
Obtaining Woodin’s Cardinals

P.D. Welch
School of Mathematics, University of Bristol,

Bristol, BS8 1TW
&

Isaac Newton Institute for Mathematical Sciences,
20 Clarkson Road, Cambridge CB3 0EH, United Kingdom

22nd October 2015

Abstract

Since the 1980’s work on Projective Determinacy and ADL(R) the concept of
Woodin cardinal has become to be seen as central in the theory of large cardinals
and inner model theory. The use by Woodin himself of a background assumption
in many arguments that the universe contains unboundedly many such cardinals
again draws attention to the centrality of this concept.

As is well known the Reflection Principles dating to a more classicial era only
provide large cardinals consistent with V = L, and not the wherewithal for such
theorems on absoluteness under set forcing that Woodin has proven.

We discuss here a reflection principle derived from weak sub-compactness that
implies the existence of a proper class of measurable Woodin cardinals - thus
providing adequate background assumptions for many of Woodin’s absoluteness
results in his work.

O, there has been much throwing about of brains.
Guildenstern; Hamlet II.2

1 Introduction
This article1 is not a history of the origins of Woodin’s notion of large cardinal now
named after him, which was so central in the arguments used to establish Projective
Determinacy by Martin and Steel, and Woodin himself for ADL(R); this history is told
elsewhere - see for example [9]. The ubiquity of Woodin cardinals is attested by the
literature today not on just determinacy issues, but on so very many of the consistency
results with which we gauge the strength of set theoretic objects. However it is not
due to the power of infinitely many Woodin cardinals to settle the question of definable

1”This paper was partially prepared whilst the author was a visiting fellow at the Isaac Newton Institute
for Mathematical Sciences in the programme ‘Mathematical, Foundational and Computational Aspects of
the Higher Infinite’ (HIF).”
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determinacy (whether taken in the PD or ADL(R) form) or as Woodin has written
[24] to give us as good as complete a theory of the hereditarily countable sets, HC,
as possible, but rather the use of unboundedly many Woodin cardinals throughout the
ordinals as an, again uniquitous, background assumption for many of his, and others’
work on, for example, establishing the absoluteness of many properties of our universe,
most typically into imagined generic extensions of the universe V by set-sized forcing
notions.

If a hoped for “reduction in incompleteness” over our standard axioms of ZFC is
to be achieved by the adoption of new axioms, and if we are to attempt to fully justify
those axioms, then arguing for an axiom that yields a proper class of Woodin cardinals
is an excellent place to start. Let UW abbreviate this axiom (for Unboundedly many
Woodin cardinals).

What conception of set or universe of sets can we have that will deliver this for
us? That ZFC could and should be extended was famously pleaded for by Gödel in [7]
which is by now a locus classicus:

“the axioms of set theory by no means form a system closed in itself, but, quite on
the contrary, the very concept of set on which they are based suggests their extension
by new axioms which assert the existence of still further iterations of the operation “set
of” ”

...[The ZFC axioms may be] supplemented without arbitrariness by new axioms
which only unfold the content of the concept of set”.

A discussion of the nature of intrinsic necessity in the words of Gödel, or of in-
trinsic versus extrinsic justification should probably now be made but I shall short-
circuit this by referring the reader to Koellner’s article [10] and discussion. It is not my
intention to wade in here. The discussion here is about what possible “conception of
set” could lead to UW.

2 The Cantorian versus the Zermelian realms
Cantor’s discoveries and advances were made as a mathematician would work: in a
non-formalised manner (and even that phrase is anachronistic). His viewpoint concern-
ing the world of order types and cardinalities would be formed in an intuitive manner.
In the past it was stated that Cantor’s views were that of a ‘naive set theorist’, a descrip-
tion not as usually used, but with the emphasis on ‘naive’. Now, however we realise
that in fact he was quite aware of the pitfalls of what we would call the set/class dis-
tinction. At different stages of his career he used the phrase “The Absolute Infinite” or
around the time of the publication of Burali-Forti (1897) - “inconsistent multiplicities”,
or later - both.

In a letter to Dedekind (1899)[5]:

A multiplicity can be of such a nature, that the assumption of the ‘to-
getherness’ (‘Zusammenseins’) of a multiplicity’s elements leads to a con-
tradiction, so that it is impossible to conceive the multiplicity as a unity,
as a ‘finished thing’. Such multiplicities I call absolute infinities or incon-
sistent multiplicities.
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In the passage here he is aiming for the ‘finished things’ or consistent things, to be
sets. The multiplicity of all alephs for example, cannot constitute a finished set and
so cannot be assigned a cardinal number. (See [8] for a discussion of this notion of
Zusammensein.)

In latter day jargon we should call such ‘proper classes’. It does not show that Can-
tor no longer thought of the set theoretic universe as an ‘inaugmentable totality’, which
he had called it earlier. (Another description was that it was an ‘absolute maximum’
([4], pp410-411)). We cannot be entirely clear what Cantor had in mind when discuss-
ing this universe of sets in this pre-formalised manner, but it was clearly different from
the view Zermelo was to come to have.2

Zermelo’s maturest picture has come down to us from his [25]. The view is that
there are only sets and that these satisfy, let us say here, first order ZFC (although
Zermelo was concerned to promote a second order view and eschewed the first order
fomulations of Skolem and others). For Zermelo the only collections are sets. For
Zermelo when we do set theory our quantifiers range over a domain of discourseD say.
The ‘paradoxes’ show us that the collection D cannot be a member of itself. Hence
we can enlarge this domain to a larger domain of discourse D′ in which D is a set.
Hence we have a never ending sequence of, in his words, ‘normal domains’ which are
models of second order ZF, (and hence their ordinal heights are strongly inaccessible
cardinals); the sequence of these domains can be indexed by Cantor’s ordinal numbers.
Zermelo talks of ‘creative advancement’ as one proceeds through these domains; and
that we should talk about such a sequence of domains in some meta-theory. However
this meta-theory is never laid out, much beyond the indication that the normal domains
should be in a (1-1) correspondence with the Cantorian ordinals.

However these different views give us at least two broad-brush pictures of the uni-
verse of sets: a ‘potentialist’ view - Zermelo’s creative advancement, and an ‘actualist’
view - that the universe of sets is an absolute maximum and an inaugmentable total-
ity. It is possible to discuss these views unlinked to any kind of position concerning
platonism or realism.

3 Reflection
A potentialist view makes it hard to appeal to most kinds of Reflection principle. Zer-
melo cannot consider the whole universe, and reflect on that, since for him there is
always the potential to make the universe yet larger. All that can be said here is that
there are unboundedly many normal domains (which following Mirimanoff/von Neu-
mann we should now recognise as Vκ’s) and so a proper class of strongly inaccessible
cardinals. But even this can not be obtained by an adherent of the Zermelian school as
a result of reflection: the statement “∀α ∈ On∃β > α(ZF2)Vβ” expresses quantific-
ation over all ordinals, and this is just what cannot be done in this organic view. The
statement can however be readily obtained by allowing second order reflection of the
whole (‘actual’) universe (V,∈).

2Interestingly from the same letter, recalling that ‘equivalent’ meant bijective, one has a prefiguration of
Replacement: “Two equivalent multiplicities are either both “sets” or are both inconsistent”.
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By allowing domains of all sets and all classes - as formalised by NBG say - we
now are able to second-order quantify over all such classes and formulate reflection
principles that yield Mahlo cardinals, and second order indescribability. The story of
this is familiar enough, that we don’t repeat this here.

The point remains that all such principles only derive cardinals consistent with
V = L - so we may call them intra-constructible.

Gödel stated that he thought all large cardinals could be obtained through reflection:

The Universe of sets cannot be uniquely characterized (i.e. distinguished
from all its initial segments) by any internal structural property of the
membership relation in it, which is expressible in any logic of finite or
transfinite type, including infinitary logics of any cardinal number.

(Wang - [23])

Gödel again:

All the principles for setting up the axioms of set theory should be redu-
cible to a form of Ackermann’s principle: The Absolute is unknowable.
The strength of the principle increases as we get stronger and stronger
systems of set theory. The other principles are only heuristic principles.
Hence the central principle is the reflection principle, which presumably
will be understood better as our experience increases. (Wang - ibid.)

This seems rather sweeping and our experience with Reflection Principles seems to
go against it. Both on the one hand because Reinhardt specifically noted that Third Or-
der Reflection with parameters is inconsistent, and on the other, because our Reflection
principles have remain stuck in the intra-constructible.

There have been specific attempts to get around this obstacle by restricting the syn-
tax: Marshall [14] obtains higher order reflection (and large cardinals) by restricting
the syntax. Tait [20] uses Relativized Cantorian Principles based on certain Existence
Conditions. As motivating conditions these allow him to define certain syntactically
characterised higher order classes of formulae Γ

(m)
n for m ≥ 2 (the superscript in-

dicates that higher order universal quantification must be of at most order m). Tait
shows that for m = 2, Vκ satisfying Γ

(m)
n reflection implies that κ is n-ineffable

(in the definition of Baumgartner), and that measurability of κ sufficed to show that
Vκ satisfied Γ2

n-reflection for all n. This left open the question of whether such prin-
ciples were extra-constructible. Koellner answered this negatively by showing that if
κ is κ(ω)-Erdős cardinal then for every n Vκ satisfies Γ2

n-reflection. He further an-
swers negatively what was asked, and left open, by Tait: the Γ(m) principles are all
inconsistent for m ≥ 3.

So, even with this syntactical constraint these classes of reflection principle are
either inconsistent or are still intra-constructible.

Koellner finishes his Section 4 with a heuristic argument that any form of Reflection
Principle which is consistent relative to large cardinals is consistent relative to κ(ω).
If κ is ω-Erdős, then (Vκ,∈) has an infinite sequence of indiscernibles I⊆κ. Take
the Skolem hull H of I in Vκ. Then any order preserving map j0 : I → I induces
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a non-identity first order elementary map j : M → M , where the ZFC-model M is
the transitive collapse of (the countable) H . We then have a situation similar to the
(inconsistent with AC) assertion that there is a non-trivial elementary j : V → V .
Koellner argues that from the point of view of consistency proof “it would appear
that whatever reflection is provable from j : V → V should also be provable from
j : M → M . Since reflection would appear to be an entirely internal matter, this is
a reason for thinking that any conceivable reflection principle must have consistency
strength below that of κ(ω).” (My emphasis) Well, is reflection an entirely internal
matter? The view I shall be putting forward here, is that it is not. It is, or can be
widened to be, a Gesamtauffassung that incorporates the whole, consisting of both the
Cantorian sets and absolute infinities. If so, then it is not internal, and we have a hope
for finding extraconstructible principles.

4 The Ackermannian realm and reflection
Another set theory, due to Ackermann was introduced [1] and studied in the 1950’s and
60’s. Ackermann’s set theory A provided for a universe with extensionally determined
entities (classes) and a predicate V̇ for set-hood: “x ∈ V ”. Besides axioms for ex-
tensionality, a class construction scheme, and set completeness (“all classes that are
subclasses of sets are sets”), it contained the following crucial principle:

• (Ackermann’s Main Principle) If X ⊆ V is definable using only set parameters,
and not using the predicate V̇ , then X ∈ V . Thus if θ does not contain V :

x ∈ V ∧ ∀t(θ(x, t)−→t ∈ V ) −→ ∃z ∈ V ∀t(t ∈ z↔θ(x, t))

Ackermann interpreted Cantor’s “By a set we understand any collection of definite
distinct objects ... into a whole” as saying

“we must require from already defined sets that they are determined and
well-differentiated, thus the [foregoing] conditions for a totality [to be a
set] only turn on that it must be sufficiently sharply delimited what belongs
to a totality and what does not belong to it. However now the concept of
set is thoroughly open.”

(Ackermann [1] p.337)3.

Indeed Reinhardt, whilst working from the premise that Ackermann considered the
concept of set itself as not sharply delimited ([17], p190-1), surmises that the intuition
behind Ackermann’s Main Principle is that a sharply defined collection of sets is a set,
and that, given the set x, the property ‘t is a set such that θ(x, t)’ is independent of
the (extension of) the concept of set, but gives a sufficient condition for a collection
to be sharply delimited. We therefore see that on the other hand a collection is not

3“... wir von den schon definierten Mengen verlangen müssen, dass sie bestimmt und wohlunterschieden
sind, so kann es sich bei der obigen Bedingung für eine Gesamtheit nur darum handeln, dass genügend
scharf abgegrenzt sein muss, was zu der Gesamtheit gehört und was nicht zu ihr gehört. Nun ist aber der
Mengenbegriff durchaus offen.”
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sufficiently well-differentiated if it is defined through its relationship to the concept of
set.

The Ackermann quotation continues (in paraphrase) that in the Cantorian definition
it is intended that a collection should be investigated only on a case by case basis as to
whether it represents a set, and it is not meant that it is determined all at once for all
classes whether they are sets or not.

Levy, Vaught [12] added Foundation toA calling thisA∗. ThenA∗ is consistent rel-
ative toA, and proves the existence of the classes: {V }, {{V }}, . . . ,P(V ),PP(V ) . . .

Thus the classes over V in A∗ advance for infinitely many types beyond. The
picture is thus qute different from a first-order, or even second-order ZF . However:
Levy by considering models of A∗ of the form 〈Vα,∈, Vβ〉. The paper [11] showed
that A∗ is L∈̇- conservative over ZF: A∗ ` σV =⇒ ZF ` σ.

Reinhardt in [17] proved the converse implication of this last result also; hence
putting these together the set-theoretical content ofA∗ had always just been that of ZF.
It is thus to be noted that two rather different conceptualisations - the one leading to
the ZF formalisation, the other that of Ackermann’s - have the same content as far as
the strictly considered set part is concerned. He considered in [18] (and [19]) ideas
that involved having an ‘imaginary realm’ beyond the Cantorian universe V which he
wrote as VΩ. He imagines having classes, say P , which are then ‘projected’ into the
imaginary realm as jP . The difference between classes and sets is that the projection
of the latter are themselves, whilst that of one of the former contains more imaginary
sets and ordinals. VΩ itself is an imaginary set in this projected universe. Going yet
further, he imagines a typed hierarchy of ‘Ω-classes’ up to some λ > Ω, and collecting
these together as Vλ he will project Vλ into some virtual realm Vλ′ . He formulates an
extendability principle E0(Ω, λ; Ω′, λ′):

(i) Ω < jΩ = Ω′ < λ′.
(ii) ∀x ∈ VΩjx = x;
(iii) j : (Vλ,∈)→Σω (Vλ′ ,∈).
Of course this has come down to us distilled in set-sized form as heading towards

the definition of α-extendible cardinals. In all of these theories, there is formed the
idea of some ‘realm’, ‘universe’ etc. beyond V .

We mention these Reinhardtian views of upwards projection of (V,∈) by way of a
contrast to the Global Reflection Principle to come.

5 Global Reflection
If we are contemplating an ab initio conception of the universe of sets, then we may
proceed as follows.

By “conception of the universe of sets” we mean here something like the notion of
“concept of set structure” in one of Martin’s versions of concept of set [15]. He writes
that for him the modern, iterative concept has four important components:

(1) the concept of extensionality
(2) concept of ‘set of x’s’
(3) concept of transfinite iteration
(4) concept of absolute infinity.
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He is thinking of the concept of sets as the concept of ‘structuralist’s structure’ and
thus does not have to add anything as to what kind of things sets are. We adopt this
view here. (Martin remains silent as to which flavour of structuralism’s structure might
be at play here.) A ‘set structure’ is then what is obtained by iterating the concept ‘set
of x’s’ absolutely infinitely many times.

Still again at some pre-formal stage, he then takes some Informal Axioms en-
capsulating set theoretical principles (Extensionality, Comprehension) and rehearses
the categoricity arguments going back to Zermelo, that for any two V1 = (V1,∈1),
V2 = (V2,∈2) obtained by iterating the models’ Vα function throughout all the abso-
lute infinity of ordinals, we have an isomorphism π : (V1,∈1) → (V2,∈2). In short,
whatever view we take of what exact set formation process takes place when we take
the “set of x’s”, we end up with isomorphic universes. We, as set theorists, thus shall
pay no more attention to the mysteries of what exactly “the set of x’s” is or what pre-
cisely ∈ “is”, than we do every day, and shall simply refer to the set theoretic universe
as (V,∈). But we do further remark for later that π � OnV1 : OnV1 ∼= OnV2 where
OnVi is the absolute infinity of von Neumann ordinals in the model Vi.

We then proceed as follows. We consider the universe of sets, V , (as above, unique
up to this informal isomorphism argument) as the universe of the domain of purely
mathematical discourse: whatever mathematical objects the mathematician needs, there
are (isomorphic copies of) such in V . Indeed we regard sets themselves as mathem-
atical objects. As we know, of necessity there are entities outside of V , where the
modality of ‘necessity’ here is ‘logical necessity’: logic requires that the Russell class,
or the class of ordinals, or indeed V itself is not a set. We swallow the Cantorian pill
that there are two kinds of entities: the mathematical-discourse sets, and the absolute
infinities.

However we depart from von Neumann, who seemingly treated both kinds of entit-
ies in an equally ‘mathematical’ spirit (see [21], [22]) when developing his functions-
as-classes theory: his classes were subject to mathematical laws. We draw a firmer con-
ceptual line, and do not treat the absolute infinities in such a mathematico-functional
manner.

In a paper with Leon Horsten we have recently discussed the possible interpreta-
tions of classes prior to a development of a formal theory of them. We rule out a theory
of classes as plurals: a plural, which in any case is a linguistic construct, is not sup-
posed to add anything more ontologically to the objects we have, namely sets. However
we do have more, V is not just “some sets so that x = x”. We accept that classes are
entities that enter into structural arguments, which do not have to have any prima facie
description as a plurality. However a mereological description of absolute infinities, as
being parts of V , the absolute infinity of all sets, allows us to give sufficient substance
to these entities without tying them to any language, or syntax. We may take over a
theory of mereology, such as Lewis [13] and apply this to V together with its parts.
(We have to make some adjustments: Lewis is dubious about ∅ and the x� {x}map;
but we shall ignore these and treat our theory of parts as one which identifies sets x
also as ‘small’ parts.) Thus we take sets and the set elementhood relation as a given:
we are not trying to alter our conception of sets. Lewis thinks that the parthood rela-
tion goes someway to help us understand the set-elementhood relation, but we are not
committing ourselves to what exactly this latter relation is.
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We may thus think of second order quantifiers, if later we come to formalise our
notions, as ranging over the parts of V . It should be not associating the parts of V with
any particular linguistic structure: whereas pluralities could be interpreted in some
minimal NBG model sitting above (V,∈), a mereological view can sit happily with a
Kelley-Morse formal theory of classes, but on its own is not restricting the absolute
infinities that there are. How could it?

One should also note that there is no hierarchy of “super-parts” of collections or
“collections of parts” or any such that threatens to build a ramified hierarchy of classes
beyond On: the power set operation that collects together all the subsets of a set into a
set is a mathematical operation applied to sets. Our acceptance of a power set operation
does not require us to countenance a “power-absolute-infinity” operation. To insist that
we must consider such an operation, if we posit it for sets, is similar to insisting that if
our (physical, space-time) universe is finite then “there must be something beyond it”.

We denote by C the collection of parts of V . We identify parts of V that are parts of
sets, as themselves sets. The other parts of V are the absolute infinities. Then (V,∈, C)
is the realm of ‘Cantorian discourse’. Admittedly C inherits the ineffability of the no-
tion of absolute infinity. Initially then C would have been populated with examples of
absolute infinities that we are familiar with and had been defined by the early research-
ers. But we do not insist on restricting to this definability. (We cash in the remark
we made earlier that two possible notions of “set of x’s ” led to isomorphic universes
V1 = (V1,∈1), V2 = (V2,∈2) with an isomorphism π between them, which in par-
ticular restricted to an isomorphic map between the absolute infinity of V1’s ordinals
with those of V2. The same argument shows that ‘parts of V1’ carry over to parts of
V2. So clearly we may extend the isomorphism to π : (V1,∈1, C1)→ (V2,∈2, C2). In
other words two differing notions of “set of” cannot lead to essentially differing models
when their parts are also included. Moreover we view the content of our set, and class,
theoretical ideas to be captured by this isomorphism type.)

We want to invert the Reinhardtian approach and stand it on its head: instead of
projecting into some ‘virtual realm’, we reflect the structure (V,∈, C) to some set-sized
part of itself. The approach taken is that we regard (V,∈, C) as absolutely indistin-
guishable from one of its initial segments. However it is also possible to see the in-
distinguishability as the endpoint of a spectrum of more limited reflection properties
which we outline first.

Definition 1 (Limited Global Reflection) There is κ ∈ On, there is j 6= id, with
crit(j) = κ, and D⊆Vκ+1 so that:

j : (Vκ,∈, D) −→Σ0
ω

(V,∈, C).

Here we consider that −→Σ0
ω

denotes an embedding that preserves truth of formu-
lae of the usual first order language L∈̇, but augmented with second order free variable
symbols Ȧ, Ḃ . . ., (let us call it L+

∈̇ , and in order to explicitly distinguish languages, we
shall write, for example, ‘Σ0

n’ for formulae at that level of complexity in L+
∈̇ ) with the

interpretation of the second order variables to range over the collections C,D of parts
of V , or Vκ+1 respectively.
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As crit(j) = κ we have: (i) j�Vκ = id �Vκ ; (ii) if κ ∈ D then j(κ) = On ∈ C.
We thus have:

ϕ(x,X)(Vκ,∈,D) ↔ ϕ(x, j(X))(V,∈,C)

The strength of such a principle depends on the nature ofD, which is the non-trivial
part of the domain of j.
• If D ⊂ P (κ)L then in general we shall not have a reflection property that is

extra-constructible. Indeed, several ‘classical’ reflection properties can be expressed in
this way.
• However if D ⊇ P (κ)L then we can define in the usual way an L-ultrafilter on

κ:
X ∈ U ↔ (X ∈ L ∧ κ ∈ j(X)) (1)

By standard arguments this is an amenable normal ultrafilter, and we may define a
wellfounded ultrapower Ult((L,∈), U) which is isomorphic toL itself. In other words,
we have some non-identity embedding j0 : L−→L, i.e. 0] exists.
• As D is reckoned to be larger and larger, then the strength of the principle in-

creases: if some other definable inner model M has D ⊇ P (κ)M then again we shall
be able to define an ultrapower of the M : Ult((M,∈), U) if U is defined in the same
way. Such a model may then also be seen to be non-rigid.

The logical limit, and principle of main interest here, is when D becomes maximal
at the end of this spectrum, i.e. to become Vκ+1. Unlike the pitfall that was waiting for
Reinhardt, this principle when extended to the limit can be shown consistent relative to
large cardinals.

Definition 2 (GRP - Global Reflection Principle) There is κ ∈ On, there is j 6= id,
crit(j) = κ, so that:

j : (Vκ,∈, Vκ+1) −→Σ0
ω

(V,∈, C).

Some points are then clear: κ is strongly inaccessible; as there is a wellordering W
of Vκ in Vκ+1, then j(W ) is a wellordering of V . Thus we must have global choice
holding in V .
• GRP is equivalent to the principle obtained by weakening Σ0

ω by Σ0
1 (but not by

the usual self-strengthening argument of Gaifman, because that requires the range of
the map j to be cofinal - which does not apply here).

As soon as we have D = Vκ+1, we have that the ultrafilter U defined at (1) is
a normal measure in V . Hence κ is measurable, and by the supposed elementarity,
and by simple reflection arguments, we immediately have a proper class of measurable
cardinals. But we easily have more.

Theorem 1 GRP implies there is a proper class of Shelah cardinals.

Proof: Recall that µ is Shelah if ∀f ∈ µµ∃N, j
(
j : V → N ∧ Vj(f)(µ)⊆N

)
. We

show that κ is Shelah in the statement of GRP and this easily implies by elementarity
that there is a proper class of such.

Let f ∈ κκ⊆Vκ+1, be arbitrary. Then j(f) : On −→ On; j(f)“κ ⊆ κ. Take
λ > κ a sufficiently large inaccessible, so that j(f)(κ) < λ, and consider the “λ-
strong” extender derived from j:
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For a ∈ [λ]<ω: Ea =df {z ∈ P([κ]|a|) : a ∈ j(z)}; E = 〈Ea : a ∈ [λ]<ω〉.

This has the following properties:

(1) E is a (κ, λ)-extender such that Ult((V,∈), E) is wellfounded; with kE : V →
Ult((V,∈), E), and if l : Ult((V,∈), E) ∼= N , is the unique transitivisation collapse
map, then setting jE = l ◦ kE , jE : V −→ N and, j(f)(κ) = jE(f)(κ) < λ, and
Vλ = (Vλ)N .

As jE(f)(κ) = kE(f)(κ) < λ, then VjE(f)(κ)⊆N follows; hence we have the She-
lah property for this f . Q.E.D.

Clearly stronger properties can be argued for, but in any case we have UW :

Corollary 1 GRP implies there is a proper class of measurable Woodin cardinals.

6 Is GRP a reflection principle?
Instead of viewing GRP as a limiting principle as the class domain grows larger until
it contains all of P (κ), one could view it outright as asserting in a strong form that
(V,∈, C), that is V together with all its parts, is indistinguishable from one of its initial
segments and its parts: (Vκ,∈, Vκ+1). We view V together with its parts, and its initial
segments and their parts, as being so rich, that there is a κ such that (V,∈, C) and
(Vκ,∈, Vκ+1) can stand in this relationship. The latter is a simulacrum of the former.
The map j that is asserted to exist mediates that indistinguishability through being a
truth preserving elementary embedding.

If this viewpoint is viable, then we are taking the whole of (V,∈, C) and reflecting
this to a (Vκ,∈, Vκ+1). It is not a syntactic, formula-by-formula reflection, whether
first or second order, or something expressed in some logic. In these senses it is not
a reflection principle such as Gödel may have had in mind. It is not the viewpoint
that says “nothing we can say in whatever logic/language pins down (V,∈, C), or is
only true in (V,∈, C)” (such a viewpoint would be too weak for our purposes). To
assert GRP is to assert that there is a j doing the work of linking these collections
of parts together, those of Vκ and those of V . One cannot argue for GRP using the
iterative conception of set alone, but using this conception together with that of absolute
infinities and with the reflective idea involving C.

Of course the interceding map j is a second order object, and by elementary ar-
guments, cannot be a definable class of (V,∈, C). So when we come to formalise
our principle GRP this will require the admission that impredicative objects such as j
should be part of the discussion. There is no sense that the j of GRP has ‘come from
somewhere’ or is ‘canonical’ in any way (it certainly cannot be definable). Fried-
man and Honzik ([6], Sect. 2) raise this non-canonicity as somehow a defect of GRP:
“However, in our opinion, such strong forms of reflection seem to be too “uncanon-
ical” to count as true formalization of (Reflection)”. However their paper is concerned
with something quite different from reflection of an ‘actualised’ universe (V,∈); it is
not a potentialist version either. It seeks to gain some insight into possible new axioms
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or hypotheses (such as the “Inner Model Hypothesis] ”) that may then be offered for
consideration as true of V , by looking at countable transitive models, pretending that
V is one of them, and thereby possibly “sharp-generating” this c.t.m. by iteration of an
external premouse. Hence our viewpoint and this procedure are quite different (and at
odds with each other). Perhaps the externally provided iteration maps π̃ when restric-
ted to the c.t.m. V are deemed more ‘canonical’? (Although, if so, one may counter
this canonicity, by remarking that the externally posited ‘premouse’, and so its maps,
are not unique either.) However this is a rather sophisticated approach that applies to
countable transitive models ‘V ’, and does not really touch (in this author’s view) a
Cantorian view of V as an inaugmentable totality of sets together with a pre-formal
conception of reflection.

Indeed Peter Koellner has suggested that perhaps a “resemblance” property is a
better name. Whatever one thinks of the nomenclature, GRP is different from other
properties that are sometimes termed resemblance. We consider some such forms now
for a differential comparison; these are forms which assert that there is some reflection
or accumulation point κ so that anything that occurs above κ in some sense has an
occurrence below. One such is the Vopenka principle:

Definition 3 (Vopenka’s Principle) If 〈Mα | α ∈ On〉 is a proper class of first order
structures each in V of the same signature, then there is α < β and an elementary
embedding j so that j :Mα−→Mβ .

Notice that this is a richness principle of V that claims of any such class of struc-
tures that we have such a triple α, β, j. We can tie it closer to the structure of V by
taking the Mα of the form (Vf(α),∈, {α}, Rα) where α < f(α) for some increas-
ing function f : On−→On; and where Rα ⊆ Vf(α). The presence of {α} makes all
the difference as then if we have α, β, j as in Vopenka’s Principle, then we must have
j(α) = β, and thus j is not simple identity. Hence VP is a strong property which
implies that the class of extendible cardinals is Mahlo in On (see [16]).

A more extensive study of VP like principles where the target structures have cer-
tain elementarity properties in V is given in Joan Bagaria’s paper [2]:

Definition 4 (i) C(n) =df {α | (Vα,∈) ≺Σn (V,∈)};
(ii) κ is a C(n)-measurable cardinal if it is the critical point of an elementary em-

bedding j : V−→M , with M transitive, and j(κ) ∈ C(n);
(iii) κ is a C(n)-extendible cardinal if for all λ there exists µ,j with crit(j) = κ;

j : Vλ−→ΣωVµ with j(k) ∈ C(n).

As [2] analyzes, if κ is measurable then it is C(n)-measurable, and the prefix in this
sense adds nothing; whilst, C(n)-extendibility is a genuine stengthening of extendibil-
ity.

One final definition before we can state Bagaria’s categorization. This is now a
form of resemblance where κ is some kind of ‘reflection point’ or ‘cut point’ in the
universe V :

Definition 5 VP(κ,Σn) holds iff for every proper class C of structures of the same
type τ such that both τ and the parameters of some Σn-definition of C, if any, belong
to Hκ , then C reflects below κ, i.e. ,
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∀B ∈ C∃A ∈ C ∩Hκ(A is elementarily embeddable into B).

Theorem 2 (Bagaria [2], 4.15) The following are equivalent:
(i) VP;
(ii) For all n there is a proper class of κ so that VP(κ,Σn);
(iii) ∀n∃κ(κ is C(n)-extendible).

We thus see that VP can be given an equivalence in terms of a proper class of
reflection or cut points for any kind of definable class whatsoever.

This in fact brings out parallels with a much earlier paper of Magidor’s on super-
compacts:

Theorem 3 (Magidor [16] ) Let κ be the first supercompact cardinal; then κ is the
least cardinal so that VP(κ,Σ2).

We have mentioned the details of these definitions to see that the kind of reflection
they represent is some form of internal reflection of the ramified layers Vα rather than
the idea of reflection of the whole of universe (V,∈) which cannot be pinned down in
ways mentioned by Ackermann and Gödel. So there is a qualitative difference between
GRP and such principles.

However it is easily noted that:

Theorem 4 Con (ZFC +∃κ(κ is 1-extendible))−→Con(NBG + GRP).

But the arrow is not reversible. GRP thus falls just sort of those embeddings j
that are discontinuous at the successor of the critical point: j“κ+ is bounded in j(κ+).
Hence GRP is consistent, or can be made consistent with Global Square, and �λ
everywhere, by a class forcing. (For these methods see [3].) It is thus a reflection
principle that marks off this threshold.

7 Strengthening GRP?
Whilst the last theorem indicates what the strength of the basic GRP is, the motiv-
ation for top-down reflection rather than upwards projection came originally from a
weakening of the notion of subcompactness:

Definition 6 κ is subcompact if for any A⊆Hκ+ , there are j, µ < κ, and B⊆Hµ+

with
j : (Hµ+ , B) −→e (Hκ+ , A).

To strengthen GRP we may ask for many j’s and κ’s. Or else, more interestingly, we
may increase the elementarity of j to be (partially or fully) second order reflecting,
that is, to preserve for example Σ1

n-formulae with now quantification over the second-
order variables of L+ - such an extended language we shall call L2

∈. Then if j :
(Vκ,∈, Vκ+1) −→Σ1

ω
(V,∈, C) we shall conclude that all instances of impredicative
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comprehension - which are true in (Vκ,∈, Vκ+1), being a Kelley-Morse (KM) model -
will also hold in (V,∈, C).

If j is Σ1
ω-elementary more can be said about the range of j: for example Σ1

1-
elementarity shows that the class of Shelah cardinals is stationary in (V,∈, C). We may
go further and fomalise second order satisfaction, as follows.

We may for any n ∈ ω define a Σ1
n formula Satn(v0, v1, . . . , vk, Y1, . . . , Ym) so

that, provably in NBG +Global Choice (the latter holds if GRP does, and is needed to
define Skolem functions):

∀h ∈ ωV ∀X1, · · · ∀Xm

[Satn(pϕq, k,m, 〈h0, . . . , hk−1〉, 〈X1, . . . , Xm〉)↔ϕ(
−→
h,X1, . . . , Xm)]

,
for any Σ1

n formula ϕ(v1, . . . , vk, Y1, . . . , Ym) with the vi to be interpreted as sets, and
the Yi as classes. Let Sat be the amalgamation of these Satn predicates.

Definition 7 (GRP+) :There is κ ∈ On, there is j 6= id, crit(j) = κ,

j : (Vκ,∈, Vκ+1,SatVκ) −→Σ1
1

(V,∈, C,Sat).

We thus require j to be Σ1
1-elementary in the full second order language L2

∈̇,Ṡ with

a predicate Ṡ for Sat. It is easy to argue that subcompactness of some λ then yields a
model of GRP+.

Proposition 1 Assume GRP+. Then there is a commuting system 〈µα, jαβ〉α≤β∈On

of embeddings jαβ : (Vµα ,∈, Vµα+1, ) −→Σ0
1

(Vµβ ,∈, Vµβ+1), with each jαβ , α < β,
witnessing the simple GRP at µβ . Thus each jαβ�µα = id �µα and jαβ(µα) = µβ .
Moreover for α ∈ On, there are maps jα : (Vµα ,∈, Vµα+1) −→Σ0

1
(V, ∈, C) also

witnessing GRP in the universe.

This is obtained in a way very similar to the following from a subcompact.

Proposition 2 Let κ be subcompact. Then there is a commuting system 〈µα, jαβ〉α≤β≤κ
of embeddings jαβ : (Vµα+1,∈) −→e (Vµβ+1,∈) with, µκ = κ; each jαβ�µα =
id �µα, and jαβ(µα) = µβ , and thus with each jα+1,β , α < β, witnessing the 1-
extendibility of µα+1.

Proof: For λ ∈ Card let Satλ be the satisfaction relation for (Hλ,∈). Then we view
Satλ as a subset of Hλ. Let κ be subcompact as above, and let A = Sat = Satκ+

Then Sat⊆Hκ+ , and applying the definition of subcompactness there are µ < κ and
j, and Sat with

j : (Hµ+ ,Sat) −→e (Hκ+ ,Sat).

(1) Sat = Satµ+ .
Pf: SupposeHµ+ |= ϕ(x)↔¬Sat(pϕq, x). Apply j to get a contradiction. Q.E.D.(1)

Definition 8 (Hκ+ ,Sat) |=“ran(k) ≺e (V,∈)”⇐⇒df

∀x ∈ ran(k)∀pϕq ≡ p∃zψ(z, v1)q
∃z Sat(pψq, 〈z, j(x)〉) −→ ∃z ∈ ran(k) Sat(pψq, 〈z, j(x)〉).
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We thus use Tarski-Vaught to formalise the notion of being an elementary submodel
of V . Note that j⊆Hµ+ ×Hκ+ and |j| = |Hµ+ | < κ and so j ∈ Hκ+ . Clearly, by the
elementarity of j:

(2) (Hκ+ ,Sat) |=“ran(j) ≺e (V,∈)” indeed:

(Hκ+ ,Sat) |=“There are k, κ0, with k : (Hκ+
0
,∈) −→ (V,∈) and

ran(k) ≺e (V,∈), and thus k is an elementary map.”

But by invoking j we have:

(3) (Hµ+ ,Satµ+) |=“There are k, κ0, with k : (Hκ+
0
,∈) −→ (V,∈) and

ran(k) ≺e (V,∈), and thus k is an elementary map.”

This gives us two links in a chain of models we are looking for in the Proposition.
Suppose there are no chains of length κ of the kind sought. Let C = 〈µα, jαβ〉α≤β≤τ
be a maximal such commuting chain with the properties: (i) there is a final model
(Vµτ+1,∈), and (ii) with a final map jτ : (Vµτ+1,∈) −→ (Vκ+1,∈). Suppose τ < κ
(for otherwise we are done). For each α < τ we have that (Hκ+ ,Sat) |=“ran(jτ ◦
jατ ) ≺e (V,∈)” By elementarity of j we have in fact that,C is similarly a 1-extendible
chain, but now that there is some jτ : (Vµτ+1,∈) −→ (Vµ+1,∈), i.e. , with the chain
also maximal such, but with target (Vµ+1,∈). However this is a contradiction since
(Hκ+ ,Sat) nows sees that C can be extended one more link (namely via jτ ), and this
reflects into Hµ+ , so C is not a maximal chain going up to (Vµ+1,∈). Q.E.D.

8 Conclusion
The strengthenings of GRP considered in the last section go beyond the kind of pos-
ition outlined earlier: the purely mathematical objects reside in V , it is the parts of V
that form the proper classes of C. We reflect, in as much that there should be an initial
segment Vκ together with its parts, that is a simulacrum of (V,∈, C) with a witnessing
function j mediating this reflection. We classify Σ0

n statements as mathematical; the
second order expressions quantifying over parts are mereological: these are about the
parts of V . However if j is required to reflect structural statements or other commit-
ments about the parts of V as well, in other words if j is supposed to be mereologically
reflecting, then this can be construed as a step beyond the pure Cantorian picture we
have argued for.
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