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Abstract

We present a mechanistic hybrid continuum-discrete model to simulate the dynamics of epithelial cell colonies. Collective
cell dynamics are modeled using continuum equations that capture plastic, viscoelastic and elastic deformations in the clus-
ters while providing single-cell resolution. The continuum equations can be viewed as a coarse-grained version of previously
developed discrete models that treat epithelial clusters as a two-dimensional network of vertices or stochastic interacting parti-
cles and follow the framework of dynamic density functional theory appropriately modified to account for cell size and shape
variability. The discrete component of the model implements cell division and thus influences cell sizes and shapes that couple
to the continuum component. The model is validated against recent in vitro studies of epithelial cell colonies using Madin-
Darby canine kidney cells. In good agreement with the experiments, we find that mechanical interactions and constraints on
the local expansion of cell size cause inhibition of cell motion and reductive cell division. This leads to successively smaller
cells and a transition from exponential to quadratic growth of the colony that is associated with a constant-thickness rim of
growing cells at the cluster edge, and the emergence of short-range ordering and solid-like behavior. A detailed analysis of
the model reveals a scale-invariance of the growth and provides insight on the generation of stresses and their influence on the
dynamics of the colonies. Compared to previous models, our approach has several advantages: it is dimension independent, it
can be parametrized using classical elastic properties (Poisson’s ratio and Young’s modulus), and it can easily be extended to
incorporate multiple cell types and general substrate geometries.
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1 INTRODUCTION

The regulation of cell division, cell sizes and cell arrange-
ments is central to tissue morphogenesis. A detailed under-
standing of this regulation provides insight not only to the
development and regeneration of normal tissues but also
to carcinogenesis when regulation breaks down. While reg-
ulation of cell division and growth has been traditionally
studied via signaling pathways triggered by diffusible chem-
ical species, the importance of mechanical constraints and
mechanotransduction is increasingly recognized, see e.g. the
review (1) focusing on mechanical forces in epithelial tis-
sue, which provides an important model system to study
regulation of cell division, growth and arrangements.

The dynamics of growing epithelial tissues are charac-
terized by a delicate interplay of cell-cell interactions and
macroscopic collective motion. In cultures of normal epithe-
lial cells, as the density of cells increases due to proliferation
and cell growth, the cells lose their ability to move freely.

Mitotic arrest occurs and the cells acquire an epithelial mor-
phology. This process is known as contact inhibition. In (2)
detailed in vitro studies of epithelial tissue dynamics using
Madin-Darby canine kidney (MDCK) cells were performed
and a quantitative analysis of the evolution of cell density,
cell motility and cell division rate was presented. It was
shown that inhibition of mitosis is a consequence of mechan-
ical constraints that result in reductive cell division, which
leads to an overall decrease in cell sizes, rather than just
being a consequence of cell contact. Cell growth, division,
migration and contact inhibition have also been seen to play
a role in glass-like transitions from liquid-like to solid-like
behavior in clusters of MDCK cells (3).

Mechanically-based models have been previously used
to simulate the dynamics of a collection of epithelial cells
in a variety of contexts. For example, a fully continuous
description considering the epithelium as an elastic media
was considered in (4) where the effect of mechanical stress
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on cell proliferation was investigated. While contact inhibi-
tion could described qualitatively this formulation prevents
quantification at the level of a single cell. Cell-level resolu-
tion is achieved in discrete descriptions such as the Cellular
Potts model (e.g., (5)) and vertex models (e.g. (6)). In the
former, cells are modeled as a collection of grid points on
a Cartesian mesh. The system is equipped with an energy
that accounts for biophysical properties including adhesion,
cell-stiffness and motility and the dynamics occur stochasti-
cally using a Boltzmann acceptance function that determines
whether two grid points should exchange their properties.
The Cellular Potts model (CPM) was recently used to inves-
tigate the effects of cell compressibility, motility and contact
inhibition on the growth of tumor cell clusters. Interestingly,
that in the CPM an artifact was found that an increased
motility led to smaller cells, which could only be compen-
sated by increasing the cell stiffness parameters appropri-
ately (7). In the vertex model, epithelial cells are described
by a two-dimensional network of vertices, representing the
cell edges (see Fig. 1(A) and (B)). Stable network configu-
rations are achieved by a mechanical force balance between
an outward force due to limited cell compressibility and an
opposing line tension resulting from the combined effect of
myosin-dependent cortical contractility and cell-cell adhe-
sion. These forces are incorporated into an energy func-
tion that is calculated and used to update the position of
each vertex over time. Within this framework, the contribu-
tions of cell growth, mitosis, apoptosis and cell intercalation
are incorporated to predict the evolution of tissue towards
a stable mechanical equilibrium. Vertex models have been
successfully used to model processes such as the shaping
of compartment boundaries in the developing Drosophilia
wing (8), morphogen distribution and growth control (9)
among others. It should be noted that in vertex models other
mechanical contributions such as cell-matrix adhesion (10),
centripetal cytoplasmic contractile activity (11) or the abil-
ity of cells to change neighbors, which can be described as
tissue fluidity, are either missing or have only incorporated
in an ad hoc fashion. Another limitation of most current
vertex models is that they are primarily restricted to two-
dimensions; extensions to three-dimensions are in the early
stages of development (12).

Collective cell motion in epithelial sheets has also been
quantitatively described by stochastic particle models, e.g.
(13). In this approach, each cell is reduced to its center
point (although in a few studies cell sizes have been taken
into account, e.g., (14)) and the dynamics are described by
Langevin-like systems of equations. The stochastic motion
of a cell is modeled by an Ornstein-Uhlenbeck process.
Through a linear damping term dissipation due to adhesion
and friction is taken into account and the interaction with
neighboring cells is modeled by an ’inter-cell’ potential that
is repulsive at short-ranges and attractive at longer distances.

Such models have been able to quantitatively reproduce sta-
tistical characteristics of the cell velocity field and posi-
tions at early times in controlled wound healing experiments
on MDCK cells (15, 16). However, while cell intercala-
tion is naturally included, cell growth, mitosis and apoptosis
were either not considered or were only accounted for in
an implicit manner by a density-dependent noise term. Fur-
ther, because cell sizes are not typically taken into account,
this makes it problematic to use particle models to simulate
reductive cell division.

It is worthwhile to relate stochastic particle models with
vertex models, although it is difficult to directly compare
the two. A qualitative comparison between these models can
be made by constructing the Voronoi diagram for the center
points in the particle model, which can then be used to relate
epithelial cell packings in the particle and vertex models to
one another. See Fig. 1 (C). Our goal here is not to make the
link between both approaches quantitative, but rather to use
the stochastic particle model as a starting point to derive a
coarse-grained continuum model, following the framework
of dynamic density functional theory (DDFT). By extending
this framework to account for cell size and shape variabil-
ity, we obtain a continuum partial differential equation for
the epithelial cell density that provides single cell resolu-
tion and yet can describe elastic, plastic and viscoelastic
deformations at larger scales. Such a modeling approach was
previously sketched for solid tumor growth in (17), but no
simulation results were provided. This approach is motivated
by the successes of DDFT in simulating inhomogeneous,
non-equilibrium interacting particle systems with Brownian
dynamics (18, 19). Because of the continuum formulation,
the model extends straightforwardly to three dimensions.
The model can easily incorporate other biophysical phenom-
ena, such as flow, nutrient diffusion and active motion via
chemotaxis. Unlike the approach described in (17), cell divi-
sion is accomplished using a discrete approach making the
overall system a hybrid continuum-discrete model. We will
demonstrate the quantitative predictive power of such a mod-
eling approach by comparing our simulation results with the
detailed analysis of contact inhibition in (2).

2 MATERIALS AND METHODS

In the DDFT framework, a discrete particle system is mod-
eled via a continuum-level continuity equation for a noise-
averaged density field ρ(x, t) =<

∑
i δ(xi(t)−x) >, where

< · > denotes averaging and xi(t) denotes the particle posi-
tions. A key idea is that the averaged density evolves on
experimentally-relevant long-time scales (seconds to hours
for representative experimental growth conditions), while
still allowing the individual locations of the particles (peaks
of the density field) to be determined. The continuity equa-
tion accounts for correlations among the particles through a
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2.1 Conserved gradient flow for cell density 3

Figure 1: (A) A sketch of epithelial cells, for which we
assume that the mechanical interactions act in the plane of
the adherens junctions. (B) Two-dimensional vertex repre-
sentation of epithelial cells with balancing forces on a ver-
tex due to line tension (red) and pressure (blue). (C) Two-
dimensional particle representation of epithelial cells with
balancing forces represented by springs, and a corresponding
Voronoi diagram.

non-local contribution involving the direct two-point correla-
tion function (18) and derives from a gradient flow of a non-
local free energy function. Expanding the free energy func-
tion to lowest order, the nonlocal equation can be reduced to
a high-order partial differential equation, known as the phase
field crystal (PFC) model (20, 21). The PFC was introduced
as model for elasticity in crystalline structures (22) and is
popular in condensed matter physics because of its simplic-
ity and its ability to combine particle-particle interactions
with macroscopic material behavior. Here, we adapt the PFC
model to account for cell size and shape variability.

2.1 Conserved gradient flow for cell density

Like the DDFT system, the PFC model possesses a free-
energy that involves the averaged density ρ as well as param-
eters that describe the equilibrium epithelial cell packing.
The density evolves according to a generalized continuity
equation that arises from a conserved gradient flow model.
The free-energy expression reads

E =

∫
Ω

1

4
ρ̃4 +

1 + r

2
ρ̃2 − cq|∇ρ̃|2 +

c2

2
[∇·(q∇ρ̃)]

2
dx,

(1)

where ρ̃ = ρ− ρ̄ denotes the difference between the epithe-
lial cell density and a reference value ρ̄. In the remainder
of the paper, we omit the tilde and simply use ρ to denote
the density difference. The parameter q can be interpreted
as the equilibrium epithelilal cell area, which we will make
spatially-varying as described below to account for differ-
ent cell sizes. The parameter r together with the average cell
density ρ0 are used to approximate the ’inter-cell’ potential,
again with repulsive and attractive interactions. Both param-
eters are used to fit the first peak in the ’two-cell’ direct
correlation function and are related to elastic parameters

(e.g., Poisson’s ratio and Young’s modulus) of the epithe-
lial cell cluster, see SI for details. The constant c =

√
3/8π2

is introduced to scale q such that it can be interpreted as the
cell area, at least in hexagonal ordering of cells as given by
the one-mode approximation, see SI for details. Finally, Ω
denotes the domain.

The first two terms in Eq. (1) define a double well poten-
tial for appropriate values of r, with two minima correspond-
ing to the presence of a cell or no cell. The third term,
a gradient term, can also be found in classical Ginzburg-
Landau type models although the sign here is negative,
which induces oscillations. The fourth term, which is higher
order, stabilizes these oscillations and together with the gra-
dient term sets a length scale, which defines the equilib-
rium cell size q. For the dynamics we consider a conserved
gradient flow

∂tρ =η∆
δE

δρ
(2)

where η is a mobility parameter, which can be interpreted
as modeling the combined effects of cell-substrate adhesion
and friction between the cells and a surrounding viscous
fluid. The variational derivative δE

δρ is given by

δE

δρ
=ρ3 + (1 + r)ρ+ 2c∇ · (q∇ρ)

+ c2∇ · (q∇(∇ · (q∇ρ))).

We can interpret the (local) maxima in the density field as the
centers of the epithelial cells. Within this approach ρ is glob-
ally conserved. However, the number of maxima and thus the
number of cells is not. If a cell disappears it ’diffuses’ into
the surrounding cells, leading to a decrease in the maxima
and finally its disappearance. To overcome this problem we
extend the continuous PFC model by a semi-discrete term
taking into account the discrete position of each cell.

Let the cells be numbered by i = 1, ..., N where N is
the total number of cells. For cell i, we denote the corre-
sponding local maximum of the density field by ρi, and the
position of this maximum by xi, hence ρ(xi) = ρi. From the
positions of the local maxima, we may compute the Voronoi
cells Ωi, which serve as a good representation of the geom-
etry of the epithelial cell i and can be used to represent the
epithelia packing. Correspondingly, we introduce the char-
acteristic function of each cell χi defined by χi = 1 in
Ωi and 0 otherwise. The region without cells is denoted by
χ0 = 1 −

∑N
i=1 χi. In equilibrium, Ωi and χi are related to

the equilibrium cell size q, which was assumed to be con-
stant in the original model (22). Here, however, we allow
q to be space-dependent to account for cell size variability
that can occur during the evolution due to cell division. That
is, q =

∑N
i=0 qiχi where qi is a measure of the epithelial

cell area, which can be time-dependent. See the discussion
below in Sec. 2.2. In the region without cells (χ0 ≈ 1) we
set to q0 = 1
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4 2 MATERIALS AND METHODS

To ensure the number of cells is conserved between
mitotic or apoptotic events, we need local ’mass’ conserva-
tion for each cell. Hence, ’mass’ must be added when a local
maximum shrinks and ’mass’ must be removed when a local
maximum grows. The simplest way to do this is to add a
source term to the standard PFC model. Hence, we propose
the following evolution equation

∂tρ =η∆
δE

δρ
+ α

N∑
i=1

(ρmax − ρi) max(ρ, 0)χi, (3)

where α is a relaxation constant. Equation (3) is designed
so that for each cell, the local maximum of ρ stays close to
the value ρmax, which approximates the cell density peak at
equilibrium and can be a priori calculated from an one-mode
approximation, see SI. Note that the evolution equation (3)
only prevents disappearance of cells since the source term
(last term on the RHS) is restricted to the cell region by χi.
Analogously, a similar source term is added in the region
without cells to ensure that no cells ’nucleate’ there. The
resulting evolution equation reads:

∂tρ = η∆
δE

δρ
+ α

N∑
i=1

(ρmax − ρi) max(ρ, 0)χi

+ β(ρmin − ρ)χ0, (4)

where β is a relaxation constant and ρmin is a reference
value of the density for the region without cells that can also
be estimated from the one-mode approximation, see SI. In
the literature on PFC models in condensed matter physics
other approaches to ensure a conservation of particles/cells
have also been discussed (23, 24). Our results show that
the dynamics of the modified PFC model is very similar to
that of the original PFC mode. In particular, the source and
sink correction terms on the RHS of Eq. (4) at each time
step in the numerical scheme are very small because the the
diffusional process of disappearance and nucleation of par-
ticles/cells is slow compared with other processes. Further,
these corrections can be interpreted as penalty terms that
seek to maintain the peak values of the density field at ρmax

and the bulk value at ρmin.

2.2 Cell growth, mitosis and apoptosis

We now incorporate cell growth, mitosis and apoptosis. The
equilibrium size of each cell may change over time as cells
may increase their size until they divide. After division, of
course, the equilibrium cell size is reduced abruptly. Prior
to division, we assume that there is a cell-dependent rate ki
such that

∂tqi = ki. (5)

In the present work, we take ki to be constant for each
cell. More generally ki may depend on the concentration

of available nutrients or growth factors. Here we concen-
trate on modeling contact inhibition and therefore take into
account that in densely packed regions a cell might not
have enough space to grow. Comparing the actual cell area
|Ωi| =

∫
χidx with the desired equilibrium cell area qi, we

obtain an approximation for the cell compression (7). If the
ratio

∫
χidx/qi is below a threshold value the growth of a

cell is prohibited by prescribing ∂tqi = 0. Here, we take 0.9
as the threshold.

Mitosis can be initiated by different events. In the sim-
ulations here, we use the cell life time as a trigger as this
is suggested by the experiments in (2). In particular, mito-
sis initiated in when the cell reaches a prescribed life time
ti ≥ tdiv,i, which is taken to be random (see Sec. 3.1). To
perform division, we replace the local maximum at xi with
two new maxima using Gaussians in the neighborhood of
the original maximum. The position of the new maxima can
be chosen in different ways and may affect the cell topol-
ogy (25). Here we are free to choose any cleavage plane
mechanism, but restrict our numerical tests to three different
cleavage mechanisms (see Sec. 3.4 and Fig. 5). In each case
the daughter cells are put at a distance of 1

2
√
π

√
qi on oppo-

site sites from the original mother cell and the cell size of
the two daughter cells is set such that qchild = qi/4, which
results from a one-mode approximation, see SI for details.
Apoptosis is not considered in the present simulations but
can be included easily by removing a cell according to a
given criteria like cell age, available nutrients, number of
divisions or random selection.

2.3 Numerical algorithm

In the following we briefly mention some details of the
numerical implementation of the model. The algorithm for
one time step is summarized in Fig. 2. The finite-difference
scheme proposed in (26) is employed to solve the PFC equa-
tion. For the standard PFC equation this scheme is uncondi-
tionally energy-stable. The discretized equations are solved
by an efficient nonlinear multigrid method proposed in (27).
For the standard PFC equation this algorithm is first-order
accurate in time and second-order accurate in space. We
obtain similar results for the modified PFC equation used
here.

According to the phase diagram of the standard PFC
equation we choose r = −0.9 together with ρ0 = −0.54.
This choice ensures coexistence between a hexagonal epithe-
lial cell packing and a region without cells in equilibrium,
with a sharp transition between both phases, see SI for
details. The parameters imply that ρmax = ρpeak = 0.8,
the Poisson’s ratio is ν = 1/3 and the Young’s modulus is
E = 0.4 (see SI). Since the results are not sensitive to the
value of ρmin, we take ρmin = −0.7. Other numerical param-
eters are time step ∆t = 50s and grid size ∆x = 0.59µm
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2.3 Numerical algorithm 5

1. 2. 3. 4. 
desired cell size update
qi

n -> qi
n+1

5. 
global cell size
q = q1χ1 + ... + qNχN

6. Algorithm
1. solve the PFC equation (4) for epithelia cell density ρ 
2. determine the local maxima xi and density values ρi for i = 1, ... , N
3. calculate the Voronoi cells χi for i = 1, ... , N
4. update the desired cell size qi according to eq. (5) for i = 1, ... , N if

enough space to grow is available
5. compute the global cell size q
6. check any triggers for cell division and perform cell division if reached

ρ 

xi
χi

ti > tdiv,i

Figure 2: Schematic description of the numerical algorithm. The artifacts of the Voronoi cells at the periphery are only
graphical and do not influence the computation.

Figure 3: Epithelial cell density field ρ (top row) and corresponding Voronoi diagram (bottom row) at times t =
0.05d, 1.73d, 3.46d and 5.77d (from left to right). The artifacts of the Voronoi cells at the periphery are only graphical and do
not influence the computation.

and we use N = 2048 grid points in each direction. The
spatial domain is thus a square with area 1.46mm2.

To extract the peak positions from the density field we
exploit that peak positions are known from the previous time
step. For every i, all grid points in a neighborhood of the old
peak position xi are traversed (here we use the 50 closest

grid points). Then xi is set to the position where ρ assumes
the largest value. For the generation of Voronoi cells, the dis-
tance to all peak positions is calculated for every grid point
and divided by the radius of the corresponding cell. The clos-
est peak position xi is used to label the grid point belonging
to Voronoi cell i.
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3 RESULTS

For all simulations we use the nondimensional PFC equa-
tions given in Eq. (4) using the characteristic length and time
scales L = 0.59µm and T = 50s. Accordingly, T deter-
mines the time step for the numerical scheme and L is small
enough to ensure having 100 grid points in cells as small as
35µm2.

3.1 Simulation setup

We start with a small colony of 9 epithelial cells with areas
qi randomly chosen in the interval [500µm2, 2000µm2] and
placed in the center of the computational domain. The divi-
sion time tdiv,i after which cell i divides depends on qi
and is motivated by the Hill-function given in (2). The
explicit form reads tdiv,i = 0.74d(q4

i + (170µm2)4)/q4
i +

P([0, 0.02d]), where P(X) denotes a random variable uni-
formly distributed in X and d denotes days. The average
cell division time is 0.75d for larger cells (qi > 170µm2),
while the division time drops rapidly to zero for smaller
cells (qi << 170µm2). The cell growth rate is set to ki =
2000µm2/d which implies that the epithelial cells on aver-
age reach the size of their mother cell during cell cycle time
if they can freely grow. The remaining parameters are in non-
dimensional form: α = 1, β = 1 and we vary η from 5 to
20.

3.2 Growth experiments

Fig. 3 shows snapshots of the density field ρ describing the
epithelial cell positions at various times and the correspond-
ing Voronoi diagrams that characterize the cell packings. The
colony expands over time, which is enabled by repulsive
forces between the epithelial cells, where cells push their
neighbors away as they grow. A cluster of 1, 369 cells has
developed at final time, with smaller cells in the inner region
and larger cells in the outer region.

3.3 Growth characteristics

An analysis of the numerical results is shown in Fig. 4,
together with comparisons with experimental results from
(2). In Fig. 4(A), the evolution of the colony areas is shown
for the simulation results with different mobilities η, and the
experimental results (circles). The experimental and simula-
tion results are scaled as described below, and are in excel-
lent agreement. Reference results are shown for exponential
growth (solid black) and quadratic growth (solid grey). The
results show that there is a transition at about 2d from expo-
nential growth to quadratic growth. This can be explained as
follows. At early times, since all cells may grow and divide,
the cluster area A grows exponentially: dA/dt ∼ λA, where
λ−1 ∼ 0.75d, the average epithelial cell cycle time. As

the cluster grows, mechanical constraints (contact inhibition)
due to reduced cell movement and the lack of space pre-
vent the interior cells from growing in size although interior
cells continue to divide by reductive cell division until their
size drops below the critical threshold. This leads to larger
numbers of smaller cells, with the total areas being approxi-
mately conserved. The growth in size in the colony is due to
a ring of growing and proliferating cells at the colony edge,
leading to a colony growth law dA/dt ∼ 2

√
πλrrim

√
A,

where rrim is the thickness of the proliferating rim. Thus
at late times, A ∼ πλ2r2

rimt
2. This analysis reveals a scal-

ing invariance: If A(t) is a solution of the growth law, then
Ā(t̄) = A(t + tshift)/Aref is also a solution of the growth
law with corresponding rim thickness r̄rim = rrim/

√
Aref .

Thereby, tshift = −λ−1 ln(Aref ) since the time span of
exponential growth increases by tshift. Hence, there is effec-
tively only one free variable (Aref or tshift) to fit. We take
advantage of this scale invariance to compare the simulated
and experimental results. In Fig. 4(A) the scaled results Ā(t̄)
are plotted as a function of t̄ for the different cases where
Aref is chosen empirically to match the η = 10 simu-
lations. For example, in the experiments, the colony area
is approximately 30 times larger than the one obtained for
η = 10 simulation. By considering Aref = 30 we calcu-
late tshift = 4.5d. We find r̄rim ≈ 70µm, which corre-
sponds to a proliferating rim thickness in the experiments
rrim ≈ 385µm. Similar scalings are used for the numeri-
cal results. In particular, increasing the mobility η leads to
larger cluster sizes, delays the transition from exponential to
quadratic growth by making the cells more mobile and thus
extends the regime of free-growth (see SI). As also shown in
the SI, increasing the Young’s modulus has a similar effect.

During the exponential phase of growth, the cell density
(Fig. 4B) and the cell sizes on average (Fig. 4C), and for
an individual cell (Fig. 4D), remain nearly constant. That is,
daughter cells have approximately the same areas as mother
cells. After t̄ ≈ 2d growth is inhibited and expansion of the
colony periphery cannot keep up with cell proliferation in
the bulk. Hence the density of bulk cells increases due to
the limited space and the cell sizes decrease due to reductive
cell division where the interior daughter cells have approxi-
mately one-half of the area of the mother cells, in agreement
with the experimental measurements (see Figs. 3C and 4A in
(2)).

3.4 Cell arrangements

To quantify the cell arrangements, we plot the radial distri-
bution function in Fig. 4E. The radial distribution function
g(R) measures the probability of finding a cell at distance
R from a given reference cell. It is determined measuring
the distance between all cell pairs and binning them into a
histogram. The histogram ordinate is divided by R and nor-
malized such that far away cells have g(R) = 1. Hence a
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3.4 Cell arrangements 7

Figure 4: Analysis of cell areas and arrangements. (A) Total area of the spreading colony (blue). The black line corresponds to
exponential growth with the average epithelial cell cycle time 0.75d. The grey line corresponds to quadratic growth, and the
symbols correspond to scaled results from the experiments in (2) (see text for additional description). The blue dot-dashed,
green-dashed and the red line correspond to scaled simulation results with different mobilities η as labeled. (B) The corre-
sponding average cell densities remain almost constant until t̄ ≈ 2d and grows rapidly thereafter. The plot is superimposed on
the results from (2) Fig. 1 (C) with shifted time (see text). (C) The median of the area distribution of epithelial cells is nearly
constant (indicated by solid black line) during exponential growth and shows a rapid decrease when contact inhibition sets in
at t̄ ≈ 2d. (D) Area of a single epithelial cell as a function of time remains constant before t̄ ≈ 2d and subsequently decreases
afterwards. The dashed black lines are average epithelial cell areas between mitosis events. Results correspond to η = 10.
(E) Radial distribution function of simulated cell distributions with η = 10 at different times as labelled. The appearance of
a peak and trough in the quadratic growth regime indicates short-range ordering of cells. (F) Histogram of the distribution of
the cellular coordination number (number of direct cell neighbors), with η = 10. The reference is taken from (2).

value of one indicates no correlation between the cell dis-
tances (gas-like behavior). This behavior is found in the
exponential growth regime. The emergence of a peak (and
a trough behind) in the quadratic growth regime indicates
the development of short-range ordering of cells. This indi-
cates the emergence of amorphous solid behavior, which is in
agreement of previously found glass-like properties of grow-
ing cell clusters (3). A similar transition is observed in the
experiments in (2) (see Fig. 3D).

The number of cell neighbors also referred to as ’polygon
class’ or ’cellular coordination number’ gives another mea-
sure for the homogeneity of epithelia packings, and has been
investigated in various theoretical and experimental studies,
see e.g. (6, 25, 28–31) for different biological systems. In
general it is found that many tissues organize such that 45%
of cells have 6 neighbors, while 25% and 20% have 5 and
7 neighbors, respectively (32). Similar results are obtained
in our simulations, see Fig. 4F, with 51%, 26% and 20%
of 6-sided, 5-sided and 7-sided cells, respectively, again in

good agreement with (2). The coordination number is mea-
sured at the final time, omitting the cells at the boundary of
the colony. The standard PFC model tends to organize cells
homogeneously in a hexagonal packing. This can be altered
by constraints, e.g. due to an underlying curvature (33–35)
or as in the present case an inhomogeneous distribution of
cell sizes and the presence of mitosis. The good agreement
between the simulations and experiments in (2) was achieved
without any parameter adjustments.

Next, we investigate the influence of the cleavage plane,
e.g., the perpendicular bisector between the two progeny at
mitosis. The cleavage plane is known to have a significant
influence on the arrangement of epithelial cells in models,
e.g. (25), and in experiments, e.g. (32). Empirical investi-
gations show that many monolayer cell sheets across the
plant and animal kingdoms converge on a default equilib-
rium distribution of cellular shapes, with approximately 45%
hexagons, 25% pentagons, and 20% heptagons (32). Using
numerical simulations (25) found that the cell topology is
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8 3 RESULTS

Figure 5: Schematic of different cleavage plane mechanisms.
A dividing mother cell (large red circle) may align the
daughters (small red circles) such that they have the most
space (best angle), the least space (worst angle) or randomly
(random angle). The blue circles denote previously existing
cells.

highly sensitive on the cleavage plane. In particular the num-
ber of 6-sided cells decreases for cleavage plane mechanisms
from cutting the longest edge (corr. best angle) to cutting the
shortest edge (corr. worst angle). We confirm this observa-
tion here using three different cleavage planes depicted in
Fig. 5: The two daughter cells may be put in a position such
that they have the most space (best angle), the least space
(worst angle) or could be randomly aligned (random angle).
The resulting cell coordination numbers are plotted in Fig.
6 for the various cleavage plane mechanisms. Here, we used
η = 10 since our simulations revealed that the mobility η has
no noticeable influence on the coordination number (results
not shown).

As pointed out above the best angle mechanism pro-
duces a cell arrangement that is too regular (e.g., too many
cells with 6 neighbors). Making the cleavage plane ran-
dom leads to a more heterogeneous cell arrangement and
produces cell neighbors very close to the general reference
values from (2). Heterogeneity is further increased by using
the worst angle mechanism. However, the resulting number
of 6-fold cells is much lower than reported in experiments.
Our results are also in qualitative agreement with the simu-
lation results of (25). However, since their simulation does
not take into account cell rearrangements they overestimate
the effect of cleavage plane, which is confirmed if we com-
pare their absolute numbers with ours. These results suggest
that biological cells may indeed choose the cleavage plane
in a random manner (determined by intracellular processes)
since under these conditions our simulations demonstrate the
closest agreement with experiments. We note that the cleav-
age plane has only a small influence on the total number of
cells and no noticeable influence on colony area, epithelial
cell density or epithelial cell areas (results not shown).

3.5 Cell motility and elastic properties

To obtain a more complete picture of the cell movements,
we plot the cell velocity averaged over the last five hours
of the simulation. Fig. 7 shows that cells in general move
the fastest along the colony periphery while the interior cells
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Figure 6: Histogram of the distribution of the cellular coor-
dination number (number of direct cell neighbors) for differ-
ent cleavage plane mechanisms using the mobility η = 10.
The random cleavage plane produces results closest to the
reference (2).

move slowly. These outer cells migrate mostly away from the
center, as expected. The inner cells move much more slowly
and their movement is less oriented and more chaotic, indi-
cating that interior motion is due primarily to cell rearrange-
ments in the colony interior. Thus, interior cells may move
past each other slowly to rearrange, a feature that is problem-
atic to resolve with standard vertex models. The results are
in general agreement with the experiments in (2), although
the cell velocities found in the simulation are about 10 times
smaller than those found in the experiments. This is consis-
tent with the difference in the simulated and experimental
cluster sizes and indicates that the mobility used in the sim-
ulations (η = 10) over-predicts the effects of cell-substrate
adhesion (and drag).

The mechanical stress acting on the cells as has been
proposed by (2) as an important step towards understanding
the contact inhibition phenomenon. Here, we investigate the
cell bulk stress, e.g., the compression of each cell. From the
desired cell size qi and the actual cell size

∫
χidx we calcu-

late the relative compression as 1 −
∫
χidx/qi. The results

are shown averaged over time, according to number of neigh-
bors and distance to the center in Fig. 8 as well as in Fig. 9
for individual cells. We find that the compression is positive
for all cells and increases over time ( (Fig. 8 left). Cells never
occupy more space than they desire, which means they are
not significantly pulled by adhesion with neighboring cells
during the simulation. In the inner region the average com-
pression is about 12.5% (Fig. 8 right) while it decays across
the colony periphery to zero. The maximum compression we
find is around 25%, even though cells stop growing in the
simulation once they are compressed more than 10%. Hence,
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Figure 8: Cell compression as a function of time (left), number of cell neighbors (middle) and distance to the colony center
(right). Results indicate that the average cell compression increases with time, cells with fewer neighbors are more compressed
than cells with larger numbers of neighbors, and that cell compression is relatively constant in the inner part of the colony and
decays rapidly across the outer part of the colony.

Velocity magnitude Velocity direction

Figure 7: Cell velocity averaged over the last five hours of the
simulation. Left: The velocity magnitude shows that cells in
general move the fastest along the colony periphery while
cells in the inner region move significantly more slowly.
Right: The velocity direction is color-coded by a circular
colorbar and indicates that cells in the periphery move away
from the center, while inner cells have no preferred direction
of movement.

cells that are compressed more than 10% must have under-
gone a decrease in their area due to pressure from neighbor-
ing cells, rather than being compressed as consequence of
their own growth.

Another interesting observation is the fact that cells with
fewer neighbors are more compressed (Fig. 8 middle). This
is consistent with reports for particle arrangements on curved
surfaces, e.g. the morphology of viral capsids where the
higher stress in 5-sided subunits leads to buckling, see (36)
for a detailed analysis. This result is also in agreement with
Lewis’ law (37) which claims that cell areas are proportional
to (n − 2) where n is the number of neighbors. Hence, if
cell rearrangement decreases the number of neighbors of a
certain cell, also the area of this cell is decreased leading to
more compression.

Figure 9: Compression of individual cells at the final time.

4 DISCUSSION

We have presented a mechanistic model to simulate the
dynamics of epithelial cell colonies. The model, which con-
tains both continuum and discrete features, can be derived
from stochastic particle models following the framework of
dynamic density functional theory appropriately modified
to account for cell size and shape variability and localiz-
ing approximations. Cell-cell interactions are modeled using
continuum partial differential equations and cell growth and
mitosis are incorporated on a discrete level. We used this
model to simulate the dynamics of clusters of epithelial cells
to quantify contact inhibition dynamics at the tissue and
single cell levels.

To validate the appropriateness of the model, we com-
pared the simulated results with the detailed in vitro studies
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of epithelial tissue dynamics of Madin-Darby canine kid-
ney (MDCK) cells in (2). We found that the model correctly
predicts a transition in the growth of the colony sizes from
exponential at early times to quadratic at later times. The
transition occurs because of reduced cell movement and the
lack of space that prevents cells in the cluster interior from
growing in size (although they may still undergo reductive
cell division) while cells in the cluster exterior move and
grow more freely, which provide the source of cluster size
increases at later times. The transition is also associated
with the emergence of short-range ordering and solid-like
behavior of the cluster, which was quantified using the radial
distribution function, and a constant-thickness growing (and
dividing) rim of cells at the cluster edge. In the simula-
tions, the mobility, which reflects the combined effects of
cell-substrate adhesion and drag, and the Young’s modulus
are the primary influences on the transition from exponential
to quadratic growth with an increased mobility (or Young’s
modulus) being associated with a delayed onset of the tran-
sition because the cells are more mobile (or stiff) resulting
in an extension of the free-growth regime. For the range of
mobilities used, the model under-predicts the cluster sizes
where the transition occurs. Computational costs prevented
us from using significantly larger values of these parameters.
However, an analysis of the results reveals a scale-invariance
such that the appropriately scaled simulation and experimen-
tal results are in excellent agreement. Excellent agreement
is also obtained for the evolution of cell densities and cell
sizes. We further investigated the distributions of the cel-
lular coordination numbers (number of cell neighbors), the
average cell velocity and the mechanical stress. We found
that the cleavage plane is the dominant mechanism to control
cell topology but has little effect on the colony morphologies
or growth. The experiments are most consistent with ran-
domly chosen cleavage planes. The local stress is found to
depend on the cell coordination numbers with fewer neigh-
bors resulting in larger stresses, consistent with Lewis’ law
(37) . In addition, cells in the cluster interior are found to be
much more compressed and to move much more slowly and
in more random directions than their exterior counterparts.
Taken all together, our results confirm the findings of (2)
identifying contact inhibition as a consequence of mechani-
cal constraints that cause successive cell divisions to reduce
the cell area and is not just a result of cell contact.

Compared to previous models, our approach has several
advantages: (i) because of the continuum formulation, cell-
cell interactions can be simulated efficiently using sophisti-
cated partial differential equation solvers, (ii) the model can
capture elastic, viscoelastic and plastic deformations within
this continuum framework; (iii) the model is dimension inde-
pendent, (iv) the model can easily be extended to incorpo-
rate multiple cell types, general substrate geometries and
the dependence of cell behavior on oxygen, nutrients and
growth factors, and (v) the model can be parametrized using

classical elastic properties (e.g., Poisson’s ratio and Young’s
modulus).

Although the elastic properties of cell colonies are
in principle measurable, these elastic parameters are not
well-known. In contrast, the mechanical properties of
individual cells, which can be measured by Atomic Force
Microscopy (AFM) probe indentation, e.g., see (38), are
much better known. To derive the Young’s modulus of an
individual cell from such indentation experiments, simple
mechanical models are typically used (39). Values for
human cervical epithelial cells range from 1 − 20kPa,
depending on the indentation experiment and the mechan-
ical model considered. How these properties for single
cells can be related to the mechanical properties of cell
colonies remains open. However, another advantage of
our approach is that our model can also be parametrized
using an experimentally-derived direct two-point correlation
function to start with (recall the model derivation in Sec.
2). For example, experimental measurements can provide
an approximation of the dynamic structure factor (e.g., (3)).
By solving the Ornstein-Zernike integral equation (e.g.,
(40)), we can approximate the direct two-point correlation
function from the structure factor. We plan to consider this
in future work.
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SUPPLEMENTARY MATERIAL

An online supplement to this article can be found by visiting
BJ Online at http://www.biophysj.org., which includes anal-
ysis of a one-mode approximation to determine the chosen
parameters and a movie of the growth process.
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SUPPLEMENTARY MATERIAL

One-mode approximation

A detailed analysis of the standard PFC model in Eq. (2)
was performed in (41) for the case of q = 1. For q = const
the analysis follows along the same lines. We can represent
the periodic solution by a one-mode approximation with the
lowest-order harmonic expansion

ρ = A(cos(2πx/a) cos(2πy/
√

3a)−cos(2πy/
√

3a)/2)+ρ0

where ρ0 is the average epithelial cell density, A measures
the amplitude of the epithelial cell density field and a is the
distance between the cells. Recall that the density ρ actually
represents the deviation from a reference value ρ̄ (see Sec.
2). Using this expression in the PFC energy in Eq. (1) and
minimizing with respect to A and a leads to

A =
4

5

(
ρ0 −

1

3

√
−15r − 36ρ2

0

)
, a =

4π√
3

√
q.

Hence the distance between cells scales with the square root
of q, whereas the amplitude of the epithelial cell density field
is not affected by q. The maxima of the above one-mode
approximation are easily calculated as ρpeak = ρ0 − 1.5A.
We will use this value as ρmax.

We can obtain the elastic properties of the hexagonal
phase from the one-mode approximation by considering the
energy cost of a deformation of the equilibrium state follow-
ing (41). The resulting elastic constants are C11/3 = C12 =
C44 = 3A2/16, independent of q. From these coefficients,
we obtain the Poisson ratio ν = 1/3 and the Young’s mod-
ulus E = A2/2. These calculations are only valid within
the one-mode approximation, assuming a perfectly hexago-
nal packing of the epithelial cells. As shown in (41) these
approximations are in good agreement with the elastic prop-
erties obtained from the full PFC model, at least if r is small.
In the simulations presented in this paper, we are within this
regime, but far away from an equilibrium hexagonal state,
which should be kept in mind by parametrizing the model
according to experimental measurements of E.

Mechanical properties of epithelial cell colonies have
previously been considered in (42) within a one-dimensional
approach by using a homogeneous and isotropic material,
parametrized by ν and E. However, in (42) the cells are
coupled to a substrate and therefore the results can not be
compared with our simulations in the current setting. The
fixed Poisson ratio is within the range 0.3−0.5 of typical soft
materials (39). Using r = −0.9 and ρ0 = −0.54 we obtain
E = 0.4. Below, we demonstrate the effects of changing the
Young’s modulus E (see Fig. SI.3).

Phase diagram

By comparing the free energies (for constant q) of a hexag-
onal cell ordering in equilibrium and a constant density, a
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Figure SI.1: The phase diagram for the phase field crystal
model. The region labelled ”coexistence” marks the ranges
of the parameters r and ρ0 where regions with hexago-
nal cell ordering in equilibrium can coexist with regions
with constant density (e.g., no cells). Note that ρ0 actually
represents the deviation from a reference value ρ̄ (recall
Sec. 2). The blue circles indicate the three distinct param-
eter combinations together with the corresponding Young’s
moduli.

phase diagram can be constructed. The phase diagram is
shown in Fig. SI.1) in terms of the parameters ρ0 and r.
There are three phases: (i) constant density phases where
there are no cells; (ii) coexistence phases where regions
of hexagonally-arranged cells can coexist in equilibrium
with regions where there are no cells; and (iii) hexagonal
phases where there are only hexagonally-arranged cells in
equilibrium. Results are independent of q.

Parameter variation

We next demonstrate how the results of our simulations
depend on the model parameters, including the mobility, the
choice of cleavage plane, and the Young’s modulus.

Effect of mobility and cleavage plane. Fig. SI.2 shows the
epithelial cell colony at final time t = 5.77d for various
parameter combinations. The cleavage plane seems to have
little impact on the colony morphologies (top) or the total
number of cells (Fig. SI.2A). The only noticeable influence
is on the colony boundary, which seems more rough for the
worst angle of the cleavage plane (recall Fig. 5). The colony
boundary is extracted from the epithelial cell density field ρ,
or the discrete representation χi, using a segmentation algo-
rithm based on a Mumford-Shah energy (43) with the initial
noisy representation of the colony defined by 1 − χ0. This
approach was shown to be robust for crystalline materials in
(44, 45) and works well also in the present situation.

The most striking observation from Fig. SI.2 is that the
cell colony grows larger with increasing mobility since a

larger mobility makes it easier for the cells to move. Fig.
SI.2B shows that increasing the mobility delays the transi-
tion from exponential to quadratic growth making the tran-
sition occur at larger cell populations. Accordingly, the the
epithelial cell density (Fig. SI.2C) and the median of the
epithelial cell area (Fig. SI.2D) remain constant for a longer
time. Hence larger mobilities lead to a longer free-growth
regime. A larger mobility makes it easier for the bulk epithe-
lial cells to push outer cells aside to gain enough space to
grow. Thus, bulk epithelial cells are less compressed and
contact inhibition sets in later than for lower mobilities. The
longer lasting exponential growth is not only reflected by
the total colony area but also by the increased total num-
ber of epithelial cells for larger η (Fig. SI.2A). As shown
in Fig. 4 in the main text, the results collapse onto a sin-
gle curve when plotted against a shifted time t̄ and the
colony size is rescaled. Accordingly, tshift = 16h, -24h and
Aref = 0.41, 3.79 for η = 5, 20, respectively.

Effect of elastic parameters To demonstrate the influence
of E on our results we also consider r = −0.6,−0.8,−0.95
and keep ρpeak = 0.8 fixed, which results in a change of ρ0

depending on ρpeak as indicated above. The resulting Young’s
moduli are E = 0.320, 0.375, 0.411, respectively. The three
distinct parameter sets are marked in the phase diagram
in Fig. SI.3. All parameter sets are within the coexistence
regime of the hexagonal phase and a constant phase.

Simulation results in Fig. SI.1 shows that increasing E
delays the transition from exponential to quadratic growth
by increasing the ability of cells to push each other. This
extends the free-growth regime in a manner analogous to
that observed when the mobility is increased. As shown
in Figs. SI.1B and D, the results still collapse onto a sin-
gle curve when plotted against a shifted time t̄ and with
rescaled colony size. Accordingly, tshift = 0.6d, 0.2d and
Aref = 0.45, 0.77 for E = 0.32, 0.375, respectively.

Movie

We provide a movie showing the evolution of the colony in
the reference configuration (η = 10, best angle). Time is
scaled with a factor of 21.8h/s.
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best angle random angle worst angle

Figure SI.2: (Top row:) Epithelial cell colony morphologies at final time t = 5.77d for different cleavage planes (best,random
and worst angle (from left to right) and mobilities (η = 5, 10, 20 plotted together, (A) The total number of cells at final
time for different cleavage planes and mobilities. (B) Total area of the spreading colony. The solid black line corresponds
exponential growth with average cell cycle time 0.75d, (C) Average cell density for different mobilities, (D) Median of cell
area distribution. Since the cleavage plane was found to have little influence, results in (B), (C) and (D) are shown for the best
angle mechanism only.

Figure SI.3: Colony area (A) and cell density (C) for different values of the Young’s modulus of the epithelial cell cluster.
Results collapse on one another when plotted in rescaled variables (see text) in (C) and (D) and show excellent agreement
with experiments from (2) (see text).
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