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Abstract. The principle of open determinacy for class games—two-player

games of perfect information with plays of length ω, where the moves are cho-

sen from a possibly proper class, such as games on the ordinals—is not prov-
able in Zermelo-Fraenkel set theory ZFC or Gödel-Bernays set theory GBC, if

these theories are consistent, because provably in ZFC there is a definable open

proper class game with no definable winning strategy. In fact, the principle of
open determinacy and even merely clopen determinacy for class games implies

Con(ZFC) and iterated instances Conα(ZFC) and more, because it implies that

there is a satisfaction class for first-order truth, and indeed a transfinite tower
of truth predicates Trα for iterated truth-about-truth, relative to any class pa-

rameter. This is perhaps explained, in light of the Tarskian recursive definition
of truth, by the more general fact that the principle of clopen determinacy is

exactly equivalent over GBC to the principle of transfinite recursion over well-

founded class relations. Meanwhile, the principle of open determinacy for class
games is provable in the stronger theory GBC + Π1

1-comprehension, a proper

fragment of Kelley-Morse set theory KM.

One of the intriguing lessons of the past half-century of set theory is that there is
a robust connection between infinitary game theory and fundamental set-theoretic
principles, including the existence of certain large cardinals, and the existence of
strategies in infinite games has often turned out to have an unexpected set-theoretic
power. In this article, we should like to exhibit another such connection in the case
of games of proper class size, by proving that the principle of clopen determinacy
for class games is exactly equivalent to the principle of transfinite recursion along
well-founded class relations. Since this principle implies Con(ZFC) and iterated
instances of Conα(ZFC) and more, the principles of open determinacy and clopen
determinacy both transcend ZFC in consistency strength.

We consider two-player games of perfect information, where two players alter-
nately play elements from an allowed space X of possible moves, which in our case
may be a proper class such as the class of all ordinals X = Ord. Together, the play-
ers build an infinite sequence ~α = 〈α0, α1, α2, . . .〉 in Xω, which is the play resulting
from this particular instance of the game. The winner of this play is determined by
consulting a fixed class of plays A ⊆ Xω, possibly a proper class: if ~α ∈ A, then the
first player has won this particular instance of the game, and otherwise the second
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player has won. A strategy for a player is a (class) function σ : X<ω → X, which
tells a player how to move next, given a finite position in the game. Such a strategy
is winning for that player, if following the instructions of the strategy leads to a
winning play of the game, regardless of how the other player has moved. The game
is determined, if one of the players has a winning strategy. We may formalize all
talk of classes here in Gödel-Bernays GBC set theory, or in ZFC if one prefers to
regard classes as definable from parameters.

The case of open games, generalizing the finite games, is an attractive special
case, which for set-sized games has been useful in many arguments. Specifically, a
game is open for a particular player, if for every winning play of the game for that
player, there occurred during the course of play a finite position where the winning
outcome was already ensured, in the sense that all plays extending that position are
winning for that player. This is equivalent to saying that the winning condition set
for that player is open in the product topology on Xω, where we put the discrete
topology on X. Similarly, a game is clopen, if it is open for each player; these are
the games for which every play of the game has a finite stage where the outcome is
already known.

It is a remarkable elementary fact, the Gale-Stewart theorem [GS53], that in
the context of set-sized games, every open game is determined. An elegant proof
of open determinacy can be undertaken using the theory of ordinal game values.
(For an accessible discussion of ordinal game values, using infinite chess amongst
other games as illustration, please see the second author’s articles [EH14, EHP].)
Suppose that we have a game that is open for player I, with open winning condition
A ⊆ Xω, where X is the set of possible moves. Consider the collection of positions
that arise in this game at a finite stage of the game. Such a position p is said to
have value 0, if player I has essentially already won by achieving that position, in
the sense that every play extending p is in A; in other words, the entire basic open
neighborhood of p is contained in the open set A. A position q with player I to play
has value 1, if it isn’t yet winning in that sense, but player I can make a move to
q a x so as to have value 0. These game values measure the distance, in a sense, to
a win for player I. Continuing recursively, define that a position p with player I to
play has value α+ 1, if α is minimal such that player I can play to a position pa x
with value α. Finally, the value of a position p with player II to play is defined
only when every position p a y that player II can reach already has a value, and
in this case the value of p is the supremum of those values. There are two key
observations to make. First, if a position has a value, then on his turns player I
can play so as to decrease this value and player II cannot play so as to increase it
or make it become undefined; thus, by means of this value-reducing strategy, the
first player can ensure that eventually the value will become zero, since there is no
infinite descending sequence of ordinals, and so this strategy is winning for player
I. Second, if a position does not have a defined value, then player I cannot play
so as to give it a value and player II can play so as to maintain the fact that it is
unvalued; thus, by means of this maintaining strategy, the second player can ensure
that a position with value zero is never reached, and so this strategy is winning
for player II. Thus, we have proved the Gale-Stewart theorem: every open game is
determined.

The reader should observe that this proof of open determinacy relied on the
space X of possible moves being a set, because when defining the value function



OPEN DETERMINACY FOR CLASS GAMES 3

of a position where it was player II’s turn, we took a supremum over the ordinal
values of the positions arising from the possible moves, and if X were a proper
class, we couldn’t necessarily be sure to stay within the class of ordinals with this
supremum. With a proper class X, the recursive procedure might break down, and
it would seem that we could be pushed to consider class well-orderings having an
order-type taller than Ord. What we should like to do in this article, therefore,
is consider more seriously the case where X is a proper class. In this case, the
strategies σ : X<ω → X will also be proper classes, and the winning condition
A ⊆ Xω may also be a proper class.

Question 1. Can we prove open determinacy for class games?

For example, does every definable open class game in ZFC admit a definable winning
strategy for one of the players? In GBC, must every open class game have a winning
strategy?

We shall prove that the answers to both of these questions is no. The basic
reason, established by theorem 2, is that open determinacy implies Con(ZFC) and
much more (but see also the remarks after theorem 4). Thus, the principle of open
determinacy and even of clopen determinacy goes strictly beyond the strength of
ZFC and GBC, if these are consistent. This result is generalized and clarified
by theorem 6, which shows that the principle of clopen determinacy is exactly
equivalent over GBC to the principle of transfinite recursion over well-founded class
relations. After this, we shall prove in theorem 7 that open determinacy is provable
in Kelley-Morse set theory KM, and even in the theory GBC + Π1

1-comprehension,
which is a proper fragment of KM.

Theorem 2. The principle of clopen determinacy for class games implies Con(ZFC),
as well as iterated consistency assertions Conα(ZFC) and more. Specifically, there
is a definable clopen game, whose determinacy is equivalent over GBC to the exis-
tence of a satisfaction class for first-order truth.

The proof shows that every model of ZFC has a definable clopen game with no
definable winning strategy, and so one cannot prove clopen determinacy in ZFC or
GBC, if these theories are consistent.

Proof. Consider what we call the truth-telling game, which will be a definable
open game with no definable winning strategy. The truth-telling game has two
players, the interrogator and the truth-teller, who we may imagine—in the style of
a similar game described by Adrian Mathias [Mat15] in the context of arithmetic
and extensions of PA—play out the game in a court of law, with the truth-teller in
the witness box answering tricky pointed questions posed by the opposing counsel.
On each turn, the interrogator puts an inquiry to the the truth-teller concerning
the truth of a particular set-theoretic formula ϕ(~a) with parameters. The truth-
teller must reply to the inquiry by making a truth pronouncement either that it is
true or that it is false, not necessarily accurately, and in the case that the formula
ϕ is an existential assertion ∃xψ(x,~a) declared to be true, then the truth teller
must additionally identify a particular witness b and pronounce that ψ(b,~a) is also
true. So a play of the game consists of a sequence of such inquiries and truth
pronouncements.

The truth-teller need not necessarily answer truthfully to win! Rather, the truth-
teller wins a play of the game, provided that she does not violate the recursive
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Tarskian truth conditions during the course of play. What we mean, first, is that
when faced with an atomic formula, she must pronounce it true or false in accor-
dance with the actual truth or falsity of that atomic formula; similarly, she must
pronounce that ϕ ∧ ψ is true just in case she pronounces both ϕ and ψ separately
to be true, if those inquiries had been issued by the interrogator during play; she
must pronounce opposite truth values for ϕ and ¬ϕ, if both are inquired about;
and she must pronounce ∃xϕ(x,~a) to be true if and only if she ever pronounces
ϕ(b,~a) to be true of any particular b (the forward implication of this is already
ensured by the extra pronouncement in the existential case of the game). This is
an open game for the interrogator, because if the truth-teller ever should violate
the Tarskian conditions, then this violation will be revealed at finite stage of play.

We remind the reader that a satisfaction class or truth predicate for first-order
truth is a class Tr of pairs 〈ϕ,~a〉 consisting of a formula ϕ and a list of parameters
~a assigned to the free variables of that formula, which obeys the Tarskian recursive
definition of truth (for simplicity we shall write the pair simply as ϕ(~a), suppressing
the variable assignment, but keep in mind that these are mentions of formulas
rather than uses). So in the atomic case, we’ll have (a = b) ∈ Tr if and only if
a = b, and (a ∈ b) ∈ Tr if and only if a ∈ b; for negation, ¬ϕ(~a) ∈ Tr if and
only if ϕ(~a) /∈ Tr; for conjunction, (ϕ ∧ ψ)(~a) ∈ Tr if and only if ϕ(~a) ∈ Tr and
ψ(~a) ∈ Tr; and for quantifiers, ∃xϕ(x,~a) ∈ Tr just in case there is b for which
ϕ(b,~a) ∈ Tr. Tarski proved that in any sufficiently strong first-order theory no such
truth predicate for first-order truth is definable in the same language. Meanwhile,
in the second-order Kelley-Morse set theory and even in the weaker theory GBC
plus the principle of transfinite recursion over well-founded class relations, we can
define a truth predicate for first-order truth, simply because the Tarskian recursion
itself is a well-founded recursion on the complexity of the formulas, where we define

the truth of ϕ(~a) in terms of ψ(~b) for simpler formulas ψ.

Lemma 2.1. The truth-teller has a winning strategy in the truth-telling game if
and only if there is a satisfaction class for first-order truth.

Proof. We may understand this lemma as formalized in Gödel-Bernays GBC set
theory, which includes the global choice principle. Clearly, if there is a satisfaction
class for first-order truth, then the truth-teller has a winning strategy, which is
simply to answer all questions about truth in accordance with that satisfaction
class, using the global choice principle to pick Skolem witnesses in the existential
case. Since by definition that class obeys the Tarskian conditions, she will win the
game, no matter which challenges are issued by the interrogator.

Conversely, suppose that the truth-teller has a winning strategy τ in the game.
We shall use τ to build a satisfaction class for first-order truth. Specifically, let Tr be
the collection of formulas ϕ(~a) that are pronounced true by τ in any play according
to τ , including the supplemental truth pronouncements made in the existential
case about the particular witnesses. We claim that Tr is a satisfaction class. Since
the truth-teller was required to answer truthfully to all inquiries about atomic
formulas, it follows that Tr contains all and only the truthful atomic assertions.
In particular, the answers provided by the strategy τ on inquiries about atomic
formulas are independent of the particular challenges issued by the interrogator
and of the order in which they are issued. Next, we generalize this to all formulas,
arguing by induction that the truth pronouncements made by τ on a formula is
always independent of the play in which that formula arises. We have already
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noticed this for atomic formulas. In the case of negation, if inductively all plays in
which ϕ(~a) is issued as a challenge or arises as a witness case come out true, then
all plays in which ¬ϕ(~a) arises will result in false, or else we could create a play in
which τ would violate the Tarskian truth conditions, simply by asking about ϕ(~a)
after ¬ϕ(~a) was answered affirmatively. Similarly, if ϕ and ψ always come out the
same way, then so must ϕ ∧ ψ. We don’t claim that τ must always issue the same
witness b for an existential ∃xψ(x,~a), but if the strategy ever directs the truth-
teller to pronounce this statement to be true, then it will provide some witness b
and pronounce ψ(b,~a) to be true, and by induction this truth pronouncement for
ψ(b,~a) is independent of the play on which it arises, forcing ∃xϕ(x,~a) to always be
pronounced true. Thus, by induction on formulas, the truth pronouncements made
by the truth-teller strategy τ allow us to define from τ a satisfaction predicate for
first-order truth. �

It follows by Tarski’s theorem on the non-definability of truth that there can be
no definable winning strategy for the truth-teller in this game, because there can
be no definable satisfaction predicate.

Lemma 2.2. The interrogator has no winning strategy in the truth-telling game.

Proof. Suppose that σ is a strategy for the interrogator. So σ is a proper class
function that directs the interrogator to issue certain challenges, given the finite se-
quence of previous challenges and truth-telling answers. By the reflection theorem,
there is a closed unbounded proper class of cardinals θ, such that σ"Vθ ⊆ Vθ. That
is, Vθ is closed under σ, in the sense that if all previous challenges and responses
come from Vθ, then the next challenge will also come from Vθ. Since 〈Vθ,∈〉 is a
set, we have a satisfaction predicate on it, as well as a Skolem function selecting ex-
istential witnesses. Consider the play, where the truth-teller replies to all inquiries
by consulting truth in Vθ, rather than truth in V , and using the Skolem function to
provide the witnesses in the existential case. The point is that if the interrogator
follows σ, then all the inquiries will involve only parameters ~a in Vθ, provided that
the truth-teller also always gives witnesses in Vθ, which in this particular play will
be the case. Since the satisfaction predicate on Vθ does satisfy the Tarskian truth
conditions, it follows that the truth-teller will win this instance of the game, and
so σ is not a winning strategy for the interrogator. �

Thus, if open determinacy holds for classes, then there is a satisfaction pred-
icate Tr for first-order truth. Let us explain how this implies Con(ZFC) and
more. Working in Gödel-Bernays set theory, we may apply the reflection theo-
rem to the class Tr and thereby find a proper class club C of cardinals θ for which
〈Vθ,∈,Tr � Vθ〉 ≺Σ1 〈V,∈,Tr〉. In particular, this implies that Tr ∩ Vθ is a satisfac-
tion class on Vθ, which therefore agrees with truth in that structure, and so these
models form a continuous elementary chain, whose union is the entire universe:

Vθ0 ≺ Vθ1 ≺ · · · ≺ Vλ ≺ · · · ≺ V.
There is a subtle point here concerning ω-nonstandard models, namely, to see that
all instances of ZFC axioms are declared true by Tr, it is inadequate merely to
note that we have assumed ZFC to be true in V , because this will give us only the
standard-finite instances of those axioms in Tr, but perhaps we have nonstandard
natural numbers in V , beyond the natural numbers of our metatheory. Nevertheless,
because in GBC we have the collection axiom relative to the truth predicate itself,
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we may verify that all instances of the collection axiom (including nonstandard
instances, if any)

∀b∀z
(
∀x ∈ b∃y ϕ(x, y, z)→ ∃c∀x ∈ b∃y ∈ c ϕ(x, y, z)

)
must be declared true by Tr, because we may replace the assertion of ϕ(x, y, z)
with the assertion ϕ(x, y, z) ∈ Tr, which reduces the instance of collection for the
(possibly nonstandard) formula ϕ to an instance of standard-finite collection in
the language of Tr, using the Gödel code of ϕ as a parameter, thereby collecting
sufficient witnesses y into a set c. So even the nonstandard instances of the collection
axiom must be declared true by Tr. It follows that each of these models Vθ for θ ∈ C
is a transitive model of ZFC, understood in the object theory of V , and so we may
deduce Con(ZFC) and Con

(
ZFC + Con(ZFC)

)
and numerous iterated consistency

statements of the form Conα(ZFC), which must be true in all such transitive models
for quite a long way. Alternatively, one can make a purely syntactic argument for
Con(ZFC) from a satisfaction class, using the fact that the satisfaction class is
closed under deduction and does not assert contradictions.

We have not yet quite proved the theorem, because the truth-telling game is
an open game, rather than a clopen game, whereas the hypothesis of the theorem
allows only clopen determinacy. The truth-teller wins the truth-telling game only
by playing the game out for infinitely many steps, and this is not an open winning
condition for her, since at any point the play could have continued in such a way
so as to produce a loss for the truth-teller, if the players cooperated in order to
achieve that. So let us describe a modified game, the counting-down truth-telling
game, which will be clopen. Specifically, this game is just like the truth-telling
game, except that we insist that the interrogator must also state on each move a
specific ordinal αn, which descend during play α0 > α1 > · · · > αn. If the inter-
rogator gets to 0, then the truth-teller is declared the winner. For this modified
game, the winner will be known in finitely many moves, because either the truth-
teller will violate the Tarskian conditions or the interrogator will hit zero; and so
this is a clopen game. Since the counting-down version of the game is harder for
the interrogator, it follows that the interrogator still can have no winning strategy.
We modify the proof of lemma 2.1 for this game by claiming that if τ is a winning
strategy for the truth-teller in the counting-down truth-telling game, then the truth
pronouncements made by τ in response to all plays with sufficiently large ordinals
all agree with one another independently of the interrogator’s play. The inductive
argument of lemma 2.1 still works under the assumption that the counting-down
ordinal is sufficiently large, because there will be enough time to reduce a prob-
lematic case. For example, if ϕ(~a) always gets the same truth pronouncement for
plays in which it arises with sufficiently large ordinals, then so also does ¬ϕ(~a),
with a slightly larger ordinal, because in a play with the wrong value for ¬ϕ(~a)
we may direct the interrogator to inquire next about ϕ(~a) and get a violation of
the Tarskian recursion. Similar reasoning works in the other cases, and so we may
define a satisfaction class from a strategy in the modified game. Since that game
is clopen, we have proved that clopen determinacy for class games implies the ex-
istence of a satisfaction class for first-order truth, and this implies Con(ZFC) and
more, as we have explained. �

We didn’t really need the interrogator to count down in the ordinals, since it
would in fact have sufficed to have him count down merely in the natural numbers;
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the amount of time remaining required for the truth pronouncements to stabilize
is essentially related to the syntactic complexity of ϕ.

We may easily modify the game by allowing a fixed class parameter B, so that
clopen determinacy implies that there is a satisfaction class relative to truth in
〈V,∈, B〉. For example, we may get a truth predicate Tr1 for the structure 〈V,∈,Tr〉
itself, so that Tr1 concerns truth-about-truth. Iterating this idea further, let us
consider the iterated-truth-telling game, where we expand the language beyond the
usual language of set theory by adding a hierarchy of predicates Trα, one for every
ordinal α, which will serve as iterated-truth predicates. In this version of the game,
we allow the interrogator to ask about formulas in this expanded language, while
counting down in the ordinals, and the truth-teller is required to obey not only the
usual Tarskian recursive truth conditions, but also the iterated-truth condition that
Trα

(
ϕ(~a)

)
is pronounced true just in case ϕ(~a) is a formula-parameter pair using

only truth predicates Trβ for β < α and also ϕ(~a) is itself pronounced true, if this
challenge was issued. The iterated-truth-telling game is open for the interrogator,
but we may modify it to the counting-down iterated-truth-telling game, by insisting
that the interrogator count down in the natural numbers during play, with the
truth-teller winning when the clock expires. This results in a clopen game, and
the arguments used in the proof of theorem 2 generalize easily to show that the
interrogator cannot have a winning strategy in this counting-down iterated-truth-
telling game, and the truth-teller has a strategy just in case there is a satisfaction
predicate for truth-about-truth iterated through the ordinals:

Theorem 3. If the principle of clopen determinacy holds, then there is a system of
iterated-truth satisfaction classes Trα for ordinals α, obeying the Tarskian recursion
and the iterated-truth conditions.

Since this theorem can also be obtained as a direct consequence of theorem 6, as
the iterated-truth predicates can be defined by a first-order recursion, we shall not
give a separate detailed proof.

Let us briefly clarify the role of the global choice principle.

Theorem 4. In Gödel-Bernays set theory GB, the principle of clopen determinacy
implies the global axiom of choice.

Proof. Consider the game where player I plays a nonempty set b an player II plays
a set a, with player II winning if a ∈ b. This is a clopen game, since it is over
after one move for each player. Clearly, player I can have no winning strategy,
since if b is nonempty, then player II can win by playing any element a ∈ b. But a
winning strategy for player II amounts exactly to a global choice function, selecting
uniformly from each nonempty set an element. �

We find it interesting to notice that the set analogue of the proof of theorem
4 shows in ZF that clopen determinacy for set-sized games implies the axiom of
choice, and so over ZF the principle of clopen determinacy for set-sized games is
equivalent to the axiom of choice. As a consequence, we may prove in ZF that
the universal axiom of determinacy, which asserts that every game on every set is
determined, is simply false: either there is some clopen game that is not determined,
or the axiom of choice holds and there is a game on the natural numbers that is
not determined.

A second simple observation about theorem 4 is that this argument answers
a special case of question 1. Namely, since there are models of ZFC where the
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global axiom of choice fails, there must be some models of ZFC having definable
clopen games with no definable winning strategy. Our earlier theorem 2, in contrast,
established the stronger result that every model of ZFC, including those with global
choice, has a definable clopen game with no definable strategy.

We shall now generalize the argument of theorem 2 to prove a stronger result,
which we believe explains the phenomenon of theorem 2. Specifically, in theorem
6 we shall prove that clopen determinacy is exactly equivalent over GBC to the
principle of first-order transfinite recursion over well-founded class relations. This
explains the result of theorem 2 because, as we have mentioned, truth itself is de-
fined by such a recursion, the familiar Tarskian recursive definition of truth defined
by recursion on formulas, and so the principle of transfinite recursion over well-
founded class relations implies the existence of a satisfaction class for first-order
truth. Note that even though the tower of formula complexity has height ω, never-
theless the relation underlying this recursion is not set-like, since the truth value of
an existential assertion ∃xϕ(x,~a) relies on the truth values of ϕ(b,~a), for all objects
b, and this is a proper class of predecessors.

Definition 5. The principle of first-order transfinite recursion over well-founded
class relations is the assertion that every first-order recursive definition along any
well-founded binary class relation (not necessarily set-like) has a solution.

Let us explain in more detail. A binary relation � on a class I is well-founded,
if every nonempty subclass B ⊆ I has a �-minimal element. This is equivalent in
GBC to the assertion that there is no infinite �-descending sequence, and indeed
one can prove this equivalence in GB+DC, meaning the dependent choice principle
for set relations: clearly, if there is an infinite �-descending sequence, then the set of
elements on that sequence is a set with no �-minimal element; conversely, if there is
a nonempty class B ⊆ I with no �-minimal element, then by the reflection principle
relativized to the class B, there is some Vθ for which B ∩ Vθ is nonempty and has
no �-minimal element; but using DC for �∩Vθ we may successively pick xn+1�xn
from B ∩ Vθ, leading to an infinite �-descending sequence. We find it interesting
to notice that in this class context, therefore, well-foundedness for class relations
becomes a first-order concept, which is a departure from the analogous situation
in second-order number theory, where of course well-foundedness is Π1

1-complete
and definitely not first-order expressible in number theory. Continuing with our
discussion of recursion, suppose that we have a well-founded binary relation � on a
class I, and suppose further that ϕ(F, b, y, Z) is a formula describing the recursion
rule we intend to implement, where ϕ involves only first-order quantifiers, F is a
class variable for a partial solution and Z is a fixed class parameter, henceforth
suppressed. We assume that this recursion rule is functional in the sense that for
any b ∈ I and any class F , there is a unique y such that ϕ(F, b, y). The idea is
that ϕ(F, b, y) expresses the recursive rule to be iterated: given a partial solution
F defined up to b, then ϕ(F, b, y) instructs us to put object y at node b. A solution
of the recursion is a class function F : I → V such that ϕ

(
F � b, b, F (b)

)
holds for

every b ∈ I, where F � b means the restriction of F to the class { c ∈ I | c� b }.
Thus, the value F (b) is determined by the (possibly proper) class of previous values
F (c) for c � b. The principle of first-order transfinite recursion over well-founded
class relations is the assertion that for every such well-founded relation 〈I,�〉 and
any first-order recursive rule ϕ as above, there is a solution. One may equivalently
consider only well-founded partial order relations, simply by taking the transitive
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closure of the relation, and then proving that the original recursion has a solution
if and only if the corresponding recursion on the partial order has a solution.

Although the principle of transfinite recursion defined above may appear to be
a scheme, in fact it is fully expressible in a single second-order assertion in the
language of Gödel-Bernays set theory. The reason is that for any class parameters
Z and F , the principle of transfinite recursion implies that there is a unique satis-
faction class for first-order truth relative to Z, and we may use these satisfaction
classes to refer uniformly to the truth of ϕ(F, b, y, Z), allowing us to quantify over
ϕ rather than treating it scheme-theoretically. Basically, the principle asserts, “for
every class, there is a satisfaction class relative to it, and for every well-founded
relation �, every formula ϕ and every parameter Z, if the formula ϕ(F, b, y, Z) is
functional (which means for every class function F and every truth-predicate for
first-order truth with respect to F and Z, the corresponding relation is functional),
then there is a solution of the recursion (using the unique truth-predicate relative
to Z and that solution).”

In the special case for which the relation � is set-like, which means that the
predecessors { c | c� b } of any point b form a set (rather than a proper class),
then GBC easily proves that there is a unique solution class, which furthermore
is definable from �. One simply follows the usual proof of transfinite recursion in
ZFC, showing that every b ∈ I is in the domain of a partial solution that obeys the
recursive rule on its domain, because there can be no minimal counterexample to
this; all such partial solutions agree on their common domains, and the union of
them is a total solution of the recursion. Similarly, GBC can prove that there are
solutions to other transfinite recursion instances for which the well-founded relation
is not necessarily set-like, such as a recursion of length Ord + Ord or even much
longer.

Meanwhile, if GBC is consistent, then it cannot in general prove that transfi-
nite recursions along non-set-like well-founded relations always succeed, since as we
mentioned this principle implies that there is a truth predicate for first-order truth,
which implies Con(ZFC) and therefore also Con(GBC). Thus, GBC plus transfi-
nite recursion is strictly stronger than GBC in consistency strength, although it
is provable in Kelley-Morse set theory KM, in essentially the same way that GBC
proves the set-like special case.

Theorem 6. In Gödel-Bernays set theory GBC, the following are equivalent.

(1) Clopen determinacy for class games. That is, in any two-player game of
perfect information whose winning condition class is both open and closed,
there is a winning strategy for one of the players.

(2) The principle of first-order transfinite recursion over well-founded class re-
lations: every such recursion has a solution.

Proof. (2 → 1) Assume the principle of first-order transfinite recursion over well-
founded class relations, and suppose we are faced with a clopen game. Consider the
game tree T , consisting of positions arising during play, up to the moment that a
winner is known, orienting the tree so that the root is at the top and play proceeds
downward. This tree is well-founded precisely because the game is clopen. Let us
label the terminal nodes of the tree with I or II according to who has won the game
in that position, and more generally, let us label all the nodes of the tree with I or
II according to the following transfinite recursion: if a node has I to play, then it
will have label I if there is a move to a node already labeled I, and otherwise II;
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similarly, when it is player II’s turn to play, then if she can play to a node labeled
II, we label the original node with II, and otherwise I. By the principle of transfinite
recursion, there is a labeling of the entire tree that accords with this recursive rule.
It is now easy to see that if the initial node is labeled with I, then player I has
a winning strategy, which is simply to stay on the nodes labeled I. (We use the
global choice principle to choose a particular such node with the right label; this
use can be avoided if the space X of possible moves is already well-ordered, such
as in the case of games on the ordinals X = Ord.) Note that player II cannot play
in one move from a node labeled I to one labeled II. Similarly, if the initial node
is labeled II, then player II has a winning strategy, which is simply to stay on the
nodes labeled II. And so the game is determined, and we have established clopen
determinacy.

(1 → 2) Conversely, let us assume the principle of clopen determinacy for class
games. Suppose we are faced with a recursion along a class relation � on a class I,
using a first-order recursion rule ϕ(F, b, y), possibly with a fixed class parameter,
which we suppress. We shall define a certain clopen game, and prove that any
winning strategy for this game will produce a solution for the recursion. It will
be convenient for us to assume that ϕ(F, b, y) is absolutely functional, meaning
that not only does it define a function as we have mentioned in V , but also that
ϕ(F, b, y) defines a function (F, b) 7→ y when used over any model of the form
〈Vθ,∈, F 〉, regardless of the theory of this model, for any F ⊆ Vθ (we are viewing
the class function as a predicate, a class of pairs). The strongly functional property
can be achieved simply by implementing a default value, replacing the formula with
the assertion that ϕ(F, b, y), if y is unique such that this holds, and otherwise y = ∅.

At first, we consider a simpler open game, the recursion game, which will be much
like the truth-telling game used in theorem 2, except that in this game, the truth-
teller will also provide information about the putative solution of the recursion
in question; later, we shall revise this game to a clopen game. In the recursion
game, we have the same two players again, the interrogator and the truth-teller,
but now the interrogator will make inquiries about truth in a structure of the form
〈V,∈,�, F 〉, where � is the well-founded class relation and F is a class function
(considered as a predicate for a class of ordered pairs), not yet specified, but which
we hope will become a solution of the recursion. Specifically, the interrogator is
allowed to ask about the truth of any first-order formula ϕ(~a) in the language of this
structure, and also to inquire as to the value of F (b) for any particular b. The truth-
teller, as before, will answer the inquiries by pronouncing either that ϕ(~a) is true or
that it is false, and in the case ϕ(~a) = ∃xψ(x,~a) and the formula was pronounced
true, then the truth-teller shall also provide as before a witness b for which she also
pronounces ψ(b,~a) to be true. The truth-teller loses immediately, if she should ever
violate Tarski’s recursive definition of truth, and she also is required to pronounce
any instance of the recursion rule ϕ

(
F � b, b, F (b)

)
to be true and also to assert

that F is a class function on I. Since violations of any of these requirements, if
they occur at all, do so at a finite stage of play, it follows that the game is open for
the interrogator.

Lemma 6.1. The interrogator has no winning strategy in the recursion game.

Proof. To prove this lemma, we use the idea of lemma 2.2, modified with a sneaky
trick. Suppose that σ is a strategy for the interrogator. So σ is a class function
that instructs the interrogator how to play next, given a position of partial play.
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By the reflection theorem, there is an ordinal θ such that Vθ is closed under σ, and
using the satisfaction class that comes from clopen determinacy, we may actually
also arrange that 〈Vθ,∈,�∩Vθ, σ∩Vθ〉 ≺ 〈V,∈,�, σ〉. Consider the relation �∩Vθ,
which is a well-founded relation on I∩Vθ. The important point is that this relation
is now a set, and in GBC we may certainly undertake transfinite recursions along
well-founded set relations. Thus, there is a (unique) function f : I ∩ Vθ → Vθ
such that the structure 〈Vθ,∈,�∩Vθ, f〉 satisfies ϕ

(
f � b, b, f(b)

)
for all b ∈ I ∩Vθ,

where f � a means restricting f to the predecessors of b that happen to be in Vθ.
There is a unique such function f , precisely because by our assumption that ϕ was
strongly functional, if we have defined f on the hereditary predecessors of some
point b ∈ I ∩ Vθ, then there is unique value y to place at b itself that satisfies
ϕ(f � b, b, y) in the structure 〈Vθ,∈, f � b〉, and this unique y therefore will become
the value y = f(b). We use our assumption that ϕ was strongly functional here,
since we want to ensure that it can still be used to define a valid recursion over
� ∩ Vθ. (We are not claiming that 〈Vθ,∈,� ∩ Vθ, f〉 models ZFC(�, f).) Consider
now the play of the recursion game in V , where the interrogator uses the strategy σ
and the truth-teller plays in accordance with truth in the structure 〈Vθ,∈,�∩Vθ, f〉,
which is a sneaky trick because the function f is a solution of the recursion rule
ϕ only on the relation � ∩ Vθ, rather than the full relation �. But since Vθ was
closed under σ, the interrogator will never issue challenges outside of Vθ in this play;
and since the function f fulfills the recursion ϕ

(
f � b, b, f(b)

)
in this structure, the

truth-teller will not be trapped in any violation of the Tarski conditions or the
recursion condition. Thus, the truth-teller will win this instance of the game, and
so σ was not a winning strategy for the interrogator, as desired. �

Lemma 6.2. The truth-teller has a winning strategy in the recursion game if and
only if there is a solution of the recursion.

Proof. If there is a solution F of the recursion, then by clopen determinacy we know
there is also a satisfaction class Tr for first order truth in the structure 〈V,∈,�, F 〉,
and the truth-teller can answer all queries of the interrogator in the recursion game
by referring to what Tr asserts is true in this structure. This will be winning for
the truth-teller, since Tr obeys the Tarskian conditions and makes all instances of
the recursive rule true.

Conversely, suppose that τ is a winning strategy for the truth-teller in the recur-
sion game. We may see as before that the truth pronouncements made by τ about
truth in the structure 〈V,∈,�〉 are independent of the play in which they occur, and
they provide a satisfaction predicate for this structure. This is proved just as for
the truth-telling game by induction on the complexity of the formulas: the strategy
must correctly answer all atomic formulas, and the answers to more complex formu-
las must be independent of the play since violations of this would lead to violations
of the Tarski conditions by reducing to simpler formulas, as before, and this would
contradict our assumption that τ is a winning strategy for the truth-teller. Now let
us consider truth pronouncements made by τ in the language involving the class
predicate symbol F . We shall actually need this property only in the restricted lan-
guages, where for each b ∈ I, we consider formulas in the corresponding language
that make reference only to the predicate F � b, rather than the full predicate F ;
we consider F � b as it is naturally defined in the language with F . We claim by
induction on b, with an embedded induction on formulas, that for every b ∈ I, the
truth pronouncements provided by the strategy τ in this language are independent
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of the play in which they are made and furthermore provide a truth predicate for a
structure of the form 〈V,∈,�, F � b〉. The case where b is �-minimal is essentially
similar to the case we already handled, where no reference to F is made, since τ
must assert that F is a class function on I and so τ must also assert that F � b = ∅
whenever b is minimal. Suppose inductively that our claim is true for assertions
in the language with F � c, whenever c is �-hereditarily below b, and consider the
language with F � b. (Note that the claim we are proving by induction is first-order
expressible in the class parameter τ , and so this induction can be legitimately un-
dertaken in GBC; we haven’t allowed an instance of Π1

1-comprehension to sneak in
here.) It is not difficult to see that τ must pronounce that each F � c is a function
on the class of �-predecessors of c, which furthermore agrees with F � b on their
common domain, since any violation of this will amount to a contradiction to the
assertion that F is a function on I, which τ must assert by the rules of the game.
So our induction assumption ensures that τ has determined a well-defined class
function F � b. Furthermore, since τ is required to affirm that the symbol F obeys
the recursive rule, it follows that τ asserts that F � b obeys the recursive rule up to
b. We now argue by induction on formulas that the truth pronouncements made by
τ about the structure 〈V,∈,�, F � b〉 forms a satisfaction class for this structure.
In the atomic case, the truth pronouncements about this structure are independent
of the play of the game in which they occur, since this is true for atomic formulas
in the language of set theory and for atomic assertions about �, by the rules of the
game, and it true for atomic assertions about F � b by our induction hypothesis on
b. Continuing the induction, it follows that the truth pronouncements made about
compound formulas in this structure are similarly independent of the play and obey
the Tarskian conditions, since any violation of this can be easily exposed by having
the interrogator inquire about the constituent formulas, just as in the truth-telling
game. So the claim is also true for F � b. Thus, for every b ∈ I, the strategy τ
is providing a satisfaction class for 〈V,∈,�, F � b〉, which furthermore verifies that
the resulting class function F � b determined by this satisfaction class fulfills the
desired recursion relation up to b. Since these restrictions of F also all agree with
one another, the union of these class functions is a class function F : I → V that
for every b obeys the desired recursive rule ϕ

(
F � b, b, F (b)

)
. So the recursion has a

solution, and this instance of the principle of first-order transfinite recursion along
well-founded class relations is true. �

So far, we have established that the principle of open determinacy implies the
principle of transfinite recursion along well-founded class relations. In order to
improve this implication to use only clopen determinacy rather than open deter-
minacy, we modify the game as in lemma 2.1 by requiring the interrogator to
count-down during play. Specifically, the count-down recursion game proceeds just
like the recursion game, except that now we also insist that the interrogator an-
nounce on the first move a natural number n, such that the interrogator loses if the
truth-teller survives for at least n moves (we could have had him count down in
the ordinals instead, which would have made things more flexible for him, but the
analysis is essentially the same). This is now a clopen game, since the winner will
be known by the time this clock expires, either because the truth-teller will violate
the Tarski conditions or the recursion condition before that time, in which case the
interrogator wins, or else because she did not and the clock expired, in which case
the truth-teller wins. So this is a clopen game.
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Since the modified version of the game is even harder for the interrogator, there
can still be no winning strategy for the interrogator. So by the principle of clopen
determinacy, there is a winning strategy τ for the truth-teller. This strategy is
allowed to make decisions based on the number n announced by the interrogator
on the first move, and it will no longer necessarily be the case that the theory
declared true by τ will be independent of the interrogator’s play, since the truth-
teller can relax as the time is about to expire, knowing that there isn’t time to be
caught in a violation. Nevertheless, it will be the case, we claim, that the theory
pronounced true by τ for all plays with sufficiently many remaining moves will be
independent of the interrogator’s play. One can see this by observing that if an
assertion ψ(~a) is independent in this sense, then also ¬ψ(~a) will be independent
in this sense, for otherwise there would be plays with a large number of plays
remaining giving different answers for ¬ψ(~a) and we could then challenge directly
afterward with ψ(~a), which would have to give different answers or else τ would
not win. Similarly, since τ is winning for the truth-teller, one can see that allowing
the interrogator to specify a bound on the total length of play does not prevent the
arguments above showing that τ describes a coherent solution function F : I → V
satisfying the recursion ϕ

(
F � b, b, F (b)

)
, provided that one looks only at plays in

which there are sufficiently many moves remaining. There cannot be a �-least b
where the value of F (b) is not determined in this sense, and so on just as before.
So the strategy must give us a function F and a truth predicate for 〈V,∈,�, F 〉
witnessing that it solves the desired recursion, as desired.

In conclusion, the principle of clopen determinacy for class games is equivalent to
the principle of first-order transfinite recursion along well-founded class relations.

�

We find a certain symmetry between theorem 6, which shows that clopen de-
terminacy is exactly equivalent over GBC to the principle of first-order transfinite
recursion over well-founded class relations, with the theorem of Steel and Simpson
[Sim09, Thm V.8.7] in second-order arithmetic, showing that clopen determinacy
for games on the natural numbers is exactly equivalent in reverse mathematics to
the theory of arithmetical transfinite recursion ATR0. In both cases, we have equiv-
alence of clopen determinacy with a principle of first-order transfinite recursion. In
the case of games on the natural numbers, however, Steel and Simpson proved
that open determinacy is also equivalent with ATR0, whereas the corresponding
situation of open determinacy for class games is not yet completely settled.

It follows from theorems 2 and 6 that the principle of open determinacy for class
games cannot be proved in set theories such as ZFC or GBC, if these theories are
consistent, since there are models of those theories that have no satisfaction class
for first-order truth. We should now like to prove, in contrast, that the principle
of open determinacy for class games can be proved in stronger set theories, such
as Kelley-Morse set theory KM, as well as in GBC + Π1

1-comprehension, which is a
proper fragment of KM.

In order to undertake this argument, however, it will be convenient to consider
the theory KM+, a natural strengthening of Kelley-Morse set theory KM that
we consider in [GHJa]. The theory KM+ extends KM by adding the class choice
scheme, which asserts of any second-order formula ϕ, that for every class parameter
Z, if for every set x there is a class X with property ϕ(x,X,Z), then there is a class
Y ⊆ V × V , such that for every x we have ϕ(x, Yx, Z), where Yx denotes the xth
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slice of Y . Thus, the axiom asserts that if every set x has a class X with a certain
property, then we can choose particular such classes and put them together into a
single class Y in the plane, such that the xth slice Yx is a witness for x. In [GHJa],
we prove that this axiom is not provable in KM itself, thereby revealing what may
be considered an unfortunate weakness of KM. The class choice scheme can also
naturally be viewed as a class collection axiom, for the class Y gathers together
a sufficient collection of classes Yx witnessing the properties ϕ(x, Yx, Z). In this
light, the weakness of KM in comparison with KM+ is precisely analogous to the
weakness of the theory ZFC- in comparison with the theory ZFC− that we identified
in [GHJb]—these are the theories of ZFC without power set, using replacement or
collection + separation, respectively—since in each case the flawed weaker theory
has replacement but not collection, which leads to various unexpected failures for
the respective former theories.

The natural weakening of the class choice scheme to the case where ϕ is a first-
order assertion, having only set quantifiers, is called the first-order class choice
principle, and it is expressible as a single assertion, rather than only as a scheme, in
KM and indeed in GBC+ the principle of first-order transfinite recursion over well-
founded class relations, since in these theories we have first-order truth-predicates
available relative to any class. A still weaker axiom makes the assertion only for
choices over a fixed set, such as the first-order class ω-choice principle:

∀Z
(
∀n ∈ ω ∃X ϕ(n,X,Z)→ ∃Y ⊆ ω × V ∀n ∈ ω ϕ(n, Yn, Z)

)
,

where ϕ has only first-order quantifiers, and this is also finitely expressible in GBC +
the principle of first-order transfinite recursion over well-founded class relations. In
our paper [GHJa], we separate these axioms from one another and prove that none
of them is provable in KM, assuming the consistency of an inaccessible cardinal.

The Π1
1-comprehension axiom is the assertion that for any Π1

1 formula ϕ(x, Z),
with class parameter Z, we may form the class { a | ϕ(a, Z) }. By taking comple-
ments, this is equivalent to Σ1

1-comprehension.

Theorem 7. Kelley-Morse set theory KM proves the principle of open determinacy
for class games. Indeed, this conclusion is provable in the subtheory consisting of
GBC plus Π1

1-comprehension.

Proof. Assume GBC plus Π1
1-comprehension. In order to make our main argument

more transparent, we shall at first undertake it with the additional assumption that
the first-order class choice principle holds (thus, we work initially in a fragment of
KM+). Afterwards, we shall explain how to eliminate our need for the class choice
principle, and thereby arrive at a proof using just GBC plus Π1

1-comprehension.
Consider any open class game A ⊆ Xω, where A is the open winning condition

and X is the class of allowed moves. We shall show the game is determined. To
do so, notice that for any position p ∈ X<ω, the assertion that a particular class
function σ : X<ω → X is a winning strategy for player I in the game proceeding
from position p is an assertion about σ involving only first-order quantifiers; one
must say simply that every play of the game that proceeds from p and follows σ on
player I’s moves after that, is in A. Thus, the assertion that player I has a winning
strategy for the game starting from position p is a Σ1

1 assertion about p. Using
Π1

1-comprehension, therefore, we may form the class

W =

{
p ∈ X<ω | Player I has a winning strategy in the

game proceeding from position p

}
.
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With this class, we may now carry out a class analogue of one of the usual soft
proofs of the Gale-Stewart theorem. Namely, if the initial (empty) position of the
game is in W , then player I has a winning strategy, and we are done. Otherwise,
the initial node is not in W , and we simply direct player II to avoid the nodes of
W during play. If this is possible, then it is clearly winning for player II, since he
will never land on a node all of whose extensions are in the open class, since such
a node is definitely in W , and so he will win. To see that player II can avoid the
nodes of W , observe simply that at any position p, if it is player II’s turn to play,
and player I does not have a strategy in the game proceeding from p, then we claim
that there must be at least one move that player II can make, to position p a x for
some x ∈ X, such that p a x /∈ W . If not, then p a x ∈ W for all moves x, and
so for each such x there is a strategy τx that is winning for player I in the game
proceeding from pa x. By the first-order class choice principle (and this is precisely
where we use our extra assumption), we may gather such strategies τx together
into a single class and thereby construct a strategy for player I that proceeds from
position p in such a way that if player II plays x, then player I follows τx, which is
winning for player I. Thus, there is a winning strategy for player I from position p,
contradicting our assumption that p /∈ W , and thereby establishing our claim. So
if p /∈ W and it is player II’s turn to play, then there is a play p a x that remains
outside of W . Similarly, if p /∈W and it is player I’s turn to play, then clearly there
can be no next move p a y placing it inside W , for then player I would have also
had a strategy from position p. Thus, if the initial position is not in W , then player
II can play so as to retain that property (using global choice to pick a particular
move realizing that situation), and player I cannot play so as to get inside W , and
this is therefore a winning strategy for player II. So the game is determined.

The argument above took place in the theory GBC + Π1
1-comprehension + the

first-order class choice principle. And although it may appear at first to have made
a fundamental use of the class choice principle, we shall nevertheless explain how to
eliminate this use. The first observation to make is that Π1

1-comprehension implies
the principle of first-order transfinite recursion along any well-founded relation. To
see this, suppose that � is any well-founded relation on a class I and ϕ(F, b, y, Z)
is a functional recursive rule, asserting that if F is a partial solution up to b, then
we should put value y at node b. The class of b ∈ I that are in the domain of some
partial solution to the recursion is Σ1

1-definable. And furthermore, all such partial
solutions must agree on their common domain, by an easy inductive argument
along �. It follows that the union of all the partial solutions is Σ1

1-definable and
therefore exists as a class, and it is easily seen to obey the recursion rule on its
domain. So it is a maximal partial solution. If it is not total, then there must be
a �-minimal element b not in the domain; but this is impossible, since we could
apply the recursive rule once more to get a value y to place at b, thereby producing
a partial solution that includes b. So the maximal partial solution is actually a
total solution, verifying this instance of the transfinite recursion principle.

Next, we shall explain how to continue the constructibility hierarchy beyond Ord.
This construction has evidently been discovered and rediscovered several times in
set theory, but rarely published; the earliest reference appears to be the disserta-
tion of Leslie Tharp [Tha65], although Bob Solovay reportedly also undertook the
construction as an undergraduate student, without publishing it; see also current
work [AF]. In the countable realm, of course, the analogous construction is routine,
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where one uses reals to code arbitrary countable structures including models of set
theory of the form 〈Lα,∈〉. For classes, suppose that Γ = 〈Ord,≤Γ〉 is a meta-
ordinal, which is to say, a well-ordered class relation ≤Γ on Ord; this relation need
not necessarily be set-like, and the order type can reach beyond Ord. By the prin-
ciple of first-order transfinite recursion, we may iterate the constructible hierarchy
up to Γ, and thereby produce a class model 〈LΓ,∈Γ〉 of V = L, whose ordinals have
order-type Γ. Specifically, we reserve a class of nodes to be used for representing the
new “(meta-)sets” at each level of the LΓ hierarchy, and define ∈Γ recursively, so
that at each level, we add all and only the sets that are definable (from parameters)
over the previous structure. To be clear, the domain of the structure 〈LΓ,∈Γ〉 is
a class LΓ ⊆ V , and the relation ∈Γ is not the actual ∈ relation, but nevertheless
∈Γ is a well-founded extensional relation in our original model, and the structure
〈LΓ,∈Γ〉 looks internally like the constructible universe. Thus, we have what might
be termed merely a code for or presentation of the fragment LΓ of the constructibil-
ity hierarchy up to Γ, which someone outside the universe might prefer to think of as
an actual transitive set. In order to speak of LΓ in our GBC context, then, we must
be aware that different choices of Γ will lead to different presentations, with sets
being represented differently and by different sets. Nevertheless, we may assume
without loss that the actual sets in L = LOrd are represented in this presentation in
some highly canonical way, so that the ordinals are represented by themselves, for
example, and the other sets are represented by their own singletons (say), and so
in particular, all the various LΓ will agree on their ∈Γ relations for sets constructed
before Ord. Also, using the principle of first-order transfinite recursion, it is easy
to see that any two meta-ordinals Γ and Γ′ are comparable, in the sense that one of
them is (uniquely) isomorphic to an initial segment of the other, and similarly the
structures LΓ and LΓ′ admit such coherence as well; in particular, if Γ and Γ′ are
isomorphic, then so also are the structures LΓ and LΓ′ . Consider the meta-ordinals
Γ for which there is a larger meta-ordinal Θ, such that LΘ has as an element a
well-ordered structure Γ′ = 〈Ord,≤Γ′〉 with order-type isomorphic to Γ. In a sense,
these are the meta-ordinals below (Ord+)L. In this case, there will be an L-least
such code Γ′ in LΘ. And furthermore, any other meta-ordinal Θ′ which constructs
such a code will agree on this L-least code. Since we assumed that the ordinals were
represented as themselves in LΘ, we may view Γ′ as a meta-ordinal in our original
model. Thus, the meta-ordinals Γ realized by a relation in some LΘ have canoni-
cal codes, the meta-ordinals that are L-least with respect to some (and hence all
sufficiently large) LΘ. There is exactly one such code for each meta-ordinal order
type that is realized inside any LΘ. Now, let L be the collection of classes B ⊆ L
that are realized as an element in some LΓ—these are the classes of the meta-L
that are contained in the actual L—and consider the model L = 〈L,∈,L〉. It is
not difficult to see that this is a model of GBC, precisely because the L-hierarchy
closes under definability at each step of the recursion. Furthermore, the existence
of canonical codes will allow us to show that this model satisfies the first-order class
choice principle. Suppose that L |= ∀b∃X ϕ(b,X), where ϕ has only first-order
quantifiers. For each set b, there is a class X with property ϕ(b,X), and such a class
X exists as a set in some LΓ for some meta-ordinal Γ. We may consider Γ to be a
canonical code for a meta-ordinal which is minimal with respect to the property of
having such an X, and in this case, the class Γ = Γb is Σ1

1-definable (and actually
∆1

1-definable) from b. So the map b 7→ Γb exists as a class in the ground model, and
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we may therefore form a meta-ordinal Θ that is larger than all the resulting meta-
ordinals Γb. Inside LΘ, we may select the L-least Xb witnessing ϕ(b,Xb, Z), and
thereby form the class { (b, c) | c ∈ Xb }, which fulfills this instance of the first-order
class choice principle (and the argument easily accommodates class parameters). A
similar idea shows that L satisfies Π1

1-comprehension, provided that this was true
in the original model (and indeed L satisfies KM, if this was true in the original
model, and in this case one can also verify the class choice scheme in L , without
requiring this in V , which shows that Con(KM)→ Con(KM+); see [GHJa].) It will
be more convenient to establish Σ1

1-comprehension, which is equivalent. Consider
a formula of the form ∃X ϕ(b,X), where ϕ has only first-order quantifiers. The
class B = { b ∈ L | ∃X ∈ L ϕ(b,X) } is Σ1

1-definable and therefore exists as a class
in our original universe. We need to show it is in L. For each b ∈ B, there is a class
X such that X ∈ L and ϕ(b,X), and such a class X is constructed in some LΓ

at some minimal meta-ordinal stage Γ, which we may assume is a canonical code.
Thus, the map b 7→ Γb is Σ1

1-definable, and so it exists as a class. Thus, we may
form a single meta-ordinal Θ larger than all the Γb, and in LΘ, we may define the
set B. So B ∈ L, verifying this instance of Σ1

1-comprehension in L , as desired.
One may now check that the construction of the previous paragraph relativizes

to any class Z ⊆ Ord, leading to a model 〈L[Z],∈,S〉 that satisfies GBC + Π1
1-

comprehension + the first-order class choice principle, in which Z is a class. One
simply carries the class parameter Z through all of the previous arguments. If Z
codes all of V , then the result is a model 〈V,∈,S〉, whose first-order part has the
same sets as the original model V .

Using this, we may now prove the theorem. Consider any open class game
A ⊆ Xω, where X is the class of allowed moves. Let Z ⊆ Ord be a class that codes
in some canonical way every set in V and also the classes X and A. The resulting
structure 〈V,∈,S〉 described in the previous paragraph therefore satisfies GBC+Π1

1-
comprehension + the first-order class choice principle. The game A ⊆ Xω exists in
this structure, and since it is open there, it follows by the first part of the proof of
this theorem that this game is determined in that structure. So there is a strategy
σ ∈ S for the game A that is winning for one of the players. But this is absolute
to our original universe, because the two universes have exactly the same sets and
therefore exactly the same plays of the game. So the game is also determined in our
original universe, and we have thus verified this instance of the principle of open
determinacy for class games. �

One might view the previous argument as a proper class analogue of Blass’s result
[Bla72] that computable games have their winning strategies appearing in the L-
hierarchy before the next admissible set, since we found the winning strategies for
the open class game in the meta-L hierarchy on top of the universe. Nevertheless,
we are unsure sure exactly what it takes in the background theory to ensure that
the meta-L structure is actually admissible.

The work of this article suggests numerous questions for further investigation.
Can we weaken the assumption of Π1

1-comprehension in theorem 7 to use only the
principle of first-order transfinite recursion over well-founded class relations? If so,
it would follow that open determinacy and clopen determinacy for class games are
both equivalent over GBC to the principle of transfinite recursion, which would
resonate with the corresponding situation in reverse mathematics for games on the
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natural numbers, where both open determinacy and clopen determinacy are equiv-
alent to ATR0. Which strengthening of GBC suffices to prove the meta-L structure
we construct in theorem 7 is admissible? If this was possible in GBC plus transfi-
nite recursion, then the proper class analogue of the Blass result mentioned in the
previous paragraph might show that open determinacy and clopen determinacy for
classes are equivalent over GBC. What is the relation between transfinite recur-
sion over well-founded class relations and ∆1

1-comprehension? Is there a class game
analogue of Martin’s proof [Mar75] of Borel determinacy? What does it take to
prove the class analogue of Borel determinacy for class games? There is a natural
concept of class Borel codes, which in KM+ gives rise to a collection of classes that
is the smallest collection of classes containing the open classes and closed under
countable unions and complements. Are all such class games determined? If κ
is an inaccessible cardinal, then the full second-order structure 〈Vκ,∈, Vκ+1〉 is a
model of KM+ that satisfies Borel determinacy for class games. Is there an proper
class analogue of Harvey Friedman’s famous proof [Fri71] that Borel determinacy
requires strength? We have taken up all these questions in current work.
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