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Abstract. This article introduces a line of investigation into connections be-

tween creature forcings and topological Ramsey spaces. Three examples of

pure candidates for creature forcings are shown to contain dense subsets which
are actually topological Ramsey spaces. A new variant of the product tree

Ramsey theorem is proved in order to obtain the pigeonhole principles for two

of these examples.

1. Introduction

Connections between partition theorems and creature forcings have been known
for some time. Partition theorems are used to establish various norm functions
and to deduce forcing properties, for instance, properness. Conversely, creature
forcings can give rise to new partition theorems, as was shown, for example, by
Ros lanowski and Shelah in [13]. Todorcevic pointed out to the author in 2008
that there are strong connections between creature forcings and topological Ramsey
spaces deserving of a systematic investigation. The purpose of this note is to initiate
this line of research and provide some tools for future investigations.

We show that the collections of pure candidates for three examples of creature
forcings presented in [13] contain dense subsets which are actually topological Ram-
sey spaces (see Section 4). For two of these examples, the pigeonhole principles relies
on a Ramsey theorem for unbounded finite products of finite sets, where exactly
one of the sets in the product can be replaced with the collection of its k-sized sub-
sets. This is proved in Theorem 3 in Section 3, building on work of DiPrisco, Llopis
and Todorcevic in [2]. The method of proof for Theorem 3 easily lends itself to
generalizations, setting the stage for future work regarding more types of creature
forcings, as well as possible density versions of Theorem 3 and variants in the vein
of [15], in which Todorcevic and Tyros proved the density version of Theorem 4.

There are several immediate benefits to showing that a forcing has a dense subset
which is a topological Ramsey space. Most importantly, it puts at one’s disposal all
the strength of Ramsey theoretic machinery, including an abstract version of the
Ellentuck Theorem, (see Theorem 2 below). This theorem yields infinitary partition
relations for all subsets which have the property of Baire in the abstract Ellentuck
topology. Second, by work of DiPrisco, Mijares, and Nieto in [3], in the presence
of a supercompact cardinal, the generic ultrafilter forced by a topological Ramsey
space, partially ordered by almost reduction, has complete combinatorics in over
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L(R). Third, if an ultrafilter is forced by a topological Ramsey space, then the
availability of the Ramsey machinery aids in finding the partition relations satisfied
by the ultrafilter. In the examples considered here, each generic ultrafilter has
a base set consisting of creatures. Fourth, having at one’s disposal the Abstract
Nash-Williams Theorem aids in proving canonical equivalence relations on fronts
and barriers, in the vein of Pudlák and Rödl [10]. This in turn makes possible
investigations of initial Rudin-Keisler and Tukey structures below these generic
ultrafilters in the line of [11], [7], [8], [6], [4], and [5].

As this note merely forms the beginning of an investigation into connections
between topological Ramsey spaces and creature forcings, we only include the basics
of topological Ramsey spaces in Section 2 needed to understand the present work
and refer the reader to Todorcevic’s book [14] for a more thorough background.
Likewise, we do not attempt to adequately present background material on creature
forcing, rather refering the reader to Ros lanowski and Shelah’s book [12], and to
their paper [13] for the examples included here.

On a personal note, I would like to thank Alan Dow for his inspiring and encour-
aging influence on my early and present mathematics. He and his work are truly
exceptional. Happy Birthday, Alan!

2. Basics of topological Ramsey spaces

A brief review of topological Ramsey spaces is provided in this section for the
reader’s convenience. Building on prior work of Carlson and Simpson in [1], Todor-
cevic distilled key properties of the Ellentuck space into four axioms, A.1 - A.4,
which guarantee that a space is a topological Ramsey space. (For further back-
ground, the reader is referred to Chapter 5 of [14].) The axioms A.1 - A.4 are
defined for triples (R,≤, r) of objects with the following properties: R is a nonempty
set, ≤ is a quasi-ordering on R, and r : R× ω → AR is a map producing the se-
quence (rn(·) = r(·, n)) of restriction maps, where AR is the collection of all finite
approximations to members of R. For u ∈ AR and X,Y ∈ R,

(1) [u,X] = {Y ∈ R : Y ≤ X and (∃n) rn(Y ) = u}.

For u ∈ AR, let |u| denote the length of the sequence u. Thus, |u| equals the
integer k for which u = rk(u). For u, v ∈ AR, u v v if and only if u = rm(v) for
some m ≤ |v|. u < v if and only if u = rm(v) for some m < |v|. For each n < ω,
ARn = {rn(X) : X ∈ R}.

A.1 (1) r0(X) = ∅ for all X ∈ R.

(2) X 6= Y implies rn(X) 6= rn(Y ) for some n.

(3) rm(X) = rn(Y ) implies m = n and rk(X) = rk(X) for all k < n.

A.2 There is a quasi-ordering ≤fin on AR such that

(1) {v ∈ AR : v ≤fin u} is finite for all u ∈ AR,

(2) Y ≤ X iff (∀n)(∃m) rn(Y ) ≤fin rm(X),

(3) ∀u, v, y ∈ AR[y < v ∧ v ≤fin u→ ∃x < u (y ≤fin x)].

The number depthX(u) is the least n, if it exists, such that u ≤fin rn(X). If such
an n does not exist, then we write depthX(u) = ∞. If depthX(u) = n < ∞, then
[depthX(u), X] denotes [rn(X), X].
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A.3 (1) If depthX(u) <∞ then [u, Y ] 6= ∅ for all Y ∈ [depthX(u), X].

(2) Y ≤ X and [u, Y ] 6= ∅ imply that there is Y ′ ∈ [depthX(u), X] such
that ∅ 6= [u, Y ′] ⊆ [u, Y ].

Additionally, for n > |u|, let rn[u,X] denote the collection of all v ∈ ARn such
that u < v and v ≤fin X.

A.4 If depthX(u) < ∞ and if O ⊆ AR|u|+1, then there is Y ∈ [depthX(u), X]
such that r|u|+1[u, Y ] ⊆ O or r|u|+1[u, Y ] ⊆ Oc.

The Ellentuck topology on R is the topology generated by the basic open sets
[u,X]; it refines the metric topology onR, considered as a subspace of the Tychonoff

cube ARN. Given the Ellentuck topology on R, the notions of nowhere dense, and
hence of meager are defined in the natural way. We say that a subset X of R has
the property of Baire iff X = O ∩ M for some Ellentuck open set O ⊆ R and
Ellentuck meager set M⊆ R.

Definition 1 ([14]). A subset X of R is Ramsey if for every ∅ 6= [u,X], there is a
Y ∈ [u,X] such that [u, Y ] ⊆ X or [u, Y ] ∩ X = ∅. X ⊆ R is Ramsey null if for
every ∅ 6= [u,X], there is a Y ∈ [u,X] such that [u, Y ] ∩ X = ∅.

A triple (R,≤, r) is a topological Ramsey space if every subset of R with the
property of Baire is Ramsey and if every meager subset of R is Ramsey null.

The following result can be found as Theorem 5.4 in [14].

Theorem 2 (Abstract Ellentuck Theorem). If (R,≤, r) is closed (as a subspace of

ARN) and satisfies axioms A.1, A.2, A.3, and A.4, then every subset of R with
the property of Baire is Ramsey, and every meager subset is Ramsey null; in other
words, the triple (R,≤, r) forms a topological Ramsey space.

3. A variant of the product tree Ramsey theorem

The main theorem of this section, Theorem 3, is a Ramsey theorem on un-
bounded finite products of finite sets. This is a variation of Theorem 4 below, due
to Todorcevic, with the strengthenings that exactly one of the entries Kp in each
finite product is replaced with [Kp]k and p is allowed to vary over all numbers less
than or equal to the length of the product, and the weakening that some of the
chosen subsets may have cardinality one. The conclusion is what is needed to prove
Axiom A.4 for two of the examples of forcing with pure candidates in the next
section; essentially, it is the pigeonhole principle for rk[k−1, t̄ ], for t̄ in a particular
dense subset of the creature forcing. The hypothesis of |Kj | ≥ j + 1 lends itself to
our intended applications.

We point out that by minor adjustments in the proof, a true generalization of
Theorem 4 can be proved, where some function Rk on all finite sequences of positive
integers is found guaranteeing that each Hi may be taken of a prescribed size mi,
rather than requiring many of them to having size 1, and that L = ω (and N is
some infinite subset of ω). As this is not our intended application, we leave its
proof to the interested reader.

Throughout, for p ≤ n, [Kp]k ×
∏

j∈(n+1)\{p}Kj is used to denote

K0 × · · · ×Kp−1 × [Kp]k ×Kp+1 × · · · ×Kn.
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Theorem 3. Given k ≥ 1, a sequence of positive integers (m0,m1, . . . ), sets Kj,
j < ω such that |Kj | ≥ j + 1, and a coloring

c :
⋃
n<ω

⋃
p≤n

([Kp]k ×
∏

j∈(n+1)\{p}

Kj)→ 2,

there are infinite sets L,N ⊆ ω such that, enumerating L and N in increasing
order, l0 ≤ n0 < l1 ≤ n1 < . . . , and there are subsets Hj ⊆ Kj, j < ω, such that
|Hli | = mi for each i < ω, |Hj | = 1 for each j ∈ ω \ L, and c is constant on⋃

n∈N

⋃
l∈L∩(n+1)

([Hl]
k ×

∏
j∈(n+1)\{l}

Hj).

Theorem 3 is a variation of the following product tree Ramsey theorem, (Lemma
2.2 in [2] and Theorem 3.21 in [14]), which we now state since it will be used in the
proof of Theorem 3.

Theorem 4 (DiPrisco-Llopis-Todorcevic, [2]). There is an R : [ω \{0}]<ω → [1, ω)
such that for every infinite sequence (mi)i<ω of positive integers and for every
coloring

c :
⋃
n<ω

∏
i≤n

R(m0, . . . ,mi)→ 2,

there exist Hi ⊆ R(m0, . . . ,mi), |Hi| = mi, for i < ω, such that c is constant on
the product ∏

i≤k

Hi

for infinitely many n < ω.

The proof of Theorem 3 closely follows the proof of Theorem 4 as presented in
[14]. It will follow from Corollary 8 (proved via Lemmas 5 and 6 and Theorem 7)
along with a final application of Theorem 4.

The following lemma and its proof are minor modifications of Lemma 2.1 in [2]
(see also Lemma 3.20 in [14]), the only difference being the use of [H0]k in place of
H0. We make the notational convention that for n = 0, [H0]k ×

∏n
j=1Hj denotes

[H0]k.

Lemma 5. For any given k ≥ 1 and sequence (mj)j<ω of positive integers, there
are numbers Sk(m0, . . . ,mj) such that for any n < ω and any coloring

c : [Sk(m0)]k ×
n∏

j=1

Sk(m0, . . . ,mj)→ 2,

there are sets Hj ⊆ Sk(m0, . . . ,mj), j ≤ n, such that |Hj | = mj and c is monochro-
matic on [H0]k ×

∏n
j=1Hj.

Proof. Let Sk(m0) be the least number r such that r → (m0)k2 . This satisfies the
lemma when n = 0. Now suppose that n ≥ 1 and the numbers Sk(m0, . . . ,mj),
j < n, have been obtained satisfying the lemma. Let N denote the number
|[Sk(m0)]k| · Sk(m0,m1) · · ·Sk(m0, . . . ,mn−1), and let Sk(m0, . . . ,mn) = mn · 2N .
Given a coloring c : [Sk(m0)]k×

∏n
j=1 Sk(m0, . . . ,mj)→ 2, for each t ∈ [Sk(m0)]k×∏n−1

j=1 Sk(m0, . . . ,mj), let ct denote the coloring on Sk(m0, . . . ,mn) given by ct(x) =

c(t_x), for x ∈ Sk(m0, . . . ,mn). Let 〈ti : i < N〉 be an enumeration of the members
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of [Sk(m0)]k ×
∏n−1

j=1 Sk(m0, . . . ,mj), and let K0 = Sk(m0, . . . ,mn). Given i < N

and Ki, take Ki+1 ⊆ Ki of cardinality mn · 2N−(i+1) such that cti is constant on
{ti_x : x ∈ Ki+1}. By induction on i < N , we obtain KN ⊆ Sk(m0, . . . ,mn) of
size mn such that for each i < N , cti is constant on KN . Let Hn = KN . Now let

c′ be the coloring on [Sk(m0)]k×
∏n−1

j=1 Sk(m0, . . . ,mj) given by c′(t) = c(t_x), for

any (every) x ∈ Hn. By the induction hypothesis, there are Hj ⊆ Sk(m0, . . . ,mj)

of cardinality mj , j < n, such that c′ is constant on [H0]k ×
∏n−1

j=1 Hj . Then c is

constant on [H0]k ×Πn
j=1Hj . �

Remark. It follows from k ≥ 2 that each Sk(m0, . . . ,mj) must be greater than
the number S(m0, . . . ,mj) from Lemma 3.20 in [14]. The case k = 1 is simply a
re-statement of Lemma 3.20 in [14].

Given k ≥ 1 and M ∈ [ω]ω, letting {mi : i < ω} be the increasing enumeration

of M , the notation Mo
k−−→ Me means that for each 2-coloring c :

⋃
n<ω([m1]k ×∏n

j=1m2j+1) → 2, there are Hj ⊆ m2j+1 such that |Hj | = m2j and c is constant

on [H0]k ×
∏n

j=1Hj for infinitely many n. The following lemma and its proof

are almost identical with those of Lemma 3.18 in [14], the only changes being the
substitution of

⋃
n<ω([ω]k×ωn−1) for the domain of the function c in place of ω<ω,

the substitution of [ω]k for one of the copies of ω, and an application of Lemma 5
in place of the application of Lemma 3.20 in [14]. Thus, we omit its proof.

Lemma 6. For each k ≥ 1, there is an infinite subset N ⊆ ω such that Mo
k−−→Me

for each M ∈ [N ]ω.

The next theorem is a slight generalization of Theorem 4, replacing R(m0) there
with [Rk(m0)]k; its proof is almost exactly the same, merely replacing an instance
of Lemma 3.18 in [14] with Lemma 6.

Theorem 7. Given k ≥ 1, there is a function Rk : [ω \ {0}]<ω → [1, ω) such that
for each sequence (mk)k<ω of positive integers for each coloring

c :
⋃
n<ω

[Rk(m0)]k ×
n∏

j=1

Rk(m0, . . . ,mj)→ 2,

there are subsets Hj ⊆ Rk(m0, . . . ,mj) such that |Hj | = mj and c is monochromatic
on [H0]k ×

∏n
j=1Hj, for infinitely many n.

Proof. Pick an infinite subset N = (nj)j<ω of positive integers enumerated in
increasing order and satisfying Lemma 6. Set

Rk(m0, . . . ,mj) = n2(
∑j

i=0 mi)+1.

Then for every infinite sequence (mi)i<ω of positive integers, if we let

P = {n2(
∑j

i=0 mi)+ε : j ∈ ω, ε < 2},

we get an infinite subset P of N such that Po = (Rk(m0, . . . ,mi))i<ω, while the
sequence Pe pointwise dominates our given sequence (mi)i<ω. By our choice of N ,

it follows that Po
k−−→ Pe. Po supplies the infinitely many levels of n satisfying the

theorem. �

The following corollary forms the basis of the proof of Theorem 3 below.
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Corollary 8. Let L,N be infinite subsets of ω such that l0 ≤ n0 < l1 ≤ n1 < . . . .
Let k ≥ 1, m0 ≥ 1, and Kj, j ≥ l0, be nonempty sets with |Kl0 | = Rk(m0), |Kli | ≥ i
for each i ≥ 1, and |Kj | = 1 for each j ∈ (l0, ω) \ L. Then for each coloring

c :
⋃
n∈N

([Kl0 ]k ×
∏

j∈(l0,n]

Kj)→ 2,

and each r < ω, there are infinite L′ ⊆ L, N ′ ⊆ N with l′0 = l0 ≤ n′0 < l′1 ≤ n′1 <
. . . , and there are Hj ⊆ Kj such that |Hl0 | = m0, |Hl′i

| = r + i for each i ≥ 1,

|Hj | = 1 for each j ∈ (l0, ω) \ L′, and c is constant on⋃
n∈N ′

([Hl0 ]k ×
∏

j∈(l0,n]

Hj).

Proof. Let i0 = 0, and let r < ω be fixed. For each p ≥ 1, take ip a strictly increasing
sequence so that |Klip

| ≥ Rk(m0, r+1 . . . , r+p). For each j ∈ (l0, ω)\{lip : p ≥ 1},
take Hj ⊆ Kj of size one. Then the coloring c on⋃

n∈N
[Kl0 ]k ×

∏
{Klip

: p ≥ 1 and lip ≤ n} ×
∏
{Hj : j ∈ (l0, n] \ {liq : q ≥ 1}}

induces a coloring c′ on
⋃

p<ω[J0]k ×
∏p

q=1 Jq, where Jq = Kliq
, as follows: For

p < ω and (X0, x1, . . . , xp) ∈ [J0]k ×
∏p

q=1 Jq, letting Yl0 = X0, yliq = xq, and

for each j ∈ (l0, nip ] \ {liq : q ≤ p} letting yj denote the member of Hj , we
define c′(X0, x1, . . . , xp) = c(Yl0 , yl0+1, . . . , ynip

). Apply Theorem 7 to c′ to obtain

Hl0 ∈ [Kl0 ]m0 , subsets Hlip
∈ [Klip

]r+p for each p ≥ 1, and an infinite set P such

that c′ is constant on
⋃

p∈P [Hl0 ]k×
∏

1≤q≤pHliq
. Then letting N ′ = {nip : p ∈ P},

c is constant on
⋃

n∈N ′ [Hl0 ]k×
∏

l0<j≤nHn. Letting L′ = {lip : p ∈ P} finishes the
proof. �

Now we are equipped to prove Theorem 3.

Proof of Theorem 3. Take l0 least such that |Kl0 | ≥ Rk(R(m0)), and let L0 =
N0 = [l0, ω). For each j < l0, take some Hj ∈ [Kj ]

1 and let h � l0 denote
∏

j<l0
Hj .

Then c restricted to
⋃

n∈N0
(h � l0) × [Kl0 ]k ×

∏
j∈(l0,n]Kj induces a 2-coloring on⋃

n∈N0
[Kl0 ]k×

∏
j∈(l0,n]Kj . By Corollary 8, there are infinite L′0 ⊆ L0 and N ′0 ⊆ N0

such that l0 = l′0 ≤ n′0 < l′1 ≤ n′1 < . . . , and there are subsets H0
j ⊆ Kj , j ≥ l0,

such that |H0
l0
| = R(m0), |H0

l′i
| = i for each i ≥ 1, |H0

j | = 1 for each j ∈ ω \L′0, and

c is constant on
⋃

n∈N ′0
(h � l0)× [H0

l0
]k ×

∏
j∈(l0,n]H

0
j .

Let Hl0 = H0
l0

, and let n0 = min(N ′0). Then n0 ≥ l0. Let R1
k(m) denote Rk(m)

and in general, let Ri+1
k (m) denote Rk(Ri

k(m)). Fix an l1 ∈ L′0 such that l1 > n0

and |H0
l1
| ≥ R

R(m0)
k (R(m0,m1)). For j ∈ (l0, l1), fix some Hj ∈ [H0

j ]1, and let

h � l1 denote
∏

j∈l1\{l0}Hj . Enumerate Hl0 as {hil0 : i < m0}. Successively apply

Corollary 8 R(m0) times to obtain L1 ⊆ L′0 with min(L1) = l1, N1 ⊆ N ′0, Hl1 ⊆ Kl1

of cardinality R(m0,m1), and subsets H1
j ⊆ Kj for j ∈ [l1, ω), such that listing L1

as l1 = l11 < l12 < . . . we have |H1
li
| ≥ i and satisfying the following: For each fixed

h∗l0 ∈ Hl0 , the coloring c is constant on⋃
n∈N1

(h � l1)× {h∗l0} × [Hl1 ]k ×
∏

j∈(l1,n]

H1
j .
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In general, suppose for p ≥ 1, we have fixed l0 ≤ n0 < · · · < lp ≤ np, and chosen
infinite sets Lp, Np with lp = min(Lp) and lp = lpp ≤ npp < lpp+1 ≤ npp+1 < . . . and

sets Hj ⊆ Kj for j ≤ lp and sets Hp
j ⊆ Kj for j > lp such that the following hold:

(1) for each i ≤ p, |Hli | = R(m0, . . . ,mi),
(2) for each l ∈ lp \ {li : i < p}, |Hl| = 1,
(3) for each i > p, |Hp

lpi
| ≥ i,

(4) and for each j ∈ (lp, ω) \ Lp, |Hp
j | = 1.

Let h � lp denote
∏

j∈lp\{l0,...,lp−1}Hj , which is a product of singletons. By our

construction so far, we have ensured that for each sequence x̄ ∈ Πi<pHli , c is
constant on ⋃

n∈Np

h � lp × x̄× [Hlp ]k ×
∏

j∈(lp,n]

Hp
j .

Let n(p) = |
∏

i≤pHli |. Fix np ∈ Np such that np ≥ lp and take lp+1 ∈ Lp

such that lp+1 > np and |Hp
lp+1
| = R

n(p)
k (R(m0, . . . ,mp+1)). After n(p) successive

applications of Corollary 8, we obtain Lp+1 ⊆ Lp and Np+1 ⊆ Np with min(Lp+1) =

lp+1, subsets Hj ⊆ Kj for j ∈ (lp, lp+1] and sets Hp+1
j ⊆ Hp

j for j > lp+1 such that
the following hold:

(1) |Hlp+1 | = R(m0, . . . ,mp+1),
(2) for each l ∈ (lp, lp+1), |Hl| = 1,

(3) for each i > p+ 1, |Hp+1

lp+1
i

| ≥ i,
(4) and for each j ∈ (lp+1, ω) \ Lp+1, |Hp

j | = 1;

and moreover, letting np+1 = min(Np+1) and letting h � lp+1 =
∏

j∈lp+1\{l0,...,lp}Hj ,

for each x̄ ∈
∏

i≤pHli , c is constant on⋃
n∈Np+1

(h � lp+1)× x̄× [Hlp+1
]k ×

∏
j∈(lp+1,n]

Hp+1
j .

Then fix an np+1 ∈ Np+1 such that np+1 ≥ lp+1.
In this manner, we obtain L = {li : i < ω} and N = {ni : i < ω} such

that l0 ≤ n0 < l1 ≤ n1 < l2 ≤ n2 < . . . , and Hj ⊆ Kj , j < ω, such that
|Hli | = R(m0, . . . ,mi) for each i < ω, |Hj | = 1 for each j ∈ ω \ L, and for each
p < ω, for each x̄ ∈

∏
i≤pHli , c is constant on⋃

n∈N∩[lp,ω)

(h � lp)× x̄× [Hlp ]k ×
∏

j∈(lp,n]

Hj .

Defining c′(x̄) to be this constant color induces a 2-coloring on
⋃

p∈ω
∏

i≤pHli . Since

each |Hli | = R(m0, . . . ,mi), we may apply Theorem 4 to obtain H∗li ⊆ Hli of cardi-
nality mi and an infinite subset N∗ ⊆ N such that c̄ is constant on

⋃
n∈N∗

∏
i≤nH

∗
li

.

Then letting H∗j = Hj for j 6∈ L, and letting L∗ be any subset of {li : i < ω} such
that l∗0 ≤ n∗0 < l∗1 ≤ n∗1 < . . . , c is constant on⋃

n∈N∗

⋃
l∈L∗∩(n+1)

[H∗l ]k ×
∏

j∈(n+1)\{l}

H∗j .

�
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4. Topological Ramsey spaces as dense subsets of three examples of
creature forcings

In [13], Ros lanowski and Shelah provided four specific examples of pure candi-
dates for creature forcings, Examples 2.10 - 2.13, to which their theory of partition
theorems in [13] is applied. In this section, we show that for three of these exam-
ples, the collections of pure candidates contain dense subsets which form topological
Ramsey spaces. Theorem 3 is the essence of the pigeonhole principle, axiom A.4,
for two of these examples, and the Hales-Jewett Theorem provides A.4 for the last
example. For more background on creature forcing, the reader is referred to [12].

To show that a dense subset of a collection of pure candidates t̄ forms a topo-
logical Ramsey space, it suffices by the Abstract Ellentuck Theorem 2 to define
a notion of k-th approximation of t̄ and a quasi-ordering ≤fin on the collection
of finite approximations (in our cases this will be a partial ordering), and then
prove that the Axioms A.1 - A.4 hold. In each of the examples below, given
a creating pair (K,Σ), we shall form a dense subset of the pure candidates, call
it R(K,Σ), partially ordered by the partial ordering inherited from the collec-
tion of all pure candidates. For each t̄ = (t0, t1, . . . ) ∈ R(K,Σ), for k < ω, we
let rk(t̄) = (ti : i < k). Thus, r0(t̄) is the empty sequence, and r1(t̄) = (t0),
which is a sequence of length one containing exactly one member of K. The
partial ordering ≤fin on AR = {rn(t̄) : t̄ ∈ R(K,Σ), n < ω} be defined by
(t0, . . . , tn−1) ≤fin (s0, . . . , sm−1) if and only if there is a strictly increasing sequence
0 = j0 < · · · < jn = m − 1 such that for each i < n, ti ∈ Σ((sl : ji ≤ l < jl+1)),
(or Σ∗((sl : ji ≤ l < ji+1)), as appropriate). The basic open sets in the Ellentuck
topology are then defined as [u, t̄] = {s̄ ∈ R(K,Σ) : ∃n (rn(s̄) = u) and s̄ ≤ t̄}, for
u ∈ AR and t̄ ∈ R(K,Σ), with u ≤fin t̄.

Given this set-up, it is clear that A.1 holds. Since given (s0, . . . , sm−1) ∈ AR,
Σ(s0, . . . , sm−1) and Σ∗(s0, . . . , sm−1) are finite, A.2 (1) holds. A.2 (2) is simply
the definition of the partial ordering ≤ when restricted to R(K,Σ), and A.2 (3)
is straightforward to check, using the definition of ≤fin. A.3 follows from the
definition of Σ (or Σ∗). Thus, showing that the pigeonhole principle A.4 holds for
these examples is the main focus of this section.

Example 2.10 in [13]. Let H1(n) = n+ 1 for n < ω and let K1 consist of all FP
creatures t for H1 such that

• dis[t] = (u, i, A) = (ut, it, At), where u ⊆ [mt
dn,m

t
up), i ∈ u, ∅ 6= A ⊆ H1(i),

• nor[t] = log2(|A|),
• val[t] ⊆

∏
j∈u H1(j) is such that {f(i) : f ∈ val[t]} = A.

For t0, . . . , tn ∈ K1 with mtl
up = m

tl+1

dn , let Σ∗1(t0, . . . , tn) consist of all creatures
t ∈ K1 such that

mt
dn = mt0

dn, m
t
up = mtn

up, u
t =

⋃
l≤n

utl , it = itl∗ , At ⊆ Atl∗ for some l∗ ≤ n,

and val[t] ⊆ {f0 ∪ · · · ∪ fn : (f0, . . . , fn) ∈ val[t0]× · · · × val[tn]}. Ros lanowski and
Shelah proved that (K1,Σ

∗
1) is a tight FFCC pair with bigness and t-multiadditivity,

and is gluing on every t̄ ∈ PCtt
∞(K1,Σ1). The partial ordering ≤ on PCtt

∞(K1,Σ
∗
1)

is defined by t̄ ≤ s̄ if and only if there is a strictly increasing sequence (jn)n<ω,
with j0 = 0, such that each tn ∈ Σ∗1(sjn , . . . , sjn+1−1).
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Remark. Here, t̄ is the stronger condition. This reversal of the partial order no-
tation of Ros lanowski and Shelah is better suited to the topological Ramsey space
framework.

First define S1 to consist of those t̄ ∈ PCtt
∞(K1,Σ

∗
1) such that for each l < ω,

there is a function gtl ∈
∏

j∈ul\{itl}H1(j) such that for each f ∈ val[tl], f �
(ul \ {itl}) = gtl . In other words, val[tl] = {gtl ∪ {(itl , k)} : k ∈ Atl}. Notice that
S1 is dense in PCtt

∞(K1,Σ
∗
1). Next, we define a dense subset of S1, which we shall

prove is a topological Ramsey space.

Definition 9 (The space R(PCtt
∞(K1,Σ

∗
1)),≤, r)). Let R(PCtt

∞(K1,Σ
∗
1)) consist of

those members s̄ ∈ S1 such that for each l < ω, |Atl | = l+1. For each k < ω and s̄ =
(s0, s1, . . . ) ∈ R(PCtt

∞(K1,Σ
∗
1)), the k-th restriction of s̄ is rk(s̄) = (s0, . . . , sk−1).

For (s0, . . . , sk−1), (t0, . . . , tm−1) ∈ AR, define (t0, . . . , tm−1) ≤fin (s0, . . . , sk−1) if
and only if there is a strictly increasing sequence (jn)n≤m, with j0 = 0, such that
for each n < m, tn ∈ Σ∗1(sjn , . . . , sjn+1−1).

Theorem 10. R(PCtt
∞(K1,Σ

∗
1)),≤, r) is a topological Ramsey space which is dense

in the partial ordering of all tight pure candidates PCtt
∞(K1,Σ

∗
1).

Proof. First, abbreviate R(PCtt
∞(K1,Σ

∗
1)) as Rtt(K1,Σ

∗
1). The space Rtt(K1,Σ

∗
1)

is dense in S1 and hence is dense in PCtt
∞(K1,Σ

∗
1). Towards showing A.4 holds,

let k ≥ 1 be fixed and let t̄ be a given member of Rtt
1 . Let c : rk[k − 1, t̄ ]→ 2 be a

given coloring. We shall show that there is a ū ∈ [k − 1, t̄ ] such that c is constant
on rk[k − 1, ū].

Notice that each x̄ ∈ rk[k − 1, t̄ ] is of the form x̄ = (t0, . . . , tk−2, xk−1), with
xk−1 ∈ Σ∗1(tk−1, . . . , tn) for some n ≥ k − 1, and ixk−1 = itl and Axk−1 ∈ [Atl ]k,
for some l ∈ [k − 1, n]. Thus, xk−1 is completely determined by the triple (n, l, A),
where n ≥ k − 1, l ∈ [k − 1, n], and A = Axk−1 ∈ [Atl ]k. Therefore, c induces a
coloring on ⋃

k−1≤l≤n

[Atl ]k ×
∏

j∈(n+1)\{l}

Atj .

Apply Theorem 3 to the sequence of sets Atj , j ≥ k− 1 to obtain infinite sets L,N
and Hj ⊆ Atj such that k − 1 ≤ l0 ≤ n0 < l1 ≤ n1 < . . . , and for each p < ω,
|Hlp | = k + p, and for each j ∈ ω \ L, |Hj | = 1; and moreover, c is constant on⋃

n∈N

⋃
l∈L∩(n+1)

[Hl]
k ×

∏
j∈(n+1)\{l}

Hj .

Take s̄ ∈ Rtt
1 as follows: (s0, . . . , sk−2) = rk−1(t̄). sk−1 is given by m

sk−1

dn =

m
tk−1

dn and m
sk−1
up = m

tnk−1
up , isk−1 = itlk−1 and Ask−1 = Hlk−1

, and gsk−1 =
Πj∈usk−1\{lk−1}Hj . In general, for p ≥ k, take sp ∈ Σ∗1(tnp−1+1, . . . , tnp

) such that

isp = itlp , Asp = Hlp , m
sp
dn = m

tnp−1+1

dn and m
sp
up = m

tnp
up , and gsp =

∏
j∈usp\{lp}Hj .

This defines s̄ ≤ t̄ in Rtt
1 with rk−1(s̄) = rk−1(t̄) such that the coloring c is constant

on rk[k−1, s̄]. Thus, A.4 holds, and therefore, by the Abstract Ellentuck Theorem
2 and earlier remarks, (Rtt(K1,Σ

∗
1),≤, r) is a topological Ramsey space. �

Example 2.11 in [13]. Let H2(n) = 2 for n < ω and let K2 consist of all FP
creatures t for H2 such that

• ∅ 6= dis[t] ⊆ [mt
dn,m

t
up),
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• ∅ 6= val[t] ⊆ dis[t]2,
• nor[t] = log2(|val[t]|).

For t0, . . . , tn ∈ K2 with mtl
up ≤ m

tl+1

dn , let Σ2(t0, . . . , tn) consist of all creatures
t ∈ K2 such that

mt
dn = mt0

dn, m
t
up = mtn

up, dis[t] = dis[tl∗ ], and val[t] ⊆ val[tl∗ ], for some l∗ ≤ n.

The partial ordering ≤ on PC∞(K2,Σ2) is defined by t̄ ≤ s̄ if and only if there is a
strictly increasing sequence (jn)n<ω, j0 = 0, such that each tn ∈ Σ2(sjn , . . . ,sjn+1−1).
Ros lanowski and Shelah proved that (K2,Σ2) is a loose FFCC pair for H2 which
is simple except omitting and has bigness. For this example, the tight and loose
versions are the same, so we shall drop the tt superscript.

Definition 11 (The space (R(PC∞(K2,Σ2)),≤, r)). Let

R(PC∞(K2,Σ2)) = {s̄ ∈ PC∞(K2,Σ2) : ∀l < ω, |val[tl] | = l + 1},

with its inherited partial ordering. Abbreviate this space by R(K2,Σ2). For each
k < ω and s̄ = (s0, s1, . . . ) ∈ R(K2,Σ2), the k-th restriction of s̄ is simply rk(s̄) =
(s0, . . . , sk−1). For (s0, . . . , sk−1), (t0, . . . , tm−1) ∈ AR, define (t0, . . . , tm−1) ≤fin

(s0, . . . , sk−1) if and only if there is a strictly increasing sequence (jn)n≤m, with
j0 = 0, such that for each n < m, tn ∈ Σ2(sjn , . . . , sjn+1−1).

Theorem 12. (R(PC∞(K2,Σ2)),≤, r) is a topological Ramsey space which is
dense in the partial ordering of all pure candidates PC∞(K2,Σ2).

Proof. It is clear that R(K2,Σ2) forms a dense subset of PC∞(K2,Σ2). Towards
proving that A.4 holds, let k ≥ 1 be fixed, t̄ ∈ R(K2,Σ2), and c : rk[k − 1, t̄ ]→ 2
be a given coloring. Each x̄ ∈ rk[k − 1, t̄ ] is of the form x̄ = (t0, . . . , tk−2, xk−1),
with xk−1 ∈ Σ2(tk−1, . . . , tn) for some n ≥ k − 1, dis[xk−1] = dis[tl] for some
l ∈ [k−1, n], and val[xk−1] ⊆ val[tl]. Hence, xk−1 is completely determined by the
triple (n, l,val[xk−1]), so we may regard c as a coloring of triples from

{(n, l,K) : k − 1 ≤ l ≤ n, and K ∈ [val[tl]]
k}.

Letting Kl = val[tl], we see that c induces a coloring c′ on⋃
k−1≤l≤n

[Kl]
k ×

∏
{Kj : k − 1 ≤ j ≤ n+ 1, j 6= l},

as follows: For k − 1 ≤ l ≤ n, any pj ∈ Kj (j 6= l) and Jl ∈ [Kl]
k, define

c′(pk−1, . . . , pl−1, Jl, pl+1, . . . , pn) = c(n, l, Jl).

By Theorem 3, we obtain infinite sets L = {lp : p ≥ k − 1}, N = {np : p ≥ k − 1}
such that k − 1 ≤ lk−1 := min(L) ≤ nk−1 < lk ≤ nk < . . . , and subsets Hj ⊆ Kj

such that for each p < ω, |Hlp | = k + p, and for each j ∈ ω \ L, |Hj | = 1, and
moreover, c′ is constant on⋃

n∈N

⋃
l∈L∩(n+1)

[Hl]
k ×

∏
{Hj : k − 1 ≤ j ≤ n+ 1, j 6= l}.

Take s̄ ∈ R(K2,Σ2) such that (s0, . . . , sk−2) = rk−1(t̄); and for each p ≥ k − 1,

(letting nk−2 denote m
tk−2

dn ), sp is the creature determined by m
sp
dn = m

tnp−1+1

dn ,

m
sp
up = m

tnp
up , dis[sp] = dis[tlp ] and val[sp] = Hlp . Then the coloring c is constant

on rk[k − 1, s̄]. Thus, A.4 holds. �
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Example 2.13 in [13]. Let N > 0 and HN (n) = N for n < ω. Let KN consist of
all FP creatures t for HN such that

• dis[t] = (Xt, ϕt), where Xt ( [mt
dn,m

t
up), and ϕt : Xt → N ,

• nor[t] = mt
up,

• val[t] = {f ∈ [mt
dn,m

t
up)N : ϕt ⊆ f and f is constant on [mt

dn,m
t
up) \Xt}.

For t0, . . . , tn ∈ K2 with mtl
up = m

tl+1

dn , let ΣN (t0, . . . , tn) consist of all creatures
t ∈ KN such that

• mt
dn = mt0

dn, mt
up = mtn

up, Xt0 ∪ · · · ∪Xtn ⊆ Xt,

• for each l ≤ n, either Xt ∩ [mtl
dn,m

tl
up) = Xtl and ϕt � [mtl

dn,m
tl
up) = ϕtl ,

or [mtl
dn,m

tl
up) ( Xt and ϕt � [mtl

dn,m
tl
up) ∈ val[tl].

The partial ordering ≤ on PCtt
∞(KN ,ΣN ) is defined by t̄ ≤ s̄ if and only if

there is a strictly increasing sequence (jn)n<ω, with j0 = 0, such that each tn ∈
ΣN (sjn , . . . , sjn+1−1). Ros lanowski and Shelah proved that (KN ,ΣN ) is a tight
FFCC pair for HN which has the t-multiadditivity and weak bigness, and is gluing
for each candidate in PCtt

∞(KN ,ΣN ).
We show below that this forcing itself forms a topological Ramsey space. The pi-

geonhole principle A.4 will follow from the Hales-Jewett Theorem [9]. For each k <
ω and s̄ = (s0, s1, . . . ) ∈ PCtt

∞(KN ,ΣN ), the k-th restriction of s̄ is simply rk(s̄) =
(s0, . . . , sk−1). For (s0, . . . , sk−1), (t0, . . . , tm−1) ∈ AR, define (t0, . . . , tm−1) ≤fin

(s0, . . . , sk−1) if and only if there is a strictly increasing sequence (jn)n≤m, with
j0 = 0, such that for each n < m, tn ∈ ΣN (sjn , . . . , sjn+1−1).

Theorem 13. (PCtt
∞(KN ,ΣN ),≤, r) is a topological Ramsey space.

Proof. Let k ≥ 1 and t̄ ∈ Rtt(KN ,ΣN ) be given. There is a one-to-one corre-
spondence σ between rk[k − 1, t̄ ] and the set of finite variable words on alpha-
bet N : For s ∈ rk[k − 1, t̄ ], the variable word (lk−1, . . . , lm) equals σ(s) if and
only if s ∈ ΣN (tk−1, . . . tm) and for each i ∈ [k − 1,m], li ∈ N if and only if
ϕs � [mti

dn,m
ti
up) \Xti ≡ li; and li = v if and only if Xs ∩ [mti

dn,m
ti
up) = Xti .

Given a coloring c : rk[k − 1, t̄ ] → 2, let c′ color the collection of all variable
words on alphabet N by c′(σ(s)) = c(s). By the Hales-Jewett Theorem, there is an
infinite sequence of variable words (xi)i<ω such that c′ is constant on all variable
words of the form xi0 [λ0]_ . . ._ xin [λn], where each λj ∈ N ∪ {v} and at least one
λj = v.

For each i ≥ k − 1, let l(i) = |xi|, the length of the word xi. Let m0 =
k−1+l(k−1), and given i < ω andmi, letmi+1 = mi+l(i). Let (li0, . . . , l

i
l(i)−1) = xi.

Define sk−1 to be the member of ΣN (tk−1, . . . , tm0−1) such that σ(s) = x0, and in
general, for i ≥ 1 define sk−1+i to be the member of ΣN (tmi−1

, . . . , tmi−1) such
that σ(s) = xi. Letting s̄ = rk−1(t̄)_(sk−1, sk, . . . ), it is routine to check that c is
monochromatic on rk[k − 1, s̄]. Hence, A.4 holds. �

5. Remarks and Further Lines of Inquiry

Whenever a forcing contains a topological Ramsey space as a dense subset, this
has implications for the properties of the generic extension as well as providing
Ramsey theory machinery for streamlining proofs. Although this note only showed
that the pure candidates for three examples of creature forcings contain dense
subsets forming topological Ramsey spaces, the work here points to and lays some
groundwork for several natural lines of inquiry.
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One obvious line of exploration is to develop stronger versions and other variants
of Theorem 3 to obtain the pigeonhole principle for the pure candidates for other
creating pairs, in particular for Example 2.12 in [13]. Another is to develop this
theory for the loose candidates, as we only considered tight types here. A deeper
line of inquiry is to determine the implications that the existence of a topological
Ramsey space dense in a collection of pure candidates for a creating pair has for
the forcing notion generated by that creating pair.

Forcing with any topological Ramsey space modulo almost reduction (see [3])
generates a generic ultrafilter satisfying the space’s version of the Abstract Nash-
Williams Theorem. The topological Ramsey spaces considered here force ultra-
filters on base set K, a set of creatures, which in turn generate ultrafilters on
a countable set of finite functions FH. Our work yields the conclusion of Theo-
rem 4.7 of Ros lanowski and Shelah in [13] for the examples considered in Section
4. Their means of proof via analogues of Galvin-Glazer methods is subsumed in
the proof of the Abstract Ellentuck Theorem 2, that axioms A.1 - A.4 imply a
space is a topological Ramsey space. It seems that further study will yield fruitful
cross-pollination between these two approaches to similar problems. We are also
interested in what the implications of the complete combinatorics for an ultrafilter
generic for some topological Ramsey space of pure candidates over L(R) (in the
presence of a supercompact cardinal) will be for the induced ultrafilter on FH.

The hope is that further investigations into connections between creature forcings
and topological Ramsey spaces will lead to new Ramsey-type theorems and new
topological Ramsey spaces, while adding to the collection of available machinery
and streamlining at least some genres of the myriad of creature forcings.
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