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Abstract

The formation of membrane vesicles from a larger membrane that occurs dur-
ing endocytosis and other cell processes are typically orchestrated by curvature-
inducing molecules attached to the membrane. Recent reports demonstrate that
vesicles can form de novo in a few milliseconds. Membrane dynamics at these
scales are strongly influenced by hydrodynamic interactions. To study this prob-
lem, we develop new diffuse interface models for the dynamics of inextensible
vesicles in a viscous fluid with stiff, curvature-inducing molecules. The model
couples the Navier-Stokes equations with membrane-induced bending forces that
incorporate concentration-dependent bending stiffness coefficients and sponta-
neous curvatures, with equations for molecule transport and for a Lagrange mul-
tiplier to enforce local inextensibility. Two forms of surface transport equations
are considered: Fickian surface diffusion and Cahn-Hilliard surface dynamics,
with the former being more appropriate for small molecules and the latter being
better for large molecules. The system is solved using adaptive finite element
methods in 3D axisymmetric geometries. The results demonstrate that hydro-
dynamics can indeed enable the rapid formation of a small vesicle attached to
the membrane by a narrow neck. When the Fickian model is used, this is a
transient state with the steady state being a flat membrane with a uniformly
distributed molecule concentration due to diffusion. When the Cahn-Hilliard
model is used, molecule concentration gradients are sustained, the neck stabi-
lizes and the system evolves to a steady-state with a small, compact vesicle
attached to the membrane. By varying the membrane coverage of molecules
in the Cahn-Hilliard model, we find that there is a critical (smallest) neck ra-
dius and a critical (fastest) budding time. These critical points are associated
with changes in the vesicle morphology from spherical to mushroom-like as the
molecule coverage on the membrane is increased.
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1. Introduction

The biological membranes that surround cells and organelles often undergo
shape changes as part of cellular processes. In one class of processes, which
includes endocytosis, inter-organelle transport and virus entry [22], a small
membrane vesicle is formed from a larger membrane. In others, locally curved
membranes enable other mechanical processes such as cytoskeletal protrusion
[27]. These events are typically orchestrated by curvature-inducing molecules
that dynamically attach to the membrane, such as clathrin and bar-domain
proteins.

Classical clathrin-mediated endocytosis, which occurs on a timescale of sec-
onds, has been extensively studied, including contributions from mathematical
models [4, 23, 26] . However, recent reports demonstrate that in some circum-
stances vesicles can form de novo in a few milliseconds [39]. Examples include
ultrafast endocytosis at the neurological synapse, in which rapid endocytosis is
necessary to complement rapid exocytosis of neurotransmitters [29].

Ultrafast vesicle formation raises a fundamental biophysical question: Mem-
brane dynamics at these scales (millisecond, nanometer) are dominated by hy-
drodynamic interactions, as the membrane pushes the intracellular and extra-
cellular fluids around to accommodate curvature. What limits do hydrodynamic
interactions impose on the speed of endocytosis? How do the resulting intra-
cellular flows affect the arrival rate of soluble curvature-inducing molecules?
What are the intermediate dynamic shapes of the membrane and what spatial
constraints do these shapes place on membrane-associated molecules, such as
clathrin and receptor cargo?

To address these questions, we have developed computational fluid dynamic
models of a membrane interacting with intracellular and extracellular fluids.
There is considerable range in the size, intrinsic curvature and molecular flexibil-
ity of curvature-inducing molecules [30, 34]. Moreover, the identity of molecular
participants in ultrafast endocytosis remains unknown. Therefore, we consider
an abstract curvature-inducing molecule (henceforth CIM) and explore the de-
pendence of vesicle formation on its properties. For simulation results, we use
parameter values in the range of known CIMs.

Mathematical models have been developed, and numerical simulations have
been performed, for vesicles with variable biophysical properties due to the pres-
ence of multiple lipid components and embedded proteins using discrete and con-
tinuum approaches. See, for example, the review by Elson et al. [14]. Here, we
use a continuum phase field approach and extend our previous work for locally
inextensible, homogeneous closed vesicles [2] to locally inextensible, heteroge-
neous membranes with CIMs. Although phase field models for heterogeneous
vesicles have been developed previously, e.g., [38, 24, 17, 12, 42, 16, 15, 18], none
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Figure 1: Schematic of the processes involved in endocytosis. Curvature inducing molecules
attach to the membrane and induce out-of-plane deformations. Once enough molecules cover
the membrane a vesicle is formed that provides the vehicle to transport extracellular cargo
into the cell.

of these approaches considered the effect of fluid flow (and local inextensibil-
ity). The effect of flow on the dynamics of locally inextensible, multicomponent
vesicles was investigated using a combined boundary integral and surface phase
field approach in 2D [32] and in 3D axisymmetric geometries [31]. However
to simulate endocytosis, which typically occurs on length scales of nanometers
while the overall membrane may be millimeters in length, as in the experiments
described above, only a part of membrane can be considered due to computa-
tional cost. This geometry is straightforward to implement using the phase field
approach developed here. Further, the phase field model can also be extended
to incorporate additional physical processes such as adsorption and desorption
of CIMs following [35, 36] and is independent of dimension, which makes the
extension to fully three dimensional geometries straightforward as well.

The outline of the paper is as follows. In Sec. 2 the mathematical model
is presented. In Sec. 3 the discretization of the equations and the numerical
methods used to solve the discrete system are discussed. In Sec. 4, simulations
demonstrating the convergence of the algorithm are presented along with an
investigation of the influence of hydrodynamics and the dynamics of CIMs on
the results. Finally, in Sec. 5 conclusions are drawn and future directions are
discussed. Several technical results are derived in the Appendices.

2. Mathematical Model

Consider a membrane that is partially covered with molecules that have a
non-zero bending modulus. Let us denote the membrane with Γ and the covered
part as Γc ⊂ Γ. Furthermore we assume that the spontaneous curvature is zero
for a clean membrane and is H0 for a membrane molecule. Then the total
bending energy is

E =

∫
Γc

1

2
bc (H −H0)

2
dA+

∫
Γ

1

2
bmH

2 dA, (1)

where bc and bm are the bending moduli of the molecule and the clean mem-
brane, respectively.
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To keep track of Γc it is convenient to introduce the non-dimensional molecule
concentration c(x). Let us assume c to be normalized such that c = 1 corre-
sponds to complete coverage of the membrane. Therefore, c may either be a
coarse grained quantity denoting the normalized number of membrane molecules
per surface area. Alternatively, c might assume only discrete values: either 0
or 1, indicating the presence or absence of a molecule at a certain location on
the membrane. The latter use of c would be particularly appropriate for large
membrane molecules such as clathrin, whose size prevents the reasonable use of
a coarse-grained concentration.

No matter which interpretation of c is used, the energy of a CIM-covered
membrane can be written generally as

E =

∫
Γ

1

2
b(c) (H −H0(c))

2
dA. (2)

Note that this functional has also been used to model the energy of multicompo-
nent vesicles, e.g., [31, 20], where in that case c denotes the concentration of one
of the lipid components of the membrane. Here, we assume for simplicity that b
and H0 are linear functions of c. Other choices are discussed in Appendix A.1.
In Appendix A.2 we derive a sharp interface model of an inextensible membrane
with CIMs in viscous fluids using energy variation.

2.1. Diffuse interface model

The diffuse interface method, also known as the phase field method, introduces
an auxiliary field φ that distinguishes the membrane interior from the exterior.
The membrane is modeled by a narrow, diffuse layer. An equation is posed for
the phase field function φ, which is nonlinearly coupled to the fluid equations.
Near the interface, φ can be approximated by

φ(t,x) := tanh

(
−r(t,x)√

2ε

)
(3)

where ε characterizes the thickness of the diffuse interface and r(t,x) denotes the
signed-distance function between x ∈ Ω and its nearest point on Γ(t). Taking
r to be negative inside the membrane, we label the inside with φ ≈ 1 and the
outside with φ ≈ −1. The interface Γ(t) is implicitly defined as the zero level
set of φ.

2.1.1. Diffuse interface energy

A diffuse interface version of the standard Helfrich energy (1) of a clean
membrane was proposed in [10, 11]:

E =

∫
Ω

1

2

3

4
√

2ε
bm

(
ε∆φ− 1

ε
(φ2 − 1)(φ+

√
2εH0)

)2

dx, (4)

where Ω = Ω1∪Ω2∪Γ is the computational domain. The scaling factor 3/4
√

2ε
is chosen to match the sharp interface energy in the thin interface limit [10] .
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To approximate the energy of a partially-covered membrane embedded in
two fluids, we now assume that the bending stiffness and spontaneous curvature
depend on c. We also account for inertial effects by adding the kinetic energy.
The total energy is

E =

∫
Ω

1

2

3

4
√

2ε
b(c)

(
ε∆φ− 1

ε
(φ2 − 1)(φ+

√
2εH0(c))

)2

+
1

2
ρ|u|2 dx.(5)

Next, we use an energy variational argument to derive a thermodynamically
consistent system of evolution equations for the diffuse interface, the fluid flow
and the CIMs.

2.1.2. Evolution equations

To simplify notation let us introduce the following abbreviations:

b̃(c) =
3

4
√

2
b(c) (6)

f(φ, c) = ε∆φ− F (φ, c) (7)

F (φ, c) =
1

ε
(φ2 − 1)(φ+

√
2εH0(c)) (8)

The time derivative of the energy 5 can be written as

∂tE =

∫
Ω

1

ε
b̃f

(
ε∆∂tφ−

dF

dφ
∂tφ−

dF

dc
∂tc

)
+

1

2ε
b̃′(c)f2∂tc+ ρ∂tu ·u dx (9)

=

∫
Ω

(
∆(b̃f)− 1

ε
b̃f
dF

dφ

)
∂tφ+

(
1

2ε
b̃′(c)f2 − 1

ε
b̃f
dF

dc

)
∂tc+ ρ∂tu ·u dx

(10)

where we used integration by parts and dropped the boundary integrals.
We assume balance laws for momentum and mass conservation, although

with forces that need to be determined consistently with the second law of
thermodynamics (thermodynamic consistency). To ensure local inextensibility
at the fluid-fluid interface we use the the approach presented in [2]. Accordingly
the Navier-Stokes equations are enriched by an additional variable λ which acts
as a Lagrange multiplier and can also be interpreted as a surface tension. The
inextensibility constraint is then added as additional equation restricted to the
interface. The resulting Navier-Stokes system reads:

ρ(∂tu + u · ∇u)−∇ · (νD) +∇p =∇ · (|∇φ|Pλ) + F, (11)

∇ ·u =0, (12)

ξε2∇ · (φ2∇λ) + |∇φ|P : ∇u =0, (13)

where D = ∇u+∇uT is the rate of strain tensor and P = I−n⊗n is the surface
projection operator with n = ∇φ/|∇φ| being the normal vector. The first term
on the left hand side of Eq. (13) provides a harmonic extension of the tension

5



λ off the interface, with ξ being a regularization parameter, see [2]. The force
F is yet unspecified and will be determined below to ensure thermodynamic
consistency.

We assume that the CIM concentration satisfies an advection equation,
which is reasonable due to the very small interfacial diffusion of large molecules
such as clathrin (see previous section). This assumption will be relaxed later to
incorporate molecular diffusion of CIMs on the membrane.

∂tc+ u · ∇c =0. in Ω (14)

Finally, for the phase field variable we assume convection together with a yet
unspecified source term.

∂tφ+ u · ∇φ =− γg, in Ω (15)

where γ is a positive mobility constant. By plugging in the balance laws
(11),(14),(15) into the energy time derivative we obtain

∂tE =

∫
Ω

(
∆(b̃f)− 1

ε
b̃f
dF

dφ

)
(−u · ∇φ− γg) + u ·

(
1

2ε
b̃′(c)f2 − 1

ε
b̃f
dF

dc

)
∇c

(16)

+ u · (−u · ∇u +∇ · (νD)−∇p+∇ · (|∇φ|Pλ) + F) dx.

Integration by parts gives

∂tE =

∫
Ω

(
∆(b̃f)− 1

ε
b̃f
dF

dφ

)
(−u · ∇φ− γg)− u ·

(
1

2ε
b̃′(c)f2 − 1

ε
b̃f
dF

dc

)
∇c

(17)

− ν

2
|D|2 + p∇ ·u− |∇φ|P : ∇uλ dx,

and inserting (12) and (13) yields

∂tE =

∫
Ω

(
∆(b̃f)− 1

ε
b̃f
dF

dφ

)
(−u · ∇φ− γg)− u ·

(
1

2ε
b̃′(c)f2 − 1

ε
b̃f
dF

dc

)
∇c

(18)

− ν

2
|D|2 − ξε2φ2|∇λ|2 + u ·F dx.

By choosing

g =∆(b̃f)− 1

ε
b̃f
dF

dφ
, (19)

F =g∇φ+

(
1

2ε
b̃′(c)f2 − 1

ε
b̃f
dF

dc

)
∇c, (20)

we obtain a non-increasing energy:

∂tE =

∫
Ω

−γg2 − ν

2
|D|2 − ξε2φ2|∇λ|2 dx, (21)

Hence, a thermodynamically consistent evolution of a partially-covered mem-
brane is given by the coupled inextensible Navier-Stokes-Willmore problem in
Eqs. (11)-(15) with g and F from (19) and (20), respectively.
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2.2. The molecule advection equation

In the previous section we assumed a pure advection for the concentration of
CIMs in Eq. (14). We can extend this equation to consider a small amount of
diffusion in the tangential direction to account for diffusional transport of CIMs
along the interface:

∂tc+ u · ∇c−Dc∆Γc = 0 (22)

We note that using this simple form of Fickian interface diffusion no longer
guarantees that the energy E is non-increasing. While a more complicated sur-
face flux could be chosen to ensure that E is non-increasing, we take the surface
diffusivity Dc to be small, which limits the effects of diffusion. Alternatively,
if the membrane solely contains areas of no coverage (c = 0) and full coverage
(c = 1), a Cahn-Hilliard equation can be used to maintain these distinct values
with a sharp transition in between. This is particularly useful if large membrane
molecules are considered (see Sec. 2). The surface Cahn-Hilliard equation reads

∂tc+ u · ∇c =Dc∆Γµ (23)

µ =− ε∆Γc+ ε−1(4c3 − 6c2 + 2c) (24)

Note that if µ is constant, so that the CIM concentration is in local equilibrium,
then this equation reduces to the advection equation. Typically, deviations from
local equilibrium are small. Both the Fickian and Cahn-Hilliard forms of the
CIM evolution equation enable the use of finite-element or central difference ap-
proximations without additional numerical stabilization such as the streamline
diffusion method or upwind discretizations.

Straightforward discretizations of these equations may not conserve the mass
of the molecules along the interface. Note, that the continuous advection equa-
tion conserves mass along the interface if inextensibility is perfectly fulfilled, but
this is not necessarily carried over to the discrete case, where inextensibility and
incompressibility are subject to spatial discretization errors. To deal with the
problem of interfacial mass conservation, we use the diffuse interface approach
from [28]. In this approach, the equations are restricted to the interface by
multiplying with an approximation to the interface delta function (here: taken
to be |∇φ|). The advection-diffusion equation (22) becomes

∂t(|∇φ|c) +∇ · (|∇φ|uc)−Dc∇ · (|∇φ|∇c) = 0 (25)

and the Cahn-Hilliard equation (23)-(24) becomes

∂t(|∇φ|c) +∇ · (|∇φ|uc)−Dc∇ · (|∇φ|∇µ) =0 (26)

|∇φ|µ+ ε∇ · (|∇φ|∇c)− ε−1|∇φ|(4c3 − 6c2 + 2c) =0 (27)

If the diffusion constant Dc is large enough, the diffuse interface approach
[28] ensures that c is extended off Γ constant in normal direction. This property
is very important, since the bending stiffness and spontaneous curvature strongly
depend on c. Having variations in these quantities across the interface makes
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no sense physically. However, for the very small Dc that we consider here, it
cannot be guaranteed that c is constant in normal direction. Therefore it is
necessary to introduce additional normal diffusion that averages c across the
diffuse interface and results in constant extensions of c off the interface, without
affecting the accuracy of the solution on the interface. This approach has also
been used in [13]. The resulting equation reads

∂t(|∇φ|c) +∇ · (|∇φ|uc)−Dc∇ · (|∇φ|∇c)−Dn∇ · (|∇φ|n⊗ n · ∇c) = 0 (28)

where Dn is the normal diffusion constant and should be chosen larger than Dc.
In practice we empirically determine Dn by increasing its value until a constant
extension of c across the interface is ensured.

The equations (28) or (26)-(27) both guarantee exact conservation of molecule
mass on the interface: ∂t

∫
|∇φ|c dx = 0, in contrast to the original equations.

With appropriate discretization this property is also carried over to the fully
discrete system. Matched asymptotic analysis shows convergence of Eq. (28) to
the original equation (22) and convergence of Eqs. (26)-(27) to Eqs. (23)-(24),
see [28].

2.3. Improving the accuracy of the inextensibility constraint

The strong tangential forces that arise from tangential gradients of the CIMs
in F can lead to problems with satisfying the inextensibility condition in the
discrete system. Hence, small stretching or compression of the membrane may
occur and, if allowed to accumulate over time, these errors can strongly influ-
ence the simulation results. Therefore we use a relaxation mechanism to correct
accumulated local errors in the inextensibility as proposed in [2]. Following this
approach, we introduce an additional variable s(x, t) to measure the accumu-
lated local stretching and then we modify the RHS of Eq. (13) as described
below. Initially s(x, t) is set equal to 1 everywhere and for t > 0, s(x, t) is
evolved by an advection-diffusion equation on the interface:

∂ts+ u · ∇s+ s∇Γ ·u−Ds∆Γs = 0. (29)

This equation ensures conservation of s along the interface and indeed s can
be thought of as an interfacial species concentration. This implies that s > 1
in regions where the interface is compressed and s < 1 where the interface is
stretched. Eq. (29) can be approximated using a diffuse interface formulation
as done in the previous section for the CIMs:

∂t(|∇φ|s) +∇ · (|∇φ|us)−Ds∇ · (|∇φ|∇s)−Dn∇ · (|∇φ|n⊗ n · ∇s) = 0.
(30)

The idea is now to not require that inextensibility holds (∇Γ ·u = 0) but instead
∇Γ ·u = ζ(s−1)/s on Γ. Hence a slightly stretched or compressed interface will
be driven back to a relaxed state. In the diffuse interface context, the relaxation
model is realized by adding the term ζ|∇φ|(s− 1)/s to the RHS of Eq. (13).
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In our simulations we will consider a part of the membrane, which implies
that the membrane cuts the domain boundary. Hence, the membrane area is
allowed to change, due to flow into the computational domain. In this case a
special boundary is necessary. Conservation of s on the membrane requires that
the change in membrane area is equal to the amount of membrane flowing in
from the boundaries. The membrane area can be expressed in terms of s by∫

Ω
|∇φ|s dx. Hence, ∂t

∫
Ω
|∇φ|s dx =

∫
∂Ω
−m ·Pu|∇φ| dS, where m is the outer

normal to the computational domain and we have assumed that the membrane
outside of the computational is unstretched (s = 1). To ensure conservation
(locally) we use

|∇φ|m · (us−Ds∇s−Dnn⊗ n · ∇s) =|∇φ|m ·Pu on ∂Ω. (31)

as boundary condition to Eq. (30).

2.4. Governing equations
Let us now summarize the governing equations derived in the previous sec-

tions. The diffuse interface model for a membrane partially covered by CIMs
consists of the following coupled system:

1. The inextensible, incompressible Navier-Stokes equations for the fluid ve-
locity

ρ(∂tu + u · ∇u)−∇ · (νD) +∇p = ∇ · (|∇φ|Pλ) (32)

+ g∇φ+
3

4
√

2

(
1

2ε
b′(c)f2 −

√
2

ε2
bf (φ2 − 1)εH ′0(c)

)
∇c

∇ ·u = 0 (33)

ξε2∇ · (φ2∇λ) + |∇φ|P : ∇u = ζ|∇φ|(s− 1)/s (34)

2. The evolution equation for the phase field variable

∂tφ+ u · ∇φ =− γg (35)

g =
3

4
√

2

(
∆(bf)− ε−2bf (3φ2 − 1 + 2

√
2φεH0(c))

)
(36)

f =ε∆φ− ε−1(φ2 − 1)(φ+
√

2εH0(c)) (37)

3. The evolution equation for the stretching measure s on the diffuse interface

∂t(|∇φ|s) +∇ · (|∇φ|us)−Ds∇ · (|∇φ|∇s)−Dn∇ · (|∇φ|n⊗ n · ∇s) = 0
(38)

4. The evolution equation for the molecule concentration c on the diffuse
interface

∂t(|∇φ|c) +∇ · (|∇φ|uc)−Dc∇ · (|∇φ|∇c)−Dn∇ · (|∇φ|n⊗ n · ∇c) = 0
(39)

or if the Cahn-Hilliard equation is used,

∂t(|∇φ|c) +∇ · (|∇φ|uc)−Dc∇ · (|∇φ|∇µ) =0 (40)

|∇φ|µ+ ε∇ · (|∇φ|∇c)− ε−1|∇φ|(4c3 − 6c2 + 2c) =0 (41)
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3. Numerical method

To solve the system of equations numerically we split the time interval I =
[0, T ] into equidistant time instants 0 = t0 < t1 < . . . and define the time
steps τ := tn+1 − tn (adaptive time steps could also be used). We define the
discrete time derivative ∂t · n+1 := ( · n+1− · n)/τ , where the upper index denotes
the time step number. We will use the notation ( · )n to denote that all time-
dependent variables in the brackets are evaluated at time step n. To correct
any accumulated errors in the inextensibility, we choose the relaxation speed
ζ = 1/τ in Eq. (34) as in [2].

The numerical approach for each subproblem is adapted from existing al-
gorithms for the Navier-Stokes equations and the Helfrich model. We solve
the overall system using an operator splitting approach, with the Navier-Stokes
equations being implicitly coupled to the inextensibility constraint and the Will-
more problem for the phase field variable. The equations for the CIM concen-
tration c and the stretching variable s are solved separately.

At each time step we solve

1. A linear coupled system for the flow (un+1, pn+1, λn+1) and the Willmore
problem (φn+1, gn+1 fn+1):

ρn(∂tu
n+1 + un · ∇un+1) +∇pn+1−∇ · (νnDn+1)−∇ · (|∇φn|Pnλn+1)

= −gn+1∇φn +
3

4
√

2

(
1

2ε
b′(c)f2 −

√
2

ε2
bf (φ2 − 1)εH ′0(c)

)n

∇cn,

∇ ·un+1 = 0,

ξε2∇ · ((φn)2∇λn+1) + |∇φn|Pn : ∇un+1 = τ−1|∇φn|s
n − 1

sn
,

∂tφ
n+1 + un+1 · ∇φn = −γgn+1,

gn+1 =
3

4
√

2

(
∆(bnfn+1)− ε−2bnfn+1 (3(φn+1)2 − 1 + 2

√
2φn+1εH0(cn))

)
fn+1 = ε∆φn+1 − ε−1((φn+1)2 − 1)(φn+1 +

√
2εH0(cn))

where ρn = ρ(φn) = ρ1(1 + φn)/2 + ρ2(1 − φn)/2, and νn is defined
analogously. Further, Pn = I −∇φn ⊗∇φn/|∇φn|2. In addition, we lin-
earize the nonlinear terms using a Taylor series expansion of order one,
e.g. ((φn+1)2 − 1)φn+1 = ((φn)2 − 1)φn + (3(φn)

2 − 1)(φn+1 − φn).

2. The advection-diffusion equation for the stretching variable sn+1:

|∇φn+1|sn+1 − |∇φn|sn

τ
+∇ · (|∇φn+1|un+1sn+1)−Ds∇ · (|∇φn+1|∇sn+1)

−Dn∇ · (|∇φn+1|nn+1nn+1 · ∇sn+1) = 0

with boundary condition (31).

10



3. The advection-diffusion equation for the species concentration cn+1:

|∇φn+1|cn+1 − |∇φn|cn

τ
+∇ · (|∇φn+1|un+1cn+1)−Dc∇ · (|∇φn+1|∇cn+1)

−Dn∇ · (|∇φn+1|nn+1nn+1 · ∇cn+1) = 0

or if the Cahn-Hilliard equation is used:

|∇φn+1|cn+1 − |∇φn|cn

τ
+∇ · (|∇φn+1|un+1cn+1)−Dc∇ · (|∇φn+1|∇cn+1) =0

|∇φn+1|µn+1 + ε∇ · (|∇φn+1|∇cn+1)− ε−1|∇φn+1|(4c3 − 6c2 + 2c)n+1 =0

Note, that the implicit coupling of Navier-Stokes and Willmore-problem in-
creases the stability and allows larger time steps. This is in accordance with
similar implicit coupling strategies for the Navier-Stokes (and other fluid flow
equations) and Cahn-Hilliard equations, e.g., [41, 6, 1, 5, 9].

We solve the 3D-axisymmetric form of the governing equations using the
adaptive finite element toolbox AMDiS [37] for spatial discretizations. We use
P 2/P 1 Taylor-Hood elements for velocity and pressure, extended by a P 2 el-
ement for λ. For φ, f, g, s and c, P 2 elements are also used. The resulting
linear systems of equations are solved with UMFPACK [8]. The adaptive mesh
refinement and coarsening are determined by gradients in the phase field func-
tion, which ensures high numerical resolution near the diffuse interface when
small values of the interface thickness ε are used; coarse meshes are used away
from interfacial regions. We find this refinement is also sufficient to accurately
capture gradients in the velocity field.

4. Numerical results

We use our diffuse interface model and numerical method for an initial
exploration of ultrafast CIM-mediated endocytosis. We neglect several phe-
nomena, such as the process by which CIM attach to the membrane. Here
we are primarily interested in testing the efficacy of the method and explor-
ing characteristic features, such as timescales, and dependence on parame-
ters such as the size of the CIM-covered patch. The bending stiffness and
spontaneous curvature of clathrin were measured in [21] and estimated to be
H0 = (14.1nm)−1 and bc = 12bm, where bm = 1× 10−19kg m2/s2 is the bend-
ing stiffness of a typical uncovered membrane. According to these parameters
we choose the concentration-dependent parameters H0(c) = c · (14.1nm)−1 and
b(c) = (1 + 11c) · 1× 10−19kg m2/s2.

We assume that the initial membrane is nearly flat, axisymmetric and cov-
ered with a circular region of CIMs, as

illustrated in Fig. 4. We thus implement the equations using cylindrical
coordinates with the computational domain being Ω = [0, 80] × [0, 160]nm2.
The circular membrane has a radius of 80nm. For the circular CIM region we
use different radii ranging from r = 20nm to r = 60nm. For the boundary
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Figure 2: The 3D axisymmetric configuration.

conditions we pin the membrane at the outer domain boundary by imposing
the condition φn = φ(t = 0) in the equation for g. Furthermore we enforce a
90 degree angle between the membrane and the domain boundary: m · ∇φ = 0,
where m is the normal on the domain boundary. For the velocity we apply a
free stress condition almost everywhere. The only exception to this condition is
made where the outer domain boundary meets the membrane. There, in a small
neighborhood of the membrane we impose zero vertical velocity u · (0, 1)T =
0. This corresponds to the pinning of the membrane, since it prevents the
membrane from moving vertically, while still allowing inflow of membrane area
into the computational domain. For the pressure we impose p = 0 in one grid
point, to regularize the Navier-Stokes system.

The physical and numerical parameters are given in Tab. 1. Here, we briefly
comment on the choice of some of the parameters. We choose a small mobility
γ = 6.4nm3/s such that the phase field is predominantly advected by the flow.
The value of ε = 1.2nm gives an interface thickness comparable to that of a
real lipid interface. To improve efficiency, we use adaptive time stepping and
adaptive spatial mesh refinement. Initially, we use τ=0.01ns and double this
value every 30 time steps up to τmax=2ns. An adaptive spatial grid is used
to obtain high resolution near the membrane. The grid size h measures the
diameter of the triangles used at the interface while the grid size away from the
interface is 8h. We take h = 1.25nm, which ensures that approximately five
vertices on the mesh can be found across the interface.

4.1. Convergence of the numerical method

We first validate the numerical method by investigating convergence in the
parameters ε, γ, h and τ . The strategy is to vary one of the parameters while
keeping the others fixed at the values given in Tab. 1. Only when ε is varied the
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Symbol Quantity Value Source

CIM Parameters
H0 spont. curvature of CIM (14.1 nm)−1 [21]
bm membrane bending stiffness 1 × 10−19 kg m2/s2 [34]
bc bending stiffness of CIM 12 × 10−19 kg m2/s2 [21]
H0(c) general spont. curvature c · (14.1 nm)−1 see above
b(c) general bending stiffness b(c) = (1 + 11c) bc see above

Fluid Parameters
ρ density 1000 kg/m3 [25]
ν1 extracellular viscosity 1 × 10−3 kg/ms [40]
ν2 intracellular viscosity 1 × 10−2 kg/ms [40]

Diffuse Interface Model Parameters
ε diffuse interface thickness 1.2nm Sec. 4.1
γ mobility 6.4 nm3/s (standard) Sec. 4.1

4.2 nm3/µs (geometric evolution) Sec. 4.3
ξ inextensibility regularization 3.9 × 10+20 s/kg m [2]
Dc CIM diffusion 16 nm2/µs (Fickian) Sec. 2.2

64e+3 nm3/µs (Cahn-Hilliard) Sec. 2.2
Dn normal diffusion 1600 nm2/µs Sec. 2.2
Ds stretching diffusion 16 nm2/µs Sec. 2.3

Numerical Parameters
τ time step size 0.01-2ns (increased in time) Sec. 4.1
h grid size 1.25nm Sec. 4.1, [3]

Table 1: Physical and numerical parameters used in the simulations.
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γ error ε error τ error h error

12.8nm3/s 0.91% 2.40nm 4.13% 2.00ns 0.37% 1.77nm 1.81%
6.4nm3/s 0.21% 1.70nm 1.80% 1.00ns 0.23% 1.25nm 1.03%
3.2nm3/s 0.13% 1.20nm − 0.50ns 0.16% 0.88nm 0.01%
1.6nm3/s − 0.25ns − 0.63nm −

Table 2: Error in membrane length (error=|l− lref|/lref) at t = 0.5µs for various parameters.

grid size is simultaneously adapted to ensure that the interface is resolved well
enough by the grid. Also when the grid size is decreased a smaller time step
size is used: τ = 0.1ns. This was found to be necessary for solvability of the
equations if the grid is refined and also ensures that the error in time stepping
is small.

Simulations are conducted with the Cahn-Hilliard model for the molecule
concentration equation. In all the simulations the membrane develops an out-
of-plane deformation, forms a bud and finally evolves to stationary configuration
consisting of a vesicle connected to the membrane by a thin neck. Since the sta-
tionary states for all parameters are quite similar, we measure the dependency
of the parameters in the transient state at the early time t = 0.5µs when the
membrane starts to deform. The speed with which this occurs is highly depen-
dent on the parameters. The out-of-plane deformation is accompanied with an
increase of membrane area over time, which makes the membrane length in the
computational domain to be an excellent error measure. Hence we define the
measured error by |l − lref|/lref, where l and lref are the membrane lengths ob-
tained for a particular parameter value and for the finest value of the respective
parameter.

Tab. 2 shows the error for different model parameters (γ, ε) and numerical
parameters (h, τ), respectively. The error in all of the parameters seems to
converge to zero for decreasing parameter value. To better judge the significance
of the given error values we note that the average interface length at t = 0.5µs
is approximately l = 86nm. The largest sources of error are seen to be the
interface thickness and grid size parameters ε and h, whereas the errors in time
step τ and mobility γ are comparatively small.

4.2. Molecule diffusion vs. Cahn-Hilliard surface dynamics

Next we investigate the differences between the two models of molecule trans-
port. For classical surface Fickian diffusion we choose the diffusion constants
Dc = 16nm2/µs and Dn = 1600nm2/µs in Eq. (39). Having Dn one hundred
times larger than Dc ensures that c is approximately constant in normal direc-
tion away from the interface. The value of Dc is chosen as small as possible,
e.g., a smaller value of Dc would require additional advection stabilization. The
Cahn-Hilliard model allows a larger diffusion since the Cahn-Hilliard equation
maintains sharp gradients in the molecule concentration. Accordingly, we use
Dc = 64× 10+3nm3/µs in Eq.(40)
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0µs 2.0µs 10.0µs 36.0µs

Figure 3: Comparison of membrane evolution and CIM concentrations c when the curvature-
inducing molecules are transported by the surface Cahn-Hilliard model (top) or Fickian surface
diffusion (bottom). The Cahn-Hilliard model maintains sharp gradients of CIMs between the
distinct values of 1 (covered) and 0 (uncovered) and produces a steady-state configuration
consisting of a compact vesicle connected to the membrane by a small neck. Fickian diffusion
decreases the gradients of the CIMs that transiently produces longer necks and more deformed
vesicles.

Fig. 3 shows the time evolution of the membranes colored by the molecule
concentration using the Cahn-Hilliard model (top) and the Fickian model (bot-
tom). Due to the presence of the CIM and its influence on the bending stiffness
and preferred curvature, the membrane is initially very tense. To relieve this
tension the membrane develops an out-of-plane deformation localized at the
region covered with CIMs. The bud grows to form a vesicle, which remains
connected to the rest of the membrane by a neck.

When the Cahn-Hilliard model is used (top), steep gradients in the CIM
concentration are maintained in time. On the other hand, when the Fickian
model is used (bottom), the gradients in the CIM concentration decrease due to
dissipation. Consequently, in the Cahn-Hilliard case, the dynamics are faster,
the resulting neck is smaller and the vesicle is more compact compared to that
obtained using Fickian model. In addition, the Cahn-Hilliard evolution leads
to a non-trivial stationary state of the system. However, the membrane and
CIM concentration continue to evolve in the Fickian model up to the final time
t = 36.0µs. Moreover, in the Fickian case, the only steady state consists of a
uniformly distributed CIM concentration on a flat membrane. In the following
we only focus on the Cahn-Hilliard equation for the CIMs since this model
is appropriate for large, slowly diffusing molecules such as clathrin and yields
non-trivial steady-states and distinct endocytosing vesicles.

4.3. The influence of hydrodynamics

At nanometer length scales the question arises whether hydrodynamics actu-
ally has an effect on the dynamics of the system. In principle one could also use
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a pure geometric evolution of the membrane without considering the surround-
ing fluids. To the best of our knowledge there is no geometric diffuse interface
evolution available that includes membrane inextensibility. Hence, we drop the
inextensibility constraint and evolve the membrane using Willmore-flow coupled
to the diffuse interface Cahn-Hilliard equation for the molecule concentration
(40)-(41). This transports the molecules and ensures their conservation along
the membrane even without flow. Accordingly, we solve only Eqs. (35)-(37)
and (40)-(41) with u = 0. The parameters are as in the previous section except
for the Willmore mobility, which is now the only driving force of the interface
evolution. In this case, we set mobility γ = 4.2nm3/µs so as to approximately
synchronize the dynamics of the geometric and fluid models.

Fig. 4 shows a comparison of the interface evolution with (bottom) and
without (top) flow. The simulation without flow shows a downwards movement
of the membrane at early times since it costs no energy to push the fluid down.
If flow is present this downwards movement is largely suppressed as an effect of
the fluid incompressibility. After forming a neck the membrane quickly pinches
off in the case of without flow. When flow is involved, this effect is not seen and
the membrane rather assumes a stationary state with a stable neck. We assume
inextensibility to be the main reason for this. In order for the neck radius to
decrease, fluid needs to be drained out of the near contact region. Once the neck
is sufficiently narrow, additional drainage would require tangential flow along
the membrane due to viscosity. However this would stretch the membrane.
As a result, membrane inextensibility inhibits fluid drainage in the near contact
region, as can clearly be seen from the velocity vectors shown in the figure. This
stabilizes the neck. This result is also in agreement with simulations presented
in [2] where it was shown that inextensibility can prevent the close approach of
membranes.

It is interesting that experimental results indicate that pinch-off can not be
triggered by clathrin alone, but rather requires the action of another molecule
called dynamin [7]. In principle our model can be extended to account for the
presence of dynamin and as presented in [42] an adhesive potential can be used
to model fusion and fission in diffuse interface models. This will be considered
in future work.

4.4. Varying the CIM region size

Now we investigate what effect the size of the covered region has on the dy-
namics and stationary state of the membrane. The radius of the initially circular
CIM region is varied from 20nm to 60nm. Fig. 5 shows the stationary shapes
at t = 20.0µs. We find that for small amounts of CIM (radius ≤ 20nm) the
membrane deforms out-of-plane, but does not form a neck. For larger amounts
(radius 28−40nm) a neck forms and the endocytosing vesicle is small and nearly
spherical. If the CIM region is increased further (radius > 40nm) the vesicle
assumes a mushroom-like shape.

The lateral diameter and neck radius of the stationary vesicle are displayed as
a function of CIM radius in Fig. 6. Both quantities are measured at t = 20µs
when the membrane has reached an (almost) stationary shape. The vesicle
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nm/µs

Figure 4: Comparison of the membrane evolution and CIM concentrations with (bottom)
and without flow (top) at times t = 2.90µs, 7.46µs, 14.02µs, 16.98µs from left to right. After
forming a neck the membrane pinches off without flow. This is not seen when flow is involved
and the neck radius stops decreasing at a certain point. The arrows indicate the velocity
direction and magnitude on a logarithmic scale.

20nm 30nm 40nm 50nm

Figure 5: Stationary shapes of the membrane and CIM concentrations for different sizes of
the initial CIM region using the surface Cahn-Hilliard model.
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Figure 7: Time required for a bud to form for different initial radii of the CIM region.

diameter is a linear function of the initial CIM radius as one might expect. For
the neck radius we find a critical CIM radius r = 40nm which gives the most
narrow neck. This value is right at the transition from spherical to mushroom-
like vesicles. The mushroom-like shape of the vesicle more strongly inhibits
fluid drainage from the neck region because more regions of the membrane
are brought in close approach near the neck. As described above, this inhibits
tangential fluid flow both in the neck and in nearby regions because of membrane
inextensibility.

To quantify the influence of the CIM region size on the dynamics we measure
the time until budding occurs. We define this to be the time at which the
neck radius falls below 5nm. The results indicate a critical vesicle diameter of
approximately d = 42nm at which budding occurs fastest. This corresponds to
the initial radius of the CIM region of 36nm. Interestingly, these results are
consistent with the sizes of vesicles produced by ultrafast endocytosis in [39]
where synaptic vesicles were observed to have diameters 41.1± 0.1nm .
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5. Conclusions

Using an energy variation methodology, we have developed new diffuse inter-
face models for the dynamics of inextensible vesicles in a viscous fluid with stiff,
curvature-inducing molecules that influence the bending stiffness and sponta-
neous curvature of the membrane. The model couples the Navier-Stokes equa-
tions with membrane-induced bending forces with equations for molecule trans-
port and for a Lagrange multiplier to enforce local inextensibility. Following
[2], the Lagrange multiplier is harmonically extended off the interface and a re-
laxation scheme is used that dynamically corrects local stretching/compression
errors thereby preventing their accumulation. This is critical to accurately cap-
turing hydrodynamic effects during endocytosis.

Two forms of surface transport equations were considered: Fickian surface
diffusion and Cahn-Hilliard surface dynamics. The surface equations were re-
formulated using the diffuse interface method where diffusion in the normal
direction is added to ensure that the CIM concentration is extended off the in-
terface constant in the normal direction, which improves accuracy and stability
of the method.

Using an adaptive finite element method, the system was solved in 3D ax-
isymmetric geometries with boundary conditions that enabled the transport of
membrane into and out of the computational domain. The membrane in the
computational domain is thus interpreted as only a part of the cell membrane,
which is much larger (e.g., micron scale).

The results showed that hydrodynamics can indeed enable the rapid for-
mation of a small vesicle attached to the membrane by a narrow neck. When
the Fickian model is used, this is a transient state with the steady state being
a flat membrane with a uniformly distributed molecule concentration due to
diffusion. When the Cahn-Hilliard model is used, molecule concentration gradi-
ents are sustained, the neck stabilizes due to membrane inextensibility and the
system evolved to a steady-state with a small, compact vesicle attached to the
membrane.

The steady-state vesicle morphology in the Cahn-Hilliard model was found
to depend on the initial coverage of CIMs on the membrane. When the coverage
is too small, no neck formed. In an intermediate range of CIM coverages, the
vesicle acquired a spherical shape. When the CIM coverage was large, the vesicle
attained a mushroom-like shape as regions of negative curvature developed.
By varying the membrane coverage of molecules in the Cahn-Hilliard model,
we found that there is a critical (smallest) neck radius and a critical (fastest)
budding time. We found that the vesicle diameter corresponding to the fastest
budding was consistent with the typical sizes of synaptic vesicles produced by
ultrafast endocytosis in experiments [39].

An important, and potentially rate limiting step in CIM-orchestrated endo-
cytosis and membrane fission is the transport of CIMs in the bulk fluid to and
from the membrane as well as the details of adsorption and desorption processes
at the membrane. While we have not considered these effects here, they can
straightforwardly be incorporated in our formulation using the diffuse interface
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methodology developed in [35, 36] to couple bulk and surface transport. A sim-
ilar methodology can also be used to investigate the influence of the budding
dynamics, vesicle morphologies and corresponding fluid flows on the transport
of soluble molecules and cargo from the exterior to the interior of a cell. An-
other important feature that should be investigated is the excess energy, or line
tension, that may be associated with a CIM/clean interface on the membrane.
Further, since the spatial scales are small, thermal fluctuations may also play
a role in CIM transport and the membrane dynamics. Fully three dimensional
geometries should also be considered as small non-axisymmetric perturbations
could influence the results. These and other processes will be considered in
future work.
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Appendix

A.1. Energy of a partially-covered membrane

In [26] the energy of a membrane with CIMs was modeled using

E =

∫
Γ

1

2
bcc (H −H0)

2
+

1

2
bmH

2 dA, (A-1)

where c was interpreted as a coarse-grained concentration. This is questionable
for large molecules such as clathrin since the size of a clathrin molecule can be
about the same order of magnitude as the considered domain size. There is also
another reason why the above energy (A-1) is not necessarily a good choice.
The transformation of (1) to (A-1) uses the simple ansatz

∫
Γc
· dA =

∫
Γ
c · dA,

which is not appropriate if c is a coarse-grained concentration. In fact the whole
energy (A-1) must be coarse-grained to account for different bending of covered
and non-covered parts of the membrane.

Based on this principle we derive an alternative form, which is a the natural
coarse-grained version of the energy (1). Let us consider a small control area
on the membrane A ⊂ Γ. Let us assume the area is small enough such that the
curvature can be assumed constant along A∩Γ and A∩Γc, respectively. Hence,

H =

{
Hm in A ∩ (Γ \ Γc)
Hc in A ∩ Γc

.
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Figure A.1: Schematic of a partially covered membrane. While the observed membrane
curvature is H̃, a close-up shows that the membrane is curved differently in covered and
uncovered regions (curvature Hc and Hm, resp.). The different curvatures are related by Eq.
(A-2).

Figure A.1 illustrates this setting. Since the control volume is very small,
these small scale differences in the curvature will not be seen by the observer.
The observed curvature is also a coarse-grained version of H and can be written
as a linear combination of Hc and Hm:

H̃ = Hc|A ∩ Γc|/|A|+Hm|A ∩ (Γ \ Γc)|/|A|. (A-2)

Now, we can introduce the concentration c of the CIM species as

c = |A ∩ Γc|/|A|,

which gives

H̃ = cHc + (1− c)Hm. (A-3)

Next, consider the energy of the control volume. From Eq. (1) we obtain

EA =
1

2
bc(Hc −H0

c )2|A|c+
1

2
bmH

2
m|A|(1− c) +

1

2
bmH

2
c |A|c. (A-4)

Assume that this energy is minimal, since A is small enough so that the system is
in local equilibrium. Subject to Eq. (A-3) and keeping H̃ fixed, EA is minimized
for

Hm =
(bc + bm)

(bc + bm)− c · bc

(
H̃ −H0

bc
bc + bm

)
, Hc = (H̃ −Hm · (1− c))/c,

(A-5)
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Figure A.2: A comparison of linear and nonlinear constitutive laws for the bending stiffness
(left) and spontaneous curvature (right) as labelled.

which gives,

EA =
1

2

(bc + bm)bm
(bc + bm)− c · bc

(
H̃ −H0

bc
bc + bm

c

)2

|A|+ P(c)|A|, (A-6)

where P(c) is a rational function of c, independent of H̃. Since the above holds
for arbitrary A we may conclude the energy of the whole membrane is

E =

∫
Γ

1

2

(bc + bm)bm
(bc + bm)− c · bc

(
H̃ −H0

bc
bc + bm

c

)2

+ P(c) dA (A-7)

In the case of an inextensible membrane (∇Γ ·u = 0) with purely advected CIM
(∂tc+u · ∇c = 0), the functional

∫
Γ
P(c) dA will give a constant contribution to

the energy, which allows one to drop this term in an energy variation argument.
Hence, the spontaneous curvature of a partially-covered membrane depends lin-
early on c, while the bending stiffness is not a simple linear function of c. This
is in contrast to the energy given in (A-1), which can be lumped to

E =

∫
Γ

1

2
(cbc + bm)

(
H̃ −H0

cbc
cbc + bm

)2

+ P2(c) dA (A-8)

A comparison of the linear and nonlinear bending stiffnesses and spontaneous
curvatures is shown in Fig. A.1. Here, we do not explore these differences in
constitutive laws for the bending stiffness and spontaneous curvatures. This
will be investigated in a future work.

A.2. Sharp interface model

In this section, we derive a sharp interface model for the membrane-CIM
system using an energy variation argument. Consider the general energy of a

22



partially-covered membrane together with the kinetic energy of the surrounding
fluids

E =

∫
Γ

b(c)

2
(H −H0(c))

2
dA+

∫
Ω1∪Ω2

ρ

2
|u|2 dx. (A-9)

We vary the energy in H and c simultaneously by taking the time derivative of
E. Using the Leibnitz rule and n · ∇c = 0, we obtain:

∂tE =

∫
Γ

b(c) (H −H0(c)) (∂tH + n · ∇H u ·n) +
b(c)

2
(H −H0(c))

2
Hu ·n

(A-10)

+
∂E

∂c
∂tc dA+

∫
Ω1∪Ω2

ρ∂tu ·u dx,

where

∂E

∂c
=

1

2
b′(c)(H −H0(c))2 − b(c)(H −H0(c))H ′0(c). (A-11)

The above expression involves the time derivative of curvature. For this quantity
to make sense, H must be extended off Γ, at least in a small neighborhood. The
natural extension is such that H(x) for x /∈ Γ is the curvature of the unique
surface containing x which assumes a fixed distance to Γ. Next, let us assume
the following balance laws for momentum and mass conservation:

ρ(∂tu + u · ∇u)−∇ · (νD) +∇p =0 in Ω1 ∪ Ω2 (Navier-Stokes)
(A-12)

∇ ·u =0 in Ω1 ∪ Ω2 (incompressibility)
(A-13)

∇Γ ·u =0 on Γ (inextensibility)
(A-14)

∂tc+ u · ∇c =0 on Γ (species advection)
(A-15)

where D = ∇u+∇uT . We assume pure advection here for the CIM concentra-
tion. Additionally we assume the jump conditions for velocity and flow stress
tensor

[u]
2
1 =0 (A-16)

[−pI + νD]
2
1 ·n =F +∇Γλ−Hnλ (A-17)

where λ is a Lagrange multiplier that provides the tension needed to enforce
local inextensibility (Eq. (A-14)). This is as an analogue of the pressure in
the momentum equation, which is used to enforce local incompressibility of the
fluid. The surface force F is yet unspecified and will be chosen later such that
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thermodynamically consistency is assured. As shown in Appendix A.3, the time
derivative of the curvature is

∂tH = −∆Γ(u ·n). (A-18)

Using Eqs. (A-12)-(A-15) and (A-18), the time derivative of the energy becomes

∂tE =

∫
Γ

b(c) (H −H0(c)) (−∆Γ + n · ∇H)u ·n) +
b(c)

2
(H −H0(c))

2
Hu ·n

(A-19)

− ∂E

∂c
∇c ·u dA+

∫
Ω1∪Ω2

−ρu · ∇u ·u− u · ∇p+ u · ∇ · (νD) dx.

Integration by parts (6 times) gives

∂tE =

∫
Γ

−∆Γ (b(c)(H −H0(c)))u ·n + b(c)(H −H0(c))n · ∇H u ·n (A-20)

+
b(c)

2
(H −H0(c))

2
Hu ·n

− ∂E

∂c
∇c ·u + u · [−pI + νD]

2
1 ·n dA−

∫
Ω1∪Ω2

ν

2
|D|2 dx.

Using Eq. (A-17) and∫
Γ

u · (∇Γλ−Hnλ) =

∫
Γ

−λ∇Γ ·u = 0, (A-21)

gives

∂tE =

∫
Γ

−∆Γ (b(c)(H −H0(c)))u ·n + b(c)(H −H0(c))n · ∇H u ·n (A-22)

+
b(c)

2
(H −H0(c))

2
Hu ·n− ∂E

∂c
∇c ·u + u ·F dA−

∫
Ω1∪Ω2

ν

2
|D|2 dx.

Furthermore, we compute

n · ∇H = n · ∇ · (∇nT ) = ∇ · (n · ∇n)−∇nT : ∇n = 0−∇n : ∇n = −‖∇Γn‖2,
(A-23)

where we have used that H = ∇ ·n and ∇nT = ∇n = ∇Γn. Using Eq.(A-23)

∂tE =

∫
Γ

−∆Γ (b(c)(H −H0(c)))u ·n− b(c)(H −H0(c))‖∇Γn‖2u ·n (A-24)

+
b(c)

2
(H −H0(c))

2
Hu ·n− ∂E

∂c
∇c ·u + u ·F dA

−
∫

Ω1∪Ω2

ν

2
|D|2 dx.
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The second law of thermodynamics requires the energy to be non-increasing,
which can be accomplished with the choice of

F =∆Γ (b(c)(H −H0(c)))n + b(c)(H −H0(c))‖∇Γn‖2n (A-25)

− b(c)

2
(H −H0(c))

2
Hn +

∂E

∂c
∇c.

Hence, a thermodynamically consistent evolution of the membrane and the
species concentration is given by Eqs. (A-12)-(A-15) with the stress jump con-
dition

[−pI + νD] ·n =∇Γλ−Hnλ+ ∆Γ (b(c)(H −H0(c)))n (A-26)

+ b(c)(H −H0(c))‖∇Γn‖2n

− b(c)

2
(H −H0(c))

2
Hn +

∂E

∂c
∇c

This is consistent with the jump condition derived in [20], although we have
presented a simpler derivation. Putting everything together, a thermodynam-
ically consistent model for a CIM-covered membrane in viscous fluids is given
by Eqs. (A-12)-(A-15) together with jump condition (A-26).

A.3. Curvature time derivative

We will now calculate the time derivative of the curvature ∂tH used in Sec-
tion A.2. Note that this is not the advected time derivative (material derivative).
Hence, for this expression to make sense we assume H to be extended off Γ, at
least in a small neighborhood. The natural extension is such that H(x) for
x /∈ Γ is the curvature of a curve passing through x parallel to Γ. To compute
∂tH we introduce a phase field φ to represent the interface position. The normal
is given by ∇φ/|∇φ| and hence

∂tH =∂t∇ ·
∇φ
|∇φ|

= ∇ · ∂t
∇φ
|∇φ|

=∇ ·
(
∇∂tφ
|∇φ|

− ∇φ∇φ · ∇∂tφ
|∇φ|3

)
= ∇ ·

(
P
∇∂tφ
|∇φ|

)
.

Now, since Γ (and hence also φ) are advected: ∂tφ = −u · ∇φ. We obtain

∂tH =−∇ ·
(
∇Γ(u · ∇φ)

|∇φ|

)
=−∇ ·

(
∇Γ(u ·n) + u · ∇φ∇Γ|∇φ|

|∇φ|2

)
=−∇ · (∇Γ(u ·n)) = −∆Γ(u ·n),

as claimed.

25



References

[1] S. Aland. Time integration for diffuse interface models for two-phase flow.
J. Comp. Phys., 262C:58–71, 2014.

[2] S. Aland, S. Egerer, J. Lowengrub, and A. Voigt. Diffuse interface models
of locally inextensible vesicles in a viscous fluid. Journal of Computational
Physics, 277:32–47, 2014.

[3] S. Aland and A. Voigt. Benchmark computations of diffuse interface models
for two-dimensional bubble dynamics. International Journal for Numerical
Methods in Fluids, 69(3):747–761, 2012.

[4] J. Berro, V. Sirotkin, and T.D. Pollard. Mathematical modeling of endo-
cytic actin patch kinetics in fission yeast: disassembly requires release of
actin filament fragments. Molecular biology of the cell, 21(16):2905–2915,
2010.

[5] Y. Chen, S.M. Wise, V.B. Shenoy, and J.S. Lowengrub. A Stable Scheme for
a Nonlinear, Multispecies Tumor Growth Model with an Elastic Membrane.
Int. J. Numer. Meth. Biomed. Engng., 30:726–754, 2014.

[6] C. Collins, J. Shen, and S.M. Wise. An Efficient, Energy Stable Scheme for
the Cahn-Hilliard-Brinkman System. Commun. Comput. Phys., 13:929–
957, 2013.

[7] O. Daumke, A. Roux, and V. Haucke. BAR domain scaffolds in dynamin-
mediated membrane fission. Cell, 156:882–892, 2014.

[8] Timothy A. Davis. Algorithm 832: UMFPACK V4.3—an unsymmetric-
pattern multifrontal method. ACM Trans. Math. Softw., 30(2):196–199,
June 2004.

[9] A. Diegel, X. Feng, and S.M. Wise. Analysis of a Mixed Finite Element
Method for a Cahn-Hilliard-Darcy-Stokes System. SIAM J. Numer. Anal.,
53:127–152, 2015.

[10] Q. Du, C. Liu, R. Ryham, and X.Q. Wang. A phase field formulation of
the Willmore problem. Nonlinearity, 18:1249–1267, 2005.

[11] Qiang Du, Chun Liu, Ryham R., and Wang X. Modeling the spontaneous
curvature effects in static cell membrane deformations by a phase field
formulation. Comm. Pure Appl. Anal., 4(3):537–548, 2005.

[12] C.M. Elliott and B. Stinner. A surface phase field model for two-phase
biological membranes. SIAM J. Appl. Math., 70:2904–2928, 2010.

[13] C.M. Elliott, B. Stinner, V. Styles, and R. Welford. Numerical computation
of advection and diffusion on evolving diffuse interfaces. IMA J. Numer.
Anal., 31:786–812, 2011.

26



[14] E.L. Elson, E. Fried, J.E. Dolbow, and G.M. Genin. Phase separation in
biological membranes: Integration of theory and experiment. Ann. Rev.
Biophys., 39:207–226, 2010.

[15] A. Embar, J. Dolbow, and E. Fried. Microdomain evolution on giant unil-
ammellar vesicles. Biomech. Model. Mechanobiol., 12:597–615, 2013.

[16] C.M. Funkhouser, M. Mayer, F.J. Solis, and K. Thornton. Effects of inter-
leaflet coupling on the morphologies of multicomponent lipid bilayer mem-
branes. J. Chem. Phys., 138:024909, 2013.

[17] C.M. Funkhouser, F.J. Solis, and K. Thornton. Dynamics of two-phase
lipid vesicles: Effects of mechanical properties on morphology evolution.
Soft Matter, 6:3462–3466, 2010.

[18] C.M. Funkhouser, F.J. Solis, and K. Thornton. Dynamics of coarsening in
multicomponent lipid vesicles with non-uniform mechanical properties. J.
Chem. Phys., 140:144908, 2014.

[19] F. Haußer, W. Marth, and S. Li. Thermodynamically consistent models
for two-component vesicles. International Journal of . . . , 2(1):19–48, 2013.

[20] F. Haußer, W. Marth, S. Li, J. Lowengrub, A. Rätz, and A. Voigt. Ther-
modynamically consistent models for two-component vesicles. International
Journal of Biomethematica and Biostatistics, 2:19–48, 2013.

[21] Albert J Jin, Kondury Prasad, Paul D Smith, Eileen M Lafer, and Ralph
Nossal. Measuring the Elasticity of Clathrin-Coated Vesicles via Atomic
Force Microscopy. Biophysical Journal, 90(9):3333–3344, May 2006.

[22] M. S. Lalonde and W. I. Sundquist. How hiv finds the door. Proceedings
of the National Academy of Sciences, 109(46):18631–18632, 2012.

[23] J. Liu, Y. Sun, D. G. Drubin, and G. F. Oster. The mechanochemistry of
endocytosis. PLoS biology, 7(9), 2009.

[24] J.S. Lowengrub, A. Raetz, and A. Voigt. Phase-field modeling of the dy-
namics of multicomponent vesicles: Spinodal decomposition, coarsening,
budding and fission. Phys. Rev. E, 79:031926, 2009.

[25] K. Luby-Phelps. Cytoarchitecture and physical properties of cytoplasm:
volume, viscosity, diffusion, intracellular surface area. Int. Rev. Cytol.,
192:189–221, 2000.

[26] S. A Nowak and T. Chou. Membrane lipid segregation in endocytosis.
Physical Review E, 78(2):021908, 2008.

[27] B. Peleg, A. Disanza, G. Scita, and N. Gov. Propagating Cell-Membrane
Waves Driven by Curved Activators of Actin Polymerization. PLoS ONE,
6(4):e18635, April 2011.

27



[28] A. Rätz and A. Voigt. PDE’s on surfaces - a diffuse interface approach.
Communications in Mathematical Science, 4:575–590, 2006.

[29] P. J. Robinson. How to fill a synapse. Science, 316(5824):551–553, 2007.

[30] Hongying Shen, Michelle Pirruccello, and Pietro De Camilli. Snapshot:
membrane curvature sensors and generators. Cell, 150(6), 2012.

[31] JS Sohn, S Li, X Li, and JS Lowengrub. Axisymmetric multicomponent
vesicles: A comparison of hydrodynamic and geometric models. Interna-
tional Journal for Numerical Methods in Biomedical Engineering, pages
346–368, 2012.

[32] J.S. Sohn, Y.H. Tseng, S. Li, A. Voigt, and J. Lowengrub. Dynamics
of multicomponent vesicles in a viscous fluid. Journal of Computational
Physics, 229:119–144, 2010.

[33] J. C Stachowiak, F. M. Brodsky, and E. A. Miller. ncb2832. Nature Cell
Biology, 15(9):1019–1027, September 2013.

[34] Jeanne C Stachowiak, Frances M Brodsky, and Elizabeth A Miller. A cost-
benefit analysis of the physical mechanisms of membrane curvature. Nature
cell biology, 15(9):1019–1027, 2013.

[35] K.E. Teigen, X. Li, J. Lowengrub, F. Wang, and A. Voigt. A
diffuse-interface approach for modeling transport, diffusion and adsorp-
tion/desorption of material quantities on a deforming interface. Comm.
Math. Sci., 7:1009–1037, 2009.

[36] K.E. Teigen, P. Song, J. Lowengrub, and A. Voigt. A diffuse-interface
method for two-phase flows with soluble surfactants. J. Comput. Phys.,
230:375, 2011.

[37] S. Vey and A. Voigt. Amdis: adaptive multidimensional simulations. Com-
puting and Visualization in Science, 10(1):57–67, March 2007.

[38] X. Wang and Q. Du. Modelling and simulations of multi-component lipid
membranes and open membranes via diffuse interface approaches. J. Math.
Biol., 56:347–371, 2008.

[39] S. Watanabe, B. R. Rost, M. Camacho-Pérez, M. W. Davis, B. Söhl-
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