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Abstract. We consider three-dimensional reshaping of thin nemato-elastic sheets containing half-charged
defects upon nematic-isotropic transition. Gaussian curvature, that can be evaluated analytically when the
nematic texture is known, differs from zero in the entire domain and has a dipole or hexapole singularity,
respectively, at defects of positive or negative sign. The latter kind of defects appears in not simply
connected domains. Three-dimensional shapes dependent on boundary anchoring are obtained with the
help of finite element computations.

1 Introduction

Liquid crystal elastomers and glasses [1], made of cross-
linked polymeric chains with embedded mesogenic struc-
tures, combine orientational properties of liquid crystals
with shear strength of solids, and were envisaged by de
Gennes as prototype artificial muscles [2]. Their specific
feature is a strong coupling between the director orienta-
tion and mechanical deformations, which can be controlled
by the various physical and chemical agents. When the
material undergoes a phase transition from the isotropic
to nematic state, it strongly elongates along the director
and, accordingly, shrinks in the normal direction to pre-
serve its volume; the opposite effect takes place as a result
of the reverse transition. Stresses arising due to these in-
trinsic deformations were investigated for flat sheets where
they were shown to lead to phase separation of isotropic
and nematic domains [3] or formation of persistent defects
that are not necessitated by topology [4].

Internal stresses can be relaxed when three-
dimensional (3D) deformations are allowed. The reshap-
ing effect causes bending of flat thin sheets into curved
shells. Aharoni et al. [5] studied the various nematic tex-
tures that can be impressed in the material to induce a de-
sired two-dimensional (2D) metric that would determine a
3D shape upon transition from nematic to isotropic state
(NIT). This opens the way to construct surfaces with non-
zero Gaussian curvature out of flat sheets with no stretch-
ing [6], or, more generally, to change the Gaussian cur-
vature of shells. While the Gaussian curvature is an in-
trinsic property that can be computed based a surface
metric only [7], computing an actual 3D shape is a far
more challenging task, which is additionally complicated
by constraints on nematic tissues imposed by boundary
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conditions or topology of closed manifolds that necessi-
tate emergence of defects.

A 3D shape can be computed analytically only for a
symmetric texture, and the only available example is de-
formation of a circle containing a defect with unit cir-
culation into a cone or an anticone [6,8]. This case is
exceptional in two respects. First, the natural nematic
texture induced within a circle by either tangential or
normal boundary anchoring contains two half-charged de-
fects which have a lower energy than a single defect of
unit charge. Second, the Gaussian curvature induced by a
unit charge defect vanishes everywhere except the vicin-
ity of the defect itself [5], where it can be regularised
either by local stretching [6] or by depletion of nematic
order [8]. Away from the defect, where the Gaussian cur-
vature vanishes, folding may help to accommodate an ex-
tended perimeter of the circle into a sphere with a shrink-
ing radius [8], in a way similar to crumpling of isotropic
non-extensible sheets [9].

In a more difficult and realistic case of half-charged
defects, even planar textures can be computed analyti-
cally only in simplest configurations, and the lack of ax-
ial symmetry leaves little hope for analytical theory of
3D shapes. The Gaussian curvature differs then from zero
also outside defect cores, which is conducive to smooth 3D
shapes. In this paper, we compute numerically the shapes
generated upon NIT from naturally formed nematic tex-
tures. We first summarise our basic methods: analytical,
starting with metric transformation induced by NIT and
extending, in the case when the nematic texture is known,
to computation of Gaussian curvature, and numerical, in-
dispensable for visualising actual 3D shapes. We consider
next representative particular cases: a vicinity of isolated
defects, where the induced structure can be well resolved;
an elliptic sheet containing two half-charged defects; and
a sheet with two holes where negatively charged defects
naturally appear.
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2 Intrinsic and extrinsic properties

2.1 Order parameter and metric transformation

We consider a thin sheet with preferred parallel orienta-
tion of the director on both outer surfaces. The material
is described then by the 2D nematic order parameter, pre-
sented as a traceless symmetric tensor dependent on 2D
coordinates:

Qα
β = S

(
nαnβ − 1

2
δα
β

)
, (1)

where nα are vector components of the director, δα
β is the

Kronecker delta, and S is the scalar order parameter equal
to unity in a perfectly aligned nematic state. In thin elastic
sheets, bending is favoured energetically over stretching,
as bending rigidity is proportional to the cube of the thick-
ness [10]; therefore in-shell elastic deformations must be
negligible. Under this assumption, an infinitesimal inter-
val is transformed [8] as a result of a change Q̃α

β of the
nematic state as

dξα = Tα
βdxβ , Tα

β = N−1/2
(
δα
β + aQ̃α

β

)
, (2)

where a is a metric factor measuring the relative exten-
sion and contraction, and N is a normalisation factor;
summation over paired indices is presumed. This is the
simplest form suggested by the tensor character of both
the metric transformation and the nematic order parame-
ter. The original metric tensor g0 is transformed thereby
to g = Tg0T; the transformation can be made area-
preserving [8] by choosing N to ensure det(T) = 1. In
the case of transition from nematic (S = 1) to isotropic
(S = 0) state (NIT), the explicit area-preserving metric
expression is

gαβ = (1 − a2)−1
[
(1 + a2)g0

αβ − 2aQαβ

)
. (3)

If the coordinate axes xα, ξα are oriented, respectively,
along and normally to the director, eq. (2) simplifies [11]
to

dξ1 =
1
�
dx1, dξ2 = �dx2, � =

√
1 + a

1 − a
, (4)

and the transformed metric is diagonal with the elements
�−2, �2.

The transformed metric can be used to compute in-
trinsic properties of bent sheets or shells but not their ex-
trinsic properties defining their position in space. Among
the former, the most important one is Gaussian curvature
equal to the only non-zero component K = R1212 of the
Riemann curvature tensor [7]. It is defined by standard
formulas dependent on the first and second derivatives of
the metric tensor.

2.2 Numerical methods for 3D shapes

Computing actual 3D shapes which, unlike Gaussian cur-
vature, are not determined by intrinsic characteristics of

a surface alone, is a much more difficult task that can be
only accomplished numerically. We carried out computa-
tions by triangulating the surface and defining the nematic
order parameter at the grid nodes. The nematic director
on triangular tiles was defined as the average of the three
vertices. Normal vectors mi were computed for each tile,
and the normal vectors at nodes mj were defined as the
average of the normals at the surrounding tiles. If the ne-
matic field was known analytically, as in some following
examples, the nematic director was defined at the centres
of triangular tiles.

The numerical procedure was based on minimising the
energy functional defined as

E =
∑
edges

(li − l0i )
2 + κ

∑
nodes

∑
j

(1 − mi · mij). (5)

Here, the first term accounts for deviation of the length
li of an ith edge from the value l0i defined by eq. (2). In
the second term, mij denotes the normal to the a jth
tile of those surrounding an ith node. The sum over all
neighbours measures the deviation from their average ori-
entation mi, which accounts for the curvature of the bent
shell. Since bending rigidity is much weaker that in-shell
shear modulus, the ratio κ of bending rigidity to in-shell
elasticity should be small. In order to speed up numeri-
cal algorithm at early stages, it was gradually decreased
from 10−4 to 5× 10−6, which allowed us to arrive as close
as possible to the required degree of local extension or
shrinkage.

The energy minimisation procedure followed a Monte
Carlo (MC) routine, whereby the triangular finite ele-
ments were addressed at random, and NIT was imitated
by changing the length of their sides (edges) according to
eq. (2) and further rescaling to eliminate numerical errors
in maintaining the area conservation. The computation
continued until the relative energy decrease during a MC
cycle was less than 10−8. The average execution time of
1000 MC cycles for a typical triangulated mesh with 1300
nodes and 2500 elements using an Intel core i7 10GB RAM
work station was about 3 minutes.

When the nematic texture was not known analytically,
we computed it in the one-constant approximation by
minimising the nematic energy

∫
(∇n)2dΣ over a studied

domain with appropriate anchoring conditions at bound-
aries. The derivatives were approximated by differences
between the directors at neighbouring nodes. Although
the director is more naturally defined on tiles, redefining
it on nodes improves numerical accuracy due to a larger
number of neighbours (six rather than three). We resolved
the defect core structure only in the case of isolated de-
fects leaving otherwise the scalar order parameter S equal
to unity, but triangulation density was increased in the
vicinity of defects. An amended procedure is applicable to
computation of textures on curved surfaces. In this case,
covariant derivatives can be computed by virtually rotat-
ing neighbouring tiles into a common plane before com-
paring the directors, and an additional energy penalty is
introduced according to the surface curvature along the
director. There was, however, no need to implement this
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Fig. 1. The vicinity of isolated positive (left) and negative
(right) half-charged defects. Upper row: the director field; the
shading imitates the view in cross-polarisers. Middle row: the
regularised Gaussian curvature. Lower row: shade-coded relief
maps of 3D shapes; scale bars show the deviation from the
original plane.

procedure here, since we only studied transition from flat
nematic sheets to deformed shapes in the isotropic state.

3 From textures to shapes

3.1 Vicinity of defects

Strong reshaping effects in the vicinity of defects are of
special interest, and can be studied by considering iso-
lated defects, far removed from other defects and bound-
aries. The texture in the vicinity of positive and negative
half-charged defects has different symmetry (fig. 1), even
though the nematic order parameter is expressed in a sim-
ilar way. In a vicinity of defects of the charge ±1/2 (but
outside their cores) the tensor order parameter is

Q =
1
2

(
cos φ ± sin φ

± sin φ − cos φ

)
, (6)

where φ is the polar angle. Starting from the Cartesian
metric g0, we obtain using eq. (3) the transformed metric

g =
1

1 − a2

(
1 − 2a cos φ + a2 ∓2a sin φ

∓2a sin φ 1 + 2a cos φ + a2

)
. (7)

The Gaussian curvature K± of a bent shell formed upon
NIT is derived from this metric:

K+ =
a cos φ

r2(1 − a2)
, K− = − 3a cos 3φ

r2(1 − a2)
. (8)

These simple expressions are in accordance with the sym-
metry of the bent shell around the defect. The curvature
diverges at the defect location (r → 0) leading to a dipole
or hexapole singularity, respectively, for defects of positive
or negative sign. For the positive charge, the curvature is
positive near the defect’s “comet tail” at φ = 0, while a
saddle geometry with negative Gaussian curvature is indi-
cated on the opposite side. For the negative charge, there
is a threefold symmetry, matching the symmetry of the
nematic field (fig. 1).

The divergence can be regularised by taking into ac-
count vanishing S at the defect core. For defects of either
sign, the radial dependence S(r) is identical to that of the
amplitude of a complex scalar field near a defect of unit
charge [12], and satisfies the equation

S′′(r) + r−1S′(r) + S
(
1 − r−2 − S2

)
= 0, (9)

where the radial coordinate is scaled by the healing length.
The regularised Gaussian curvature within a circle encom-
passing the defect core is shown in fig. 1. The director
fields, curvature plots, and relief maps in fig. 1 are drawn
at a higher resolution than in figures depicting entire do-
mains. The symmetry of these forms is universal, although
it may be distorted in the vicinity of boundaries.

3.2 Elliptic domain

In only two known examples, a nematic texture contain-
ing half-charged defects can be obtained analytically in
the one-constant approximation by means of conformal
transformation [13]. The simplest case is an ellipse where
the director is aligned along coordinate lines u = const (if
it is anchored normal to the boundary) or v = const (if the
anchoring is tangential) of the elliptic coordinate system,
which are identical to the isolines of the real and imaginary
part of the analytic complex function w = sin z (fig. 2).
Upon NIT, the metric of the resulting curved sheet is read-
ily obtained by modifying the elliptic metric according to
eq. (4):

g = g diag
(
�−2, �2

)
, g =

1
2
(cosh 2v − cos 2u), (10)

where the half-focal distance is normalised to unity. This
expression is equally applicable to textures with the direc-
tor along the coordinate lines u = const or v = const; one
needs only to interchange the metric factors corresponding
to the two variables. In both cases, the Gaussian curvature
is computed as

K = ±1
g

[
∂

∂u

(
1
g

∂g

∂u

)
+

∂

∂v

(
1
g

∂g

∂v

)]

= ± 16a(cosh 2v cos 2u − 1)
(1 − a2)(cosh 2v − cos 2u)2

. (11)
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Fig. 2. Above: director orientation for normal (left) and tan-
gential (right) boundary anchoring. Below: Gaussian curvature
for the respective cases.

This expression has a dipolar singularity at both foci (see
fig. 2). Near the foci at x = ±1, y = 0, one can set
u ≈ ±

√
2r sin(φ/2), v ≈ ±

√
2r cos(φ/2) and recover the

first formula in (8) in the leading order of expansion in
the distance r � 1 from either focus. The difference is in
the position of “comet tails” of both defects, which are di-
rected toward the centre of the ellipse when the anchoring
is tangential, and outwards when the anchoring is normal.
The positive and negative curvature regions are situated
accordingly, so that the Gaussian curvature is positive be-
tween the foci and the nearest boundary in the case of nor-
mal anchoring (the left column in fig. 2) and in the central
region when the anchoring is normal (the right column).
Either picture coincides with its counterpart when flipped
over.

The shapes for both cases, shown in fig. 3, are quite dis-
similar. As the material shrinks along the lines in the up-
per row of fig. 2 drawn along the director orientation while
extending normally to these lines, the ellipse becomes
more slender in the case of normal anchoring and fattens
when the anchoring is tangential. The shapes strongly de-
pend on the parameters of the problem —bending rigid-
ity κ and the metric factor a. For example, the number
of folds decreases with growing κ, as seen by comparing
figs. 3(a,b). Figure 4 shows the dependence on the metric
factor a of the mean squared deviation of the surface from
the original position and of the energy gain in a deformed
elliptic domain, compared with a stressed flat sheet.

3.3 Two-hole domains

Negatively charged defects appear when domains are not
simply connected. Inserting a single hole with the same
anchoring as on the outer boundary leads to a lowest-
energy texture with no defects. When a second hole is
added, two defects with the charge −1/2 must appear.
The position of defects depends on the size and position

Fig. 3. Shade-coded relief maps of 3D shapes obtained for
elliptic domains with normal (a,b) and tangential (c) boundary
anchoring at a = 0.1, κ = 5 × 10−6 (a,c), and κ = 10−4 (b).

of holes. Some typical examples of elliptic domains with
symmetrically placed two holes, as they deform following
NIT, are shown in figs. 5, 6. In all cases, the anchoring at
all boundaries is normal. The corrugated shapes obtained
following NIT, are, naturally, different in all cases.

In fig. 5 where the holes are relatively small, the defects
are situated symmetrically on the line connecting the cen-
tres of both holes. The detailed shape near defects, that
should be similar to that in the right column of fig. 1, is
not resolved on the scale of relief maps in this and the fol-
lowing figure. It is better seen in the high-resolution relief
map of Gaussian curvature in the lower panel of fig. 5.

In the upper panel of fig. 6, where the holes are large,
the defects are placed on the symmetry axis separating the
holes. The arrangement of defects in the two lower panels
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Fig. 4. The mean square deviation of the surface from the original plane (solid lines) and the energy gain in a deformed elliptic
domain compared to a flat stressed elliptic sheet with tangential anchoring (dotted line) plotted against the metric factor a.

Fig. 5. Domains with two holes and defects with the charge
−1/2. Above: the director field shaded in a way imitating the
view in cross-polarisers. Middle panel: shade-coded relief map
for the same configuration (a = 0.1); small circles mark posi-
tions of defects. Below: high-resolution shade-coded relief map
of Gaussian curvature.

Fig. 6. Shade-coded relief maps for domains with different
hole sizes (a = 0.1). Small circles mark positions of defects.

of fig. 6 with holes of intermediate size is less intuitive. In
the middle panel, the defects are situated asymmetrically
near one hole, while in the lower panel they are placed
diagonally near alternative holes keeping a larger mutual
separation. The latter arrangement has a lower energy, so
that its counterpart is metastable.
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4 Conclusion

Reshaping of nemato-elastic sheets or shells opens ways
of creating a variety of forms that can be manipulated
by boundary anchoring, positioning of defects, and topo-
logical changes. Besides static reshaping, the forms can
be actuated dynamically, thereby creating crawling and
swimming micro robots that will be the subject of a fur-
ther study.
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