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Abstract. For a wide class of 2D periodic elliptic operators, we show that the minima and
maxima of spectral band functions are attained on at most discrete set of values of the quasi-
momentum.

1. Introduction

The structure of band edges of periodic Schrödinger operators is an interesting and widely
open question of mathematical physics. For example, suppose that a band function k 7→ E(k)
has a minimum (or maximum) k0. In solid state physics, the tensor of effective masses Meff

around k0 is defined as {
M−1

eff

}
ij

= ± 1

~2

∂2E

∂ki∂kj

∣∣∣∣
k=k0

.

(see [1, Chapter 12, (12.29)] for more details). The choice of sign depends on whether the
extremum is a minumum (“+”, the effective mass of an electron) or a maximum (“−”, the
effective mass of a hole). This definition of Meff makes sense only if the right hand side is
invertible, i. e. the critical point k0 is non-degenerate. This is always true in one dimension,
see, for example, [16, Chapter 16]. It is commonly believed that, for d > 2, the spectral
gap edges are non-degenerate for “generic” potentials, see, for example, [14, Conjecture 5.1].
However, there are very few rigorous results in this direction. In [9], it is shown that the lowest
eigenvalue for the periodic Schrödinger operator is non-degenerate. The same holds for the
two-dimensional Pauli operator, see [5]. A wide class of operators for which the lower edge
of the spectrum can be extensively analysed is described in [4]. See also the review [11] on
photonic crystals, where additional references are given. For periodic magnetic Schrödinger
operators, already the lowest eigenvalue may be degenerate [18] (note, however, that this can
happen only for large enough magnetic potentials, see [19]).

Much less is known about the edges of other bands. In [10], it is established that, for periodic
operators of the form −∆ + V with generic V , the extrema of band functions at the edges of
spectral gaps are attained on single bands, but the question of non-degeneracy of these extrema
remains open. In [21], it is shown that for any N there exists a C∞-neighbourhood of 0 such
that, for potentials V from a dense Gδ-subset of that neighbourhood, the first N band functions
are Morse functions. In other words, any finite number of bands is non-degenerate for generic
C∞-small potentials.

In the present paper, we establish the following result (Theorem 2.1): for a wide class of 2D
periodic elliptic second order operators, any maximum or minimum of any band function can
only be attained on a discrete set of points. This excludes the possibility of the extrema being
“very degenerate”, i. e. band functions being flat along some curves. We do not need any
genericity or smallness assumptions, and our result holds for all bands, not necessarily edges of
the spectrum. We formulate the results for “smooth” second order elliptic operators (2.1). We
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believe that, using methods from [17], the result can be extended to the same generality in which
absolute continuity of the spectrum in 2D is established. The extension beyond dimension 2,
however, seems significantly more challenging, as our technique relies heavily on 2D specifics.

An immediate consequence of our result is that Liouville theorems (in the sense of [13, 14])
hold for the operator (2.1) at all gap edges, see Corollary 2.2. The result can also be used in
studying Green’s function asymptotics near spectral gap edges: in [8, 15] it is done under the
assumption that the extremum is non-degenerate and is attained at a single point, but the last
requirement can be relaxed to a finite set of points ([15, Assumption A3′] and [8, Remark 3.2]).

To our surprise, the statement of the main theorem fails for discrete periodic Schrödinger
operators on Z2, already in the case of the potential taking two different values. We explain
the corresponding example in Section 7.

Acknowledgements. The results were partially obtained during the programme Periodic
and Ergodic Spectral Problems in January – June 2015. We are grateful to the Isaac Newton
Institute for Mathematical Sciences, Cambridge, for their support and hospitality. During
the programme, we had several lively and fruitful discussions with Peter Kuchment, Leonid
Parnovski, and Roman Shterenberg, during which, among other things, the issue of possible
degree of spectral band edge degeneracy was raised. We would like to express them our deepest
thanks.

2. Formulation of the result

Let
Γ = {n1b1 + n2b2, n1, n2 ∈ Z}

be a lattice in R2, and Ω be the elementary cell of Γ identified with R2/Γ. We will use notations
such as C1

per(Ω), H1
per(Ω) for the classes of functions satisfying periodic boundary conditions.

The periodic magnetic Schrödinger operator with metric g is defined by the formal expression

(2.1) (Hu)(x) = (−i∇− A(x))∗g(x)(−i∇− A(x))u(x) + V (x)u(x),

where the electric potential V : R2 → R is assumed to satisfy

(2.2) V (x+ bj) = V (x), j = 1, 2, V ∈ L∞(Ω),

and the magnetic potential A : R2 → R2 is also Γ-periodic and

(2.3) A ∈ C1
per(Ω;R2), divA = 0,

∫
Ω

A(x) dx = 0.

Note that the last two conditions can be imposed without loss of generality by choosing a
suitable gauge. The metric g is assumed to be a Γ-periodic symmetric (2× 2)-matrix function
satisfying

(2.4) g ∈ C2
per(Ω; M2(R)), g(x) > mg1 > 0, where 1 =

(
1 0
0 1

)
,

for some real constant mg. The operator (2.1) is a self-adjoint operator on L2(R2) with the
domain being the Sobolev space H2(R2). From the standard Floquet–Bloch theory (see, for
example, [16, Chapter 16]), it follows that H is unitarily equivalent to the direct integral

(2.5)

∫ ⊕
Ω̃

H(k) dk,

where Ω̃ is the elementary cell of the dual lattice

Γ′ = {m1b
′
1 +m2b

′
2, m1,m2 ∈ 2πZ}, 〈bi, b′j〉 = δij,
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and the operators H(k) are m-sectorial operators in L2(Ω) defined on the domain H2
per(Ω) by

(2.6) H(k) = (−i∇+ k̄ − A)∗g(−i∇+ k − A) + V, k ∈ C2.

The operators H(k) form an analytic type A operator family (in the sense of Kato, [7]) with
compact resolvent. Let us denote the eigenvalues of H(k), taken in the increasing order, by
λj(k). These eigenvalues, considered as functions of k, are called band functions. These func-
tions are Γ′-periodic and piecewise real analytic on R2. The spectrum of H

σ(H) =
⋃
j

[λ−j , λ
+
j ]

is the union of spectral bands [λ−j , λ
+
j ] which are the ranges of λj(·). It is well known (under

much wider assumptions than ours, see [2, 17]) that there are no degenerate bands, i. e. we
always have λ−j < λ+

j . The bands, however, can overlap. The following main result is devoted
to the structure of these functions at the edges of spectral bands.

Theorem 2.1. Let H be an operator (2.1) with the potentials and the metric satisfying (2.2),
(2.3), (2.4). Suppose that λ is a minimum or maximum of a band function λj(·). Then the set

{k ∈ R2 : λj(k) = λ}
is finite up to Γ′-periodicity.

The following Liouville theorem at the edge of the spectrum immediately follows from The-
orem 2.1, see [13, Theorem 23 and Remark 6.1] or [14, Theorem 4.4].

Corollary 2.2. Under the assumptions of Theorem 2.1, for any µ ∈ ∂(σ(H)), the space of
polynomially bounded solutions of the equation

(−i∇− A(x))∗g(x)(−i∇− A(x))u(x) + V (x)u(x) = µu(x)

has finite dimension.

Structure of the paper. Until Section 6, we deal with the case of the scalar metric
g(x) = ω2(x)1. The proof is based on the identity from [6] showing that the values of k1

such that λ(k1e1 + k2e2) = λ are eigenvalues of a certain non-selfadjoint operator T1(k2, λ) (see
Proposition 3.1 below). The main observation is that the band edges correspond to degenerate
eigenvalues of that operator. The operator T1 is introduced in Section 3, and the main result
can easily be derived from Theorem 3.3. In Section 4, we show that the condition of the op-
erator T1(k2, λ) having degenerate eigenvalues is an analytic type condition. Hence, either the
set of “degenerate” k2 is discrete, or the operator T1(k2, λ) has degenerate eigenvalues for all
k2 ∈ C. In Section 5, we show that the latter case is impossible for the free operator and hence,
using perturbation theory and estimates on the symbol, for the perturbed operator. Section 6
describes the reduction of a general C2-metric to a scalar one. In Section 7, we give an example
of a discrete periodic Schrödinger operator for which the statement of the main theorem fails.

3. The operator T1(k2, λ)

In this section, we deal with the operator family

(3.1) H(k) = (−i∇+ k̄ − A)∗ω2(−i∇+ k − A) + V,

where

(3.2) ω ∈ C2
per(Ω)



4 NIKOLAY FILONOV, ILYA KACHKOVSKIY

is a scalar function such that the metric g(x) = ω2(x)1 satisfies (2.4). The family (3.1), as well
as (2.6), is an analytic type A operator family in the sense of [7]. This means that the domains
DomH(k) do not depend on k, and H(k)u is a (weakly) analytic vector-valued function of k1

and k2 for any u ∈ DomH(k) = H2
per(Ω).

Since the statement of the main result is invariant under rotations and dilations of R2, we
can fix the following choice of basis in terms of the dual lattice:

(3.3) b′1 = αe1, b′2 = βe1 + e2, where α, β ∈ R.

We also denote the coordinates of k in the standard basis by k1, k2, that is, k = k1e1 + k2e2,
and we will often denote H(k) = H(k1e1 + k2e2) by H(k1, k2).

In the Hilbert space H1
per(Ω)⊕L2(Ω), consider the following unbounded nonselfadjoint oper-

ator family:

(3.4) T1(k2, λ) :=

(
0 ω−2I

−(H(0, k2)− λ) 2 (i∂1 + A1)− 2iω−1∂1ω

)
,

where Dom(T1(k2, λ)) = H2
per(Ω)⊕ H1

per(Ω), and ∂i = ∂
∂xi

.

Proposition 3.1. The operators T1(k2, λ) satisfy the following properties.

(i) For all k2, λ ∈ C, the operator T1(k2, λ) is closed on the domain H2
per(Ω)⊕H1

per(Ω). As
a consequence, the family T1(·, λ) is an analytic type A operator family.

(ii) k1 ∈ σ(T1(k2, λ)) if and only if λ ∈ σ(H(k)), where k = k1e1 + k2e2.

(iii) For each k1 ∈ C \ σ(T (k2, λ)), the resolvent

(
T1(k2, λ)− k1

(
I 0
0 I

))−1

is compact in

H1
per(Ω)⊕ L2(Ω).

(iv) The set σ(T1(k2, λ)) is 2πα-periodic.

Proof. Part (i) is standard. To establish (iii), note that a simple computation shows that the
equation (

T1(k2, λ)− k1

(
I 0
0 I

))(
u
v

)
=

(
f
g

)
has a solution of the form

u = (H(k)− λ)−1{(2i∂1 + 2A1 − 2iω−1∂1ω − k1)ω2f − g},
v = ω2(f + k1u),

(3.5)

from which it follows that, if R(k, λ) = (H(k)− λ)−1,(
T1(k2, λ)− k1

(
I 0
0 I

))−1(
f
g

)
=

(
0 0
ω2I 0

)(
f
g

)
+

+

(
I 0
0 k1ω

2

)
R(k, λ)

(
(2i∂1 + 2A1(x)− k1 − 2iω−1(∂1ω)) −I
(2i∂1 + 2A1(x)− k1 − 2iω−1(∂1ω)) −I

)(
ω2 0
0 I

)(
f
g

)
.

The first term is essentially the embedding H1
per(Ω) ⊂ L2(Ω), which is compact, and the second

term is compact since R(k, λ) is bounded as an operator from L2(Ω) to H2
per(Ω) and hence is

compact from L2(Ω) to H1
per(Ω). The computation used to obtain (3.5), in fact, establishes that

if

(
u
v

)
is an eigenfunction of T1(k2, λ) with the eigenvalue k1, then H(k)u = λu. Conversely, if
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H(k)u = λu, then u ∈ H2
per(Ω), and

T1(k2, λ)

(
u

k1ω
2u

)
= k1

(
u

k1ω
2u

)
.

This completes the proofs of (iii) and (ii).
Part (iv) follows from the fact that H(k) is unitarily equivalent to H(k + b′) for any b′ ∈ Γ′,

and so H(k1, k2) is unitarily equivalent to H (k1 + 2πα, k2).

In the sequel, by “multiplicity of an isolated eigenvalue” we will mean algebraic multiplicity, i.
e. the dimension of the range of the corresponding Riesz projection. We will call an eigenvalue
degenerate if its algebraic multiplicity is greater than or equal to 2. Otherwise, an eigenvalue
is called simple.

Lemma 3.2. Suppose that a band function λj(·) attains its local minimum or maximum value
λ∗ at k = k1e1 + k2e2. Then k1 is an eigenvalue of T1(k2, λ∗) of (algebraic) multiplicity at least
two.

Proof. For some ε > 0, there are no other eigenvalues of T1(k2, λ∗) within the closed ball Bε(k1).
Denote by P (k2, λ) the Riesz projection of T1(k2, λ) onto the subspace corresponding to the
interior of this ball. The standard arguments show that, for some δ > 0, rankP (k2, λ) is
continuous in λ as long as |λ − λ∗| < δ. Without loss of generality, assume that k is a local
minimum of λj(·).

From the proofs of absolute continuity of the spectrum (for example, [2]), it follows that λj(k)
cannot be constant in k1. Then, for sufficiently small δ and fixed k2, the equation λj(k1, k2) =
λ∗ + δ has at least two different solutions as an equation in k1. Hence, rankP (k2, λ∗ + δ) > 2
for all sufficiently small δ, and therefore rankP (k2, λ∗) > 2 due to continuity.

The following is the main technical result of the paper.

Theorem 3.3. Suppose that the coefficients ω,A, V satisfy (3.2),(2.3),(2.2). For any λ ∈ R,
the set

{k2 ∈ R : the operator T1(k2, λ) has at least one real degenerate eigenvalue}
is discrete.

Proof of Theorem 2.1: the case of a scalar metric. Fix λ ∈ R and a band function
λj(·). From Theorem 3.3 and Lemma 3.2, the set of possible k2 such that for some k1 we have
λj(k) = λ, is discrete. For each of these k2, the set of possible values of k1 is also discrete by
Proposition 3.1.

The rest of the proof of Theorem 2.1 is a (partially standard) argument of reducing a general
metric to a scalar metric by introducing isotermic coordinates. This is done in Section 6.

4. Proof of Theorem 3.3

Let
p(z) = zn + an−1z

n−1 + . . .+ a0

be a monic polynomial with roots z1, . . . , zn. The discriminant of p is defined as

∆(p) =
∏

16i<j6n

(zi − zj)2.

It is clear that ∆(p) vanishes if and only if p has roots of multiplicity greater than or equal to
2. It is well known (see, for example, [20, Section 5.9]) that ∆(p) is a polynomial function of
the coefficients a0, . . . , an−1.
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Lemma 4.1. Let C be a simple closed contour in C, and {T (z), z ∈ D} be an operator family
of type A in a Hilbert space H analytic in a simply connected domain D ⊂ C. Suppose that
the spectra of T (z) within C are discrete and finite for all z ∈ D and σ(T (z)) ∩ C = ∅ for all
z ∈ D. Then the set

{z ∈ D : T (z) has at least one degenerate eigenvalue inside of C}
is a zero set of a function analytic in D, and hence either coincides with D or is discrete in D.

Proof. Let

P (z) := − 1

2πi

∫
C
(T (z)− κI)−1dκ

be the Riesz projection. By assumption, n := rankP (z) = const < +∞, and P (z) is analytic in
D. The results of [7, VII.1.3] imply that there exists an analytic in D bounded operator-valued
function U : D → B(H) such that U(·)−1 is also analytic in D and P (z) = U(z)P (z0)U(z)−1.
Take

T0(z) := U(z)−1T (z)U(z)
∣∣
ranP (z0)

.

The family T0(z) is an analytic operator family acting in a fixed finite-dimensional space that has
the same eigenvalues and multiplicities as T (z) restricted to ranP (z). The monic polynomial
pz(κ) = (−1)n det(T0(z)− κ) is the characteristic polynomial of T0(z) and has the coefficients
analytic in D (in the variable z). Hence, its discriminant ∆(pz) is also an analytic function in
D vanishing if and only if T0(z) (and, as a consequence, T (z)) has degenerate eigenvalues inside
of C.

Recall that we had a special choice of basis in Γ′,

b′1 = αe1, b′2 = βe1 + e2.

Let also

k = k1e1 + k2e2, k1 = r1 + il1, k2 = r2 + il2.

The following two theorems are the main technical statements of the paper. We postpone the
proofs to the next section.

Theorem 4.2. There exist constants C = C(A, V, ω) and C1 = C1(A, V, ω) ∈ 2πZ such that
for any δ > 0 the operator H(k) defined in (3.1) is invertible and satisfies

‖H(k)−1‖ 6 C

|l1|δ2

provided that dist(r2, 2πZ) > δ, l1 ∈ 2πZ, |l1| > C1. As a consequence, the horizontal lines
Im k1 = ±C1 have empty intersection with σ(T1(k2)).

Without loss of generality, one can assume λ = 0 by choosing a different V . In the sequel,
we will make this assumption and drop λ from the notation for T1, that is, T1(k2) := T1(k2, 0).

Theorem 4.3. There exists a constant l = l(A, V, ω) ∈ 2πZ such that, for all n ∈ 2πZ, the
spectrum of T1(k2) is simple for k2 = π

2
+ n+ i

(
π
2

+ l
)
α.

Proof of Theorem 3.3. Assume the contrary, i. e. that the set of k2 ∈ R for which T1(k2)

has real degenerate eigenvalues has a limit point k
(0)
2 . Let us consider two cases.

Case 1. Suppose that dist(k
(0)
2 , 2πZ) > 0. Take δ = min{π/2, dist(k

(0)
2 , 2πZ)}. There exists a

single n ∈ 2πZ such that k
(0)
2 ∈ [n+ δ, n+ 2π− δ]. Let C0 be a path in the k2-plane starting at
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k
(0)
2 , then going straight towards the point π

2
+ n, and then going vertically towards the point

k
(1)
2 := π

2
+ n+ i

(
π
2

+ l
)
α from Theorem 4.3.

The points k2 ∈ C0 satisfy the assumptions of Theorem 4.2. Let us consider the eigenvalues
of T1(k2) lying within the strip | Im k1| < C1, where C1 is the constant from Theorem 4.2.
They form a discrete 2πα-periodic set. For each k2 ∈ C0 there exists a point r(k2) ∈ R which
is not a real part of any of these eigenvalues. Moreover, by continuity arguments, this also
holds in a small (complex) neighbourhood of k2. Let us cover C0 by a finite number of these

neighbourhoods Dj, j = 1, . . . , p, so that k
(0)
2 ∈ D1 and k

(1)
2 ∈ Dp and denote the corresponding

values of r(k2) by rj. For each j, denote by Cj the boundary of the following rectangle:

rj < Re k1 < rj + 2πα, −C1 < Im k1 < C1.

Informally speaking, each rectangle contains all eigenvalues that we are interested in: they are
initially on the real line, they cannot cross the lines Im k1 = ±C1, and the pictures to the right
and to the left copy the picture in the rectangle due to periodicity.

Let us apply Lemma 4.1 to each of the domains Dj and contours Cj. Due to Theorem 4.3,

the spectrum of T1(k
(1)
2 ) is simple, and hence the set of “degenerate” k2 should be discrete in a

neighbourhood Dp of k
(1)
2 . By the standard arguments of analytic continuation, it should also

be discrete in every neighbourhood D1 . . . ,Dp. However, since k
(0)
2 ∈ D1, it is not discrete in

D1, which is a contradiction.

Case 2. Suppose that k
(0)
2 ∈ 2πZ. The set of real eigenvalues of T1(k

(0)
2 ) is, again, discrete and

2πα-periodic. Let us surround the eigenvalues on one period by a contour C not containing any

other eigenvalues. In a small neighbourhood D0 of k
(0)
2 , these eigenvalues still stay within C.

Apply Lemma 4.1 to C and D0. Again, since the set of “degenerate” values of k2 is not discrete
in D0, it should coincide with D0, and hence there exists at least one more point with the same
property that belongs to R \ 2πZ, and thus the situation reduces to Case 1.

5. Proofs of Theorems 4.2, 4.3

Let us start from recalling some notation introduced above,

b′1 = αe1, b′2 = βe1 + e2, α, β ∈ R;

k = k1e1 + k2e2, k1 = r1 + il1, k2 = r2 + il2, r1, r2, l1, l2 ∈ R.
In this section, we will emphasize the dependence of H on g, A, V and use the notation
H(k; g, A, V ). Consider the free operator H0(k) := H(k;1, 0, 0). Its eigenfunctions are of
the form

exp{im · x} = exp{i(m1b
′
1 +m2b

′
2) · (x1e1 + x2e2)} = exp{i(αm1 + βm2)x1 +m2x2)},

m = m1b
′
1 +m2b

′
2 ∈ Γ′, m1,m2 ∈ 2πZ,

and

H0(k) exp{im · x} = ((−i∂1 + k1)2 + (−i∂2 + k2)2) exp{im · x} = hm(k) exp{im · x},

where hm(k) is the symbol of H0(k):

hm(k) = (αm1 + βm2 + k1)2 + (m2 + k2)2 = q+
m(k)q−m(k),

q±m(k) = αm1 + βm2 + r1 ∓ l2 + i(l1 ±m2 ± r2).



8 NIKOLAY FILONOV, ILYA KACHKOVSKIY

Let also Q±(k) be the operators with symbols q±m(k) respectively, so that H0(k) = Q+(k)Q−(k).
Suppose that the magnetic potential A satisfies (2.3). Then there exists a Γ-periodic scalar
function ϕ ∈ C2

per(Ω) such that

(5.1) (∇ϕ)(x) = A2(x)e1 − A1(x)e2,

∫
Ω

ϕ(x) dx = 0, ‖ϕ‖C2(Ω) 6 C‖A‖C1(Ω).

Let also
B(x) = ∂1A2(x)− ∂2A1(x), w(x) := e−2ϕ(x).

The operator H(k;1, A,B) is called the Pauli operator (more precisely, a block of the Pauli
operator). The following is proved in [2] and allows us to reduce the case of the magnetic
potential, essentially, to the case of the free operator.

Proposition 5.1. Under the above assumptions, if Q±(k) are invertible, then H(k;1, A,B) is
also invertible, and

(5.2) H(k;1, A,B)−1 = eϕQ−(k)−1e−2ϕQ+(k)−1eϕ =

= eϕ(x)H0(k)−1
{
e−ϕ + (−i∂1w + ∂2w)Q+(k)−1eϕ

}
.

The following proposition can also be easily verified, see [3]. It will be used to reduce the case
of a scalar metric g = ω21 to the case g = 1.

Proposition 5.2. Suppose that ω ∈ C2
per(Ω), V ∈ L∞(Ω), A ∈ C1

per(Ω). Then

(5.3) H(k;ω21, A, V ) = ωH(k;1, A, ω−2V + ω−1∆ω)ω,

(5.4) ωH(k;1, A, V )ω = H(k;ω21, A, ω2V − ω∆ω).

Proof of Theorem 4.2. Suppose that dist(r2, 2πZ) = δ. Since l1 ± m2 ∈ 2πZ, we have
|q±m(k)| > δ. In addition, Im q+

m(k) + Im q−m(k) = 2l1, and hence we either have |q+
m(k)| > |l1| or

|q−m(k)| > |l1|. Combining these estimates, we obtain |hm(k)| > |l1|δ, and

(5.5) ‖H0(k)−1‖ 6 1

|l1|δ
, ‖Q+(k)−1‖ 6 1

δ
,

which completes the proof for A = 0, V = 0, ω = 1. If A 6= 0 and V (x) = B(x), then, from
(5.2) and (5.5), we get

(5.6) ‖H(k;1, A,B)−1‖ 6 C1

|l1|δ2
,

where C1 depends on A via w and ϕ. The standard Neumann series arguments imply that the
bound (5.6) holds for an arbitrary V ∈ L∞(Ω) (with a different C1) for sufficiently large l1, say,

|l1| >
2‖V −B‖L∞(Ω)C1

δ2
.

The case of arbitrary ω follows from Proposition 5.2.

We now make some preparations for the proof of Theorem 4.3. Fix k2 as in the formulation
of the theorem, so that

(5.7) r2 =
π

2
+ n, l2 =

(π
2

+ l
)
α, l, n ∈ 2πZ.

For these k2, define

Σn := {k1 ∈ C : hm(k1, k2) = 0 for some m1,m2 ∈ 2πZ}.
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In other words, it is the set of k1 for which H0(k1, k2) is not invertible. A simple computation
shows that Σn consists of points r1 + il1 of the following form:

(5.8)

{
r1 = −αm1 − βm2 ∓

(
π
2

+ l
)
α

l1 = ±
(
π
2

+ n+m2

) , m1,m2 ∈ 2πZ.

Since one can replace the variables m1 by m1 + l, one can see that the set Σn does not depend
on l.

Let us describe the set Σn in more detail. First of all, it is easy to see that different values of
(m1,m2) give different points of Σn, as m2 and the signs are uniquely determined by the value
of l1, and m1 is determined by r1 afterwards. Next, the set Σn lies on the union of horizontal
lines Im k1 ∈ π/2+πZ. On each line, it is a sequence of equally spaced points with the spacings
2πα.

We will also need another set Gn defined by

(5.9) Gn := (R + iπZ) ∪
⋃
z∈Σn

(
z + πα + i

[
−π

2
,
π

2

])
.

The set Gn consists of horizontal lines Im k1 ∈ πZ separating the horizontal lines of Σn. In
addition, for each point of Σn, we include a vertical line segment of the length π separating this
point from the next point of Σn lying on the same line. One can imagine Gn as a “brick wall”
consisting of rectangles such that there is exactly one element of Σn inside of each rectangle.

O

Im k1

×
Re k1

2πα

π/2

2πβ

0

π

2π

3π

−π

−2π

−3π

Figure 1. The sets Σn and Gn.
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On Figure 1, an example of Σn and Gn is shown for n = 0, α = 0.75, β = 0.075. The set
Gn is represented by thick lines, and the locations of points of Σn are indicated by black and
white circles, corresponding to the upper or lower choice of signs in (5.8), respectively.

Lemma 5.3. Suppose that k1 ∈ Gn, k2 = π
2

+ n+ i
(
π
2

+ l
)
α, where l, n ∈ 2πZ. Then

|hm(k)| > C|l|
uniformly in m1,m2 ∈ 2πZ.

Proof. Since |Re q+
m(k)−Re q−m(k)| = 2|l2| > C|l|, we have for each m either |q+

m(k)| > 1
2
C|l| or

|q−m(k)| > 1
2
C|l|. On the other hand, both |q+

m(k)| and |q−m(k)| are distances from k1 to a certain
point of Σn, which is bounded from below by a positive constant,

(5.10) |q±m(k)| > dist(k1,Σn) > dist(Gn,Σn) = min
{π

2
, πα

}
.

The combination of these estimates completes the proof of the lemma.

Remark 5.4. Lemma 5.3 is the main ingredient of the proof that relies on the assumption
d = 2. In d > 3, one cannot construct a set Gn with similar properties and constant size of the
bricks.

Corollary 5.5. Under the assumptions of Lemma 5.3, there exists L0(A, V, ω) > 0 such that,
if |l| > L0(ω,A, V ), then

(5.11) ‖H(k;ω21, A, V )−1‖ 6 C(ω,A, V )

|l|
,

where the constants C and L0 depend only on ‖A‖C1(Ω), ‖V ‖L∞(Ω), ‖ω‖C2(Ω) and on the constant
mg from (2.4).

Proof. From Proposition 5.2, we have

‖H(k;ω21, A, V )−1‖ 6 m−2
g ‖H(k;1, A, Vω)−1‖,

where

‖Vω‖L∞(Ω) = ‖ω−2V + ω−1∆ω‖L∞(Ω) 6 m−2
g ‖V ‖L∞(Ω) +m−1

g ‖ω‖C2(Ω).

From (5.2),(5.1), Lemma 5.3, and (5.10), we have

‖H(k;1, A,B)−1‖ 6 C(A)‖H0(k)−1‖ 6 C1(A)

|l|
,

where C(A), C1(A) depend only on ‖A‖C1(Ω). Since ‖B‖L∞(Ω) 6 2‖A‖C1(Ω), we can use the
same Neumann series argument as in the proof of Theorem 4.2 to replace B by Vω.

Proof of Theorem 4.3. Denote by Tµ(k2) the operator T1(k2) with V , A, ω replaced by µV ,
µA and µω+ (1− µ) respectively. It is a one-parametric family connecting the “free” operator
T0(k2) with T1(k2).

It is easy to see that σ(T0(k2)) = Σn, because Σn is exactly the set of k1 ∈ C for which
the symbol of H0(k) is not invertible. Moreover, an easy computation shows that, for each

k1 ∈ Σn, the corresponding eigenspace is one-dimensional and is spanned by

(
eim·x

k1e
im·x

)
, where

m is determined by k1 via (5.8). Note that each value of m appears twice (for two different
values of k1) because of two possible signs. Hence, the total collection of eigenvectors spans
H1

per(Ω)⊕ L2(Ω), so there are no Jordan cells and the spectrum of T0(k2) is simple.
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It remains to prove that T1(k2) also has simple spectrum. Consider the Riesz projection of
Tµ(k2) with respect to the boundary of some rectangle of Gn. For µ = 0, the rectangle contains
exactly one simple eigenvalue, and the range of the projection has dimension 1. Let us increase
µ. The only way for the dimension of the range to change is to have an eigenvalue of Tµ(k2)
approach the set G. This, however, is impossible for µ ∈ [0, 1] due to Corollary 5.5, and hence
the eigenvalues of T1(k2) stay simple.

Remark 5.6. The proof of Theorem 4.3 is based on the ideas of [6, Section VI].

6. The case of variable metric

In this section we show how to reduce the case of an operator with arbitrary metric g satis-
fying (2.4) to the case of the scalar metric. The technical difference with standard arguments
such as in [17] is that we need to keep track of the quasimomentum in order to ensure that
it is transformed linearly. This is done by an additional “gauge transformation”. The follow-
ing proposition establishes the existence of global isometric coordinates in which the metric g
becomes scalar. See [12, Proposition 18] for the proof.

Proposition 6.1. Suppose that g satisfies (2.4). Then there exists a basis b∗1, b
∗
2 of R2 and a

one-to-one map Ψ: R2 → R2, Ψ ∈ C3(R2), det Ψ′(x) 6= 0, and a scalar such that

Ψ(0) = 0, Ψ(x+ n1b1 + n2b2) = Ψ(x) + n1b
∗
1 + n2b

∗
2, ∀n1, n2 ∈ Z,

and

(6.1) | det Ψ′(x)|−1Ψ′(x)g(x)Ψ′(x)t = ω2(Ψ(x))1,

where ω ∈ C2(R2) is a Γ∗-periodic strictly positive scalar function.

Let us introduce some notation. Suppose that the operator H(g, A, V ) satisfies the assump-
tions of Theorem 2.1. Let Ψ be the transformation obtained from Proposition 6.1. Denote by
T∗ : R2 → R2 the linear transformation defined by T∗(b1) = b∗1, T∗(b2) = b∗2. The transformation
T∗, as well as the map Ψ, transforms the lattice Γ into the new lattice Γ∗ with the basis vectors
b∗1, b

∗
2. Let also

y = Ψ(x), A∗(y) = (Ψ′(x)−1)tA(x), V∗(y) = ψ∗(y)−2V (x), ψ∗(y) = | det Ψ′(x)|1/2.
Let also

ΩΨ = Ψ(Ω), Ω∗ = {y1b
∗
1 + y2b

∗
2, y1, y2 ∈ [0, 1)}.

Note that both Ω∗ and ΩΨ are fundamental domains of Γ∗, and there is a natural correspondence
between L2(Ω∗) and L2(ΩΨ), as both can be identified with Rd/Γ∗.

Lemma 6.2. In the above notation, let Φ: L2(Ω)→ L2(Ω∗) be the unitary operator of change
of variables:

u(x) = ψ∗(y)(Φu)(y), y = Ψ(x),

where u is considered as an element of L2(Ω∗). Then

ΦH(0; g, A, V )Φ−1 = ψ∗H(0;ω21, A∗, V∗)ψ∗.

Proof. Let v = Φu, and let us extend it Γ∗-periodically into Rd. Then, due to (6.1) and the
change of variable rule, the quadratic form of the left hand side applied to v is equal to

(H(0; g, A, V )Φ−1v,Φ−1v)L2(Ω) = (H(0; g, A, V )u, u)L2(Ω) =

=

∫
Ω

〈g(x)(−i∇x − A(x))u(x), (−i∇x − A(x))u(x)〉 dx+

∫
Ω

V (x)|u(x)|2 dx
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=

∫
ΩΨ

〈ω2(y)(−i∇y−A∗(y))ψ∗(y)v(y), (−i∇y−A∗(y))ψ∗(y)v(y)〉 dy+

∫
ΩΨ

V∗(y)ψ∗(y)2|v(y)|2 dy =

=

∫
Ω∗

〈ω2(y)(−i∇y−A∗(y))ψ∗(y)v(y), (−i∇y−A∗(y))ψ∗(y)v(y)〉 dy+

∫
Ω∗

V∗(y)ψ∗(y)2|v(y)|2 dy =

= (H(0;ω21, A∗, V∗)ψ∗v, ψ∗v)L2(Ω∗).

Theorem 6.3. Suppose that k ∈ R2. Under the assumptions of Theorem 2.1, the operator
H(k; g, A, V ) is unitarily equivalent to the operator

(6.2) H
(
(T−1
∗ )tk, ω2ψ2

∗1, A∗, ψ
2
∗V∗ + ψ2

∗ω∆ω − ψ∗ω∆(ψ∗ω)
)

acting in L2(Ω∗), where Ω∗ is the elementary cell of Γ∗.

Proof. We will perform the required unitary transformation in several steps. First, let us
note that H(k; g, A, V ) = H(0; g, A − k, V ). Consider the unitary transformation u(x) =
eiα(x)v(x), where α ∈ C1

per(Ω). Under this transformation, the operator H(k; g, A, V ) becomes

H(0; g, A− k −∇α, V ). Take α(x) = k(T−1
∗ Ψ(x)− x). This function is Γ-periodic, and

(∇α)(x) = Ψ′(x)t(T−1
∗ )tk − k.

Hence, the operator H(k; g, A, V ) is unitarily equivalent to H(0, g, A−Ψ′(x)t(T−1
∗ )tk, V ), which,

by Lemma 6.2, is equivalent to

ψ∗H(0, ω21, A∗ − (T−1
∗ )tk, V∗)ψ∗ = ψ∗H((T−1

∗ )tk, ω21, A∗, V∗)ψ∗.

Applying (5.3) and then (5.4), we ultimately obtain

ψ∗H((T−1
∗ )tk, ω21, A∗, V∗)ψ∗ = ωψ∗H((T−1

∗ )tk,1, A∗, ω
−2V∗ + ω−1∆ω)ωψ∗ =

= H((T−1
∗ )tk, ω2ψ2

∗1, A∗, ψ
2
∗V∗ + ψ2

∗ω∆ω − ψ∗ω∆(ψ∗ω)).

This completes the proof of Theorem 2.1, because its statement has already been established
for the operators (6.2), and the operator families H(k; g, A, V ) and (6.2) have the same band
functions up to a linear transformation of k.

7. An example of degenerate band edge in the discrete case

Consider the discrete Schrödinger operator H = D + V in l2(Z2), where

(Du)n =
1

2
(un+e1 + un−e1 + un+e2 + un−e2) , n ∈ Z2,

is the discrete Laplace operator, and V is the operator of multiplication by the potential given
by

(V u)n =

{
v0un, if (n1 + n2) is even,

v1un, if (n1 + n2) is odd;

the real numbers v0 and v1 are fixed. In other words, the lattice is formed by two different types
of atoms placed in a chess-like order, and V is periodic with respect to the lattice spanned by
{2e1, e1 + e2}. The corresponding Floquet-Bloch transform

F : l2(Z2)→ L2(Õ × {0; 1})
is given by

(Fu)(k;m) =
1

π
√

2

∑
n1+n2≡m(mod 2)

e−iknun.
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Here k ∈ Õ = {k ∈ R2 : |k1 + k2| < π}, m = 0 or m = 1; the operator F is unitary. It is easy
to see that

FHF ∗ =

∫ ⊕
Õ
H(k) dk,

where H(k) is a self-adjoint operator in C2,

H(k) =

(
v0 cos k1 + cos k2

cos k1 + cos k2 v1

)
.

Eigenvalues of this matrix are

λ±(k) =
v0 + v1

2
±

√(
v0 − v1

2

)2

+ (cos k1 + cos k2)2 ,

from which it follows that

minλ− =
v0 + v1

2
−

√(
v0 − v1

2

)2

+ 4, maxλ− = min(v0, v1),

minλ+ = max(v0, v1), maxλ+ =
v0 + v1

2
+

√(
v0 − v1

2

)2

+ 4.

So, the spectrum of the operator H consists of two zones separated by a gap, whenever v0 6= v1.

Figure 2. The band functions λ+(k) and λ−(k).

The edges of this gap (v0 and v1 respectively) are attained on the set{
k ∈ R2 : cos k1 + cos k2 = 0

}
=
{
k ∈ R2 : k1 ± k2 = (2p+ 1)π

}
p∈Z ,

which is a countable union of straight lines. Figure 2 shows the graphs of λ±(·) for v0 = 0,
v1 = 2, with the dashed lines indicating the level sets at the edges of the gap [0, 2].
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