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Abstract. We study the partition properties enjoyed by the “next
best thing to a P-point” ultrafilters introduced recently in joint
work with Dobrinen and Raghavan. That work established some
finite-exponent partition relations, and we now analyze the con-
nections between these relations for different exponents and the
notion of conservativity introduced much earlier by Phillips. In
addition, we establish some infinite-exponent partition relations
for these ultrafilters and also for sums of non-isomorphic selective
ultrafilters indexed by selective ultrafilters.

1. Introduction

This paper is, in part, a sequel to an earlier joint paper with Natasha
Dobrinen and Dilip Raghavan [4] in which we studied the ultrafilters
created by a certain forcing construction. These ultrafilters were shown
to have numerous combinatorial properties, including some weak par-
tition properties and a classification of arbitrary functions modulo the
ultrafilter.

Part of the present paper is an analysis of the implications between
these combinatorial properties in general, i.e., independently from the
connection with the generic ultrafilters of [4]. This analysis involves
also a notion of conservativity that was introduced by Phillips [9], was
studied further in [1, 2], and is connected with the model-theoretic
notion of stability.

The other part of the present paper concerns infinitary partition
properties of the generic ultrafilters in [4]. These partition properties
lead to so-called “complete combinatorics” for the forcing notion used
in [4]. A different approach to these partition properties was developed
independently by Dobrinen [6].

This paper was written while the author was a visiting fellow in the “Mathemat-
ical, Foundational and Computational Aspects of the Higher Infinite” program at
the Isaac Newton Institute for Mathematical Sciences.
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2. Fréchet-Squared Genericity

In this section, we review the results from [4] that will play a major
role in the present paper, and we take the opportunity to also fix some
notation and terminology.

We deal with filters on countably infinite sets, and, in the absence of
a contrary statement, filters are assumed to extend the cofinite filter.
Sometimes we formulate definitions and results in terms of filters on
the set ω of natural numbers, but these definitions and results can be
transferred to other countably infinite sets via arbitrary bijections.

Definition 1. An ultrafilter U on ω is a P-point if, for every function f
on ω, there is some A ∈ U such that the restriction f �A is finite-to-one
or constant. U is selective if, for every function f on ω, there is some
A ∈ U such that the restriction f �A is one-to-one or constant.

Clearly, every selective ultrafilter is a P-point. The existence of se-
lective ultrafilters as well as the existence of non-selective P-points can
be proved if the continuum hypothesis is assumed, but it is consistent
with ZFC that there are no P-points.

We shall need a well-known eqivalent characterization of P-points.
An ultrafilter U is a P-point if, given any countably many sets An ∈ U ,
there is a set B ∈ U almost included in all of them, i.e., B−An is finite
for all n. The proof of the equivalence is based on making an f in the
definition have value n on An − An−1 (where A−1 means ∅).

Selective ultrafilters enjoy remarkable partition properties and are
therefore sometimes called Ramsey ultrafilters. Specifically, we have
the following result, in which the part about partitions of [ω]n is due
to Kunen (published in Booth’s thesis [5]) and the parts about [ω]ω are
due to Mathias [8].

Proposition 2. Every selective ultrafilter U on ω has the following
partition properties.

(1) For all n, k ∈ ω, we have ω → (U)nk , which means that, when-
ever the set [ω]n of n-element subsets of ω is partitioned into k
pieces, then there is a set H ∈ U such that [H]n is included in
one piece.

(2) ω
analytic−→ (U)ω2 , which means that, whenever the set [ω]ω of in-

finite subsets of ω is partitioned into an analytic piece and its
complement, then there is a set H ∈ U such that [H]ω is in-
cluded in one piece.

(3) Suppose the universe is obtained from some ground model by
Lévy-collapsing to ω all cardinals below a Mahlo cardinal of the
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ground model. Then ω
HODR−→ (U)ω2 , where HODR means hered-

itarily ordinal definable from reals.

In part (2) of this proposition, “analytic” refers to the topology of
[ω]ω as a subspace of the power set P(ω), which is, in turn, identified
with 2ω topologized as a product of discrete two-point spaces. Thus,
two infinite subsets of ω are near each other in [ω]ω just in case they
have a long common initial segment.

The partition relation ω → (U)nk for any particular n and k ≥ 2
easily implies the same relation for the same n and all k; it also implies
the same relation for all smaller n. Also, ω → (U)22 easily implies
selectivity, because, given a function f on ω, we can partition the set
[ω]2 of pairs {a, b} according to whether f(a) = f(b). The proposition
thus implies the additional fact that the partition relation ω → (U)nk
for any one value of n implies the same for larger values of n, and this
is not such an easy result.

The most natural way to produce a nonprincipal ultrafilter U on ω by
forcing is to take, as forcing conditions, the infinite subsets of ω, ordered
by inclusion (so smaller sets are stronger conditions). The intended
meaning of a condition A is that it forces A ∈ U . This ordering is
not separative; the separative quotient identifies two infinite sets if and
only if their symmetric difference is finite, so it amounts to the Boolean
algebra1 P(ω)/fin. This separative quotient is countably closed, so the
forcing adds no new reals. That makes it easy to check, by a density
argument, that the generic object added by the forcing is an ultrafilter
and indeed a selective ultrafilter.

Part (3) of Proposition 2 has an important consequence concerning
this P(ω)/fin forcing. First, let us weaken that part of the proposition
as follows. In the Lévy-Mahlo model (i.e., the model obtained by Lévy
collapsing all cardinals below some Mahlo cardinal to ω), if D ⊆ [ω]ω

is in HODR, then either (a) there is an infinite H ⊆ ω such that no
infinite subset of H is in D, or (b) there is an H ∈ U ∩D. Note that, in
both alternatives, we have weakened the conclusion in Proposition 2,
part (3). In (a), we allow H to be any infinite set, not necessarily in
U . In (b), we only require H itself, not all its infinite subsets, to be
in D. This weakened form of the partition relation can be succinctly
restated as follows.

Corollary 3. In the Lévy-Mahlo model, every selective ultrafilter is
P(ω)/fin-generic over HODR.

1When we use Boolean algebras as notions of forcing, we always mean the alge-
bras with their zero elements removed.
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Because of this corollary, one says that selectivity is complete combi-
natorics for P(ω)/fin forcing. Any generic ultrafilter for this forcing has
the combinatorial property of selectivity, and there is no genuinely2 ad-
ditional combinatorial information that follows from P(ω)/fin-genericity,
because, at least in the Lévy-Mahlo model, selectivity by itself already
ensures genericity over a large inner model.

Remark 4. The forcing notion P(ω)/fin is equivalent, for forcing, to the
set of countably generated filters on ω (extending the cofinite filter, as
usual), partially ordered by reverse inclusion. Indeed, we can associate
to any infinite subset A of ω the filter {X ∈ [ω]ω : A ⊆∗ X}, where ⊆∗
means inclusion modulo finite sets. This gives a dense embedding of
P(ω)/fin into the partially ordered set of countably generated filters.

The analog of Proposition 2 part (3) for this partial ordering of
filters is false. Specifically, the image of our embedding of P(ω)/fin is,
as mentioned above, dense, but so is the complement of this image.
That is, every countably generated filter can be extended to one that
does not contain a set A that is included modulo finite in all other
elements of the extended filter.

Curiously, though, despite the failure of Proposition 2 part (3) for
the filter poset, the weakened version used in proving Corollary 3 is
true. One way to see this is to observe that this weakened version is
equivalent to the corollary, which, being only about forcing, is clearly
unchanged when we replace the forcing notion P(ω)/fin by an equiva-
lent one.

One of the objectives of the paper [4] was to obtain, for a suitable
ultrafilter that is not a P-point, results analogous to those for selective
ultrafilters described above. To this end, we introduced what seems to
be the simplest notion of forcing that adjoins a non-P-point ultrafilter
on ω, and we studied the properties of these ultrafilters in considerable
detail. In order to describe this forcing and the resulting ultrafilters, it
is convenient to first introduce some notation, which will also be useful
later in other contexts.

Definition 5. For a subset A of ω2, we define its (vertical) sections to
be the sets

A(x) = {y ∈ ω : 〈x, y〉 ∈ A}.

2The word “genuinely” here is intended to exclude information like the parti-
tion properties in Proposition 2, which intuitively look like more information than
selectivity but in fact follow from selectivity.
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For filters U and Vn on ω, we define the U -indexed sum of the Vn’s to
be

U -
∑
n

Vn = {A ⊆ ω2 : {n ∈ ω : A(n) ∈ Vn} ∈ U}.

That is, a subset of the plane is large with respect to this sum if and
only if almost all (with respect to U) of its sections are large (with
respect to the appropriate Vn). It is easy to verify that this sum is
always a filter, and that it is an ultrafilter if U and all of the Vn’s are
ultrafilters.

If all of the Vn’s are the same filter V , then we write U ⊗ V for the
sum. If, furthermore, V = U , then we use the notation U⊗2.

Finally, we write Fr for the filter of cofinite subsets of ω, because it
is often called the Fréchet filter.

The forcing notion that formed the main subject of [4] is the Boolean
algebra3 P(ω2)/Fr⊗2. It is shown in [4] that this is a countably closed
forcing notion and therefore does not add reals. As a consequence, the
generic object that it adjoins is an ultrafilter G on ω2 extending the
filter Fr⊗2. This implies that, for every A ∈ G, there are infinitely many
n ∈ ω such that An is infinite; indeed, this property of A is exactly
what it means for A to intersect every set in Fr⊗2 or, equivalently, not
to be in the ideal dual to Fr⊗2.

A frequently useful notion of forcing equivalent to P(ω2)/Fr⊗2 can
be obtained as follows. First, replace the equivalence classes that con-
stitute the quotient algebra P(ω2)/Fr⊗2 with all their representatives.
That is, form the poset of all subsets of ω2 that meet every set in
Fr⊗2, i.e., that have infinitely many infinite sections. This poset is
not separative; its separative quotient is P(ω2)/Fr⊗2. Second, pass to
the sub-poset consisting of those elements that have no finite sections.
This is a dense sub-poset, and in fact its separative quotient is still
P(ω2)/Fr⊗2, because, when we remove all finite sections from a set,
we do not alter its equivalence class modulo Fr⊗2. Third, pass to the
even smaller poset consisting of those conditions on which the second
projection ω2 → ω is one-to-one. This sub-poset is still dense in our
forcing, because, given any condition A, we can thin out all its sections
so as to be disjoint from each other yet still infinite. Fourth, restrict
to those conditions that lie entirely above the diagonal, i.e., that con-
sist only of pairs (x, y) with x < y. This is again a dense subset,
and it makes no difference in the separative quotient since the part of

3I prefer to think of quotients of Boolean algebras as being determined by filters
rather than by ideals. So I use the filter notation Fr⊗2 here, even though I used
the standard notation P(ω)/fin earlier rather than my preferred P(ω)/Fr.
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ω2 that lies above the diagonal is a set in Fr⊗2. Finally, for techni-
cal convenience, consider only those conditions A such that we never
have the x-coordinate of one point in A equal to the y-coordinate of
another point in A. Conditions of this sort are easily seen to be dense
in our poset, so the final result is still forcing equivalent to the original
P(ω2)/Fr⊗2. Summarizing this construction, we have that P(ω2)/Fr⊗2

is equivalent, as a forcing notion, to the poset defined as follows.

Definition 6. P is the set of those subsets A of ω2 that satisfy

(1) A has infinitely many infinite sections and no nonempty finite
sections.

(2) The sections of A are pairwise disjoint.
(3) All elements 〈x, y〉 of A have x < y.
(4) For any 〈x, y〉 and 〈x′, y′〉 in A, we have x 6= y′.

We sometimes identify the above-diagonal subset of ω2, {〈x, y〉 : x <
y}, with the set [ω]2 of two-element subsets {x < y} of ω. Thus, the
forcing conditions in P can be viewed as subsets of [ω]2, and the generic
G can be viewed as an ultrafilter on [ω]2.

An immediate consequence of the “infinitely many infinite sections”
property of sets in G is that the projection π1 : ω2 → ω to the first
factor is neither finite-to-one nor constant on any set in G. Therefore,
the generic filter is not a P-point.

Here is a list of additional properties of P(ω2)/Fr⊗2-generic ultra-
filters4 proved in [4, Section 3]; the references are to the propositions,
theorems, and corollaries of that paper. After the list, I shall provide
definitions for the concepts used in the list.

Proposition 7. If G is P(ω2)/Fr⊗2-generic over V , then the following
statements hold in V [G].

(1) The ultrafilter π1(G) is P(ω)/fin-generic over V and therefore
selective. (Proposition 30)

(2) The projection π2 : ω2 → ω to the second factor is one-to-one
on a set in G. (Corollary 32)

(3) For any function f on ω2, there is a set A ∈ G such that f �A
is one of
• a constant function,
• π1 followed by a one-to-one function, and
• a one-to-one function. (Corollary 33)

4Genericity here is over V , which I think of as the universe of all sets, so generic
objects are in Boolean extensions. The results remain correct under any of the other
customary ways to view forcing, for example taking V to be a countable transitive
model so that generic objects exist in the ordinary, two-valued universe of sets.
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(4) G is a weak P-point. (Theorem 36)
(5) For any partition of [ω2]n into finitely many pieces, there is a set

H ∈ G such that, for any n-type τ , all n-element subsets of [H]n

that realize τ lie in the same class of the partition. Therefore,
G is (n, T (n))-weakly Ramsey, where T (n) is the number of n-
types. (Theorem 31)

For the sake of completeness, we explain here the notation π1(G)
and the terminology “weak P-point”, “n-type”, “realize”, and “weakly
Ramsey” used in items 1, 4, and 5 of this proposition. More information
about these can be found in [4]; the notion of weak P-point comes from
Kunen’s paper [7], where he proved (in ZFC) that weak P-points exist.

For any function f : X → Y and any filter U on X, its image on Y
is defined as

f(U) = {A ⊆ Y : f−1(A) ∈ U}.
This is always a filter, except that it may fail to satisfy our convention
that filters on ω must contain all cofinite sets. If U is an ultrafilter,
then so is f(U), which extends the cofinite filter as long as f is not
constant on any set in U .

Definition 8. An ultrafilter U on a countably infinite set S is a weak
P-point if, given any countable set of (nonprincipal) ultrafilters Wn on
S, all distinct from U , we have a set A that is in U but in none of the
Wn.

In terms of the topology of βS − S, this means that U is not in the
closure of any countable set of ultrafilters distinct from U . It is easy to
verify that, as the terminology implies, all P-points are weak P-points.
Kunen showed in [7] that there always exist weak P-points that are not
P-points.

A sum U -
∑

n Vn is never a weak P-point, as can be seen by taking the
Wn in Definition 8 to be copies of the Vn on the vertical sections of ω2.
That is, let in : ω → ω2 be the map y 7→ 〈n, y〉 and set Wn = in(Vn).

Definition 9. Let n and t be natural numbers, let S be a countably
infinite set, and let U be a (nonprincipal) ultrafilter on S. Then U is
(n, t)-weakly Ramsey if, whenever [S]n is partitioned into finitely many
pieces, there is a set H ∈ U such that [H]n meets at most t of the
pieces.

If t = 1, this is the partition property in part (1) of Proposition 2.
As t increases, the (n, t)-weak Ramsey property gets weaker. As n
increases, the property gets stronger.

Another common notation for this property is S → [U ]nt+1. The
reason for the subscript t+1 is that this partition relation is equivalent
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to saying that, whenever [S]n is partitioned into t + 1 pieces, there
is an H ∈ U such that [H]n is disjoint from at least one piece. Our
definition, with an arbitrary finite number of pieces follows easily from
this version with just t+1 pieces, by induction on the number of pieces.

Note that, in arrow notations like S → [U ]nt+1, the square brackets
are used to indicate the weak form of homogeneity, merely missing a
piece, whereas round parentheses indicate the strong form, meeting
only one piece. This notation is so common that one often speaks of
square-bracket partition relations.

To explain n-types, it is useful to begin by considering an arbitrary
element A of the notion of forcing P from Definition 6. Let us agree
to write any n-element subset of A as {〈a1, b1〉, . . . , 〈an, bn〉} with b1 <
· · · < bn. Recall that clause (2) in Definition 6 ensures that the bi’s
are all distinct, so we are merely adopting the convention to list the n
pairs 〈ai, bi〉 in the order of increasing second components. The n-type
realized by A will be defined as all the information about the relative
ordering of the ai’s and bi’s, with no information about their actual
values. More precisely, we define types and realization as follows.

Definition 10. An n-type is a linear pre-order of the set of 2n formal
symbols x1, . . . , xn, y1, . . . , yn such that

• y1 < · · · < yn,
• each xi precedes the corresponding yi, and
• if two distinct symbols are equivalent in the pre-order, then

both of them are x’s.

Recall that a pre-order on a set is a reflexive, transitive, binary
relation ≤ on that set; that it is linear if every two elements of the
set are ordered one way or the other; that two elements are called
equivalent if each is ≤ the other; that identifying equivalent elements
leads to a partial order (linear if the preorder was linear) on the quotient
set; and that < means “≤ and not ≥.”

In [4, Definition 2.9], we used a different formulation of the notion
of n-type, namely a list of the xi’s and yi with = or < between each
consecutive pair, subject to requirements corresponding to the clauses
of the present definition. We pointed out, in [4, Remark 2.11], that
this list form of n-types is equivalent to the pre-order form adopted
here. My main reason for now preferring the pre-order version is that
is generalizes more naturally to the case of infinite sets in place of
{a1, . . . , an, b1, . . . , bn}. Nevertheless, the list form is also convenient,
for example in the following definition.



PARTITIONS AND CONSERVATIVITY 9

Definition 11. The n-type realized by an n-element subset {〈a1, b1〉, . . . , 〈an, bn〉}
of an element of P is the pre-order of {x1, . . . , xn, y1, . . . , yn} whose list
form becomes true when the xi’s and yi’s are interpreted as denoting
the corresponding ai’s and bi.

It is easy to verify, in the light of Definition 6 and our convention that
b1 < · · · < bn, that every n-element subset of an element of P realizes a
unique type. Furthermore, every A ∈ P has n-element subsets realizing
all of the n-types. This result is essentially Proposition 2.14 of [4],
though it is stated and proved in somewhat greater generality there.

Notation 12. T (n) denotes the number of n-types.

The preceding discussion shows that the generic ultrafilter cannot be
(n, T (n)− 1)-weakly Ramsey. Indeed, the same goes for any ultrafilter
having a basis of sets from P and, as [4, Corollary 2.16] shows, for any
ultrafilter that is not a P-point. Thus, part 5 of Proposition 7 says
that G has the strongest weak-Ramsey properties that are possible for
a non-P-point.

It will be convenient to have shorter name for the property in part (3)
of Proposition 7.

Definition 13. An ultrafilter U on ω2 has the three functions property
if every function on ω2 is, when restricted to some set in U , either one-
to-one or constant or the composition of π1 followed by a one-to-one
function.

The motivation for this terminology is that there are, up to restric-
tion to sets in U and post-composition with one-to-one functions, just
three functions on ω, namely the identity, π1, and any constant func-
tion. By analogy, selectivity could be called the two-functions property.

3. Selective-Indexed Sums of Selective Ultrafilters

In this section, we describe another family of ultrafilters on ω2 en-
joying many but not all of the properties of the P(ω2)/Fr⊗2-generic
(or equivalently P-generic) ultrafilters discussed in the preceding sec-
tion. These ultrafilters are the sums U -

∑
n Vn, as in Definition 5, of

selective ultrafilters, in the special case that the summands are pair-
wise non-isomorphic and the indexing ultrafilter U is also selective. To
avoid having to repeatedly use the long phrase “selective-indexed sum
of non-isomorphic selectives”, we introduce the following acronym.

Definition 14. A sisnis ultrafilter is an ultrafilter on ω2 of the form

U -
∑
n

Vn
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where U and all of the Vn’s are selective ultrafilters and, for m 6= n,
there is no permutation f of ω with f(Vm) = Vn.

The content of the definition would be unchanged if we required only
U -almost all of the Vn’s to be selective and pairwise non-isomorphic.
This is because a sum U -

∑
n Vn is unchanged if we change the Vn’s

arbitrarily for a set of n’s whose complement is in U . For the same
reason, we can assume that U is not isomorphic to any of the Vn’s,
since this can be arranged by altering at most one Vn. The content
would also be unchanged if we allowed f to be an arbitrary function
ω → ω rather than a permutation. This is because, by selectivity,
any f : ω → ω is Vm-almost everywhere equal to either a constant
function or a one-to-one function. A constant f cannot map Vm to a
non-principal ultrafilter such as Vn, and a one-to-one map would be
Vm-almost everywhere equal to a permutation of ω.

The next proposition summarizes information from [4, Section 2]
about sisnis ultrafilters; see Lemmas 2.2 and 2.3, Proposition 2.4, and
Theorem 2.17 of [4].

Proposition 15. Every sisnis ultrafilter W = U-
∑

n Vn on ω2 has the
following properties.

(1) The ultrafilter π1(W) is the selective ultrafilter U .
(2) The projection π2 : ω2 → ω to the second factor is one-to-one

on a set in W.
(3) For any function f on ω2, there is a set A ∈ W such that f �A

is one of
• a constant function,
• π1 followed by a one-to-one function, and
• a one-to-one function.

(4) W is not a weak P-point.
(5) For any partition of [ω2]n into finitely many pieces, there is a

set H ∈ W such that, for any n-type τ , all n-element subsets
of [H]n that realize τ lie in the same class of the partition.
Therefore, W is (n, T (n))-weakly Ramsey.

Do not be lulled by the apparent similarity between this proposition
and Proposition 7. Although the other clauses in the two propositions
match, clause (4) is entirely different. P-generic ultrafilters are weak
P-points but sisnis ultrafilters are not. Indeed, as pointed out earlier,
sums of ultrafilters are never weak P-points.

Of course, it follows that sisnis ultrafilters W are not P-points. It
is easy to see this directly, because the first projection π1 is neither
finite-to-one nor constant on any set in W .
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We need one additional property of sisnis ultrafilters, the analog of
a trivial property of P-generic ultrafilters.

Lemma 16. Every sisnis ultrafilter has a basis consisting of sets in P.

Proof. Consider an arbitrary sisnis ultrafilter, say W = U -
∑

n Vn, and
an arbitrary set A ∈ W . We must find a subset of A that is in W
and also in P. Referring to the four clauses in the definition of P, we
see that A already satisfies half of the first clause: It has infinitely
many infinite sections simply because U and the Vn’s are nonprincipal.
To achieve clause 2 (pairwise disjoint sections), we intersect A with a
set in W on which π2 is one-to-one. Such a set exists by part (2) of
Proposition 15, and the resulting intersection A′ satisfies clause (2) of
the definition of P.

Next, we shrink A′ to an A′′ ∈ W satisfying the fourth clause in
the definition of P, namely that the x-coordinates are distinct from
the y-coordinates of elements of A′′. This was already done during
the proof of [4, Theorem 2.17], but for convenience we repeat the brief
argument here. It suffices to find some B ∈ U such that, for all n, we
have B /∈ Vn, for then we can take A′′ = A′ ∩ (B × (ω − B)). Since U
is distinct from the Vn’s, we have, for each n, some Bn ∈ U such that
Bn /∈ Vn. Because U is selective and therefore a P-point, it contains a
set B such that B−Bn is finite for every n. Then, for each n, we have
that Vn contains ω−Bn and therefore also contains its almost-superset
ω −B, as required.

Finally, to achieve the remaining half of the first clause (no finite
sections) and the third clause (no elements below the diagonal), we
need only remove finitely many elements from some sections of A′′;
that will not affect whether those sections are in the ultrafilters Vn and
so the resulting set A′′′ will be in W . This completes the proof that A
has a subset A′′′ ∈ W ∩ P. �

4. Weak Ramsey Properties

In this section, we begin the analysis of the connections between the
(n, T (n))-weak Ramsey properties in part (5) of Propositions 7 and 15
as well as the three-functions property expressed by part (3) in these
propositions. We shall study these properties in the context of non-P-
points. This context makes the weak Ramsey properties quite strong,
in the sense that the next stronger such properties, (n, T (n)− 1)-weak
Ramseyness, are impossible for non-P-points.

Throughout this section, we assume that we are dealing with a non-
P-point W . Replacing W by its isomorphic image under a suitable
function to ω2, we assume further that W is an ultrafilter on ω2 such
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that the first projection π1 : ω2 → ω is neither finite-to-one nor con-
stant on any set in W . We refer to such a W as a non-P-point in
standard position.

Notice that, for such a W , every set A ∈ W has infinitely many
infinite sections, and therefore has a subset in P. (The subset might
not be in W .)

We begin by showing that the weak homogeneity in the definition
of (n, T (n))-weak Ramseyness necessarily arises from full homogeneity
for each n-type.

Notation 17. For any set S ⊆ ω2 and any n-type τ , denote by [S]τ
the set of all those n-element subsets of S that realize the type τ .

Proposition 18. LetW be an (n, T (n))-weakly Ramsey non-P-point in
standard position, let τ be any n-type, and let the set [ω2]τ be partitioned
into finitely many pieces. Then there is a set H ∈ W such that [H]τ is
included in one of the pieces.

Proof. Let W , τ , and a partition Π of [ω2]τ into, say, p pieces be as in
the hypothesis of the proposition. Define a partition Π′ of [ω2]n into
p+T (n)−1 pieces by letting the first p pieces be those of Π and letting
the remaining T (n)−1 pieces be [ω2]σ for the T (n)−1 n-types σ other
than τ . As W is (n, T (n))-weakly Ramsey, let H ∈ W be such that
[H]n meets only T (n) pieces of Π′.

Now H, being inW , has a subset in P, and, as we noticed right after
Definition 11, such a subset contains realizers for all n-types. Therefore,
[H]n meets all those pieces of our partition that have the form [ω2]σ
for σ 6= τ . That’s T (n)− 1 pieces, so [H]n can meet at most one of the
remaining pieces of Π′, which are the original pieces of Π. Therefore,
[H]τ is included in that single piece of τ . �

We shall refer to the conclusion of this proposition as τ -homogeneity
or, when we want to refer to all types τ together, as n-type homogeneity
for W and for H. We note that the converse of the proposition is easy
when W has a basis of sets from P. For such W , n-type homogeneity
implies (n, T (n))-weak Ramseyness. To verify this, consider any par-
tition of [ω2]n into finitely many pieces and find, for each n-type τ , a
homogeneous set Hτ ∈ W for that type. Then all subsets of

⋂
τ Hτ

that realize n-types lie in at most T (n) pieces of the original partition,
namely the pieces that contain the sets [Hτ ]τ . Finally, shrink

⋂
τ Hτ to

a set in W ∩ P, so that all its n-element subsets realize n-types.
Notice that the assumption, in the preceding paragraph, thatW has

a basis consisting of sets in P, was used only at the end of the argument,
to ensure that all n-element subsets of the homogeneous set realize some
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n-types. In some situations, the property that all n-element subsets
realize n-types can be obtained from other hypotheses. The following
lemma is a useful instance of this. It provides, for weakly Ramsey
ultrafilters, some information that would be automatic for P-generic
ultrafilters and for sisnis ultrafilters, because these are generated by
sets in P.

Lemma 19. If W is an (n, T (n))-weakly Ramsey non-P-point in stan-
dard position, then there is a set P ∈ W such that every n-element
subset of P realizes an n-type.

Proof. Partition [ω2]n into T (n) + 1 pieces by making each of the T (n)
sets [ω2]τ , for n-types τ a piece, and then adding one more piece con-
taining all the n-element sets that don’t realize a type (because they
have two elements with the same y-coordinate, or an element whose
x-coordinate equals another element’s y-coordinate, or because an el-
ement isn’t above the diagonal). By hypothesis, there is a set P ∈ W
that meets only T (n) of these pieces. Recall that every set in W has a
subset in P and every set in P has subsets realizing all types. So [P ]n

meets all of the pieces of the form [ω2]τ in our partition and must there-
fore miss the one remaining piece, the piece consisting of n-element sets
that don’t realize types. �

Corollary 20. If a non-P-point is (n + 1, T (n + 1))-weakly Ramsey,
then it is also (n, T (n))-weakly Ramsey.

Proof. We assume, without loss of generality, that W is in standard
position. By Lemma 19, there is a set A ∈ W all of whose (n + 1)-
element subsets realize (n+1)-types. It follows immediately that every
n-element subset of A realizes an n-type. This observation allows us to
apply the comments immediately preceding Lemma 19 without needing
the assumption that W has a basis of sets in P. That assumption was
needed only to ensure that the final homogeneous set can be shrunk so
that all its n-element subsets realize n-types.

Thanks to those comments, it suffices to prove τ homogeneity for
each n-type τ . Enlarge τ to an (n + 1)-type τ ′ by appending xn+1 <
yn+1 after all of the x’s and y’s pre-ordered by τ . Notice that, if an
n+ 1-element set realizes τ ′ then its first n elements (first in the usual
ordering by y-coordinates) form an n-element set realizing τ . Given
a partition Π of [ω2]τ , form a new partition Π′ of [ω2]τ ′ by putting
two sets realizing τ ′ into the same piece of the new partition if their
initial n-element subsets (realizing τ) are in the same piece of Π. By
hypothesis, W contains a set homogeneous for Π′, and it immediately
follows that this set is also homogeneous for Π. (This uses the trivial
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fact that every n-element set realizing τ is the initial n-element subset
of some (n+1)-element set realizing τ ′; just adjoin an (n+1)th element
far beyond the given elements.) �

Our next goal is to establish a connection between weak Ramseyness
and the three-functions property in part (3) of Propositions 7 and 15.
In connection with the (2, 4) in the following proposition, recall that
T (2) = 4.

Proposition 21. If a non-P-point W in standard position is (2, 4)-
weakly Ramsey, then it has the three-functions property, i.e., every
function on ω2 is, on some H ∈ W, either constant or one-to-one or
π1 followed by a one-to-one function.

Proof. LetW be as in the hypothesis of the proposition. By Lemma 19,
let P ∈ W be a set all of whose two-element subsets realize 2-types.

As a preliminary step, we show that π1(W) is selective. Let g be any
function on ω; we show that is it one-to-one or constant on some set
in π1(W). Let τ be the type given in list form by x1 < x2 < y1 < y2.
Partition the set of pairs {〈a1, b1〉, 〈a2, b2〉} into two pieces according
to whether g(a1) = g(a2). Let H ∈ W be τ -homogeneous for this
partition. Because W is in standard position, π1 is not finite-to-one
on any set in W , so we can arrange that all nonempty sections of
H are infinite. It easily follows that g is constant or one-to-one on
π1(H) ∈ π1(W).

Now to prove the three-functions property, let f be any function on
ω2. Partition [ω2]2 into two pieces, the first being {{x, y} : f(x) =
f(y)} and the second being {{x, y} : f(x) 6= f(y)}.

Apply τ -type homogeneity for all four 2-types τ and intersect the
resulting homogeneous sets with each other and with P . The result is
a set H ∈ W such that all its 2-element subsets realize 2-types and,
for each 2-type τ , either f(a) = f(b) whenever {a, b} ⊆ H realizes τ or
f(a) 6= f(b) whenever {a, b} realizes τ .

Consider first the type given in list form by x1 = x2 < y1 < y2,
i.e., the type of pairs that lie in a vertical column. Suppose all pairs
{a, b} ⊆ H realizing this type have f(a) = f(b), so f is constant on
vertical columns of H. Then, on H, we have f = g ◦ π1 for some
function g on ω. Since π1(W) is selective, it contains a set K on which
g is constant or one-to-one. Then on H ∩ π−11 (K) ∈ W , the function f
is either constant (if g is constant on K) or π1 followed by a one-to-one
function (namely g). So the proposition is true in this case.

There remains the case that all pairs {a, b} realizing the type x1 =
x2 < y1 < y2 have f(a) 6= f(b), so f is one-to-one on vertical columns
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of H. We want to show that f is globally one-to-one on H. We shall
do this by considering, one at a time, the three remaining 2-types, the
types realized by pairs not on a vertical column, and show, in each of
the three cases, that f must take different values at the two points of
such a pair. In each case, we shall show this by contradiction, assuming
that f takes the same value at the two points of each pair realizing the
type, and deducing that f also takes the same value at two points in a
vertical column.

Consider first the 2-type τ given by x1 < x2 < y1 < y2 and suppose,
toweard a contradiction, that f(a) = f(b) for some, and therefore for all
pairs {a, b} ∈ [H]τ . Let τ ′ be the 3-type x1 = x2 < x3 < y1 < y2 < y3
and consider any 3-element subset {a, b, c} of H realizing τ ′. (Such
a set exists because every set in W contains realizers for all types.)
By inspection of the types, we see that both {a, c} and {b, c} realize τ .
therefore we have both f(a) = f(c) and f(b) = f(c). But a and b are in
the same vertical column, so f(a) 6= f(b), and we have a contradiction.

The remaining two cases are very similar to the one just considered.
When τ is x2 < x1 < y1 < y2, we take τ ′ to be x3 < x1 = x2 <
y1 < y2 < y3, and when τ is x1 < y1 < x2 < y2, we take τ ′ to be
x1 = x2 < y1 < y2 < x3 < y3. The rest of the argument is verbatim as
in the preceding paragraph. (The general recipe for producing τ ′ from
τ is to first change the subscript 2 in τ to 3 and then insert x2 equal
to x1 and y2 immediately after y1.) �

The results proved so far in this section give the chain of implications,
in which “w.r.” abbreviates “weakly Ramsey” and “3f” abbreviates
“the three-functions property”.

· · · → (n+ 1, T (n+ 1))-w.r.→ (n, T (n))-w.r.→ · · · → (2, 4)-w.r.→ 3f.

The question naturally arises whether these implications can be re-
versed. There is a reasonable hope for reversals, by analogy with what
happens for selective ultrafilters. There, we have easy implications
from the partition properties for larger exponents n to the partition
properties for smaller n and from the partition property for exponent
2 to selectivity, just as in the chain above. Kunen’s theorem gives re-
versals for the whole chain by showing that selectivity implies all the
finite-exponent partition properties. Is there an analog of Kunen’s the-
orem in the present situation, i.e., does the three-functions property
(for a non-P-point) imply (n, T (n))-weak Ramseyness for all n? We
conclude this section by showing that the answer is “no”; in the next
section, though, we will show a way to correct the problem.
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Theorem 22. Assume the continuum hypothesis. There is a non-P-
point in standard position that satisfies the three-functions property but
is not (2, 4)-weakly Ramsey.

Proof. Because the continuum hypothesis is assumed, there is an enu-
meration, in an ω1-sequence, of all the functions ω2 → ω; fix such an
enumeration 〈fα : α < ω1〉.

Using the continuum hypothesis again, fix a selective ultrafilter U on
ω.

Also, fix a symmetric, irreflexive, binary relation E on ω that makes
ω a copy of the random graph. This means that, given any finite list
of elements a0, . . . , an−1 ∈ ω and any subset S ⊆ n, there is some
b ∈ ω distinct from all the ai’s such that, for all i < n, we have
aiEb if and only if i ∈ S. In this situation, we say that b realizes the
configuration5 〈a0, . . . , an−1;S〉; we refer to the ai’s as the parameters
of this configuration. It is easy to define such a relation E by an
inductive construction, realizing all configurations, one at a time. It is
well known and easy to prove, by a back-and-forth argument, that any
two such relations E yield isomorphic graphs 〈ω,E〉. So it makes sense
to speak of a copy of the (rather than a) random graph. Call a subset
X of ω rich if it has a subset Y ⊆ X on which the restriction of E is
a copy of the random graph.

With these preliminary items available, we are ready to construct the
desired ultrafilter W on ω2. It will be generated by ℵ1 sets Sα indexed
by the ordinals α < ω1, and subject to the following requirements.

(1) U -almost all sections of Sα are rich, i.e., {n ∈ ω : Sα(n) is rich} ∈
U .

(2) The Sα’s are decreasing modulo U , i.e., if α < β then {n ∈ ω :
Sβ(n) ⊆ Sα(n)} ∈ U .

(3) The restriction of fα to Sα+1 either is one-to-one or factors
through the first projection, fα �Sα+1 = g ◦π1 for some g : ω →
ω.

Before constructing the sets Sα, we verify, on the basis of these three
requirements, that the Sα’s together with the sets π−11 (X) for X ∈ U
generate an ultrafilter as required in the theorem.

First, we verify that the proposed generators have the finite inter-
section property, so they generate a filter. Consider any finitely many
of the proposed generators, say Sα1 , . . . , Sαk

and π−11 (X1), . . . , π
−1
1 (Xl).

Let α be the largest of the αi’s and notice that, by requirement (2),
there is a set Y ∈ U such that Sαi

(n) ⊇ Sα(n) for all n ∈ Y and all i.

5The word “type” is often used instead of “configuration”; we prefer the latter
here, to avoid any confusion with the “n-type” terminology.
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Let Z be the interseection of Y and all of the Xj’s, so Z ∈ U . Then,
whenever n ∈ Z, we have that the intersection of all of Sα1 , . . . , Sαk

and π−11 (X1), . . . , π
−1
1 (Xl) has the same section at n as Sα does. In par-

ticular, this section is rich, by requirement (1), and, a fortiori, infinite.
This completes the verifiction that the sets Sα for α < ω1 and π−11 (X)
for X ∈ U generate a filter W on ω2.

The preceding argument shows something more, which we record
here as a lemma for future reference.

Lemma 23. For every set A ∈ W, there is a set Z ∈ U such that A(n)
is rich, and therefore infinite, for all n ∈ Z.

Next, we verify that the filter W is an ultrafilter. Let any subset A
of ω2 be given, and let f : ω2 → ω be one-to-one on A and constant on
ω2 −A. This f is fα for some α < ω1, and so it is either one-to-one or
fiberwise constant on Sα+1 ∈ W by requirement (3). This means that
Sα+1 is (up to perhaps one point) included in A or in ω2 −A. Since A
was arbitrary, this proves that W is an ultrafilter.

It now follows immediately from Lemma 23 thatW is a non-P-point
in standard position.

To verify the three-functions property, consider any function ω2 → ω.
It is fα for some α < ω1, so its restriction to Sα+1 either is constant or
factors through π1, by requirement (3). Since Sα+1 ∈ W , we have the
desired conclusion if fα is constant on this set. So assume fα = g ◦ π1
on Sα+1. Because U is selective, it contains a set H on which g is
constant or one-to-one. Then Sα+1∩π−11 (H) is a set inW on which fα
is constant or of the form g ◦ π1 with g one-to-one. This completes the
verification of the three-functions property for W .

To show that W is not (2,4)-weakly Ramsey, it suffices, by Propo-
sition 18, to show that W lacks τ -type homogeneity for some 2-type
τ . We use the type given by x1 = x2 < y1 < y2, i.e., the type of ver-
tical pairs. These pairs are partitioned by the edge relation E; more
precisely, we use the partition of [ω2]τ into two pieces, one of which is
{{〈a, b〉, 〈a, c〉} ∈ [ω2]τ : bEc}. For any set H ∈ W , Lemma 23 implies
that [H]τ meets both pieces of this partition. This completes the veri-
fication, on the basis of requirements (1)–(3), that W is as required in
the theorem.

It remains to produce sets Sα satisfying the three requirements, and
we shall do this by recursion on α. We begin the construction by
setting S0 = ω2; this clearly satisfies requirement (1), and the other
two requirements are vacuous at this stage.

We consider next the limit stages of the construction. Let λ be a
countable limit ordinal, and suppose, as an induction hypothesis, that
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Sα has been defined for all α < λ, satisfying requirements (1)–(3). Fix
an increasing ω-sequence 0 = α(0) < α(1) < . . . with supremum λ.
We shall define Sλ in such a way that U -almost all of its sections are
rich (so that requirement (1) continues to be satisfied) and so that
{n ∈ ω : Sλ(n) ⊆ Sα(i)(n)} ∈ U for each i ∈ ω. This will ensure that
requirement (2) holds when β = λ and α is one of the α(i)’s, but it
immediately implies the same for all α < λ. Indeed, for any such α,
there is an i (in fact infinitely many of them) with α < α(i), and then,
thanks to the induction hypothesis, we have that Sλ(n) ⊆ Sα(i)(n) ⊆
Sα(n) for U -almost all n. Note that requirement (3) is exclusively about
successor S’s and thus imposes no condition on Sλ.

As a preliminary normalization, we modify the sequence of sets
〈Sα(i) : i < ω〉, which is, by requirement (2) in the induction hypothe-
sis, decreasing modulo U , to make it literally decreasing. That is, we
set

S ′i =
i⋂

j=0

Sα(j),

and we note that this has not ruined requirement (1) of the induction
hypothesis; U -almost all sections of S ′i are rich. Indeed, for U -almost
all n, we have that Sα(i)(n) ⊆ Sα(j)(n) for all of the (finitely many)
j < i and so S ′i(n) = Sα(i)(n).

We also observe that, since α(0) = 0, we have S ′0 = Sα(0) = S0 = ω2.
In particular, all sections of S ′0 are rich.

For each n ∈ ω, let h(n) be the largest i ≤ n such that S ′i(n) is
rich. This exists because of the observation in the preceding paragraph.
Then define

Sλ = {〈n, y〉 ∈ ω2 : y ∈ S ′h(n)(n)}.
The definition of h ensures that Sλ(n) is rich for all n ∈ ω, so require-
ment (1) is satisfied at λ. Requirement (3) says nothing about limit
stages, so it remains only to verify that, for all i, U -almost all n satisfy
Sλ(n) ⊇ Sα(i)(n) for all i.

We remarked, immediately after defining S ′i, that it agrees with Sα(i)
in U -almost all vertical sections. So it suffices to verify that, for each
i, U -almost all n satisfy Sλ ⊆ S ′i.

So fix some i ∈ ω. As we pointed out above, U -almost all n have
S ′i(n) rich, and of course, as U is nonprincipal, U -almost all n have
i ≤ n. Therefore, U -almost all n have h(n) ≥ i. For these n, we have,
since the S ′ sequence is literally decreasing,

Sλ(n) = S ′h(n(n) ⊆ S ′i(n),

as desired. This completes the limit stage of our induction.
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Finally, we deal with the successor stage. Suppose, as an induction
hypothesis, that Sβ has been defined for all β ≤ α and satisfies re-
quirements (1)–(3) in this range; our objective is to define Sα+1 so as
to satisfy all the new instances of requirements (1)–(3). In the case
of requirement (2), it suffices to ensure that Sα+1(n) ⊆ Sα(n) for U -
almost all n; the rest of requirement (2), comparing Sβ with Sα+1 for
smaller β, is then an immediate consequence via the induction hypoth-
esis comparing Sβ with Sα.

To avoid unnecessary clutter, let us take advantage of the fact that,
in this step of the construction α is fixed, so we can write simply f
for fα. We write fn for the restriction of f to the nth column in ω2,
regarded as a function on ω; that is, fn(y) = f(〈n, y〉).

Our goal is thus to produce a set S = Sα+1 with the following prop-
erties, corresponding to the three requirments above.

(1) U -almost all sections S(n) are rich.
(2) S(n) ⊆ Sα(n) for U -almost all n.
(3) The restriction of f to S either is one-to-one or factors through

π1.

Call a number n good (for this argument) if fn is constant on some
rich subset of Sα(n); otherwise, call n bad. If U -almost all n are good,
then our task is easy. For each good n, choose some rich Rn ⊆ Sα(n)
on which fn is constant, and set

S = {〈n, y〉 ∈ ω2 : n is good and y ∈ Rn}.

This has rich sections at all good n, so we have (1), while (2) holds
because Rn ⊆ Sα(n) and (3) holds because fn is constant on Rn.

It remains to treat the case that U -almost all n are bad. In this case,
we shall construct S one element at a time, making sure that they all
map to different values under f , so that f will be one-to-one on S. The
elements that we put into S will all be of the form 〈n, y〉 with n bad
and y ∈ Sα(n). This will ensure that (2) holds. The sections of S at
good n will be empty, but this does no harm to (1) because U -almost
no n are good. We shall also ensure that every section of S at a bad n
is not only rich but a copy of the random graph. (Recall that a rich set
is a superset of a copy of the random graph.) We may also assume that
the nonempty sections of Sα are copies of the random graph; simply
shrink each rich section to a copy of the random graph, and remove all
non-rich sections.

To inductively produce S, we first make a list of conditions that
should be satisfied by our construction. These conditions are repre-
sented formally by tuples of the form 〈k0, k1, . . . , kl−1;Q〉 where k0 <
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k1 < · · · < kl−1 are natural numbers and Q ⊆ l. The meaning of this
tuple is: “If the elements put into S at the k0

th, k1
th, . . . , kl−1

th steps
of the construction exist6 and are in the same column, say they are
〈n, y1〉, 〈n, y2〉, . . . , 〈n, yl−1〉 for some bad n, then put into S an element
〈n, z〉 such that, for all i < l, we have zEyi if and only if i ∈ Q.”
Thus, the tuple 〈k0, k1, . . . , kl−1;Q〉 requests fulfillment of one instance
of the condition that S(n) be a copy of the random graph. There are
only countably many such tuples, so we can enumerate them as an
ω-sequence. Fix such an enumeration in which, for all q ∈ ω, the qth

tuple has all of its ki’s smaller than q (if necessary, repeat the vacuous
tuple, where l = 0, numerous times).

We now explain the qth step of the construction of S. Consider the
qth condition in our enumeration, say 〈k0, k1, . . . , kl−1;Q〉, and suppose
that, as in the meaning of this condition explained above, the ki’th
step (which has already been done, because of the way we arranged
the enumeration of conditions) put 〈n, yi〉 into S for each i < l. We
wish to adjoin some 〈n, z〉 to S subject to two desiderata. First, it
should do what the condition 〈k0, k1, . . . , kl−1;Q〉 requests; zEyi should
hold when i ∈ Q and fail when i ∈ l − Q. Second, f(〈n, z〉) should
be different from f(a) for all of the finitely many elements a already
put into S during previous steps. Let us call these finitely many values
f(a) the forbidden values.

From now on, we work within Sα(n), which we recall is, with the
binary relation E, a copy of the random graph. We seek an element z
that has the correct configuration relative to the yi’s, as specified by
〈k0, k1, . . . , kl−1;Q〉, and such that fn(z) is different from the forbidden
values.

For each forbidden value v, consider the set Bv obtained by removing
from (fn)−1({v}) any yi’s that happen to lie in (fn)−1({v}). Since fn

is constant on Bv (with value v) and since n is bad, we know that B
is not a copy of the random graph. So we can fix a finite subset Fv of
Bv and a configuration Cv with respect to Fv that is not realized by
any element of Bv. Combine all these configurations Cv, and also the
configuration that 〈k0, k1, . . . , kl−1;Q〉 tells us to realize, into a single
large but finite configuration C, relative to all the members of the Fv’s
and all the yi’s. Since Sα is a copy of the random graph, it contains an
element z, distinct from all members of the Fv’s and from the yi’s, and
realizing C. Then, for each forbidden value v, we have that z realizes
Cv and is therefore not in Bv. It is also not among the yi’s that were

6Some steps won’t put any elements into S, so “exist” is not a vacuous require-
ment here.
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removed from (fn)−1({v}) when we defined Bv, so z /∈ (fn)−1({v}).
That is, fn(z) is not the forbidden value v. Furthermore, z realizes the
configuration requested by 〈k0, k1, . . . , kl−1;Q〉. Therefore, z satisfies
all our desiderata, and we adjoin 〈n, z〉 as the next element of S. This
completes the qth step of the construction of S = Sα+1. So we have ob-
tained Sα+1 with the required properties, and the proof of the theorem
is complete. �

The theorem just proved shows that we do not have a perfect analog
of Kunen’s results for selective ultrafilters. The three-functions prop-
erty, which is the analog of selectivity (a two-functions property) in our
non-P-point situation, does not imply the strongest possible Ramsey
properties. There remain at least three natural questions.

• Does the three-functions property imply weaker Ramsey prop-
erties, say (n, t)-weak Ramseyness for some t > T (n)?
• Do any of the (n, T (n))-weak Ramsey properties imply other

such properties with larger n?
• Can the three-functions property be combined with some other

(reasonable) property to imply weak Ramsey properties?

The second and third of these questions will be answered in the
next section. As for the first, the following remark sketches a negative
answer.

Remark 24. The random graph can be viewed as a random edge 2-
coloring of the complete graph on ℵ0 vertices. Edges of the random
graph are colored red, and edges of the complete graph that are not
in the random graph are colored green. There is an entirely analogous
random edge ℵ0-coloring of the complete graph on ℵ0 vertices. It defin-
ing property is that, given any finite set F of vertices and any function
f assigning to each vertex v ∈ F one of the colors, there is a vertex
z /∈ F whose edge to any v ∈ F has the color f(v).

The proof of Theorem 22 can be carried out essentially unchanged
but with this random ℵ0-coloring in place of the random graph. The
result is a non-P-point W in standard position, enjoying the three-
functions property, but with the following strong negative partition
property. For the 2-type τ given by x1 = x2 < y1 < y2, there is
a partition of [ω2]τ into infinitely many pieces such that, for every
H ∈ W , all of the pieces meet [H]τ .

In particular, by merging some of the pieces of this partition, we
can get, for any finite number t, a partition of [ω2]τ into t pieces such
that all pieces meet [H]τ for all H ∈ W . Combining this partition
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of [ω2]τ with the three other pieces [ω2]σ for 2-types σ 6= τ , we get a
counterexample showing that W is not (2, t+ 2)-weakly Ramsey.

5. Conservativity

In this section, we recall the notion of conservative elementary ex-
tensions, introduced in the context of models of arithmetic by Phillips
[9]; we explain its connection with weak Ramsey properties; and we
show that it, when combined with the three-functions property, im-
plies (n, T (n))-weak Ramseyness for all n ∈ ω.

To avoid excessive repetition, we refer the reader to [2] for some of
the results that we shall need and we give only a short summary here.

We adopt the convention that, for a structure A, its underlying set
(also called its domain or its universe) is denoted by |A|.

Definition 25. Let A be a structure for a first-order language, and
let B be an elementary extension of A. Then B is a conservative
extension of A if, whenever X is a parametrically definable subset of
B, then X ∩ |A| is a parametrically definable subset of A.

This concept makes good sense in the context of general model the-
ory. In fact, it can be used to characterize stable theories as those
theories T such that all elementary extensions of models of T are con-
servative extensions. We shall, however, use only the special case where
the models are elementary extensions of the standard model N of full
arithmetic. By full arithmetic, we mean the language that has function
and relation symbols for all of the functions and relations (of arbitrary
finite arity) on the set of natural numbers. N is the model with un-
derlying set ω and with all the symbols having the obvious meanings.
In fact, we shall be concerned only with ultrapowers U -prodN of the
standard model N.

Since all subsets of N are definable in the language of full arithmetic,
all elementary extensions of N are conservative extensions.

If U is an ultrafilter on ω, then U -prodN is generated by a single el-
ement, namely the equivalence class modulo U of the identity function,
[id]U . Indeed, every element [f ]U of U -prodN is ∗f([id]U), where, as
is customary in nonstandard analysis, ∗f is the function on U -prodN
denoted there by the function symbol that denotes f in N.

If U is an ultrafilter on a countably infinite set S other than ω, it
is still the case that U -prodN is generated by a single element; the
equivalence class modulo U of any bijection between S and ω will do.

If U is an ultrafilter on S and f is a function with domain S, then
f induces an elementary embedding f∗ : f(U)-prodN → U -prodN,
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namely the function that sends each [g]f(U) to [g ◦ f ]U . We sometimes
identify f(U)-prodN with its image under this embedding.

Definition 26. If U -prodN is a conservative extension of the image
under f∗ of f(U)-prodN, then we call f a conservative map on U .

We shall be particularly interested, for reasons to be explained later,
in the situation where U is an ultrafilter on ω2 and f is the projection
π1 to the first cooordinate.

The key property of conservative extensions for our purposes is the
following result, which is part of Theorem 3 in [2].

Proposition 27. Suppose that B and C are elementary extensions of
a model A of full arithmetic and that B is a conservative extension of
A. Then there is, up to isomorphism, only one amalgamation of B
and C over A in which all the elements of |B| − |A| are above (with
respect to the nonstandard extension ∗< of the standard order on ω) all
elements of |C|.

The existence of such amalgamations is established by a fairly easy
compactness argument; see Theorem 2(b) in [2]. The important part
of Proposition 27 is the uniqueness.

The relevance of amalgamations for our purposes is the following
connection with weak Ramsey properties; it is Theorem 5 of [2].

Proposition 28. An ultrafilter U on ω is (n, t)-weakly Ramsey if and
only if there are, up to isomorphism, at most t ways to amalgamate
n copies of U-prodN with a specified ordering of the n copies of the
generator [id]U .

These propositions allow us to prove the first main result of this
section.

Theorem 29. Let W be a non-P-point in standard position. Assume
that W has the three-functions property and that π1 is a conservative
map on W. Then W is (n, T (n))-weakly Ramsey for all n ∈ ω.

Proof. We write U for the ultrafilter π1(W) on ω.
Thanks to the three-functions property, the ultrapower W-prodN

has exactly three elementary submodels, namely the standard model
N, the whole model W-prodN, and the copy of U -prodN induced by
the projection π1 from W to U . The copy of U -prodN is generated
by [π1]W . The whole model W-prodN is generated by the equivalence
class, moduloW , of any bijection ω2 → ω. It is also generated by [π2]W
because π2 is one-to-one on a set in W and therefore coincides, on a
possibly smaller set in W , with a bijection.
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Temporarily, consider a single n-type τ . The notion of an n-tuple
of elements of ω2, with y-coordinates in increasing order, realizing τ
can, like any relation on ω, be canonically extended to any elementary
extension of N.

In particular, suppose we have an amalgamation of n copies ofW-prodN,
with their generators, copies of [π2], in a specified order. Let the n
copies of W-prodN be listed in the order of their copies of [π2] in the
amalgamation, and write [f ]i for the image, in the amalgamation, of
an element [f ] of the ith copy of W-prodN. So our convention for the
order of listing these copies ensures that [π2]

1 < [π2]
2 < · · · < [π2]

n

in the amalgamation. Then the elements [id]i, which are pairs in the
amalgamation, realize τ if and only if the list form of τ is satisfied when
the xi are interpreted as [π1]

i and the yi as [π2]
i.

We now check how many amalgamations there are, of n copies of
W-prodN, in which the generators [id]i realize τ . We build such an
amalgamation by starting with the standard model N and extending
it in as many steps as there are inequivalent elements in the pre-order
τ ; we go through these elements in increasing order according to τ .

At a step corresponding to an equivalence class of xi’s in τ , we must
amalgamate the model M already constructed in previous steps with
U -prodN, identifying only the standard parts, and putting all nonstan-
dard elements of U -prodN above all elements of M. Since U -prodN is,
like any model of full arithmetic, a conservative extension of N, there
is only one way, up to isomorphism, to perform this amalgamation.

At a step corresponding to a yi in τ , we must amalgamate the
model M already constructed with W-prodN, identifying the copy of
U -prodN in this W-prodN with the copy already amalgamated into
M at the earlier step corresponding to xi, and putting all elements
of |W-prodN| − |U -prodN| above all elements of M. Again, there is
only one way to perform this amalgamation, because W-prodN is, by
hypothesis, a conservative extension of the submodel identified with
U -prodN.

The preceding two paragraphs show that there is only one way, up to
isomorphism, to amalgamate n copies ofW-prodN with the generators
in a specified order and realizing τ . Since this holds for each n-type
τ , and since there are T (n) n-types, we conclude that there are only
T (n) ways to amalgamate n copies of W-prodN with the generators
in a specified order. By Proposition 28, it follows that W is (n, T (n))-
weakly Ramsey. �

Theorem 29 shows that conservativity is a sufficient condition to
add to the three-function property and produce all the weak Ramsey
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properties enjoyed by sisnis ultrafilters and P-generic ultrafilters. The
question naturally arises whether conservativity is necessary for this
purpose. Theorem 22 shows that some additional condition is needed,
but might conservativity be excessive? Might a weaker additional con-
dition suffice? The next theorem answers these questions negatively.
It shows that conservativity is really needed.

Theorem 30. Suppose W is a (2, 4)-weakly Ramsey non-P-point in
standard position. Then π1 is a conservative map on W.

Proof. As before, we write U for π1(W). As a first step toward the
proof, we analyze the definition of “π1 is a conservative map on W”
in order to replace it with an equivalent condition of a combinatorial,
rather than model-theoretic, flavor.

Notice first that, when considering a parametrically definable subset
X of W-prodN, we may assume without loss of generality that the
only parameter used in the definition is the pair [id]W . This is because
any other parameter [f ]W can be defined from [id]W . Furthermore,
although the definition could, a priori, look like

X = {z ∈ W-prodN : ϕ([id]W , z)}

for an arbitrary formula ϕ, we may assume without loss of generality
that it has the form

X = {z ∈ W-prodN : ∗R([π1]W , [π2]W , z)}

for some ternary relation R on ω. This is because we are working in
full arithmetic, so any formula ϕ applied to a pair and a single element
is equivalent, in N and therefore in any elementary extension, to an
atomic ternary relation.

So let us consider an arbitrary X of this form, obtained from some
arbitrary ternary relation R. The intersection of X with the elementary
submodel U -prodN is, taking into account the identification via (π1)∗,

Y = {[f ]U :W-prodN |= ∗R([π1]W , [π2]W , [f ◦ π1]W)}.

Our goal is to prove that this Y is parametrically definable in U -prodN.
As in the case of X, if there is such a definition, there will be one whose
only parameter is [id]U and indeed one of the form

Y = {[f ]U : U -prodN |= ∗S([id]U , [f ]U)}

for some binary relation S on ω.
Taking into account the definition of how relation symbols are inter-

preted in ultrapowers, we find that what must be proved is the follow-
ing. For every ternary relation R on ω, there exists a binary relation
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S on ω such that, for all functions f : ω → ω, we have

{〈x, y〉 ∈ ω2 : R(x, y, f(x))} ∈ W ⇐⇒ {x ∈ ω : S(x, f(x))} ∈ U .

Now that we have a combinatorial version of the desired conclusion,
we work toward deducing this version form the assumption that W is
a (2,4)-weakly Ramsey non-P-point in standard position. In fact, we
will use (2,4)-weak Ramseyness only to obtain τ -homogeneity for the
2-type τ given by x1 = x2 < y1 < y2.

Let an arbitrary ternary relation R be given. Associate to each pair
〈x, y〉 ∈ ω2 the function C〈x,y〉 : ω → 2 that sends any z ∈ ω to 1 if
R(x, y, z) and to 0 otherwise. Partition [ω2]τ into two pieces, putting
{〈x, y〉, 〈x, y′〉} (where y < y′ by our usual convention) into the first
piece if C〈x,y〉 lexicographically precedes C〈x,y′〉 and into the second
piece otherwise. By hypothesis, there is a set H ∈ W such that [H]τ
lies entirely in one of the two pieces.

Suppose [H]τ is included in the first piece of our partition. (The al-
ternative possibility, that it is included in the second piece, is handled
by an entirely analogous argument.) We may assume all nonempty sec-
tions of H are infinite, since removing any finite sections only deletes
a set not in W and thus changes none of the properties we have for
H. For each x ∈ π1(H), the sequence of functions 〈C〈x,y〉 : y ∈ H(x)〉
is lexicographically increasing. Any such sequence eventually stabilizes
componentwise. That is, for each z ∈ ω, there is some Nz such that
C〈x,y〉(z) is independent of y once y ≥ Nz. To see this, argue by induc-
tion on z. For z = 0, the lexicographic ordering forces the values of
C〈x,y〉(0) to never decrease as y increases, so they are either all 0, or,
once one of them is 1, all the later ones, for larger y, are also 1. Once
the values for z = 0 have stabilized, the values for z = 1 can never
decrease, so these too must stabilize. And so on; once the values for
all z < k have stabilized, the values for z = k can no longer decrease,
so they also stabilize.

Now define S by putting a pair 〈x, z〉 into S if and only if the even-
tual, stable value of C〈x,y〉(z) for all sufficiently large y is 1. We claim
that this S works. Let an arbitrary f : ω → ω be given.

Suppose first that {x ∈ ω : S(x, f(x))} ∈ U , and let B denote this
set in U . For each x ∈ B we have, by definition of S, that R(x, y, f(x))
holds for all sufficiently large y ∈ H(x). Thus, the set {〈x, y〉 ∈ ω2 :
R(x, y, f(x))} includes the intersection of H, π−11 (B), and a set of the
form {〈x, y〉 : y > M(x)} for some function M . All three of these are
in W , the last because of standard position: π1 is not finite-to-one on
any set in W . Therefore the intersection is in W , as required.
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The remaining case, that {x ∈ ω : S(x, f(x))} /∈ U is handled the
same way, using, in place of R and S, their negations. �

Corollary 31. For non-P-points, the properties of (n, T (n))-weak Ram-
seyness for different n ≥ 2 are all equivalent.

Proof. We already know, from Corollary 20, that these weak Ramsey
properties for larger n imply the proiperties for smaller n. For the
converse, we assume that the ultrafilter is in standard position; this
can be arranged by applying a suitable bijection and thus entails no
loss of generality. Then any of these weak Ramsey properties implies
(2, 4)-weak Ramseyness (by Corollary 20), which in turn implies both
the three-functions property (by Proposition 21) and conservativity of
π1 (by Theorem 30). These, in turn, imply (n, T (n))-weak Ramseyness
for all n (by Theorem 29). �

Summarizing, we have, for non-P-points in standard position, the
equivalence of all the (n, T (n))-weak Ramsey properties and the con-
junction of the three-functions property with conservativity of π1. For
non-P-points not in standard position, the only change that is needed
is that conservativity applies not to π1 but to any function p that is
neither finite-to-one nor constant on any set of the ultrafilter. (The
three-functions property ensures that p is essentially unique.)

6. Infinitary Partition Relations and Complete
Combinatorics

In the preceding sections, we have dealt only with finitary partition
relations. In the present section, we turn to infinitary partition re-
lations enjoyed by P-generic ultrafilters and by sisnis ultrafilters. By
analogy with Mathias’s results for selective ultrafilters, parts (2) and
(3) of Proposition 2, and thinking of P in our situation as being the
analog of [ω]ω in Mathias’s situation, we might hope that our ultra-
filters W enjoy a partition relation of the following sort: Whenever
P is partitioned into two nice pieces, then there is some A ∈ W all
of whose subsets in P lie in the same piece. Here, “nice” could mean
analytic/coanalytic, or, in the case of the Lévy-Mahlo model, it could
mean HODR.

Unfortunately, such a partition relation is extremely false. It is pos-
sible to partition P into continuum many Borel pieces, all of which are
dense in the forcing notion P. To see this, we extend the notion of
n-types (Definition 10) to ω-types.

Definition 32. An ω-type is a linear pre-order of the infinite set of
formal symbols x1, x2, . . . and y1, y2, . . . such that
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• y1 < y2 < . . . ,
• each xi precedes the corresponding yi,
• each equivalence class in the pre-order consists of either a single
yi or infinitely many xi’s,
• there are infinitely many equivalence classes of x’s, and
• the induced linear order of the equivalence classes has order-

type ω.

The intention here is that an ω-type describes the order-relationships
between the x and y coordinates of the points in an element of P. Recall
that the definition of P requires that, if A ∈ P , then all the points in
A have distinct y-coordinates; as before, we adopt the convention of
thinking of the points in A as listed in order of increasing y-coordinates.

Definition 33. The ω-type realized by an element A of P is the pre-
order consisting of exactly those inequalities between the formal sym-
bols xi and yj that hold when A is listed as {〈ai, bi〉 : i ∈ ω} in order of
increasing bi’s and then each xi is interpreted as denoting ai and each
yj is interpreted as denoting bj.

The definition of P easily implies that every A ∈ P realizes a (unique)
ω-type.

Notation 34. Let Pτ be the subset of P consisting of those elements
of P that realize the ω-type τ .

Given any A ∈ P and any ω-type τ , it is easy to construct a subset
B ⊆ A in P (i.e., an extension of A in the forcing notion P) that realizes
τ . That is, each Pτ is dense in P. It is easy to check also that each Pτ
is a Borel set. So we have, as claimed, a partition of P into continuum
many Borel sets, all of which are dense in P.

Although this result constitutes a strong counterexample to natural
partition relations for P, it also suggests a way around the problem.
Each Pτ is a notion of forcing equivalent to P, and we might hope for
a partition relation satisfied by one of these notions of forcing. Recall
Remark 4, where we pointed out that an infinite-exponent partition
relation can hold for a notion of forcing while failing for an equivalent
notion. Perhaps this happens here.

In fact, the next theorem shows that this happens for every ω-type.

Theorem 35. Let τ be an ω-type, and let Pτ be partitioned into an
analytic subset and its complement.

(1) There is a set H ∈ Pτ such that all its subsets in Pτ lie in the
same piece of the partition.
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(2) Any sisnis ultrafilter on ω2, contains an H such that all its
subsets in Pτ lie in the same piece of the partition.

(3) Any P-generic ultrafilter on ω2, contains an H ∈ Pτ such that
all its subsets in Pτ lie in the same piece of the partition.

Parts (1) and (3) were proved for a particular ω-type τ by Dobrinen
in [6] using an entirely different method, based on Todorcevic’s theory
of topological Ramsey spaces. It is very likely that her method can be
applied to arbitrary ω-types, not just the one she used in [6].

Proof. The main work in this proof is to establish part (2) of the theo-
rem; afterward, parts (1) and (3) will follow fairly easily. Fortunately,
the main work was already done in [3], specifically in proving Theo-
rem 7 of that paper. So our first task here is just to show how (2)
follows from that theorem. This argument parallels part of the proof
of Theorem 2.17 in [4], which also relied on the same result from [3].

We begin by stating, in the next lemma, the result from [3]; after-
ward, we shall show how part (2) of the present theorem follows from
it.

Lemma 36 (Theorem 7 of [3]). Assume that selective ultrafilters D(s)
have been assigned to all finite subsets s of ω, and assume that every
two of these ultrafilters are either equal or not isomorphic. Let X be an
analytic subset of [ω]ω. Then there is a function Z assigning, to each
ultrafilter D that occurs among the D(s)’s, some element Z(D) ∈ D
such that X contiains all or none of the infinite sets {z0 < z1 < z2 <
. . . } ∈ [ω]ω that satisfy zn ∈ Z(D({z0, . . . , zn−1})) for all n ∈ ω.

We emphasize that, if the same ultrafilter D occurs as D(s) for sev-
eral sets s, then a single set Z(D) is assigned to it by Z, not a possibly
different set for each occurrence.

Using this lemma, we proceed with the proof of part (2) of our theo-
rem. LetW = U -

∑
n Vn be a sisnis ultrafilter on ω2, so U and all of the

Vn are non-isomorphic selective ultrafilters on ω. Let τ be an ω-type,
and let Pτ be partitioned into an analytic piece Y and its complement.

There is a natural bijection ϕ from [ω]ω onto Pτ , defined as follows.
Given a set {z0 < z1 < z2 < . . . } ∈ [ω]ω, assign the value zi to the
formal variables in the ith equivalence class7 of the pre-order τ . (So zi
becomes the value of either a single yj or infinitely many xk’s). For
each j ∈ ω, the values assigned to xj and yj determine a point in ω2,
and we let ϕ({z0, z1, . . . }) be the set of these points. Because τ is an
ω-type, this set is in Pτ .

7Here and below, our enumeration of the equivalence classes begins with 0. So
the ith equivalence class is the one with exactly i strict predecessors.
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Let X = ϕ−1(Y). Since ϕ is clearly continuous and since Y is ana-
lytic, X is an analytic subset of [ω]ω, as required by the hypothesis of
Lemma 36.

To apply the lemma, we must still define appropriate selective ul-
trafilters D(s); these will be chosen from among the ultrafilters U and
Vn that produced the sisnis ultrafilter W . The scheme for associat-
ing these ultrafilters to finite subsets s of ω is as follows. Suppose
s = {z0 < z1 < · · · < zk−1}. Assign the value zi to the formal variables
in the ith equivalence class of the pre-order τ , for each i < k. (This is
exactly like the definition of ϕ above, except that, because s is finite,
only k equivalence classes of variables get values.) Consider equiva-
lence class number k, the first one not assigned a value here. If it is an
equivalence class of xj’s, then let D(s) = U . If, on the other hand, it
consists of a single yj, then, since the corresponding xj precedes yj in
τ , s has assigned a value v to xj; set D(s) = Vv.

Since U and all the Vn are non-isomorphic selective ultrafilters, we
have satisfied the hypotheses of Lemma 36, so we obtain a function Z as
described there. It remains to chase through all the relevant definitions
to see what the conclusion of Lemma 36 tells us in this situation.

That conclusion concerns sets {z0 < z1 < . . . } such that each zn is
a member of Z(D({z0, . . . , zn−1})). By our choice of D’s this means
that, when we compute ϕ of such a set, the values assigned to the xj’s
are in Z(U) and the value assigned to any yj is in Z(Vv) where v is the
value of the corresponding xj. This means that ϕ({z0 < z1 < . . . }) is
a subset of

H = {〈a, b〉 ∈ ω2 : a ∈ Z(U) and b ∈ Z(Va)}.

This H is in W = U -
∑

n Vn because each Z(D) is in the corresponding
D. Furthermore, any subset of H of type τ is ϕ({z0 < z1 < . . . }) for
some {z0 < z1 < . . . } as in the conclusion of Lemma 36. The lemma
tells us that either all or none of these sets {z0 < z1 < . . . } are in
X , and, in view of our choice of X , this means that all or none of the
subsets of H of type τ are in Y . This completes the proof of part (2)
of the theorem.

We turn next to part (1). We first prove a slightly weaker version,
replacing the assertion that H ∈ Pτ with the assertion that H has
infinitely many infinite vertical sections. This weaker version would
be an immediate consequence of part (2) if we knew that there exists
a sisnis ultrafilter, because any set in a sisnis ultrafilter has infinitely
many infinite sections. The existence of a sisnis ultrafilter, which is
equivalent to the existence of infinitely many non-isomorphic selective
ultrafilters, is not provable in ZFC; indeed, it is not provable that
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there exists even one selective ultrafilter. Nevertheless, we can still use
part (2) to obtain the weakened part (1) as follows. Regardless of the
existence or non-existence of sisnis ultrafilters, we can pass to a forcing
extension of the universe in which the continuum hypothesis holds and
there are no new reals. (It suffices to adjoin a generic subset of ω1

with countable forcing conditions.) In the extension, there are, thanks

to the continuum hypothesis, plenty of selective ultrafilters (22ℵ0 of
them), so we have a sisnis ultrafilter and therefore have the weakened
part (1) of the theorem. But this result is a statement entirely about
real numbers (note in particular that the partition can be coded by a
real number, as it involves only an analytic set and its complement).
Since the forcing extension didn’t add reals, the same result holds in
the original universe, as required.

To pass from the weakened version of part (1) to the original version
where H is required to be in Pτ , it suffices to recall that every set with
infinitely many infinite sections has a subset in P and that Pτ is dense
in P. Therefore, we can just replace the H from the weakened version
with a subset in Pτ to complete the proof of part (1).

Before proceeding to part (3), we explain a technical strengthening
of part (1) that will be used in the proof of part (3). Suppose we are
given, in addition to the ω-type τ and the partition, a subset A of ω2

with infinitely many infinite sections. Then, in the forcing extension
used in the proof of part (1), we can choose the selective ultrafilters so
that the resulting sisnis ultrafilterW contains A. Then, when we apply
part (2) with this sisnis ultrafilter, we can arrange for the homogeneous
set H to be a subset of A; since both A and H are inW , we can replace
H by its intersection with A. The passage from the forcing extension
to the ground model and the shrinking of H to put it into Pτ preserve
this arrangement. Therefore, in part (1) of the theorem, we can get the
homogeneous set to be included in any prescribed A that has infinitely
many infinite sections.

Finally, we prove part (3). The preceding technical improvement of
part (1) applies in particular to any A ∈ Pτ . So we have that, for any
partition into an analytic set and its complement, the homogeneous
sets H are dense in Pτ , so any Pτ -generic ultrafilter contains such a
homogeneous set. Recall that Pτ is dense in P, so genericity is the
same for these two forcing notions, and we therefore have that every P-
generic ultrafilter contains a homogeneous set. (We have tacitly used
the fact that forcing by P adds no new reals, so the pieces of the
partition, being analytic or coanalytic, are the same before and after
the forcing.) �
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Theorem 35 is the analog, in our non-P-point context, of part (2)
of Proposition 2 for selective ultrafilters. We also have the following
analog of part (3) of that proposition.

Theorem 37. Suppose the universe is obtained from some ground
model by Lévy-collapsing to ω all cardinals below some Mahlo cardi-
nal of the ground model. Then the partition properties in Theorem 35
hold with HODR in place of analytic.

Proof. We can proceed as in the proof of Theorem 35 with only the
following changes. Instead of citing Theorem 7 of [3], we cite Corol-
lary 11.1, which asserts (among other things) that the Lévy-Mahlo
model satisfies Theorem 7 with HODR in place of analytic. Also, in
the proof of part (1), it is no longer necessary to force to obtain the
continuum hypothesis; the Lévy-Mahlo model satisfies the continuum
hypothesis, so plenty of selective ultrafilters are available in it. �

Finally, we point out that part (3) of Theorem 37, the part about
P-generic ultrafilters admits an easy converse, which could be viewed
as a sort of complete combinatorics.

Proposition 38. Suppose the universe is obtained from some ground
model by Lévy-collapsing to ω all cardinals below some Mahlo cardinal
of the ground model. Suppose further that W is a non-P-point in stan-
dard position and that, for at least one ω-type τ , W has the following
partition property. For any HODR partition of Pτ into two pieces,
there is a set H ∈ W ∩ Pτ such that all of its subsets in Pτ lie in the
same piece of the partition. Then W is P-generic over HODR.

Proof. Since Pτ is dense in P, it suffices to prove that W intersects
every dense HODR subset D of Pτ . Because D is dense, there cannot
be any H ∈ Pτ (whether in W or not) such that all its subsets in Pτ
are outside D. By the assumed partition property of W , we infer that
there is H ∈ W ∩Pτ such that H lies in D (and so do all its subsets in
Pτ , but we don’t need this part of the result). So H witnesses that W
meets D, as required. �

Note that Proposition 38 needs to assume the partition property for
only one ω-type τ . Genericity follows, and with genericity, the partition
properties for all other ω-types also follow.

Proposition 38 is a partial analog, in our non-P-point context, of
Corollary 3 for selective ultrafilters. A more complete analog would
result from a positive answer to the following open problem.
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Question 39. Suppose W is a non-P-point in standard position, and
suppose it is (2, 4)-weakly Ramsey (and therefore (n, T (n))-weakly Ram-
sey for all n by Corollary 31). Must it have the infinitary partition
property in part (2) of Theorem 35? If, in addition, the universe is a
Lévy-Mahlo model, mustW have the corresponding partition property
for HODR partitions?
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