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Abstract

A modern version of Monetary Circuit Theory with a particular em-
phasis on stochastic underpinning mechanisms is developed. It is ex-
plained how money is created by the banking system as a whole and by
individual banks. The role of central banks as system stabilizers and lig-
uidity providers is elucidated. It is shown how in the process of money
creation banks become naturally interconnected. A novel Extended Struc-
tural Default Model describing the stability of the Interconnected Bank-
ing Network is proposed. The purpose of banks’ capital and liquidity
is explained. Multi-period constrained optimization problem for banks’s
balance sheet is formulated and solved in a simple case. Both theoretical
and practical aspects are covered.

Contents

1 Introduction 3

2 Stochastic Modified Lotka-Volterra-Goodwin Equations (&
2.1 Background . . . . ... 0]
2.2 Framework . . . . .. .. 6]
2.3 Existing Theory. . . . . . . . . ... .. @
2.4 Modified Theory . . . . . . . ... e B

3 Stochastic Modified Keen Equations O
3.1 Background . . . ... ..o 9]
3.2 Keen Equations . . . . . . .. ... ... ... I
3.3 Modified Theory . . . . . ... ... 11

*The views and opinions expressed in this paper are those of the author and do not neces-
sarily reflect the views and opinions of Bank of America.



A Simple Economy: Consumers, Producers, Banks

4.1 Imspiration . . . . . . . . .

4.2 Stocksand Flows . . . . . .. . ... ...
4.2.1 Notation. . . . ... .. .. Lo
4.22 Key Observations . . . . . . . ... ... ...

4.3 Main Equations . . . . . . .. ..o oo

Money Creation and Annihilation in Pictures

Interlinked Banking System

6.1 Dynamics of Assets and Liabilities. Default Boundaries . . . . .
6.2 Terminal Settlement Conditions . . . . . . . .. ... ... ....
6.3 General Solution via Green’s Function . . . .. .. ... ... ..

Banks’ Balance Sheet Optimization

7.1 Notations and Main Variables . . . . . . .. ... ... ... ...
7.2  Optimization Problem . . . .. ... ... ... ... ... ..
7.3 Capital Constraints . . . . . . . . . ... ... ... ... ...
7.4 Liquidity Constraints . . . . . . ... . ... ... ..
7.5 Mathematical Formulation: General Optimization Problem . . .
7.6 Mathematical Formulation: Simplified Optimization Problem . .

Conclusions

Appendix A



Steven Obanno: Do you believe in God, Mr. Le Chiffre?
Le Chiffre: No. I believe in a reasonable rate of return.
Casino Royale

Coffee Cart Man: Hey buddy. You forgot your change.

Joe Moore: [Takes the change] Makes the world go round.

Bobby Blane: What’s that?

Joe Moore: Gold.

Bobby Blane: Some people say love.

Joe Moore: Well, they’re right, too. It is love. Love of gold.
Heist

1 Introduction

Since times immemorial, the meaning of money has preoccupied industrialists,
traders, statesmen, economists, mathematicians, philosophers, artists, and lay-
men alike.

The great British economist John Maynard Keynes puts it succinctly as
follows:

For the importance of money essentially flows from it being a link
between the present and the future.

These words are echoed by Mickey Bergman, the character played by Danny
DeVito in the movie Heist, who says:

Everybody needs money. That’s why they call it money.

Money has been subject of innumerable expositions, see, e.g., Law (1705),
Jevons (1875), Knapp (1905), Schlesinger (1914), von Mises (1924), Fried-
man (1969), Schumpeter (1970), Friedman and Schwartz (1982), Kocherlakota
(1998), Realfonzo (1998), Mehrling (2000), Davidson (2002), Ingham (2004),
Graeber (2011), McLeay et al. (2014), among many others. Recently, these dis-
cussions have been invigorated by the introduction of Bitcoin (Nakamoto 2009).
An astute reader will recognize, however, that apart from intriguing technical
innovations, Bitcoin does not differ that much from the fabled tally sticks, which
were used in the Middle Ages, see, e.g., Baxter (1989). It is universally accepted
that money has several important functions, such as a store of value, a means
of payment, and a unit of accountﬂ

However, it is extraordinary difficult to understand the role played by money
and to follow its flow in the economy. One needs to account properly for non-
financial and financial stocks (various cumulative amounts), and flows (changes
in these amounts). Here is how Michal Kalecki, the great Polish economist,
summarizes the issue with his usual flair and penchant for hyperbole:

1We emphasize that a particularly important function of money as a means of payment of
tazes.



Economics is the science of confusing stocks with flows.

In our opinion, the functioning of the economy and the role of money is
best described by the Monetary Circuit Theory (MCT), which provides the
framework for specifying how money lubricates and facilitates production and
consumption cycles in society. Although the theory itself is quite established,
it fails to include some salient features of the real economy, which came to
the fore during the latest financial crisis. The aim of the current paper is to
develop a modern continuous time version of this venerable theory, which is
capable of dealing with the equality between production and consumption plus
investment, the stochastic nature of consumption, which drives other economic
variables, defaults of the borrowers, the finite capacity of the banking system
for lending, etc. This paper provides a novel description of the behaviour and
stability of the interlinked banking system, as well as of the role played by in-
dividual banks in facilitating the functioning of the real economy. The latter
aspect is particularly important because currently there is a certain lack of ap-
preciation on the part of the conventional economic paradigm of the special role
of banks. For example, banks are excluded from widely used dynamic stochas-
tic general equilibrium models, which are presently influential in contemporary
macroeconomics (Sbordone et al. 2010).

Some of the key insights on the operation of the economy can be found in
Smith (1776), Marx (1867), Schumpeter (1912), Keynes (1936), Kalecki (1939),
Sraffa (1960), Minsky (1975, 1986), Stiglitz (1997), Tobin & Golub (1998),
Piketty (2014), Dalio (2015), etc. The reader should be cognizant of the fact
that opinions of the cited authors very often contradict each other, so that the
”correct” viewpoint on the actual functioning of the economy is not readily
discernible.

Monetary Circuit Theory, which can be viewed as a specialized branch of
the general economic theory, has a long history. Some of the key historical
references are Petty (1662), Cantillon (1755), Quesnay (1759), Jevons (1875).
More recently, this theory has been systematically developed by Keen (1995,
2013, 2014) and others. The theory is known under several names such as Stock-
Flow Consistent (SFC) Model, Social Accounting Matrix (SAM) Model, etc.
Post-Keynsian SFC macroeconomic growth models are discussed in numerous
references. Here is a representative selection: Backus et al. (1980), Tobin (1982),
Moore (1986, 2006), De Carvalho (1992), Godley (1999), Bellofiore et al. (2000),
Parguez and Secareccia (2000), Lavoie (2001, 2004), Lavoie and Godley (2001-
2002), Gnos (2003), Graziani (2003), Secareccia (2003), Dos Santos and Zezza
(2004, 2006), Zezza & Dos Santos (2004), Godley and Lavoie (2007), Van Treek
(2007), Le Heron and Mouakil (2008), Le Heron (2009), Dallery and van Treeck
(2011). A useful survey of some recent results is given by Caverzasi and Godin
(2013).

It is a simple statement of fact that reasonable people can disagree about
the way money is created. Currently, there are three prevailing theories de-
scribing the process of money creation. Credit creation theory of banking has
been dominant in the 19th and early 20th centuries. It is discussed in a number



of books and papers, such as Macleod (1855-6), Mitchell-Innes (1914), Hahn
(1920), Wicksell (1922), and Werner (2005). More recently Werner (2014) has
empirically illustrated how a bank can individually create money ”out of noth-
ing”ﬂ In our opinion, this theory correctly reflects mechanics of linking credit
and money creation; unfortunately, it has gradually lost its ground and was
overtaken by the fractional reserve theory of banking, see for example, Marshall
(1888), Keynes (1930), Samuelson & Nordhaus (1995), and numerous other
sources. Finally, the financial intermediation theory of banking is the current
champion, three representative descriptions of this theory are given by Keynes
(1936), Tobin (1969), and Bernanke & Blinder (1989), among many others. In
our opinion, this theory puts insufficient emphasis on the unique and special
role of the banking sector in the process of money creation.

In the present paper we analyze the process of money creation and its in-
trinsic connection to credit in the modern economy. In particular, we address
the following important questions: (a) Why do we need banks and what is their
role in society? (b) Can a financial system operate without banks? (c) How
do banks become interconnected as a part of their regular lending activities?
(d) What makes banks different from non-financial institutions? In addition,
we consider a number of issues pertinent to individual banks, such as (e) How
much capital do banks need? (f) How liquidity and capital are related? (g)
How to optimize a bank balance sheet? (h) How would an ideal bank look like?
(i) What are the similarities and differences between insurance companies and
banks viewed as dividend-producing machines? In order to answer these crucial
questions we develop a new Modern Monetary Circuit (MMC) theory, which
treats the banking system on three levels: (a) the system as a whole; (b) an
interconnected set of individual banks; (c¢) individual banks. We try to be as
parsimonious as possible without sacrificing an accurate description of the mod-
ern economy with a particular emphasis on credit channels of money creation
in the supply-demand context and their stochastic nature.

The paper is organized as follows. Initially, in Sections [2] and [3] we develop
the building blocks, which are further aggregated in Section [4] into the consis-
tent continuous time MMC theory. In Section[2] we introduce stochasticity into
conventional Lotka-Volterra-Goodwin equations and incorporate natural restric-
tions on the relevant economic variables. Further, in Section [3| we analyze the
conventional Keen equations and modify them by incorporating stochastic ef-
fects and natural boundaries. Building upon the results of Sections [2] and [3]
we develop in Section (4] a consistent MMC theory and illustrate it for a simple
economic triangle that includes consumers (workers and rentiers), producers
and banks. Section [p| details the underlying process of money creation and an-
nihilation by the banking system and discusses the role of the central bank as
the liquidity provider for individual banks. In Section [6] we develop the frame-
work to study the banking system, which becomes interlinked in the process of
money creation and propose an extended structural default model for the in-

2However, his experiment was not complete because he received a loan from the same bank
he has deposited the money to. As discussed later, this is a very limited example of monetary
creation.



terconnected banking network. This model is further explained in Appendix A
for the simple case of two interlinked banks with mutual obligations. In Section
[7] the behaviour of individual banks operating as a part of the whole banking
system is analyzed with an emphasis on the role of banks’ capital and liquidity.
The balance sheet optimization problem for an individual bank is formulated
and solved in a simplified case.

2 Stochastic Modified Lotka-Volterra-Goodwin
Equations

2.1 Background

The Lotka-Volterra system of first-order non-linear differential equations quali-
tatively describes the predator-prey dynamics observed in biology (Lotka 1925,
Volterra 1931). Goodwin was the first to apply these equations to the theory
of economic growth and business cycles (Goodwin 1967). His equations, which
establish the relationship between the worker’s share of national income and
employment rate became deservedly popular because of their simple and parsi-
monious nature and ability to provide a qualitative description of the business
cycle. However, they do have several serious drawbacks, including their non-
stochasticity, prescriptive nature of firms’ investment decisions, and frequent
violations of natural restrictions on the corresponding economic variables. Al-
though, multiple extensions of the Goodwin theory have been developed over
time (see, e.g., Solow 1990, Franke et al. 2006, Barbosa-Filho and Taylor 2006,
Veneziani and Mohun 2006, Desai et al. 2006, Harvie et al. 2007, Kodera and
Vosvrda 2007, Taylor 2012, Huu and Costa-Lima 2014, among others), none of
them is able of holistically account for all the deficiencies outlined above. In this
section we propose a novel mathematically consistent version of the Goodwin
equations, which we subsequently use as a building block for the MMC theory
described in Section [l

2.2 Framework

Assume, for simplicity, that in the stylized economy a single good is produced.
Then the productivity of labor 6,, is measured in production units per worker
per unit of time, the available workforce N,, is measured in the number of
workers, while the employment rate A,, is measured in fractions of one. Thus,
the total number of units produced by firms per unit of time, Y, is given by

Ts =0l Nu, (1)

where both productivity and labor pool grow deterministically as

d;—ww = adt, (2)
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If so desired, these relations can be made much more complicated, for example,
we can add stochasticity, more realistic population dynamics, etc. Production

expressed in monetary terms is given by
Yf = ewAwprv (4)

where P is the price of one unit of goods. Similarly to Eqs , we assume
that the price is deterministic, such that

dP

— = ~dt. 5

7 =7 (5)
Workers’ and firms’ share of production are denoted by 5,5 = 1 — s,,, respec-
tively. The unemployment rate A\, is defined in the usual way, A\, = 1 — A,,.
Goodwin’s idea was to describe joint dynamics of the pair (s, Aw)-

2.3 Existing Theory

The non-stochastic Lotka-Volterra-Goodwin equations (LVGEs, see Lotka 1925,
Volterra 1931, Goodwin 1967), describe the relation between the workers’ por-
tion of the output and the relative employment rate.
The log-change of s,, is govern by the Phillips law and can be written in the
form
dSqy
= (—a+bA\y)dt = ¢ () dt, (6)
w
where ¢ () it the so-called Phillips curve (Phillips 1958, Flaschel 2010, Blanch-
flower and Oswald 1994).
The log-change of A, is calculated in three easy steps. First, the so-called
Cassel-Harrod-Domar (see Cassel 1924, Harrod 1939, Domar 1946) law is used
to show that

Yf = l/fo, (7)

where Ky is the monetary value of the firm’s non-financial assets and v is
the constant production rate, which is the inverse of the capital-to-output ratio
wy, Vp = 1/wa| It is clear that vy, which can be thought of as a rate, is
measured in units of inverse time, [1/7], while w is measured in units of time,
[T]. Second, Say’s law (Say 1803), which states that all the firms’ profits, given
by

Wy =s;Yy=spvpKy, (8)

are re-invested into business, so that the dynamics of Ky is govern by the fol-
lowing deterministic equation

dK;  dY;

3In essence, we apply the celebrated Hooke’s law (ut tensio, sic vis) in the economic
context.



with £ 4 being the amortization rate. Finally, the relative change in employment
rate, A, is derived by combining Egs. - and @:

d\, _ dYy db, dN, dP

\ Tf—T—T—?:(Sfyf—a—ﬁ—v—ﬁA)dt~ (10)
w w w
Symbolically,
dAy
= (c — dsy) dt. (11)
Thus, the coupled system of equations for (s, Ay) has the form
d
? = —(a—Db\y)dt, (12)
dMy
S (c — dsy) dt.

Egs schematically describe the class struggle; they are formally identical
to the famous predator-pray Lotka-Volterra equations in biology, with intensive
variables s,,, Ay playing the role of predator and pray, respectively. Two essen-
tial drawbacks of the LGVE are that they neglect the stochastic nature of eco-
nomic processes and do not preserve natural constraints (8, Ay) € (0,1)x(0,1).
Besides, they are too restrictive in describing the discretionary nature of firms’
investment decisions. The conservation law ¥ corresponding Egs. has the
following form

U (S0, Aw) = —In (sSA2) + dsyy + by, (13)
and has a fixed point at
c a

where WU achieves its minimum. Solutions of the LVGEs without regularization
are shown in Figure Both phase diagrams in the (s, Ay )-space and time
evolution graphs show that for the chosen set of parameters A, > 1 for some
parts of the cycle.

Figure [1| near here.

2.4 Modified Theory

In order to satisfy natural boundaries in the stochastic framework, we propose
a new version of the LVGEs of the form

dsy, = — (a — by — ;) Swdt + 051/SuspdWs (1), (15)
(c — dse — j) Awdt + 03V Ao had Wi (2) |
f

where w > 0 is a regularization parameter, and 0,/5,5f, AV AwA,, are Jacobi
normal volatilities. This choice of volatilities ensures that (s, Ay) stays within

dy



the unit square. Deterministic conservation law ¥ for Eqs (15]) is similar to

Eq. :
W (50, Aw) = —In (s, “sEAG“N) + dsw + by (16)

However, it is easy to see that the corresponding contour lines stay within the
unit square, (Sy,A\yw) € (0,1) x (0,1). The fixed point, where ¥ achieves its
minimum, is given by

<2ld<c+d— (c—d)2+4dw>,21b<a+b— <a—b)2+4bw)). (17)

Effects of regularization and effects of stochasticity combined with regularization
are shown in Figures 2] and [3 respectively. It is clear that, by construction,
Eqs. reflect naturally occurring stochasticity of the corresponding economic
processes, while preserving natural bounds for s,, and A,,.

Figure ] near here.

Figure [3] near here.

The idea of regularizing the Goodwin equations was originally proposed by
Desai et al. (2006). Our choice of the regularization function is different from
theirs but is particularly convenient for further development and advantageous
because of its parsimony. At the same time, while stochastic LVEs are rather
popular in the biological context, see, e.g., Cai and Lin (2004), stochastic aspects
of the LVGEs remain relatively unexplored, see, however, Kodera and Vosvrda
(2007), and, more recently, Huu and Costa-Lima (2014).

3 Stochastic Modified Keen Equations
3.1 Background

LVGEs and their simple modifications generate phase portraits, which are either
closed or almost closed, as presented in Figures[T] Accordingly, they can not
describe unstable economic behaviour. However, historical experience suggests
that capitalist economies are periodically prone to crises, as is elucidated by the
famous Financial Instability Hypothesis of Minsky (Minsky 1977, 1986). His
theory bridges macroeconomics and finance and, if not fully develops, then, at
least clarifies the role of banks and, more generally, debt in modern society.
Although Minsky’s own attempts to formulate the theory in a quantitative
rather than qualitative form were unsuccessfull, it was partially accomplished by
Steven Keen (Keen 1995). Keen extended the Goodwin model by abandoning
its key assumption that investment is equal to profit. Instead, he assumed
that, when profit rate is high, firms invest more than their retained earnings by
borrowing from banks and vice versa.

Below we briefly discuss the Keen equations and show how to modify them
in order to remove some of their intrinsic deficiencies.



3.2 Keen Equations

The Keen equations (KEs) (Keen 1995), describe the relation between the work-
ers’ portion of the output s,,, the employment rate A, and the firms’ debt Dy
relative to their non-financial assets Ky, I'y = Dy/K fﬁ All these quantities
are non-dimensional. KEs can be used to provide quantitative description of
Minsky’s Financial Instability Hypothesis (Minsky 1977).

Keen expanded the Goodwin framework by abandoning one of its key sim-
plifications, namely, the assumption that investment equals profit. Instead, he
allowed investments to be financed by banks. This important extension enables
the description of ever increasing firms’ leverage until the point when their debt
servicing becomes infeasible and an economic crisis occurs. Subsequently, Keen
(2013, 2014) augmented his original equations in order to account for flows of
funds among firms, banks, and households. However, KEs and their extensions
do not take into account the possibility of default by borrowers, and do not
reflect the fact that the banking system’s lending ability is restricted by its
capital capacity. Even more importantly, extended KEs do not explicitly guar-
antee that production equals consumption plus investment. In addition, as with
LVGEs, KEs do not reflect stochasticity of the underlying economic behaviour
and violate natural boundaries. Accordingly, a detailed description of the crisis
in the Keen framework is not possible.

Symbolically, KEs can be written as

dsy, = - (a - b/\w) Swdt7 (18)

Ay = <yff <sf—”yrf) —c> Awdt,
f
I I
de ((’I‘L—l/ff<8f—TL f>+d>Ff+yf (f(Sf—rL f>—8f>>dt.
vy vy

where a, b, ¢, d are suitable parameters, and f (.) is an increasing function of its
argument which represents net profits. Keen and subsequent authors recom-
mend the following choice

f@)=p+exp(gr+r). (19)

Solutions of KEs without Regularization are shown in Figure

Figure [d] near here.

On the one hand, these figures exhibit the desired features of the rapid
growth of firms’ leverage. On the other hand, they produce an unrealistic un-
employment rate A, > 1.

4We deviate from the original Keen’s definitions somewhat for the sake of uniformity.
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3.3 Modified Theory

A simple modification along the lines outlined earlier, makes KEs more credible:

dsy = - <a — by — ;”) swit + 04 /SasrdW (1), (20)
r

dh, = (f <3f -t ) —c- ;") Nt + o5/ Ao had Wi (1),
f f

al'y = ((TL —vsf (Sf - Tj;ff> +d> Ty+vy (f (Sf — ril;f> — Sf>> dt.

Here w is a regularization parameter, and o V/SwSf, 0N vV AwAy are Jacobi normal
volatilities.

Effects of regularization and effects of stochasticity combined with regular-
ization for KEs are presented in Figures [5] and [6] respectivelyl’]

Figure [B] near here.

Figure [6] near here.

While these Figures demonstrate the same rapid growth of firms’ leverage
as in Figure [4] while ensuring that A\, < 1, without taking into account a
possibility of defaults they are not detailed enough to describe the approach of
a crisis and the moment of the crisis itself.

Here and above we looked at the classical LVGEs and KEs and modified
them to better reflect the underlying economics. We use these equations as an
important building block for the stochastic MMC theory.

4 A Simple Economy: Consumers, Producers,
Banks

4.1 Inspiration

Inspired by the above developments, we build a continuous-time stochastic
model of the monetary circuit, which has attractive features of the established
models, but at the same time explicitly respects the fact that production equals
consumption plus investment, incorporate a possibility of default by borrow-
ers, satisfies all the relevant economic constraints, and can be easily extended
to integrate the government and central bank, as well as other important as-
pects, in its framework. For the first time, defaults by borrowers are explicitly
incorporated into the model framework.

For the sake of brevity, we shall focus on a reduced monetary circuit con-
sisting of firms, banks, workers, and rentiers, while the extended version will be
reported elsewhere.

5Partially regularized case without stochasticity is also considered by Grasselli & Costa-
Lima (2012).
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4.2 Stocks and Flows

To describe the monetary circuit in detail, we need to consider five sectors:
households (workers and rentiers) H; firms (capitalists) F'; private banks (bankers)
PB; government (; and central bank CB; all these sectors are presented in
Figure [7| below. However, the simplest viable economic graph with just three
sectors, namely, households H, firms F', and private banks PB, can produce a
nontrivial monetary circuit, which is analyzed below. Banks naturally play a
central role in the monetary circuit by simultaneously creating assets and lia-
bilities. However, this crucial function is performed under constraints on banks
capital and liquidity. The emphasis on capital and liquidity in the general con-
text of monetary circuits is an important and novel feature, which differentiates
our approach from the existing ones. Further details, including the role of the
central bank as a system regulator, will be reported elsewhere.

Figure [7] near here.

4.2.1 Notation

We use subscripts w,r, f,b to denote quantities related to workers, rentiers,
firms, and banks, respectively. We denote rentiers’ and firms’ deposits (banks’
liabilities) by D,., Dy, and their loans (banks’ assets) by L., Ly. Firms’ physical,
non-financial assets are denoted by Ky; banks’ capital Kj; all these quantities
are expressed in monetary units, [M]. Thus, financial and nonfinancial stocks
are denoted by D,, L,, D¢, L¢, K¢, Kp. By its very nature, bank capital, K is
a balancing variable between bank’s assets (L, + Ly) and liabilities (D, + Dy),

KbZLT—i-Lf—(DT-i-Df). (21)

According to banking regulations, bank assets are limited by the capital con-
straints,
Ky >y (LT—FLf), (22)

where v}, is a non-dimensional capital adequacy ratio, which defines the overall
leverage in the financial system. When dealing with the banking system as a
whole, which, in essence can be viewed as a gigantic single bank, we do not need
to include the central bank, since the liquidity squeeze cannot occur by defini-
tion. It goes without saying that when we deal with a set of individual banks,
the introduction of the central bank is an absolute necessity. This extended case
will be presented elsewhere.

There are several important rates, which determine monetary flows in our
simplified economy, namely, the deposit rate rp, loan rate TLEI maximum pro-
duction rate at full employment, vy, physical assets amortization rate § 4, default
rate 4 ; all these rates are expressed in terms of inverse time units, [1/77].

We assume that rp is the same for rentiers and firms, and simplarly with ry,.

12



Contractual net interest cash flows for rentiers and firms, ni, y, which are
measured in terms of monetary units per time [M/T], have the form

m’r,f = TDDT’f - T‘LLT’f. (23)

Profits for firms and banks are denoted as II; and II, respectively, with
both quantities being expressed in monetary units per time, [M/T]. For future
discussion, in addition to the overall profits, we introduce distributed, H? and
Hﬂ, and undistributed, II% and II}!, portions of the profits.

It is also necessary to introduce various fractions, some of which we are
already familiar with, such as the workers’ share of production s,,, the firms’
share of production s; = 1 — s, employment rate \,, unemployment rate
Auw = 1 = Ay, and some of which are new, such as capacity utilization uy,
the rentiers’ share of firms’ profits d,f, the firms’ share of the firms’s profits
d¢f =1 — 6y, the rentiers’ share of banks’ profits §,4, the banks’ share of the
banks’s profits dp, = 1 — d,4; all these quantities are non-dimensional, [1], and
sandwiched between 0 and 1. It is clear that Hjlc = 0,41y, etc.

4.2.2 Key Observations

(a) Production is equal to consumption plus investment:

All quantities in Eq. are expressed in terms of [M/T].

(b) On the one hand, the workers’ participation in the system is essentially
non-financial and amounts to straightforward exchange of labor for goods, so
that

Cuw = s5wY5. (25)

Thus, as was pointed out by Kaletcki, workers consume what they earn.

(c) On the other hand, rentiers can discretionally choose their level of con-
sumption, C,., introducing therefore the notion of stochasticity into the picture.
We explicitly model the stochastic nature of their consumption by assuming
that it is governed by the SDE of the form

dC, = k(C,—C,)dt+oCrdWe (1) (26)

C. = ao(nir-FH?—FHg)—FOqI/fo,

where we use the fact that total stock X, of financial and non-financial assets
belonging to rentiers (as a class) is given by

Xr = DT—LT-FKf—I-Df—Lf—i—Kb (27)
= DT—LT-i-Kf—i—Df—Lf-l-LT-i-Lf—DT—Df
K;.

In other words, the rentiers’ property boils down to firms’ non-financial assets.
Eqgs assume that rentiers’ consumption is reverting to the mean, C,., which

13



is a linear combination of profits received by rentiers, ni, + H? + Hg, and the
theoretical productivity of their capital, v K.

(d) We apply the celebrated Hooke’s law and assume that firms invest in
proportion to their overall production

Iy =Y (28)

We view this law as a first-order linearization of any hyperelastic relation, which
exists in practice. Thus, firms’ production depends on rentiers’ consumption
C
Vi=—"+, (29)
Sf— ¢
Here we assume that firms reinvest in production out of the share of their profits,
so that 0 < vy < sy, keeping C, positive, C}. > 0. It is convenient to represent
7 in the form
Y =vgss, (30)

0 <wvy <1, and represent Y in the form

C
Yp= — . (31)
T U=vp) s
(e) Thus, the level of investment and capacity utilization are given by
UfC,-
1= 2 (32)
T =)
Y C, C,
up=—1 = = : (33)
I/fo (Sf—’}/f) Ufo (1—’Uf)8foKf
(f) Firms’ overall profits, distributed, and undistributed, are defined as
Hf = SfoJrTDfoTLLf:i(l —TU )Jrnif, (34)
f
Y = 6y, 1% =61y

Thus, firms’ profits are directly proportional to rentiers consumption. As usual,
Kaletcki put it best by observing that capitalists earn what they spend!
The dimensionless profit rate 7y is

iy

= . 35
Tf Kf ( )
The proportionality coefficient vy introduced in Eq. (30 depends on the profit

rate, capacity utilization, financial leverage, etc., so that

Sfo Df 4
=& — —
vf (’Uo + vy Ufo + v Kf + U3 Kf 5 (36)
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or, explicitly,
C, D L
UfZ‘I)(U0+U1+’U2f+'U3 f)7 (37)

where @ (.) maps the real axis onto the unit interval, constants vg,v1,ve are
positive, and constant vz is negative. We choose ® in the form

1

O (z) = T o (—20)° (38)

(g) Banks’ overall profits, distributed, and undistributed, represent the dif-
ference between interest received on outstanding loans and paid on banks de-
posits reduced by defaults on loans, so that

My = —&p (Ly + Ly) —nip —nip, T =8,400, =6,  (39)
(h) Rentiers’ cash flows are
CF, =rpD, —rpL, + I} + 10f — C, = ni, + I + 1Ij — C,.. (40)

If CF, > 0, then rentiers’ deposits, D,., increase, otherwise, their loans, L.,
increase. Thus

dD, = (ni, + U} + 1§ — C,) " dt = (CF)" dt, (41)

dL, = —EpLpdt+ (—ni, — T4 — ¢ 4+ C,) " dt (42)
= —{pLydt+ (~CF,)" dt.

This equation takes into account a possibility of rentiers’ default.
(i) Firms’ cash flows are

CFf:HI;f’nyf. (43)

If CFy > 0, then firms’ deposits, Dy, increase, otherwise, their loans, Ly,
increase. Thus
dDy = (% —~,Yy) " dt = (CFy)* dt, (44)

dLj = —EaLgdt+ (1% +~,Yy) dt (45)
= & Lpdt+ (—CFy)*dt.

The latter equation takes into account a possibility of firms’ default.
(j) Firms’ physical assets growth depends on their investments and the rate
of depreciation,

v:C,
dK; = (1ivf —gAKf) dt. (46)
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(k) Banks’ capital growth is determined by their net interest income and the
rate of default,

dK, ZHgdtZ(Sbb (—§A (Lr—l-Lf) —m’r—m'f). (47)

(1) Physical and Financial capacity constraints (at full employment) have
the form

Yf = min (Yf,Vfo) 5 (48)
(—CE) = (=CF) L, (1,41, K, <05 (49)
(—CFp)" = (=CF) " L1, 41,)- Ky <0- (50)

We emphasize this direct parallel between financial and non-financial worlds,
with the capital ratio playing the role of a physical capacity constraint.

(m) We use the above observations to derive a modified version of the LVGEs
(15). While the first equation describing the dynamics for s, remains un-
changed, the second equation for \,, becomes

I
dhy = <Uf;(faB§A> Awdt (51)
N G S N o
B ((1—vf)Vfo o« 5’4) Aut
or, symbolically,
Uf CT
A <(1Uf)Vfo c) Ao dt (52)

(n) By using Egs and , we can express the level of prices, P, as a
function of rentiers’ consumption, C,., employment, \,, and other important
economic variables. These equations show that

C
L = A\y0,N,P. (53)
(1—wvy)sg

Accordingly, we can represent P as follows

Cr
(1 — Uf) Sf/\wewNw ’

P =
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4.3 Main Equations

In this section we summarize the main dynamic MMC equations and the corre-
sponding constraints

dC, = k¢ (C’T — CT) dt + ocC.dW¢e (t) s

. . Grr—vp)Ce\*
dD, = (Sppnir + (6rf — 0pp) niy — 0rpép (L + L) — W) dt,

+
ALy =\ =Salr + <_6bbnir — (8ry = 0pp) mig + Gpp€n (L + Ly) + %) ) dt,

. dpr—vy)Chr +
aDy = (yymig + CH=20C) ay,

. Srp—vp)C\ T
dL; = (—¢nLs + (—5ffmf - %) ) dt,
Ay = (s — 5AKf) dt + o K ;dWic (t)
dKy = —0up (§a (Ly + Ly) + nir + niy)
(55)
where

m'mv = ’I“DDT,f — TLLr,f7
= . . 8,+Ch
Cr = (5bbmr + (0pp — Orp)niy + (1_fvf ) + a1 Ky, (56)
D L
vy =9 (Uo + U17(1,Ufc)"l,fo +U27§ + U37§) .

The coefficient v introduced in Eq. can be found either via the Newton-
Raphson method or via fixed-point iteration. The first iteration is generally
sufficient, so that, approximately,

C D
Uf%(p(v()ﬁ»vl +U2f+1)3). (57)

(1 =@ (vo))veKy  "Ky K
The physical and financial capacity constraints are

_E/f = min (Y:{, l/fo) 5
(_CFb) N = (_CFb) +HVb(L7-+Lf)7Kb<O7 (58)
(_CFf) = (_OFf) Hub(Lr,«+Lf)—Kb<0'

In addition,

df.,, = abdt,
dN,, = BN,dt,
dsiy = = (0= VA — £ ) sudt + 00 5usdW, (1), (59)
D = (st — 0= ) Audt + /A dadWi (1),
P C

= (1—7Jf)8f)\w\9wNw :

In summary, we propose the closed system of stochastic scale invariant MMC
equations , . By construction, these equation preserve the equality
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among production and consumption plus investment. In addition, it turns out
modified LVGEs play only an auxiliary role and are not necessary for under-
standing the monetary circuit at the most basic level. This intriguing property
is due to the assumption that investments as driven solely by profits. If capacity
utilization is incorporated into the picture, then MMC equations and LVGEs
become interlinked.

Representative solution of MMC equations is shown in Figure

Figure [§ near here.

5 Money Creation and Annihilation in Pictures

In modern society, where large quantities of money have to be deposited in
banks, banks play a unique role as record keepersm Depositors become, in effect,
unsecured junior creditors of banks. If a bank were to default, it would generally
cause partial destruction of deposits. To avoid such a disturbing eventuality,
banks are required to keep sufficient capital cushions, as well as ample liquidity.
In addition, deposits are insured up to a certain threshold. Without diving into
nuances of different takes on the nature of banking, we mention several books
and papers written over the last century, which reflect upon various pertinent
issues, such as Schumpeter (1912), Howe (1915), Klein (1971), Saving (1977),
Sealey and Lindley (1977), Diamond and Dybvig (1983), Fama (1985), Selgin
and White (1987), Heffernan (1996), FRB (2005), Wolf (2014).

It is very useful to have a simplified pictorial representation for the inner
working of the banking system. We start with a simple case of a single bank,
or, equivalently, the banking system as a whole. We assume that the bank in
question does not operate at full capacity, so that condition is satisfied. If
a new borrower, who is deemed to be credit worthy, approaches the bank and
asks for a reasonably-sized loan, then the bank issues the loan by simultaneously
creating on its books a deposit (the borrower’s asset), and a matching liability
for the borrower (the bank’s asset). Figuratively speaking, the bank has created
money ”out of thin air”. Of course, when the loan is repaid, the process is carried
in reverse, and the money is ”destroyed”. Assuming that the interest charged
on loans is greater than the interest paid on deposits, as a result of the round-
trip process bank’s capital increasesﬂ The whole process, which is relatively
simple, is illustrated in Figure [0] At first, the bank has 20 units of assets, 15
units of liabilities, and 5 units of equity. Then, it lends 2 units to a credit
worthy borrower. Now it has 22 units of assets and 17 units of liabilities. Thus,
2 units of new money are created. If the borrower repays her debt with interest,
as shown in Step 3(a), then the bank accumulates 20.5 units of assets, 15 units

"In general, in developed economies the proportion of cash versus bank deposits is rather
small. However, when very large denomination notes are available, they are frequently used
in lieu of bank accounts.

8The money is destroyed if the borrower defaults, as well. It this case, however, bank’s
capital naturally decreases.
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of liabilities, and 5.5 units of equity. If the borrower defaults, as shown in Step
3(b), then the bank ends up with 20 units of assets, 17 units of liabilities, and
3 units of equity. In both cases 2 units of money are destroyed.

Figure [9 near here.

Werner executed this process step by step and described his experiences in
a recent paper (Werner 2014). It is worth noting, that in the case of a single
bank, lending activity is limited by bank’s capital capacity only and liquidity is
not important.

We now consider a more complicated case of two (or, possibly, more) banks.
In this case, it is necessary to incorporate liquidity into the picture. To this end,
we also must include a central bank into the financial ecosystem. We assume
that banks keep part of their assets in cash, which represents a liability of the
central bankﬂ The money creation process comprises of three stages: (a) A
credit worthy borrower asks the first bank for a loan, which the bank grants
out of its cash reserves, thus reducing its liquidity below the desired level; (b)
The borrower then deposits the money with the second bank, which converts
this deposit into cash, thereby increasing its liquidity above its desired level;
(¢) The first bank approaches the second bank in order to borrow its excess
cash. If the second bank deems the first bank credit worthy, it will lend its
excess cash, in consequence creating a link between itself and the first bank.
Alternatively, if the second bank refuses to lend its excess cash to the first bank,
the first bank has to borrow funds from the central bank, by using its performing
assets as collateral. Thus, the central bank lubricates the wheels of commerce
by providing liquidity to credit worthy borrowers. Its willingness to lend money
to commercial banks, determines in turn their willingness to lend to firms and
households. When the borrower repays its loan the process plays in reverse.

The money creation process, initiated when Bank I lends 2 monetary units
to a new borrower, results in the following changes in two banks’ balance sheets:

Step I Step II Step 11

Bank I Bank II BankI BankII Bank 1 Bank II
External Assets 19 24 21 24 21 24
Interbank Assets 6 9 6 9 6 11
Cash 3 4 1 6 3 4
External Liabilities 20 25 20 27 20 27
Interbank Liabilities 3 7 3 7 5 7
Equity 5 5 5 5 5 5

(60)

This process is illustrated in Figure We leave it to the reader to analyze the
money annihilation process.

Figure [I0] near here.

9Here cash is understood as an electronic record in the central bank ledger.

19



In summary, in contrast to a non-banking firm, whose balance sheet can be
adequately described by a simple relationship among assets, A, liabilities, L,
and equity, F,

A=L+E, (61)

as is shown in Figure [TTh, the balance sheet of a typical commercial bank must,
in addition to external assets and liabilities, incorporate more details, such as
interbank assets and liabilities, as well as cash, representing simultaneously
bank’s assets and central bank’s liabilities, see Figure [[Tp.

Figure [T1] near here.

In Section [] we quantitatively described a supply and demand driven eco-
nomic system. In this system money is treated on a par with other goods, and
the dynamics of demand for loans and lending activity is understood in the
supply-demand equilibrium framework. An increasing demand for loans from
firms and households leads banks to lend more. Having said that, we should
emphasize that the ability of banks to generate new loans is not infinite. In
exact parallel with physical goods, whose overall production at full employment
is physically limited by v; Ky, the process of money (loan) creation is limited
by the capital capacity of the banking system Kj/vp. Once we have embedded
the flow of money in the supply-demand framework, we can extend the model
to several interconnected banks that issue loans in the economy. These banks
compete with each other for business, while, at the same time, help each other
to balance their cash holdings thus creating interbank linkages. These linkages
are posing risks because of potential propagation of defaults in the system. Our
main goal in the next section is to develop a parsimonious model which, nev-
ertheless, is rich enough to produce an adequate quantitative description of the
banking ecosystem. We look for a model with as few adjustable parameters
as possible rather than one over-fitted with a plethora of adjustable calibration
parameters.

6 Interlinked Banking System

Consider N banks with external as well as mutual assets and liabilities of the
form

JFi i
where the interbank assets and liabilities are defined as
i i
Accordingly, an individual bank’s capital is given by

E,=A+A; — L, — L. (64)
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We can represent banks assets and liabilities by using the following asset and
liability matrices

A=(4y), Au=A4; Ay=Ly,

L=(Liy), Liu=0L;y ij=1,..,N. (65)

Thus, by its very nature banking system becomes inherently linked. Various
aspects of this interconnectivity are discussed by Rochet and Tirole (1996),
Freixas et al. (2000), Pastor-Satorras and Vespignani (2001), Leitner (2005),
Egloff et al. (2007), Allen and Babus (2009), Wagner (2010), Haldane and May
(2011), Steinbacher et al. (2014), Ladley (2013), Hurd (2015), among many
others.

In the following subsection we specify dynamics for asset and liabilities,
which is consistent with a possibility of defaults by borrowers.

6.1 Dynamics of Assets and Liabilities. Default Bound-
aries

In the simplest possible case, the dynamics of assets and liabilities is governed
by the system of SDEs of the form

dA; (t) dL; (t) dL;; (t)

= pudt.  (66)

where 1 is growth rate, not necessarily risk neutral, W; are correlated Brownian
motions, and o; are corresponding log-normal volatilities.

In a more general case, the corresponding dynamics can contain jumps, as
discussed in Lipton and Sepp (2009), or Itkin and Lipton (2015a, 2015b). Fol-
lowing Lipton and Sepp (2009), we assume that dynamics for firms’ assets is
given by

dA; (t)
= (u
A; (1)
where N; are Poisson processes independent of W;, \; are intensities of jump

arrivals, J; are random jump amplitudes with probability densities w; (j), and
K; are jump compensators,

— ki (1) dt + 0:dW; (t) + (e — 1) dN; (2), (67)

ki=E{e —1}. (68)

Since we are interested in studying consequences of default, it is enough to
assume that J; are negative exponential jumps, so that

{0 j>o0
wi)={ gens 120 (69)
with 9¥; > 0. Diffusion processes W; are correlated in the usual way,

AW, (t) dW; (£) = py,dt. (70)
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Jump processes N; are correlated in the spirit of Marshall-Olkin (1967). We
denote by TIV) the set of all subsets of N names except for the empty subset
{@}, and by 7 a typical subset. With every m we associate a Poisson process
N (t) with intensity A, (t). Each N; () is projected on N (t) as follows

mell(V)

with
A= Y luemAx (1) (72)

Tell(N)
Thus, for each bank we assume that there are both systemic and idiosyncratic
sources of jumps. In practice, it is sufficient to consider N + 1 subsets of II(V)
namely, the subset containing all names, and subsets containing only one name
at a time. For all other subsets we put A\; = 0. If extra risk factors are needed,
one can include additional subsets representing particular industry sectors or
countries.

The simplest way of introducing default is to follow Merton’s idea (Merton
1974) and to consider the process of final settlement at time t = T, see, e.g.,
Webber and Willison (2011). However, given the highly regulated nature of the
banking business, it is hard to justify such a set-up. Accordingly, we prefer
to model the problem in the spirit of Black and Cox (1976) and introduce
continuous default boundaries, A;, for 0 < ¢ < T, which are defined as follows

ML L) — A =A<
. Iﬁ@gﬁLJAAﬁ_AN t<T, 73)
LZ+L,L—AZEAZZ, t:T,

where R;,0 < R; <1 is the recovery rate. We can think of A; as a function of
external and mutual liabilities, L = {L;, IAJZ}, A=, (L).

If the k-th bank defaults at an intermediate time t’, then the capital of the
remaining banks is depleted. We change indexation of the surviving banks by
applying the following function

. g ko i, 1< k,

l_”_(b(z)_{i—l i> k. (74)
We also introduce the inverse function ",

. . . 7, i < k,

Z%{:www:{i+1i2k. (75)

The corresponding asset and liability matrices A®) | L) assume the form
k k
AW = (4P @), AR (1) = A (1),
(k) _
“ (gia‘ (1) = Ayr iy o) (05
L® = (LY 0), LW () = Lyxy (8) = Lyryse () + RiLy gy (1),

k
Lz('j) (t) = Lk (), gk ) () 5
t>t, Qj=1,.,N—1
(76)
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The corresponding default boundaries are given by

(e L j k) (k)
AiSAg’“):{ Rk (LZ + L7 — A ) t<T, o

LP + 10— AW, t="T.

i # j. It is clear that

— R, k)
AR — A0y =) U R’R’i)(;gz ¢ = T (78)
(1 - Rk) Az R t="T.

so that AAl(-k) > 0 and the default boundaries (naturally) move to the right.

6.2 Terminal Settlement Conditions

In order to formulate the terminal condition for the Kolmogorov equation, we
need to describe the settlement process at ¢t = T in the spirit of Eisenberg
and Noe (2001). Let A (T) be the vector of the terminal external asset values.
Since at time T a full settlement is expected, we assume that a particular bank
will pay a fraction w; of its total liabilities to its creditors (both external and
inter-banks). If its assets are sufficient to satisfy its obligations, then w; = 1,
otherwise 0 < w; < 1. Thus, the settlement can be described by the following
system of equations

min | 4; (T) + Z Ljiw;, Ly + Li | =w (Li + ilz) ) (79)

J
or equivalently

A (T) + Z Ljw;
J

®; (W) = min - A =w;. 80
(@) LTI (80)

It is clear that & is a fixed point of the mapping ) (@),
3 (@) =a. (81)

Eisenberg and Noe have shown that o () is a non-expanding mapping in the
standard Euclidean metric, and formulated conditions under which there is just
one fixed point. We assume that these conditions are satisfied, so that for each

A(T) there is a unique & (/T (T )) such that the settlement is possible. There

are no defaults provided that & = I, otherwise some banks default. Let I'be a
state indicator (0, 1) vector of length N. Denote by D (f ) the following domain

o(n={awl(im)={ & 223}

23



In this domain the i-th bank survives provided that I; = 1, and defaults oth-
erwise. For example in the domain D (1,...,1) all banks survive, while in the
domain D (0,1, ...,1) the first bank defaults while all other survive, etc.

The actual terminal condition depends on the particular instrument under
consideration. If we are interested in the survival probability ) of the entire set
of banks, we have

Q(T.A) = Lsepq,..y (83)
For the marginal survival probability of the i-th bank we have
@ (7 4) = Licu, o) 1)

where I is the set of indicator vectors with I; = 1.

Thus far, we have introduced the stochastic dynamics for assets and liabilities
for a set of interconnected banks. These dynamics explicitly allows for defaults of
individual banks. Our framework reuses heavy machinery originally developed
in the context of credit derivatives. In spite of being mathematical intense,
such an approach is necessary to quantitatively describe the financial sector as
a manufacturer of credit.

6.3 General Solution via Green’s Function

This Section is rather challenging mathematically and can easily be skipped at
first reading.

Our goal is to express general quantities of interest such as marginal survival
probabilities for individual banks and their joint survival probability in terms
of Green’s function for the N-dimensional correlated jump-diffusion process in
a positive ortant.

As usual, it is more convenient to introduce normalized non-dimensional
variables. To this end, we define

r by A ~ A
oy B ; Y
t = X°t, Xi—mln(Ai<>, A SR (85)
where
N 1/N
i=1
Thus, i
_ t _ . A .
t=sp A= (R (Lot L) - Ai)en . (87)
The scaled default boundaries have the form
0= M7, t<T,
X; < M; (t) = ) Li(0)+L:(0)—A,(0) o - (88)
s (Ri(Lf(OHﬁi(O))—Ai(O) =M7, t=T.
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The survival domain D (1,...,1) is given by
Thus, we need to perform all our calculations in the positive cone RSFN).
The dynamics of X = (X1, ...,Xn) is governed by the following equations

; N )
X, = — (i + R /\i> df + dW; () + — J;dN; (£) (90)
22X o
= £dt+dW; (F) + ¢, JidN; (1) .
Below we omit bars for the sake of brevity and rewrite Eq. in the form:

The corresponding Kolmogorov backward operator has the form

N 1N
Ly = Y| 52l ik, (92)
1

i=1 j=

+ = MIa(X) - 2 M (X)

TeIl(V) Tell(V)

= LASHEVI TS T,
where = .
7(X)= % [171 (%) (93)
Tif ()?) — /OXi FX1y o Xi— G, X ) €S, (94)

and ¢; = 0;9;/%.
We can formulate a typical pricing equation in the positive cone RS_N). We
have

8,V (t, X) L LMYy (t}?) .y (t}?) 7 (95)
1% (t,)?o,k) = ok (t, ?) .V (t,)?oo,k) = bk (t,?) , (96)
1% (T, )Z') — ()?) , (97)

where X, X, Xoo,k, Yr are N and N — 1 dimensional vectors, respectively,

X = (!El, ey Ty {L'N) 5
Xo,k = $1,...,0, SL’N> y
' (98)

—

Kook = x17...,oko7...xN) ,

?k = (1‘1, o Lk—1y Tk+1, :L‘N) .
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Here y (t,X), G0k &)y oo (8, 4); ¥ ()?) are known functions, which are

contract specific. For instance, for the joint survival probability @ (t,X ) we

have

X (ta)z) =0, %ok (t,?) = Doo (t,}}) =0, ¢ ()?) =1gepa,..1y (99

The corresponding adjoint operator is

N1
LMy (X) =508,9 =& Vg+T'g vy,

where

Jle(X)= > M7l (X).

Tell(N)

j;rg (X) = <i/ g(X1, ..., X; + 7, ._.J;N)e—mdj’
0

It is easy to check that

/R@ 77 (%) 9(X) -1 (%) 7o (X)] ax =0

(100)

(101)

(102)

(103)

We solve Eqs — by introducing the Green’s function G (t,X )7 or,

more explicitly, G <t, 70, )Z’), such that
&G (t, %) — LNG (t,7) =0,
G (LAY —0 G (xW) —o,
G (0.X) =5 (% - ).

It is clear that
(VG), + LVG - VLG = xG.

Some relatively simple algebra yields
V@), +V- (F v, G)) +JVG -VvJta =xa,

where

My
I
E

o iy Fy)

(O FO L FP) 4 (PO, O, L FD)

= O 4 @

1
Y = §VXiG+§iVG+ ZPijVXj G,
j<i
1
J>i
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Green’s theorem yields
v (0)‘(’) - /R<+N> " (X‘) G (T, X’) dX (110)
+zk:/OT dt/R;NU ok (t,?) e (t,?) ay
_ /OT /R(N) ¥ (1.X) G (1, X) atax,
+

where )
(% (t,?) = iGXk (t7X1, ...,2,...,XN) . (111)

Thus, in order to solve the backward pricing problem with nonhomogeneous
right hand side and boundary conditions, it is sufficient solve the forward prop-
agation problem for Green’s function with homogeneous right hand side and
boundary conditions.

In particular, for the joint survival probability, we have

0 (0,)?’) — / G (T, )?) dX;...dXy. (112)

XeD(1,...,1)

Similarly, for the marginal survival probability of the first bank, say, we have

O (O,X") - / G(T,X') dX (113)

XeD(0,...,1)
T — — —
+Zk:/0 dt/}%g_l) O (t,Y) g (t,Y) v

7 Banks’ Balance Sheet Optimization

This Section is aimed at increasing the granularity of our model. Let’s recall that
first we considered a simple economy as a whole and assumed that it is driven
by stochastic demand for goods and money, and described the corresponding
monetary circuit. In this framework, physical goods and money are treated in
a uniform fashion. Next, we moved on to a more granular level and described
a system of interlinked banks that create money by accommodating external
changes in demand for it. Now, we have reached the most granular level of
our theory, and consider an individual bank. We emphasize that MMC theory
described in this paper is a top-down theory. However, once major consistent
patterns from the overall economy are traced to the level of an individual bank,
the consequences for the bank profitability and risk management are hard to
overestimate.
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Numerous papers and monographs deal with various aspects of the bank
balance sheet optimization problem. Here we mention just a few. Kusy and
Ziemba (1986) develop a multi-period stochastic linear programming model for
solving a small bank asset and liability management (ALM) problem. dos Reis
and Martins (2001) develop an optimization model and use it to choose the opti-
mal categories of assets and liabilities to form a balance sheet of a profitable and
sound bank. In a series of papers, Petersen and coauthors analyze bank man-
agement via stochastic optimal control and suggest an optimal portfolio choice
and rate of bank capital inflow that keep the loan level close to an actuarially de-
termined reference process, see, e.g., Mukuddem-Petersen and Petersen (2006).
Dempster et al. (2009) show how to use dynamic stochastic programming in
order to perform optimal dynamic ALM over long time horizons; their ideas
can be expanded to cover a bank balance sheet optimization. Birge and Judice
(2013) propose a dynamic model which encompasses the main risks in balance
sheets of banks and use it to simulate bank balance sheets over time given their
lending strategy and to determine optimal bank ALM strategy endogenously.
Halaj (2012) proposes a model of optimal structure of bank balance sheets in-
corporating strategic and optimizing behavior of banks under stress scenarios.
Astic and Tourin (2013) propose a structural model of a financial institution
investing in both liquid and illiquid assets and use stochastic control techniques
to derive the variational inequalities satisfied by the value function and compute
the optimal allocations of assets. Selyutin and Rudenko (2013) develop a novel
approach to ALM problem based on the transport equation for loan and deposit
dynamics.

To complement the existing literature, we develop a framework for optimiz-
ing enterprise business portfolio by mathematically analyzing financial and risk
metrics across various economic scenarios, with an overall objective to maxi-
mize risk adjusted return, while staying within various constraints. Regulations
impose multiple capital requirements and constraints on the banking industry
(such as B3S and B3A capital ratios, Leverage Ratios, Liquidity Coverage Ra-
tios, etc.).

The economic objective of the balance sheet optimization for an individual
bank is to choose the level of Loans, Deposits, Investments, Debt and Capital
in such a way as to satisfy Basel III rules and, at the same time, maximize
cash flows attributable to shareholders. Balance sheet optimization boils down
to solving a very involved Hamilton Jacobi Bellman problem. The optimization
problem can be formulated in two ways: (a) Optimize cashflows without using
a risk preference utility function, or, equivalently, being indifferent to the prob-
ability of loss vs. profits; (b) Introduce a utility function into the optimization
problem and solve it in the spirit of Merton’s optimal consumption problem.
Although, as a rule, balance sheet optimization has to be done numerically, oc-
casionally, depending on the chosen utility function, a semi-analytical solution
can be obtained.
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7.1 Notations and Main Variables

Let us introduce key notation. By necessity, we have to reuse some of the
symbols used earlier; we hope this will not confuse the reader. Bank’s assets in
increasing order of liquidity have the form

X}, outstanding loans with maturity 7 and quality p,
I, investments in stocks and bonds,
C, cash.

We assume that T < ... < T < ... < Tg, and p = 1, ..., P. Quality of loans is
determined by various factors, such as the rating of the borrower, collateraliza-
tion, etc.

Bank’s liabilities in increasing order of stickiness have the form

D, deposits,
Y)?, outstanding debts with maturity 7; and quality ¢,
E, equity (or capital).

We assume that 77 < ... <T; < ... <Tp,and g = 1,...,Q. Quality of borrowings
is determined by various factors, such as its seniority, collateralization, etc.

Assets and liabilities have the following properties: (a) Loans and debts are
characterized by their repayment /loss rates A} and p, and interest rates 4 and
&7 (b) Similarly, for deposits we have rates a and 3, respectively; (c) Finally,
for investments the corresponding growth rates are stochastic and have the form
r — ( + ox (t), where r is the expected growth rate, ¢ is the dividend rate, o is
the volatility of returns on investments, and x (t) = dW (¢) /dt is white noise,
or "derivative” of the standard Brownian motion, so that

dI = (r — ¢) Idt + o IdW. (114)

Balance Sheet Balancing Equation has the form:
S XP+I+C=D+> Y +E. (115)
k,p lLaq

Below we omit sub- and superscripts for brevity and rewrite the equation of

balance as follows:
X+I+C-D-Y—-E=0. (116)

There are several controls and levers for determining general direction of the
bank: (a) rates ¢ (t) at which new loans are issued; (b) rates ¢ (¢) at which
new borrowings are obtained; (c) rate w () at which new investments are made;
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(d) rate 7 (t) at which new deposits are acquired; (e) rate ¢ (¢) at which money
is returned to shareholders in the form of dividends or share buy-backs. If
0 (t) <0, then new stock is issued. Of course, dividends should not be paid
when new shares are issued.

The evolution of the bank’s assets and liabilities is governed by the following
equations:

X'(t) = “AX(t)+(), (117)
') = (r=C+ox(®) 1) +w(),
) = —X’()+vX(t)+ CI(t) - (t)

+D'(t) = BD (8) + Y' (1) = €Y (1) = 3 (1)

) =
= (A+V)X() (t)+CI() w(t)
—(a+B)DH)+7 () = (p+ Y () + V() —-d(t),

and

D'(t) = —aD
Vi) = —pY(
E'(t) = vX(t)

= vX (1)

@) +7 (1), (118)
)+ (),

")+ CI(t) —w(t) = BD(t) — &Y (t) — 3 (¢)
(r+ox(t)1(t)—BD(t) =&Y (t) =0 (1),

respectively. Here, for convenience, instead of ¢ (¢) and v (t) we use ® (¢) and
U (t), defined as follows

+
+

B ()= 6(t) — e ot —T),
W (t)= o (1) — e PTh (t T, (119)

respectively.

On the bank’s asset side, outstanding loans decay deterministically pro-
portionally to their repayment rate and increase due to new loans issued less
amortized old loans repaid. Existing investments grow stochastically as in Eq.
(114)) and are complemented by new investments. Changes in cash balances
are influenced by several factors. On the one hand, prepaid loans, interest
charged on outstanding loans, dividends on investments, new deposits, and new
borrowings positively contribute to cash balances. On the other hand, new in-
vestments, interest paid on deposits and borrowings, withdrawn deposits and
losses on lending, as well as money returned to the shareholders as dividends
and/or share buy-backs lead to reduction in the bank cash position.

On the bank’s liability side, deposits decay deterministically proportionally
to their withdrawal rate and increase due to new deposits coming in. Outstand-
ing bank’s debts decay deterministically at their repayment rate, and increase
due to new borrowings less amortized old debts repaid. Similarly to changes
in cash on the asset side, changes in capital (equity) on the liability side are
positively affected by the interest paid on outstanding loans, stochastic returns
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on investments (including dividends), and negatively affected by interest paid
on deposits, borrowings, and dividends paid to the shareholders.
Balancing equation (|116)) after differentiation becomes

X' +I'+C'"-D' -Y'—FE =0. (120)
and is identically satisfied by virtue of Eqs (117]), (118) since

X/+I/+C/—D/—Y/—E/=
X+I'-X' 4+vX+{I-w+D —-pD+Y' —¢&Y -4 (121)
D' —-Y —vX-T—-(I+w+ D+ +§=0.

7.2 Optimization Problem

The cashflow C'F (T') attributable to the common equity up to and including
some terminal time 7" is determined by the discounted expected value of change
in equity plus the discounted value of money returned to shareholders over a
given time period. By using Eqs (118), CF (T') can be calculated as follows:

CF(T) = e FTE{E (T)} — E(0) + J, e B3 (1) dt
= TR {fOT E'(t) + e BE=T)§ (¢) dt}

_ —RTE {foT WX @)+ (r+ox(t)I(t) (122)
—8D (tT) — &Y (1) = (t) + e B=T)§ (t)) dt}
= T [T (X (8) 7] (1) = BD (1) — €Y (1)
+ (e RO=T) 1) § (1)) dt.

Here R is the discount rate, and J (t) is the expected value of investments I (t)
with dividends reinvested. The deterministic governing equation for J has the
form:

J () =1J () +w(t) (123)

Accordingly, in order to optimize the balance sheet at the most basic level, we
need to maximize C'F (T), viewed as a functional depending on ¢ (t) ,w (¢t) , 7 (t) , ¢ (¢),

and  (t):
F(T) — max
B(),w(t),m(8),%(2),6(t)

However, this optimization problem is subject to various regulatory constraints,
such as capital, liquidity, leverage, etc., some of which are explicitly described
below. Clearly, the problem has numerous degrees of freedom, which can be
reduced somewhat by assuming, for example, that ¢ (¢) ,w (¢),7 (t), ¢ (t),d (¢)
are time independent.

(124)
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7.3 Capital Constraints

Regulatory capital calculations are fairly complicated. They are based on sys-
tematizing and aggregating bank portfolio’s assets into risk groups and assigning
risk weights to each group. Therefore, for determining Risk Weighted Assets
(RWAs), it is necessary to classify loans and investments as Held To Maturity
(HTM), Available For Sale (AFS), or belonging to the Trading Book (TB).
We start with HTM and AFS bonds. We can use either the standard model
(SM), or an internal rating based model (IRBM). SM represents RWA in the
form:
RWAgy = rwagy - X, (125)

where the weights rwagy = (rwag M k) are regulatory prescribed, and
rwagy - X = Z rwal,,  Xb. (126)
k.p

Alternatively, IRBM provides the following expression for the RWAs:

RWArrBM = rwarrem - X, (127)

where the weights rwarrp Mz(rwaljRB M k) are given by relatively complex

formulas, which are omitted for brevity. In both cases, the corresponding regu-
latory capital is given by
KW = kRWA. (128)

Additional amounts of capital K, K®) K@ are required to cover counter-
party, operational and market risks, respectively, so that the total amount of
capital the bank needs to hold is given by

K=KV 4K® 4 K® 4 k@ (129)

It is clear that for a bank to be a going concern, the following inequality has to
be satisfied
E—-K>0. (130)

7.4 Liquidity Constraints

We formulate liquidity constraints in terms of the following quantities:
(a) Required Stable Funding (RSF)

RSF =rsfx - X +rsfr-1+0-C; (131)
(b) Available Stable Funding (ASF)

ASF =asfp-D+asfy - Y +1-E. (132)

32



Here rsfx = (rsf}), and
Tst-X:ZTsf,fo;. (133)
k.p
In addition, we define:
(c) Stylized 30 day cash outflows (CO)
CO =cop-D+coy-Y+0-E; (134)
(d) Stylized 30 day cash inflows (CI):

Cl=cix -X+cij- I+1-C. (135)

Here the weights rsfx, rsfr,asfp, asfy, cop, coy, cix, ciy are prescribed by
the regulators.
In order to comply with Basel III requirements, it is necessary to have:

ASF > RSF, (136)
CI > CO, (137)

or equivalently,
—rsf- X —rsfi-I+asfp-D+asf-Y+E >0, (138)
ci-X+ciy-I+C—cop-D—co-Y >0. (139)

In words, Eqs (138)) and (139) indicate that having large amounts of equity,
E and capital, C' is beneficial for the bank’s liquidity position (but not for its
earnings!).

7.5 Mathematical Formulation: General Optimization Prob-
lem

A general optimization problem can be formulated in terms of independent
variables X, I,C, D,Y defined in the multi-dimensional domain given by the
corresponding constraints

There are adjacent domains where complementary variational inequalities
are satisfied. The corresponding HJB equation reads:

Vi + 302IPVip + (- AX + @) Vx + (r — Q) IV,
+(A+v) X —D+(¢I —w

max ¢ —(@+H)D+T—(prOV UV 5 =0 (140)
P, +(=aD +7) Vp + (—pY + ¥) Vy — RY,
1-Ve
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In the limit of T — oo the problem simplifies to (but still remains very
complex):

%(72]2‘/[[—"- (—)\X+(I>) Vx +(7'_C) IVr
+(()\+V)X—(I)+CI—UJ

max & —(a+H)D+r—(u+OY+U)Ve  p=0.  (141)
PemO N 4 (—aD +7m) Vp + (—pY + ¥) Vy — RY,
1-Ve

7.6 Mathematical Formulation: Simplified Optimization
Problem

Instead of dealing with several independent variables, X, ..., Y, we concentrate
on the equity portion of the capital structure, E, which follows the effective
evolution equation:

dE = (i — d) dt + odW — J1dNy — JodNo, (142)

where p is the accumulation rate, d is the dividend rate, which we wish to
optimize, o is the volatility of earnings, W is Brownian motion, Nj 2 are two
independent Poisson processes with frequencies A; 2, and J; 2 are exponentially
distributed jumps, J; ~ d; exp (—;5). The choice of the jump-diffusion dynam-
ics with two independent Poisson drivers reflects the fact that the growth of
the bank’s equity is determined by retained profits, which are governed by an
arithmetic Browinian motion, and negatively affected by two types of jumps,
namely, more frequent (but slightly less dangerous due to potential actions of the
central bank) liquidity jumps represented by N, and less frequent (but much
more dangerous) solvency jumps represented by Ni. Accordingly, A\; > A, and
01 < d3. Below we assume that the dividend rate is potentially unlimited, so
that a lump sum can be paid instantaneously. A similar problem with just one
source of jumps has been considered in the context of an insurance company
interested in maximization of its dividend pay-outs (see, e.g., Taksar 2000 and
Belhaj 2010 and references therein).

The bank defaults when E crosses zero. We shall see shortly that it is optimal
for the bank not to pay any dividend until E reaches a certain optimal level E*,
and when this level is reached, to pay all the excess equity in dividends at once.
With all the specifics in mind, the dividend optimization problem can be
mathematically formulated as follows

W+%02VEE+(,U—61)VE — (R-i-)\l +)\2)V
max A0 [y V(E = Jy) e hdg, =0, (143)
FAods [ V(E — Jo) e %2d ]y + d

V(T,E)=E, E>0, (144)
V(t,0)=0, 0<t<T. (145)
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Solving Eq. (143) supplemented with terminal and boundary conditions ([144))-
(145)) is equivalent to solving the following variational inequality:

Vit 302Vege + Ve — (R+ A+ A) V
M0y [FVI(E - 1) e 0 7d,
+A209 fO Vv (E — Jg) 6_62‘]2ng7

1-Vg

=0, (146)

augmented with conditions (144]), (145). We use generic notation to rewrite Eq.

(146) as follows:

max {‘/t 4+ axVerg + a1 Ve + agV + My + AoZo, 1 — VE} =0, (147)

where
tE—é/ (t,E—J;) —“dJ_5/ t,j) e E=Dgi i =1,2,
(148)

Symbolically, we can represent Eq. (147)) in the form

max{V;+ L(V),1—-Vg} =0, (149)

where
L(V)=aaVer + a1Ve + aoV + MLy + AT (150)

Solution V (¢, E) of this variational inequality cannot be computed analyt-
ically and has to be determined numerically. To this end, we use the method
proposed by Lipton (2003) and replace the variational inequality in question by
the following one

max{—VT 4+ asVerg + a1 Ve + agV + MZ1 + AoZo, 1 — VE} =0,
Lig+ 6L — o,V =0,
V(0,E)=E,
V (r,0)=0,

(151)

where 7 = T'—t. The corresponding problem is solved in a relatively straightfor-
ward way by computing Z; and performing the operation max {.,.} explicitly,
while calculating V' in the usual Crank-Nicolson manner. The corresponding
solution is shown in Figure

Figure [12| near here.

For the T' — oo limit, the time-independent maximization problem has the
form
max{L(V),1-Vg} =0,

V(0)=0, (152)
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or, equivalently,

L(V)(E)=0, 0<E<E*
V(E)=E+V (E*) - E*, E*<E <o,
Vv (0) =0, (153)
Vg (E%) = 1,
Vs (B*) = 0.

Here E* is not known in advance and has to be determined as part of the
calculation.

It turns out that the time-independent problem can be solved analytically.
Since we are dealing with a Levy process, we have

Ao A2d
EB) _ g eE MO1 s g A202  _s5p 154
L(e ) &e £+51€ 75_’_526 , (154)

where U (£) is the symbol of the pseudo-differential operator £,

)\151 )\2(52
V(&) = a2’ + a1 +ag + : 155
(§) = a2€” + a1§ + ao £+ 01 £+ 0, (155)
Denote by &;, j = 1,...,4, the roots of the (polynomial) equation
¥ (£) =0. (156)

The corresponding function ¥ (€) for a representative set of parameters is ex-
hibited in Figure [13] which clearly shows that all roots of Eq. (156) are real.

Figure [L3| near here.

Then a linear combination

V(E)=) Cjet”, (157)

solves the pricing problem and the boundary conditions (153 provided that

1 1 1 1 c 0
I R S N N I e B
(51 + 52)*_ (52 —+ 52)*_ (53 + (52)*_ (54 + 52)*_ 03 = 0

§1€£1E 52652E 53653E §4€£4E C L
Geor  genr gl g ' ’
(158)

Eqs (158]) should be thought of as a system of five equations for five unknowns,
namely, (C1,Cs,C3,Cy) and E*. The corresponding profile V (E) is presented

in Figure [[4]

Figure [T4] near here.
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This graph shows that on the interval [0, E*) we have Vg > 1. Accordingly,
the coefficient (1 — Vg) in front of d in Eq. is negative, so that the optimal
d has to be zero. To put it differently, it is optimal for the bank not to pay any
dividends until F reaches the optimal level E*. On the interval (E*, o0) we have
Ve > 1, so that d is not determined. However, this is not particularly important,
since when E exceeds the optimal level E* it is optimal to pay all the excess
equity in dividends. This situation occurs because we allow for infinite dividend
rate, and hence lump-sum payments. When d is bounded, the corresponding
optimization problem is somewhat different, but can still be solved along similar
lines.

Comparison of Figures [[4[a) and [T4b) shows that V (E) is an excellent
approximation for V (T, E) for longer maturities 7.

8 Conclusions

In this paper we proposed a simple and consistent theory that enables one to
examine the banking system at three levels of granularity, namely, as a whole, as
an interconnected collection of banks with mutual liabilities; and, finally, as an
individual bank. We demonstrated that the banking system plays a pivotal role
in the monetary circuit context and is necessary for the success of the economy.
Even in a relatively simple context we gained some nontrivial insights into money
creation by banks and its consequences, including naturally occurring interbank
linkages, as well as the role of multiple constraints banks are operating under.

The consistent quantitative description of the monetary circuit in continu-
ous time became possible after the introduction of stochastic consumption by
rentiers into the model, which enabled us to reconcile the equations with eco-
nomic reality. We built a quantitative description of the monetary circuit that
can be calibrated to real macro economic data which we solved mathematically.
The developed framework can be further expanded by adding various sectors
of the economy. It is clear that more advanced models will naturally provide
deeper actionable insights, which can be used for a variety of purposes, such
as setting the monetary policy, positioning banks for responsible growth, and
macro investing.

At the top level, we considered the banking system as a whole, disguising
therefore the structure of the banking sector and precluding investigation of
defaults within it. It is hard to overestimate the importance of the quantitative
approach that enables the description of a possible chain of events in the inter-
connected banking system in the aftermath of the crisis of 2007-2009! Hence,
we expanded our analysis to the intermediate level, and demonstrated how the
asset-liability balancing act creates nontrivial linkages between various banks.
We used techniques developed for credit default pricing to show that these link-
ages can cause unexpected instabilities in the overall system. Our model can be
expanded in several directions, for instance, by incorporating interbank deriva-
tives, such as swaps, into the picture. It can provide insights into snowball
effects associated with multiple simultaneous (or almost simultaneous) defaults
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in the banking system.

Finally, viewed at the bottom level, banks, as all other corporations, have
a fiduciary obligation to responsibly maximize their profitability. Given the
specifics of the banking business, such a maximization of profitability is intrin-
sically linked to balance sheet optimization, which is used in order to choose
an optimal mix of assets and liabilities. We formulated the constrained opti-
mization problem in the most general case, as well as its reduced version in a
specific case of the equity part of the capital structure. Although simplified, the
reduced problem still includes such salient elements of the equity dynamics as
liquidity and solvency jumps. We then proposed a scheme to efficiently solve
the corresponding constrained optimization problem.

We hope that our theory of MMC will stimulate further research along the
lines suggested in the paper. In particular, to help to predict future economic
crises, which naturally arise within the proposed framework.
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9 Appendix A

To make our calculations in Section [6] more concrete, let us consider the case
of just two banks with mutual obligations without netting, N = 2. Additional
details can be found in Itkin and Lipton (2015b).

For 0 < t < T default boundaries have the form

. L RZ(L1+LZ{)—L§zEA,L<7 t<T,
Ai < A _{ Li+ Loy — Lu = A7, t=T, (159)
; Ri(Li+ Ly — R:Ly) =AY, t<T,
<A = ~ i
Ais A { L+ Lz — RLy; = AT, t="T. (160)
where 7 =3 — 4. In the (A1, A2) quadrant we have four domains
D(1,1) = {A1>AT, Ay > AT}, (161)
A — Ly A;
) ) _ ) EE < - A= .
D (6,1,9i,2) {AZ > T L, AT <A < A }7 i=1,2,
D(0,0) = {4, >A7, Ay >A5}-D(1,1)—D(1,0)-D(0,1),
where §; ; is the Kronecker delta, and
A=L1Lo+ LiLoy + LoL1s. (162)

It is clear that in D (1,1) both banks survive, in D (1,0) the first bank sur-
vives and the second defaults, in D (0, 1) the second bank survives and the first
defaults, and in D (0,0) both banks default. The corresponding domains are
shown in Figure [15[a).

In log coordinates the domain D; has the form

D ((51‘71, (Si’2> = {XZ' > ®i (X§> ,0< X; < 1\47:}7 (163)

- A — Ly (Ry (Ls + Lz;) — Liz) exp ( Ui/Uz'Xi>
(X)) = . 22 . (164
0 (X3) \/:1- . (Ri (Li + Liz) — Lzi) (L7 + Ly;) (164

We emphasize that the domain ®; has a curvilinear boundary which depends
on the value of A;. It is worth noting that

0;(0) = N7, ©;(u7) = My, (165)

(2

The corresponding domains are shown in Figure b).

Figure [15| near here.
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Payoffs for different options are as follows. For the joint survival probability

Q(T,A1,A2) = 14, 4,)ep(1,1)5 (166)
Q(t75i,1Ai<+5i,2Ai,5i,2Ai<Jr(;z',lAz) = 0, i=1,2.

For marginal survival probabilities

Qi (T, A1, A2) = (A, A2)eD(1,1)+D(5:.1,55.2)5 (167)

For the CDSs on the first and second bank the payoffs are as follows

0, (A1, A2) € D(1,1) + D (0i,1,04,2),
Ci (T, Ar, As) = 1- éZiILJ;’ (A1, A2) € D (67,1, 05,2) (168)
1 - Al (A1,42) € D(0,0),

where the coefficients s; are determined from the detailed balance equations

Ay +30Llo1 = 31 (L1 + Laa), (169)
As+mLyy = (Lo + Lot),

so that

LA+ Ly (A + Ag)

‘ 170
” A (170)
Finally, for the FTD the payoff has the form
0, (A1, A45) e D(1,1),
F(T7A1’A2) - 1= % <A17A2) € D(ai,la(siﬂ)a
max {1 — A}z—::if;l 1 — Az';ﬂ:iflm } ) (A1,A2) €D (0, 0),
(171)

For brevity, we consider just the calculation of the joint and marginal survival
probabilities. The joint survival probability @ (¢, X7, X3) solves the following
terminal boundary value problem

Q¢ (t, X1, Xa) + LQ (t, X1, X2) =0, (172)
Q (T7 Xla XQ) = 1X€D(1,1)7
Q(t7X1>O):O7 Q(taO7X2):Ov
The corresponding marginal survival probability for the first bank, say, Q1 (¢, X1, X2),

which is a function of both X; and X5 solves the following terminal boundary
value problem

Ql,t (t7X17X2) + ‘CQI (tu X17X2) = 07 (173)
Q1 (T, X1,X2) = 1xen@,1) + 1xen(1,0);
Ql (ta 07X2) = 07

taX1)7 Xl ZM1(2)7<3
0, Xy < MPP<,

3

Ql (t,Xl,O) — { Q1(

49



Here ¢; (t, X7) is the 1D survival probability, which solves the following
terminal boundary value problem

1
qi,t (t7X1) + iql,Xlxl + £1q11X1 =0, (174)

o (T, X1) = 1{X1>Mf2)’=}’
T (t,Ml(2)’<> =0,

It is very easy to show that

, M(2)»: _Xl _
@ (t.X)) = N(— 1 ﬁl 517) (175)

_e—2§1<X{—M1(2>’<)N _Ml(Q)’: + X —2MP T — g7
VT ’

where 7 =T —t.
The corresponding 2D Green’s function has the form (see, e.g., Lipton 2001,
Lipton and Savecu 2014):

G (t, X1, Xp) = e~ @O0 (XX G (¢, X, X),
i ) 2 176
G(t, X1, Xs) = % ( ) (V@) sin Vn¢) (176)
n=1
where
_ (1 p i_af( 1 -
C = ( p 1 ) 3 C - 52 ( _p 1 )
0=C, p=y1-7%
w = arctan (—%) , Un="Z>mn, (177)
R=./(C'X,X), R =(CX" X",
¢ = arctan (% ’ (b/ = arctan (%) '

It is clear that
GX2 (t7 Xla 0) — ef(a,g)t/2+91X170-X/éX2 (t’ Xl, 0) :

- —(x2/224+R2) /20 n AN
Gx, (t,X1,0) = % Z (-1) + vl (XlR ) sin (l/n¢/) .

pt

n=1
(178)
Substitution of these formulas in Eqs (112 , - yield semi-analytical expres-
sions for @ and Q. The correspondmg expression for Q5 is similar.
We present Q1 (0, X7, X2) and the difference ¢; (0, X7) — @1 (0, X1, X2) in
Figures [16{a) and b), respectively. These Figures show that mutual obliga-
tions significantly impact survival probabilities and other quantities of interest.

Figure [T6] near here.
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Figure 7: Sketch of the Monetary Circuit. G - government, CB - central bank,
PB - private banks, F - firms, H - households including rentiers and workers,
NFA - non-financial assets.
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V(T,E)-E as a function of T,E

V-E

0010

Figure 12: Excess value V (T, E) — E viewed as a function of time to maturity
T and equity value E for some representative parameters: ¢ = 0.25, . = 0.05,
v =0.10, Ay = 0.05, §; = 3.00, Ay = 0.02, 62 = 1.00.
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Figure 13: Function ¥ (&) for the same set of parameters as used in Figure
It is easy to see that equation ¥ (£) = 0 has four roots £ = —4.08, &, = —2.06,
&3 =—-0.84, and £, = 1.37.
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