t)f1

K(t)

and define the norm

||cK(t)|| =
√
α2
K(t) + β2

K(t).

Following [24] let ēK(t) denotes the conjugate of eK(t) then we can write

ėK(t) = ḟ
0

K(t) + iḟ
1

K(t)
def
= εAKf

0
K(t) + iεBKf

1
K(t)

= ε
AK +BK

2
eK(t) + ε

AK −BK
2

ēK(t)
def
= εÂKeK(t) + εB̂K ēK(t). (23)

where AK , BK , ÂK , B̂K are defined by the above relations and are time-dependent.
The ε appears as the change in the eigenvector eK(t) is on the timescale of growth.
As long as the angle between f0

K and f1
K is significantly greater than ε and the

vectors have a ratio of lengths, l, with ε� l � ε−1, then AK(t) and BK(t) can be
treated as O(ε0) terms for the purposes of asymptotic expansions. This is assumed
below.

We also have that

QK(t)eK(t) = iΩKeK(t), QK(t)ē(t) = −iΩK ē(t)

and hence, by differentiation,

Q̇K(t)eK(t) = − (QK(t)− iΩKI) ėK(t) + iΩ̇KeK(t)

= iεΩK

[
2B̂K ēK(t) + ΦKeK(t)

]
,

where ΦK
def
= Ω̇K/[εΩK ] ∼ O(1/Tdyn) as ΩK changes on the growth timescale

Tgrowth = Tdyn/ε. Thus for a general initial condition

cK(t0) = αKf
0
K(t0) + βKf

1
K(t0) = Re [(αK − iβK) eK(t0)]

we have

cK(t) = Re
[

(αK − iβK)
{

exp [QK(t0)∆t] eK(t0)+

∞∑
n=1

n∑
j=1

∫ t

t0

dt1

∫ t1

t0

dt2 . . .∫ tn−2

t0

dtn−1

∫ tn−1

t0

dtn (tj − t0)Qj−1
K (t0)Q̇K(t0)Qn−j

K (t0)eK(t0)
}]

+ O(ε2)

= Re
[

(αK − iβK)
{

exp [QK(t0)∆t] eK(t0) +
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ε

∞∑
n=1

n∑
j=1

∆tn+1

(n+ 1)!
[n− j + 1] (iΩK)n

[
ΦKeK(t0) + 2B̂K(−1)j−1ēK(t0)

]}]
+O(ε2).

= Re

[
(αK − iβK) ×

{
eiΩK∆t

{
1 + iε

∆t2

2
ΦKΩK

}
eK(t0) − εB̂K

{
sin(ΩK∆t)

ΩK
−∆teiΩK∆t

}
ēK(t0)

}]
+O(ε2).

Calculating the norm reveals

||cK(t)||2 = ||cK(t0)||2 ×

{
1 + 2ε|B̂K |∆t

[
− cos (2ΩK∆t+ χ0) +

sin(ΩK∆t)

ΩK∆t
cos (ΩK∆t+ χ0)

]}
+O(ε2),

where

χ0 = tan−1

(
2αKβKReB̂K + (β2

K − α2
K)ImB̂K

(β2
K − α2

K)ReB̂K − 2αKβKImB̂K

)
= arg

(
(αK − iβK)2B̂K

)
is a phase angle. We can rewrite the above norm in the form

||cK(t)|| = ||cK(t0)|| ×

{
1+ε|B̂K |∆t

[
1−2 cos(ΩK∆t)

sin(ΩK∆t)

ΩK∆t
+

sin2(ΩK∆t)

[ΩK∆t]2

]1/2

cos (ΩK∆t+ χ1)

}
+O(ε2),

where

χ1 = χ0 + tan−1

(
sin(ΩK∆t)

cos(ΩK∆t)− sin(ΩK∆t)
ΩK∆t

)
.

Thus we have an oscillating solution, the amplitude of which is constant at leading
order but not at higher orders. One can immediately deduce that, accurate to O(ε2)

||bK(t0 + ∆t)||
||bK(t0)||

= exp

[
∆t

{
λ∗K

(
t0 +

∆t

2

)
+ ε|B̂K(t0)|Ĉ(ΩK∆t, χ1)

}]
with

Ĉ(ΩK∆t, χ1)
def
=

[
1−2 cos(ΩK∆t)

sin(ΩK∆t)

ΩK∆t
+

sin2(ΩK∆t)

[ΩK∆t]2

]1/2

cos (ΩK∆t+ χ1) ;

note that B̂K is evaluated at time t0.
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Lemma 3.3. The important result for investigating stability is that an O(ε2) accu-
rate estimate of the growth rate between time t0 and time t is given by

λGK
def
= λ∗K

(
t0 +

∆t

2

)
+ ε

{
|B̂K (t0) |

[
1− 2 cos(ΩK∆t)

sin(ΩK∆t)

ΩK∆t
+

sin2(ΩK∆t)

Ω2
K∆t2

]1/2

× cos (ΩK∆t+ χ1)
}

with λ∗K denoting the real part of the eigenvalues of MK .

Remark 3. The case when the matrix MK(t) has real, repeated eigenvalues re-
quires a mathematically precise parameter fine tuning, and thus is unlikely to occur
in most models which is inappropriate for biological models.

3.4. Cross-diffusion driven instability conditions on evolving domains.
Following Madzvamuse et al., [24], we consider a perturbation at time t0, which can
be distinct from the initial time, and how it has evolved by time t = t0 + ∆t > t0
with ∆t

Tdyn
∼ O(ε0) where ε is defined in section (2.3.1). We are now in a position to

state the conditions for cross-diffusion driven instability. For this, it will be useful

to define t1 :
def
= t0+t

2 for use below.

Theorem 3.4. The necessary conditions for a cross-diffusion driven instability
(accurate to first order in ε � 1) when considering the system at time t due to a
perturbation at time t0 < t in the presence of spatially linear and isotropic growth
as in system (5), are given by

γ(fu + gv)− 2h∗ < 0, (24)

γ2(fu gv − fv gu)− h∗ γ(fu + gv) > 0, (25)

d− dudv > 0, (26)

h∗(1 + d)− γ(dfu + gv − dufv − dvgu) < 0, (27)[
h∗(1 + d)− γ(dfu + gv − dufv − dvgu)

]2
−4(d− dudv)

[
γ2(fugv − fvgu)− γh∗(fu + gv)

]
> 0. (28)

In the above, the subscripts u, v denote partial differentiation, with the Jacobian
components fu, fv, gu and gv evaluated in terms of uS(t1). Strictly, we have
h∗ ∼ O(ε), due to the fact that the growth timescale is much longer than any other
timescale so that one may self-consistently neglect O(h2

∗) corrections in the above.

Proof. Let λ∗K(t1) be the largest real part of any eigenvalue of MK(t1), λk(t1)
which is the root of the quadratic equation

det

[
Iλ∗K(t1) +

K2

ϕ2(t1)
D − γJF |us(t1)

]
= 0. (29)

Thus, λK(t1) satisfies the dispersion relation

λ2
K(t1) + b(K2

∗)λK(t1) + c(K2
∗) = 0, (30)
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where

K2
∗ :

def
=

K2

ϕ2(t1)
, (31)

b(K2
∗) = K2

∗(1 + d)− γ(fu + gv), (32)

c(K2
∗) = (d− dudv)K4

∗ − γK2
∗(dfu + gv − dvgu − dufv) + γ2(fugv − fvgu), (33)

with u, v, f(u, v), g(u, v) the scalar variables and kinetic functions. The partial
derivatives are evaluated in terms of us(t1) the solution to the non-autonomous
system of ordinary differential equations given by (7) at time t1.

Let us define the eigenvalue

µK :
def
= λK(t)− h∗

corresponding to the eigenfunction wK(ξ, t). At time t1 = (t0 + t)/2 defined above,
it follows that the wK(ξ, t1), will grow during the interval [t0, t] if

µ∗K
def
= λ∗K(t1)− h∗ > 0,

and will decay if

µ∗K
def
= λ∗K(t1)− h∗ < 0.

Substituting λK(t) = µK + h∗ into (30) we have

µ2
K +

(
2h∗ + b(K2

∗)
)
µK +

(
c(K2

∗) + b(K2
∗)h∗ +O(h2

∗)
)

= 0, (34)

where b(K2
∗) and c(K2

∗) are given in equations (32) and (33), respectively. For
convenience’s sake, denoting by bh∗(K2

∗) = 2h∗ + b(K2
∗) and ch∗(K2

∗) = c(K2
∗) +

b(K2
∗)h∗ +O(h2

∗), we obtain the characteristic equation

µ2
K + bh∗(K2

∗)µK + ch∗(K2
∗) = 0. (35)

Thus

2µK = −bh∗(K2
∗)±

√
b2h∗

(K2
∗)− 4ch∗(K2

∗). (36)

Taking K∗ = 0 we have the absence spatial variations and thus spatial homogeneity.
In the absence of spatial variations, we require us(t1) to be asymptotically stable
to the K∗ = 0 and this is guaranteed provided

µ∗K = Re[µK ] = Re
[
− bh∗(0)±

√
b2h∗

(0)− 4ch∗(0)
]
< 0. (37)

This is guaranteed provided bh∗(0) > 0 and ch∗(0) > 0 if and only if the following
conditions hold

γ(fu + gv)− 2h∗ < 0, (38)

O(h2
∗) + γ2(fu gv − fv gu)− h∗ γ(fu + gv) > 0. (39)

These first two conditions are domain-induced, and do not reflect the spatial varia-
tions as expected. The conditions enforce the requirement that the time-dependent
manifold us(t) is asymptotically stable with respect to spatially homogeneous per-
turbations.

Now, in the presence of spatial variations which includes both diffusion and cross-
diffusion, (K2

∗ > 0), we have

bh∗(K2
∗) = 2h∗ + b(K2

∗) = K2
∗(1 + d) + bh∗(0) > 0 (40)

since bh∗(0) > 0. For (us(t1)) to become unstable, we require that

µ∗K = Re[µK ] > 0 for some K2
∗ non-zero, (41)
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thereby requiring that ch∗(K2
∗) < 0 for some K2

∗ non-zero. By definition of ch∗(K2
∗)

we can further re-arrange to obtain a quadratic polynomial in K2
∗ of the form

ch∗(K2
∗) = P2K

4
∗ + P1K

2
∗ + ch∗(0) (42)

where

P2 = d− dudv,
P1 = h∗(1 + d)− γ(dfu + gv − dvgu − dufv),

ch∗(0) = c(0) + b(0)h∗ +O(h2
∗) = γ2(fugv − fvgu)− γh∗(fu + gv) +O(h2

∗).

Geometrically, ch∗(K2
∗) represents a parabola. For the reaction-diffusion system

with cross-diffusion to be well-posed, we require that

d− dudv > 0, (43)

which implies that the parabola opens upwards. This results in the third condition
for cross-diffusion driven instability.

It can be easily shown that ch∗(K2
∗) has a minimum value which is negative

provided

cminh∗
(K2
∗min) < 0 ⇐⇒

[
h∗(1 + d)− γ(dfu + gv − dufv − dvgu)

]2
− 4(d− dudv)

[
γ2(fugv − fvgu)− γh∗(fu + gv) +O(h2

∗)
]
> 0, (44)

where

K2
∗min =

h∗(1 + d)− γ(dfu + gv − dufv − dvgu)

2(d− dudv)
> 0

⇐⇒ h∗(1 + d)− γ(dfu + gv − dufv − dvgu) > 0.

In all the above, ignoring O(h2
∗) results in the five conditions for cross-diffusion

driven instability conditions (24)-(28).

Remark 4. In addition to inequalities (24)-(28), a cross-diffusion driven instability
requires that there exists at least one wavenumber such that K2

∗ is contained in the
interval

K2
∗ ∈

(
K2
−,K

2
+

)
where K2

± are the roots of ch∗(K2
±) = 0 and these are given by

K2
± =

−P1 ±
√
P 2

1 − 4ch∗(0)(d− dudv)
2(d− dudv)

. (45)

Remark 5. The inequalities (24)-(28) define a time-dependent domain in parame-
ter space, generalising the cross-diffusion driven instability conditions on stationary
domains [25, 26]. On evolving domains, this generalised parameter space is contin-
gent on domain evolution.

3.4.1. Implications of cross-diffusion on the theory of diffusion-driven instability
on evolving domains. In previous studies [25, 26] we detailed the implications of
cross-diffusion to the theory of pattern formation on stationary domains. Those
conditions are inherited by the current model on evolving domains. Our focus now
is to see if other non-standard reaction kinetics can give rise to cross-diffusion driven
instability only in the presence of domain evolution.
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1. In contrast to the autonomous case, if we have an activator and an inhibitor,
we do not require short-range activation, long-range inhibition which is the
standard mechanism for a diffusively-driven instability. For example, suppose
without loss of generality that u is the activator in equation (1) and v is the
inhibitor. Thus fu > 0 and gv < 0. From inequalities (24) and (27) we require

0 > γ(gv + fu)− 2h∗ > (d− 1)(h∗ − γfu) + γ(dufv + dvgu)

where γ > 0.
(a) In the absence of growth and cross-diffusion, i.e. when h∗ = 0 and du =

dv = 0, we immediately have 0 > (1 − d)fu and hence 1 − d is negative.
Thus, the inhibitor has to diffuse faster than the activator in the absence
of growth and cross-diffusion for an instability to be possible.

(b) In the absence of growth, i.e. h∗ = 0, but with cross-diffusion in both
components we have

(1− d)fu + (dufv + dvgu) < 0.

Hence, we can take 0 < d ≤ 1 which implies that
(i) if fv > 0 and gu > 0, then at least one of the cross-diffusion co-

efficients must be negative and both must satisfy d − dudv > 0,
dufv + dvgu < 0 and |dufv + dvgu| > (1− d)fu,

(ii) if fv < 0 and gu < 0, then either at least one of the cross-diffusion
coefficients must be negative or both are positive, and for both cases,
they must satisfy d− dudv > 0, dufv + dvgu < 0 and |dufv + dvgu| >
(1− d)fu,

(iii) if fv and gu are of opposite signs, then the choice of the cross-diffusion
coefficients are restricted by the inequalities d − dudv > 0, dufv +
dvgu < 0 and |dufv + dvgu| > (1− d)fu.

(c) The presence of growth, i.e. h∗ 6= 0 does not alter the fact that 0 < d ≤ 1
for the reaction-diffusion system with linear cross-diffusion in both com-
ponents, and therefore, the above characterisation of the cross-diffusion
and reaction-kinetics still holds.

It follows therefore that non-standard reaction-kinetics such as those of the
form short-range inhibition, long-range activation, short-range inhibition, long-
range inhibition, short-range activation, long-range activation, same-range
inhibitor-inhibitor (i.e. d = 1), same-range activator-activator (i.e. d = 1),
and same-range activator-inhibitor (i.e. d = 1) can also generate patterns in
the presence of cross-diffusion in both components on stationary as well as on
evolving domains.

2. In contrast to the autonomous case an activator and inhibitor interaction is
not required to generate an instability; for example, two activators can satisfy
the instability constraints. Again suppose that u is the activator in equation
(1) so that fu > 0. Using inequality (24) we find

gv <

(
2h∗
γ
− fu

)
<

2h∗
γ
,

where γ > 0. Thus, for h∗ = 0, as with no growth, we have gv < 0, im-
plying that v must be an inhibitor. In contrast for h∗ > 0 we clearly are
not required to have gv < 0 and hence the biochemical corresponding to the
concentration v can also be an activator without making a diffusively-driven
instability impossible. Therefore an activator-activator (on growing domains)
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and inhibitor-inhibitor (on contracting domains) mechanisms could give rise
to Turing patterns only in the presence of domain growth.

4. Exhibiting cross-diffusion induced parameter spaces on evolving do-
mains. To illustrate our theoretical findings, we briefly introduce slow, isotropic
growth for exponential, linear and logistic growth profiles of the domain, calculating
functions associated with domain evolution such as h(t) required for the subsequent
explorations. Our goal is to compute and exhibit parameter spaces induced by do-
main evolution for a reaction-diffusion system with cross-diffusion. We will show
that cross-diffusion coupled with domain evolution substantially alter classical pa-
rameter spaces as well as exhibiting new spaces that emerge only in the presence of
domain growth.

Type Growth h(t) = ∇ · V q(t) = e
−

∫ t
t0
h(τ)dτ

of growth Function ϕ(t)

Linear ϕ(t) = rt+ 1 h(t) = mr
rt+1 q(t) =

(
1

rt+1

)m
Exponential ϕ(t) = ert h(t) = mr q(t) = e−mrt

Logistic ϕ(t) = κAeκrt

1+Aeκrt , h(t) = mr
(
κ− ϕ(t)

)
q(t) =

(
e−κrt+A

1+A

)m
A = 1

κ−1

Table 1. Table illustrating the function h(t) for linear, exponen-
tial and logistic growth functions. Note that q(t) is as defined and
used in Section 3.2. κ is the carrying capacity (final domain size)
corresponding to the logistic growth function.

4.1. Examples: Uniform, isotropic growth. Let us assume that the domain
growth is spatially linear and, in higher spatial dimensions, isotropic. Without any
loss of generality, let us assume that t0 = 0. Let x(t) = ξϕ(t) where ϕ(t) > 0 is the
domain growth function satisfying ϕ(0) = 1. We can compute the domain (mesh)
velocity as

a(x, t)
def
=

∂x

∂t

∣∣∣∣
ξ

= ξϕ̇(t) =
ϕ̇(t)

ϕ(t)
x,

and hence it can be easily shown that

h(t) := ∇ · V = m
ϕ̇(t)

ϕ(t)
∼ O

(
mε

Tdyn

)
,

where m defines the number of spatial dimensions. In Table 1 we show the corre-
sponding h(t) for linear, exponential and logistic growth functions, with κ 6= 1. The
definition of A in this table ensures that ϕ(0) = 1.

Lemma 4.1. Let us assume that the domain growth is spatially linear and, in
higher spatial dimensions, isotropic. Then for linear and logistic domain evolution
profiles, the function

h(t) := m
ϕ̇(t)

ϕ(t)
, m ≥ 1,
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is a monotonically decreasing function whose limit tends to zero, i.e.

lim
t−→∞

h(t) = 0.

Proof. The proof follows clearly from the definitions of h(t) shown in Table 1.

Corollary 1. For the case of spatially linear, isotropic exponential growth, with
growth rate r > 0, then

h(t) := mr

is time-independent [23].

4.2. Activator-depleted model: An illustrative example. For illustrative pur-
poses let us consider the activator-depleted substrate model [10, 32, 35] also known
as the Brusselator model given by

f(u, v) = a− u+ u2 v, (46)

g(u, v) = b− u2 v, (47)

where a and b are positive parameters to be selected from domain- and cross-
diffusion-induced parameter spaces.

4.2.1. Exponential domain evolution. In this section, we exhibit various parameter
spaces induced by domain evolution in the presence of linear cross-diffusion. For a
fixed value of the growth rate r, the parameter spaces are stationary since condi-
tions (24)-(28) defining the parameter spaces are independent of time t. In all our
simulations, except where stated, we take three illustrative examples by fixing r = 0
(which is the stationary case), r = 0.02 and r = 0.08 and then vary the diffusion
and cross-diffusion coefficients as outlined by the following cases.

Cross-diffusion driven instability on evolving domains for d > 1. Fix d = 10 and
vary the cross-diffusion coefficients as follows:

1. du = 0 and dv = 1, i.e. cross-diffusion in the u-equation only (blue).
2. du = 1 and dv = 1, i.e. cross-diffusion in the u and v equations (green).
3. du = 0 and dv = 0, i.e. no cross-diffusion (red).
4. du = 1 and dv = 0, i.e. cross-diffusion in the v-equation only (light blue).

(a) (b) (c)

Figure 1. Parameter spaces for different exponential growth rates
with diffusion coefficient d = 10 and cross-diffusion coefficients var-
ied accordingly. (a) In the absence of growth, and (b)-(c): in the
presence of growth: exponential growth with rates r = 0.02 (b)
and r = 0.08 (c).
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For a fixed set of diffusion and cross-diffusion coefficients, varying the exponen-
tial growth rate r results in larger and larger parameter spaces emerging during
the exponential evolution of the domain. On the other hand, fixing the exponential
growth rate r, parameter spaces of different sizes are obtained with the largest pa-
rameter space corresponding to the reaction-diffusion system with cross-diffusion in
the u-equation only, while the smallest parameter space corresponds to the reaction-
diffusion system with cross-diffusion in the v-equation only. This is consistent with
theoretical results presented in [26] for the case of stationary domains.

Cross-diffusion driven instability on evolving domains for d = 1 and du = 1. Here
we fix d = 1 and du = 1 and vary positively only the cross-diffusion coefficient dv
such that the inequality d−dudv > 0 is satisfied. Figure 2 shows the cross-diffusion
parameter spaces with cross-diffusion coefficient dv = 0.5 (light blue), dv = 0.6
(red), dv = 0.7 (green) and dv = 0.8 (dark blue), for different exponential growth
rates.

(a) (b) (c)

Figure 2. Parameter spaces for an exponential evolution of the
domain with diffusion coefficient d = 1 and cross-diffusion coeffi-
cient du = 1. The cross-diffusion coefficient dv is varied accordingly.
(a) In the absence of growth, and (b)-(c): in the presence of growth:
exponential growth with rates r = 0.02 (b) and r = 0.08 (c).

(a) (b) (c)

Figure 3. Superimposition of the individual parameter spaces
shown in Figure 2 with diffusion coefficient d = 1 and cross-
diffusion coefficient du = 1 for different exponential growth rates:
r = 0 (light blue), r = 0.01 (red), r = 0.02 (green) and r = 0.04
(blue). The cross-diffusion coefficient dv is varied accordingly.
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As dv −→ 1, we observe larger and larger parameter spaces, while when dv −→ 0,
smaller and smaller parameter spaces are exhibited and these vanish as d approaches
zero (see Figure 3). In Figure 3 we superimpose parameter spaces when (i) dv is
varied positively and (ii) the exponential growth rate r is also varied. We observe
that for lower values of dv, distinct parameter spaces are obtained, while for larger
values of dv approaching one, the parameter spaces overlap substantially.

Cross-diffusion driven instability on evolving domains for d = 1 and dv = 1. Here
we fix d = 1 and dv = 1 and vary positively only the cross-diffusion coefficient du.
Figure 4 shows the cross-diffusion parameter spaces with cross-diffusion coefficient
du = 0.5 (light blue), du = 0.6 (red), du = 0.7 (green) and du = 0.8 (dark blue), for
different exponential growth rates.

(a) (b) (c)

Figure 4. Parameter spaces for an exponential evolution of the
domain with diffusion coefficient d = 1 and cross-diffusion coeffi-
cient dv = 1. The cross-diffusion coefficient du is varied positively.
(a) In the absence of growth, and (b)-(c): in the presence of growth:
exponential growth with rates r = 0.02 (b) and r = 0.08 (c).

(a) (b) (c)

Figure 5. Superimposition of the individual parameter spaces
shown in Figure 4 with diffusion coefficient d = 1 and cross-
diffusion coefficient dv = 1 for different exponential growth rates:
r = 0 (light blue), r = 0.01 (red), r = 0.02 (green) and r = 0.04
(blue). The cross-diffusion coefficient du is varied positively.

Similarly, variations in du results in smaller and smaller parameter spaces as
du −→ 0 and larger and larger parameter spaces as du −→ 1. Individual parameter
spaces are superimposed as illustrated in Figure 5. As the exponential growth rate
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r increases, for a fixed set of diffusion and cross-diffusion coefficients, substantially
different parameter spaces emerge. Exponential evolution of the domain results in
substantially topologically different parameter spaces from those obtained in the
absence of growth.

Negative cross-diffusion driven instability on evolving domains for d = 1 and dv = 1.
Unlike previous examples, we fix d = 1 and dv = 1 and vary negatively only the
cross-diffusion coefficient du such that the inequality d − dudv > 0 is satisfied.
Figure 6 shows the cross-diffusion parameter spaces with cross-diffusion coefficient
du = −0.8 (light blue), du = −0.7 (red), du = −0.6 (green) and du = −0.5 (dark
blue), for different exponential growth rates.

(a) (b) (c)

Figure 6. Parameter spaces for an exponential evolution of the
domain with diffusion coefficient d = 1 and dv = 1. The cross-
diffusion coefficient du is varied negatively. (a) In the absence of
growth, and (b)-(c): in the presence of growth: exponential growth
with rates r = 0.02 (b) and r = 0.08 (c).

We observe that substantially and topologically different parameter spaces are
obtained as the exponential growth rate is varied. However, for a fixed exponential
growth rate, variations in the cross-diffusion coefficient do not alter substantially
the parameter spaces. This is unlike previous results where variations in cross-
diffusion coefficients could alter substantially the parameter spaces (see Figures
1-2, for example).

Short-range inhibition, long-range activation: Cross-diffusion induced parameter
spaces. For the first time, we present a short-range inhibition, long-range activa-
tion model that can only give rise to pattern formation in the presence of cross-
diffusion. From the cross-diffusion driven instability condition d−dudv > 0, we take
0 < d = 0.5 < 1, i.e. 0 < Dv < Du in dimensional units, and therefore the activator
u diffuses much faster than the inhibitor v. To proceed, we further fix dv = 0.8 and
vary negatively du such that the condition d− dudv > 0 is satisfied. Figure 7 shows
the parameter spaces demonstrating the ability of the model system to generate
patterns in the presence of cross-diffusion. Without cross-diffusion, such spaces do
not exist. We note that du is constrained by the fact that −1 < du < 0 in order
for the u-equation in system (1) to be well posed. On the other, dv is constrained
by the cross-diffusion driven instability condition (26). As the cross-diffusion coef-
ficients du and dv increase and decrease towards zero values, cross-diffusion driven
instability spaces reduce in size and disappear altogether (results not shown). This
is consistent with theoretical result that for diffusion-driven instability to occur for
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(a) (b) (c)

Figure 7. Parameter spaces for a short-range inhibition, long-
range activation with diffusion coefficient d = 0.5 and cross-
diffusion coefficient dv = 0.8. We vary du negatively. (a) In the
absence of growth, and (b)-(c): in the presence of growth: expo-
nential growth with rates r = 0.02 (b) and r = 0.04 (c).

(a) (b) (c)

Figure 8. Plots of superimposed parameter spaces for different
exponential growth rates r with fixed diffusion coefficient d = 0.5,
and cross-diffusion coefficient = du = −0.5. We vary the cross-
diffusion coefficient dv as follows: (a) dv = 0.5, (b) dv = 0.7 and
(c) dv = 0.8.

classical reaction-diffusion systems the diffusion coefficient d must be different from
one.

In Figure 8 we exhibit superposition of parameter spaces as we vary (i) the cross-
diffusion coefficient dv positively and (ii) the exponential growth rate r. Here we
have fixed the diffusion coefficient d = 0.5 and the cross-diffusion coefficient du =
−0.5. For small values of dv, distinct parameter spaces are obtained, while for large
values of dv, overlapping parameter spaces are exhibited. Interestingly, substantially
large parameter spaces are obtained during growth development compared to those
obtained in the absence of domain growth. It is therefore clear, that domain growth
enhances the formation of pattern formation.

4.2.2. Linear and logistic domain evolution. Next we compute parameter spaces
generated by linear and logistic growth functions for two-dimensional evolving do-
mains. For the linear and logistic growth functions we compute the time-dependent
solutions (uS(t), vS(t)) which satisfy the differential equations

duS
dt

= γa− (γ + h(t))uS + γu2
SvS , (48)
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(a) Linear growth functions (b) Logistic growth functions

(c) (d)

(e) (f)

(g) (h)

Figure 9. Cross-diffusion induced parameter spaces for linear (left
column) and logistic (right column) growth functions computed at
time t = 0, 0.3 and 0.5. The individual spaces for each growth
function are shown in (c) - (h).
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(a) Linear growth functions (b) Logistic growth functions

(c) (d)

(e) (f)

Figure 10. Cross-diffusion induced parameter spaces for linear
(left column) and logistic (right column) growth functions com-
puted at time t = 0, 0.3 and 0.5. The cross-diffusion parameter
value dv is varied as illustrated.

dvS
dt

= γb− h(t) vS − γu2
SvS , (49)

where h(t) = ∇ · V and given initial values at time t0 = 0. From the linear
growth function, h(t) = mr

rt+1 and similarly for the logistic growth function, h(t) =

mr (κ − ϕ(t)) where ϕ(t) = Aκeκrt

1+Aeκrt , with A = 1
κ−1 . Let us take r = 0.01(� 1),

m = 2.0, κ = 2 and A = 1. In all our numerical examples, initial conditions
(uS(0), vS(0)) are taken as small random perturbations around the uniform steady
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state
(
a+ b, b

(a+b)2

)
obtained on stationary domains. The cross-diffusion and do-

main growth induced parameter spaces in this section are independent of these
random initial conditions.

In order to compute the parameter spaces given by conditions (24)-(28) for the
cases of linear and logistic growth functions, the non-autonomous differential equa-
tions (48)-(49) must be solved for every point (a, b) in the plane at any given time
t thereby giving rise to time-dependent parameter spaces.

Figure 9-10 exhibit time-dependent parameter spaces generated as a result of
linear (first column) and logistic (second column) growth functions of the domain.
The first column of Figure 9 corresponds to the linear growth; (c), (e) and (g)
are the individual spaces of (a) and the second column corresponds to the logistic
growth; (d), (f) and (h) are individual spaces of (b).

Unlike parameter spaces generated by the exponential growth, linear and logistic
growth functions generate parameter spaces which overlap substantially. Linear
and logistic growth functions generate larger but topologically similar parameter
spaces to those obtained in the absence of domain growth. This is in contrast to
the exponential growth which generates larger and sometimes topologically different
parameter spaces.

In Figure 10 we present parameter spaces corresponding to the linear and logistic
growth functions when we fix d = 0.5, du = −0.5 and vary dv = 0.6, 0.7, 0.8
respectively. As dv −→ 1, larger and larger parameter spaces are observed, while
dv −→ 0, smaller and smaller parameter spaces emerge.

Remark 6. It must be noted that all the parameter spaces exhibited in Figures
2-10 are cross-diffusion and domain-growth induced spaces, such parameter spaces
do not exist for the classical autonomous system of reaction-diffusion equations.

5. Domain- and cross-diffusion induced patterns on evolving domains.
In this section we exhibit domain- and cross-diffusion induced patterns on planar
evolving square domains. Surface- and cross-diffusion induced patterns on evolving
surfaces are presented in Madzvamuse and Barreira [25]. Unlike any previous studies
of these types of models, our focus is to present patterns generated from a non-
standard reaction-diffusion system of the form long-range activation, short-range
inhibition model that will only give rise to patterning in the presence of cross-
diffusion. The effects of domain growth enhances patterning independent of the
initial conditions. The patterns exhibited in this section can only be obtained in
the presence of cross-diffusion, such a model of the form long-range activation, short-
range inhibition does not give rise to patterning in the absence of cross-diffusion,
with or without domain evolution. For illustrative purposes, we take an activator-
depleted model known to satisfy the cross/pure kinetics conditions [10, 32, 35]. Our
focus is to study the effects of cross-diffusion on a standard reaction-diffusion model
in the presence of domain evolution. We leave studies of non-standard reaction
kinetics capable of giving rise to patterning only in the presence of cross-diffusion
and domain evolution for future studies. To the best of the authors’ knowledge, only
models of the form long-range inhibition; short-range activation have the ability
to give rise to patterning in the absence of cross-diffusion. We will depart from
this framework and select diffusion and cross-diffusion parameter values such that
a short-range inhibition; long-range activation can exhibit cross-diffusion induced
patterns on evolving domains.l In Madzvamuse and Barreira [25] we presented a
wide range of patterns on evolving domains and surfaces. In most of these examples,
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parameter values were selected outside the standard Turing parameter space (see
[25] for details). Comparisons were then made between patterns obtained between
the autonomous standard reaction-diffusion model and the non-autonomous non-
standard reaction-diffusion model.

We select two sets of model kinetic parameter values from parameter spaces
induced by exponential, linear and logistic growth functions as illustrated in Figures
7 (a) and 10, respectively. These are (i) a = 0.15, b = 0.2 and (ii) a = 0.15 and
b = 0.15 respectively. The diffusion and cross-diffusion coefficients are fixed as
dv = 0.5, du = −0.5. and du = 0.6 (corresponding to case (i)) and du = 0.8
(corresponding to case (ii)) above respectively. For all the growth functions, we
take the growth rate r = 0.01. For illustrative purposes, we take γ = 200. In all
the cases, random initial perturbations around the uniform steady state which is
calculated on stationary domains are prescribed.

Numerical simulations are carried out using the evolving or moving finite ele-
ment method; details of the numerical method are given in Madzvamuse et al.,
[25]. The moving grid finite element method has been applied extensively to study
reaction-diffusion systems on stationary and evolving domains with applications to
developmental biology. The reader is referred to [4, 15, 18, 19, 20, 21, 25, 26] for fur-
ther references detailing the numerical method and its applications. In Figures 11 -
22 we exhibit the results of our simulations, validating theoretical results presented
in the previous section. Furthermore, in order to understand the evolution of the bi-
furcation process during growth development, we plot the evolution of the log of the
L2-norm of the errors between successive numerical iterate solutions corresponding
to patterns shown in Figures 12, 14, 16, 18, 20 and 22.

Figure 11 shows pattern formation during growth development for the parameter
values d = 0.5, a = 0.15, b = 0.2, du = −0.5, dv = 0.6 and γ = 200. We observe
the formation of spots which correlate to the growth of the error norm at the initial
stages of growth (see first peak observed in Figure 12); these are rapidly destabilised;
with stripe patterns forming (which also now correlate to the second sharp pick
observed in Figure 12). The stripe patterns are stable to domain growth for a
substantial amount of time (this is manifested by the reduction in the errors which
become almost constant as illustrated in Figure 12). Destabilisation of the stripes
results in the rapid formation of spot patterns (of different wavelenghts) but these
are less stable to domain growth (compare Figure 11 (f) and (g)), thereby giving way
to the formation of stripe patterns again. This is reflected in the error graph where
there is a rapid growth and decay in errors, but once the spots are formed, there
is a rapid, almost period growth and decay in errors. This evolutionary process of
spots forming and being destabilised rapidly and then the formation of stripes or
spots continues almost periodically. We observe the formation of “peanut” patterns,
reminiscent of the activator-depleted model.

The evolutionary process becomes substantially different if a different growth
function is employed. For example, a linear evolution of the domain results in the
formation of spot patterns, similar to the exponential growth at the very early
stages of growth development, and these transient into stripes, which are stable for
a substantially longer period of time than for the case of the exponential growth
(compare Figures 12 and 14). In fact, for the linear growth, the only patterns to
form later during growth development are spots which are only stable for a vey
short time; these give way to the formation of stripe patterns which continue to be
stable (for as long as we evolved the domain).
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(a) t = 0 (b) t = 2.2 (c) t = 2.8 (d) t = 3.2 (e) t = 4.8

(f) t = 29.2 (g) t = 29.6 (h) t = 34 (i) t = 52.2

(j) t = 64.2 (k) t = 64.6 (l) t = 66

(m) t = 70 (n) t = 75

Figure 11. Numerical simulations corresponding to the chemical
specie u with parameters d = 0.5, a = 0.15, b = 0.2, du = −0.5,
dv = 0.6 and γ = 200. Domain evolving of the unit square accord-
ing to the exponential growth function with growth rate r = 0.01.
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Figure 12. Plot of the evolution of the log of the L2-norm of the
errors between successive numerical iterate solutions corresponding
to patterns shown in Figure 11, for the case of exponential growth.

On the other hand, employing a logistic growth function, we observe a remark-
ably different bifurcation process during domain evolution. The error graph shows
only three substantial bifurcation processes (compared to six for the exponential
and four or five for the linear growth functions). The logistic growth function is
characterised by rapid growth at the early stages (which might imply that lower
modes are almost unexcitable during growth development), followed by a linear
growth at mid-stages of the domain evolution and then saturation of the growth
evolution at later stages. The three phases of logistic growth are therefore charac-
terised by stripes bifurcating into spot-stripe patterns which subsequently transient
into circular patterns (assuming one is following the red patterns), and these finally
bifurcate into stripes which remain stable as the domain approaches the final size
(see Figure 15 and 16).

By selecting a different set of parameter values, for example, d = 0.5, a = 0.15,
b = 0.15, du = −0.5, dv = 0.8 and γ = 200, substantially different bifurcation
processes and sequences are observed for the exponential, linear and logistic growth
functions. Small variations in the model parameter values result in substantially
different patterning processes as illustrated in Figures 17, 19 and 21. The charac-
teristics of the evolution of the bifurcation processes remain almost similar to those
shown in Figures 12, 14 and 16 (compare to Figures 18, 20 and 22, respectively).
The exponential growth profile is characterised by continuous evolution of transient
patterns, with less and less periods of constant stability of solutions during growth
development. The opposite holds true for the linear and logistic growth functions,
the periods of constant stability increase with further domain growth (see Figures 20
and 22). For this set of parameter values, we observe some very interesting patterns
forming, for example, spots and stripes are formed simultaneously (see Figures 17
(m), 19 (f), 21 (f), respectively). To the authors’ best knowledge, these patterns
are the first to be exhibited and are solely due to cross-diffusion. We also observe,
as before, that linear and logistic growth functions seem to stabilise more robustly
stripe patterns at later stages of the domain evolution than spot patterns. The
exponential evolution favours the continuous formation of stripe, spot, stripe-spot
and circular patterns as the domain continues to evolve.

Remark 7. All the numerical results presented in this section correspond to the
model system (1) with model parameter values selected such that the system is of the
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(a) t = 0 (b) t = 1.2 (c) t = 5 (d) t = 16.2

(e) t = 27.2 (f) t = 27.4 (g) t = 27.8

(h) t = 30.0 (i) t = 31 (j) t = 32.4

(k) t = 34 (l) t = 50

Figure 13. Numerical simulations corresponding to the chemical
specie u with parameters d = 0.5, a = 0.15, b = 0.2, du = −0.5,
dv = 0.6 and γ = 200. Domain evolving of the unit square accord-
ing to the linear growth function with r = 0.01.

form long-range activation short-range inhibition model. Such a model does not give
rise to Turing diffusion-driven instability in the absence of cross-diffusion nor domain
growth. As a result, such patterns can not be observed on stationary domains in
the absence of cross-diffusion. For detailed comparisons between patterns obtained



CROSS-DIFFUSION THEORY ON EVOLVING DOMAINS 2161

0 5 10 15 20 25 30 35 40 45 50
−6

−5.5

−5

−4.5

−4

−3.5

−3

time

lo
g 10

(||
u n+

1−
u n|| L2)

 

 

log10(||un+1−un||L2)

(a) t = 0

Figure 14. Plot of the evolution of the log of the L2-norm of the
errors between successive numerical iterate solutions corresponding
to patterns shown in Figure 13, for the case of linear growth.

from model system (1) and that without cross-diffusion nor domain growth, the
interested reader is referred to Madzvamuse and Barreira [25].

6. Conclusion and discussion. In this article we have generalised substantially
the theory for reaction-diffusion systems with cross-diffusion to consider the effects
of domain evolution on cross-diffusion induced patterning. Our results reveal that
in the presence of cross-diffusion and domain evolution, the restrictive conditions
associated with long range inhibition, short range activation can be relaxed to allow
a wide range of model parameter values and reaction-kinetics that would otherwise
not give rise to patterning either in the absence of cross-diffusion and/or domain
evolution. We have shown that a long range activation, short range inhibition can
generate patterns only in the presence of domain evolution and/or cross-diffusion.
These theoretical findings open new research directions, both experimentally and
theoretically, where non-standard mechanisms for patterning can be considered and
designed.

Theoretically, we have derived and proved the conditions for cross-diffusion driven
instability. By using these conditions, we then computed and exhibited a wide va-
riety of parameter spaces for exponential, linear and logistic growth functions. Our
results unravel the emergence of parameter spaces with interesting characteristics.
For a fixed set of appropriate parameter values, exponential evolution of the do-
main results in substantially different spaces from those obtained in the absence of
domain evolution. Although linear and logistic growth functions yield larger pa-
rameter spaces in the presence of domain evolution, these are topologically similar
to those obtained in the absence of domain evolution [19, 24, 25].

Our analytical results reveal that unlike the restrictive diffusion-driven instabil-
ity conditions on stationary domains, in the presence of cross-diffusion coupled with
domain evolution, it is no longer necessary to enforce cross nor pure kinetic con-
ditions. The restriction to activator-inhibitor kinetics to induce pattern formation
on a growing biological system is no longer a requirement. Reaction-cross-diffusion
models with equal diffusion coefficients in the principal components as well as those
of the short-range inhibition, long-range activation and activator-activator form can
generate patterns only in the presence of cross-diffusion coupled with domain evo-
lution.
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(a) t = 0 (b) t = 1.6 (c) t = 3

(d) t = 56.0 (e) t = 56.2 (f) t = 72

(g) t = 80.0 (h) t = 80.8 (i) t = 86

(j) t = 250

Figure 15. Numerical simulations corresponding to the chemical
specie u with parameters d = 0.5, a = 0.15, b = 0.2, du = −0.5,
dv = 0.6 and γ = 200. Domain evolving of the unit square accord-
ing to the logistic growth function with r = 0.01.
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Figure 16. Plot of the evolution of the log of the L2-norm of the
errors between successive numerical iterate solutions corresponding
to patterns shown in Figure 15, for the case of logistic growth.

In summary, the following characteristics are exhibited by reaction-diffusion sys-
tems with linear cross-diffusion in the presence of an exponential domain growth:

1. Large parameter spaces emerge during an exponential evolution of the domain.
In all our simulations, the reaction-diffusion system with cross-diffusion in
the u-equation only possesses the largest parameter space in the presence of
domain evolution. This is an inherent property of the model and holds true
in the absence of domain evolution.

2. On the other hand, the reaction-diffusion system with cross-diffusion in the v-
equation only possesses the smallest parameter space during domain evolution,
in complete agreement with the model system on stationary domains. Again,
this is an inherent property of the model system.

3. In all our simulations, the parameter spaces corresponding to the reaction-
diffusion system with cross-diffusion in the v-equation only are sub-spaces (for
slow domain evolution) of the parameter spaces corresponding to the reaction-
diffusion system without cross-diffusion. These, in turn, are sub-spaces of the
reaction-diffusion system with cross-diffusion in both the u and v-equations.
Similarly, there parameter spaces are contained fully in the largest parameter
spaces corresponding to the reaction-diffusion system with cross-diffusion in
the u-equation only. However, for the case of fast domain evolution, distinct
and substantially different parameter spaces are obtained.

4. For a given set of diffusion and cross-diffusion values, exponential evolution
of the domain results in larger and distinct parameter spaces with or with-
out intersections. The fact that in general there is no overlap between the
zero-growth rate parameter spaces and those on evolving domains leads us to
conclude that, in general, cross-diffusion driven instability in the absence of
growth need not imply diffusively-driven instability in the presence of growth.

To demonstrate the effects of domain evolution on cross-diffusion induced pat-
terning, numerical experiments computed using the evolving or moving finite ele-
ment method [19, 25] are presented for specific choices of parameter values selected
from the cross-diffusion induced parameter spaces. An important key observation is
that unlike on stationary domains, pattern evolution during growth development is
independent of the initial conditions. On stationary domains, patterns are known
to depend crucially on the initial conditions which act as a basin of attraction.
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(a) t = 0 (b) t = 1.0 (c) t = 2.0 (d) t = 20.0 (e) t = 34.2

(f) t = 34.4 (g) t = 37.6 (h) t = 37.8 (i) t = 39.0

(j) t = 62.0 (k) t = 62.8 (l) t = 63.6

(m) t = 67.2 (n) t = 75

Figure 17. Numerical simulations corresponding to the chemical
specie u with parameters d = 0.5, a = 0.15, b = 0.15, du = −0.5,
dv = 0.8 and γ = 200. Domain evolving of the unit square accord-
ing to the exponential growth function with r = 0.01.

Furthermore, domain evolution stabilises patterning which would otherwise be un-
stable in the absence of domain growth. For example, patterns formed on the final
evolving domain are substantially different from those obtained if one computes the
model system starting with random initial conditions by taking the final domain
stationary (results not shown).
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Figure 18. Plot of the evolution of the log of the L2-norm of the
errors between successive numerical iterate solutions corresponding
to patterns shown in Figure 17, for the case of exponential growth.

We have previously reported in the literature that domain growth enhances ro-
bustness of certain patterns in a Turing mechanism [27, 31]. In this paper, we have
shown that growth does not only induce instability in a reaction-diffusion system
with cross-diffusion but that cross-diffusion coupled with domain growth expands
substantially the range of mechanisms that can give rise to spatial patterns away
from the classical short-range activation, long-range inhibition paradigm. Under-
standing the effects of cross-diffusion to the theory of pattern formation during
growth development is crucial in many areas of research such as nanoparticles, sur-
factants and polymers.

From a theoretical point of view, our studies raise two key research questions to
be addressed; namely (i) the derivation of non-standard reaction kinetics that will
give rise to cross-diffusion driven-instability only in the presence of cross-diffusion
and/or domain evolution and (ii) the derivation of an analytical framework to study
bifurcation sequences and processes for non-autonomous reaction-diffusion systems
with linear and nonlinear cross-diffusion. It is clear from the L2 norm graphs of
the errors that there exists smooth as well as sharp bifurcation transitions as the
transient solutions gain or loose stability during domain evolution. Some of these
transitions are reflective of the bifurcation process known as hysteresis [30]; only
detailed analytical studies of these models on evolving domains will answer and
confirm such observations.
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(a) t = 0 (b) t = 0.8 (c) t = 13.6 (d) t = 16.2

(e) t = 16.6 (f) t = 17 (g) t = 28

(h) t = 32 (i) t = 35 (j) t = 38

(k) t = 38.6 (l) t = 39.2 (m) t = 50

Figure 19. Numerical simulations corresponding to the chemical
specie u with parameters d = 0.5, a = 0.15, b = 0.15, du = −0.5,
dv = 0.8 and γ = 200. Domain evolving of the unit square accord-
ing to the linear growth function with r = 0.01.
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Figure 20. Plot of the evolution of the log of the L2-norm of the
errors between successive numerical iterate solutions corresponding
to patterns shown in Figure 19, for the case of linear growth.
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Figure 21. Numerical simulations corresponding to the chemical
specie u with parameters d = 0.5, a = 0.15, b = 0.15, du = −0.5,
dv = 0.8 and γ = 200. Domain evolving of the unit square accord-
ing to the logistic growth function with r = 0.01.
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Figure 22. Plot of the evolution of the log of the L2-norm of the
errors between successive numerical iterate solutions corresponding
to patterns shown in Figure 21, for the case of logistic growth.
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