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Combs are a simple caricature of various types of natural branched structures, which belong to
the category of loopless graphs and consist of a backbone and branches. We study continuous time
random walks on combs and present a generic method to obtain their transport properties. The
random walk along the branches may be biased, and we account for the effect of the branches by
renormalizing the waiting time probability distribution function for the motion along the backbone.
We analyze the overall diffusion properties along the backbone and find normal diffusion, anomalous
diffusion, and stochastic localization (diffusion failure), respectively, depending on the characteristics
of the continuous time random walk along the branches and compare our analytical results with
stochastic simulations.

PACS numbers: 05.40.-a

I. INTRODUCTION

Random walks often provide the underlying meso-
scopic mechanism for transport phenomena in physics,
chemistry and biology [1–3]. A wide class of random
walks give rise to normal diffusion, where the mean-
square displacement (MSD), 〈(∆r)2(t)〉, grows linearly
with time t for large times. In many important appli-
cations, however, the MSD behaves like 〈(∆r)2(t)〉 ∝ tγ ,
with γ 6= 1, and the diffusion is anomalous [1, 2]. Anoma-
lous diffusion can be modelled by various classes of ran-
dom walks [4]. We focus on the important class of contin-
uous time random walks (CTRWs) [1, 2]. A specific fea-
ture of a CTRW is that a walker waits for a random time
τ between any two successive jumps. These waiting times
are random independent variables with a probability dis-
tribution function (PDF) φ(τ), and the tail of the PDF
determines if the transport is diffusive (γ = 1) or sub-
diffusive (γ < 1). Heavy-tailed waiting time PDFs give
rise to subdiffusion. Realistic models of the waiting time
PDF have been formulated for transport in disordered
materials with fractal and ramified architecture, such as
porous discrete media [5] and comb and dendritic poly-
mers [6–8], and for transport in crowded environments
[9].

A simple caricature of various types of natural
branched structures that belong to the category of loop-
less graphs is a comb model (see Fig. 1). The comb model
was introduced to understand anomalous transport in
percolation clusters [10–12]. Now, comb-like models are
widely employed to describe various experimental appli-
cations. These models have proven useful to describe the
transport along spiny dendrites [13, 14], percolation clus-
ters with dangling bonds [11], diffusion of drugs in the
circulatory system [15], energy transfer in comb polymers
[6, 7] and dendritic polymers [8], diffusion in porous ma-
terials [16–18], the influence of vegetation architecture on
the diffusion of insects on plant surfaces [19], and many

other interdisciplinary applications.

Simple random walks on comb structures provide a ge-
ometrical explanation of anomalous diffusion as happens
also with walks on fractal structures. The excursion of
the walker into the branches can be viewed as creating
an effective waiting time for the walk along the backbone
[20], conferring a subdiffusive character on the transport,
see, e. g., [11, 21, 22]. Several authors have determined
various properties of walks on combs, such as the mean
distance from the origin covered by a walker, the random
walk dimension of the structure, and the maximum devi-
ation and span after a number of steps [22], the spectral
dimension and the mean first passage time for random
walks on random and non-translationally invariant combs
[23] and for biased random walks [20]. Other studies
have combined the complexity of combs with other sta-
tistical properties of the random walk. For example, a
numerical study of the encounter problem of two walkers
in branched structures shows that the topological het-
erogeneity of the structure can play an important role
[24]. The hitting time between two arbitrary points of
the comb and the mean first passage time in general d-
dimensional combs have been determined in [25]. Fur-
ther examples are the occupation time statistics for ran-
dom walkers on combs where the branches can be re-
garded as independent complex structures, namely frac-
tal or other ramified branches [26], and the effects of a
magnetic field on a charged particle performing a random
walk on a comb [27]. Finally, we want to mention studies
to understand the diffusion mechanism along a variety of
branched systems where scaling arguments, verified by
numerical simulations, have been able to predict how the
MSD grows with time [28].

Diffusion on comb structures has also been studied by
macroscopic approaches, based on Fokker-Planck equa-
tions [12], which have been applied to describe diffu-
sive properties in discrete systems, such as porous dis-
crete media [5], infiltration of diffusing particles from
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one material into another [29], and superdiffusion due to
the presence of inhomogeneous convection flow [30, 31].
Other macroscopic descriptions, based on renormalizing
the waiting time PDF for jumps along the backbone
to take into account the transport along the branches
[32], have been found useful to model continuous-time-
reaction-transport processes [33] and human migrations
along river networks [34].

Kahng and Redner provided a mesoscopic, probabilis-
tic description of random walks on combs, by using the
successive decimation of the discrete-time Master equa-
tion to obtain a mesoscopic balance equation for the
probability of the walker to be at a given node at a given
time [35]. A mesoscopic approach is necessary for an ac-
curate description of the transport properties, such as
the diffusion coefficient or the mean visiting time in a
branch, in terms of the parameters that characterize the
random walk process.

Previous studies of random walks on combs have
mostly considered Markovian walks, typically simple ran-
dom walks where the particle makes one step on the
structure at each discrete unit time interval. We con-
sider the general case of non-Markovian random walks
and adopt the formalism of CTRWs. We assume that
the walker waits a random time distributed according
to a general PDF φ0(τ) at each node of the graph. The
random waiting time may for example be due to binding-
unbinding events at the nodes [9]. In addition, the walk
along the branches may be biased. In the case of simple
random walks, the excursions into the branches create
a waiting time PDF for the motion along the backbone.
This PDF depends on the interplay of the topology of
the structure and the bias. In our case of non-Markovian
random walks, the excursions into the branches modify
the local waiting time PDF φ0(τ), a mesoscopic charac-
teristic of the comb, and generate an effective waiting
time PDF φ(τ) for the motion along the backbone of the
comb. In other words, the non-Markovian CTRW on the
comb can be reduced to a non-Markovian CTRW on a
one-dimensional lattice, corresponding to the backbone
only. We employ the decimation method of Kahng and
Redner [35] to determine the effective waiting time PDF
φ(τ), see also Chapter 6.3 in [36]. The time spent by
the walker between its entry into a branch and its return
to the backbone for the first time is treated as a contri-
bution to the effective waiting time at the node where
the branch crosses the backbone. Our main results are
exact analytic expressions for the effective waiting time
PDF φ(τ) of the backbone motion and for key observ-
ables, such as the mean waiting time of the backbone
dynamics, the diffusion coefficient, and the mean square
displacement, in terms of the mesoscopic characteristics
of the walk, namely the local waiting PDF φ0(τ), the
bias probability q along the branches, and the number of
branch nodes N . We find that non-Markovian CTRWs
on a comb can display three different transport regimes:
normal diffusion, anomalous diffusion, and stochastic lo-
calization.

The paper is organized as follows. In Sec. II we for-
mulate the mesoscopic description of the random walk
on the comb and reduce the walker’s motion to an effec-
tive motion along the backbone only with a renormalized
waiting time PDF for the backbone nodes. Sec. III deals
with the MSD of the effective backbone motion. The ef-
fective diffusion coefficient is derived, and the conditions
for normal diffusion, anomalous diffusion, and stochastic
localization (diffusion failure) [37] in terms of the num-
ber of branch nodes and the degree of bias of the motion
along the branches are established. We summarize our
results in Sec. IV.

II. MESOSCOPIC DESCRIPTION

The simplest comb model, shown in Fig. 1, is formed
by a principal axis, called the backbone, which is a one-
dimensional lattice with spacing a, and identical branches
that cross the backbone perpendicularly at each node.
The walker moves through the comb by performing jumps
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FIG. 1. Comb structure consisting of a backbone and
branches. Each point represents a node where the walker
may jump or wait a random time

between nearest-neighbor nodes along the backbone or
along the branches. We assume that the walker performs
isotropic jumps along the backbone, but the jumps along
the branches may be biased, for example by an external
field [10]. When the walker arrives at a node, it waits
a random time τ before performing a new jump to a
nearest-neighbor node. We assume that the comb is ho-
mogeneous, and the local waiting time PDF at any given
node is given by φ0(τ).
When the walker enters a branch, it spends some time

moving inside the branch before returning to the back-
bone. This sojourn time can be used to determine an
effective waiting time PDF φ(τ) for the walker’s motion
along the backbone. In other words, the motion of the
walker on the comb can be reduced to the effective mo-
tion along a one-dimensional lattice, corresponding to the
backbone only. This motion is non-Markovian and can
be described mesoscopically by the Generalized Master



3

Equation (GME) for the PDF Pbb(x, t) of finding the
walker at node x on the backbone at time t:

∂Pbb(x, t)

∂t
=

∫ t

0

K(t− t′)dt′×
[
∫ ∞

−∞

Pbb(x− x′, t′)Φ(x′)dx′ − Pbb(x, t
′)

]

. (2.1)

Here K(t) is the memory kernel related to the effective
waiting time PDF via its Laplace transform, K(s) =
sφ(s)/[1 − φ(s)], where s is the Laplace variable. The
dispersal kernel Φ(x) represents the probability of the
walker performing a jump of length x. If the walker
moves isotropically between nearest neighbors in a one-
dimensional lattice of spacing a, the dispersal kernel
reads Φ(x) = δ(x−a)/2+δ(x+a)/2. We assume that the
walker is initially located at x = 0, i.e., Pbb(x, 0) = δx,0,
with x = ia and i = 0,±1,±2, . . . , where δx,0 is the Kro-
necker delta. Then the Laplace transform of the GME
for x 6= 0 reads

Pbb(x, s) =
φ(s)

2
[Pbb(x− a, s) + Pbb(x+ a, s)] . (2.2)

To derive the effective waiting time PDF φ(t) for the
backbone dynamics and relate it to the local waiting time
PDF φ0(t) and the other mesoscopic characteristics of the
comb, viz. q and N , we formulate the mesoscopic balance
equation for the CRTW on the comb. Let P (x, y, t) be
the PDF that the walker on the comb is located at the
node with backbone coordinate x and branch coordinate
y at time t, and let P (x, y, s) be its Laplace transform.
Taking into account the contributions of the walker ar-
riving from the upper and lower branch (see Fig. 2), we
obtain the mesoscopic balance equation for the walker
being at node (x, y) = (ia, 0), i.e., being at a backbone
node,

P (x, s) =
φ0(s)

4
[P (x− a, s) + P (x+ a, s)]

+ (1− q)φ0(s) [P (y = a, s) + P (y = −a, s)] . (2.3)

To achieve a concise notation, we are using P (x, s), P (x−
a, s), and P (x + a, s) as short-hand for P (x, y = 0, s),
P (x−a, y = 0, s), and P (x+a, y = 0, s), and P (y = a, s)
and P (y = −a, s) stand for P (x, y = a, s) and P (x, y =
−a, s), respectively.
The term φ0(s) [P (x− a, s) + P (x+ a, s)] /4 corre-

sponds to the contribution of the walker arriving at node
x = ia from the left or from the right with probability
1/4 after waiting a random time τ with PDF φ0(τ) at
nodes x+ a or x− a.
As shown in Fig. 2, the walker located at the ith node

of the backbone may jump to the right, left, up or down
with probability 1/4. We assume that the walker moves
forward (away from the backbone) along the branches
with probability q and back to the backbone with prob-
ability 1− q. The term

(1 − q)φ0(s) [P (y = a, s) + P (y = −a, s)] (2.4)
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FIG. 2. Schematic representation of the possible jumps of a
walker with the corresponding probabilities.

in (2.3) corresponds the contribution of the walker arriv-
ing at the backbone node x from the first node of the
upper or lower branch after waiting there a random time
τ with PDF φ0(τ).
If we can express P (y = a, s) and P (y = −a, s) in (2.3)

in terms of P (x, s), then (2.3) can be cast in the form
of (2.2). In other words, any contribution from branch
nodes will have been eliminated, and we will obtain a
closed balance equation for P (x, s) = P (x, y = 0, s)
purely in terms of the probabilities of the walker being at
adjacent backbone nodes. We can then identify P (x, s)
with Pbb(x, s) and replace the CTRW on the comb by
an effective CTRW on a one-dimensional lattice, corre-
sponding to the backbone. This effective walk accounts
for the excursions of the walker on the comb into the side
branches in terms of an effective waiting time PDF φ(τ)
at backbone nodes.
We proceed as follows. Consider the motion along the

upper branches. The lower branch dynamics is the same
due to the symmetry of the comb. The mesoscopic bal-
ance equation for the first node of the upper branches
reads

P (y = a, s) =
φ0(s)

4
P (x, s) + φ0(s)(1 − q)P (y = 2a, s).

(2.5)
The first term φ0(s)P (x, s)/4 corresponds to the contri-
bution of the walker arriving from the backbone, while
φ0(s)(1− q)P (y = 2a, s) is the contribution of the walker
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jumping from the upper node y = 2a to y = a with prob-
ability 1 − q after waiting a random time τ with PDF
φ0(τ). Analogously, we have for the lower branches

P (y = −a, s) =
φ0(s)

4
P (x, s)+φ0(s)(1−q)P (y = −2a, s).

(2.6)
We now need to relate P (y = ±2a, s) to P (y = ±a, s)
to close (2.5) and (2.6). After some calculations, see the
Appendix for details, we find

P (y = ±2a, s) = G(q, φ0(s))P (y = ±a, s), (2.7)

where

G(q, φ0(s)) =
2qφ0(s)

1 +
1 +H(q, φ0(s))

1−H(q, φ0(s))

√

1− 4q(1− q)φ2
0(s)

,

(2.8)

H(q, φ0(s)) =

(

λ−

λ+

)N−5
λ− − h(φ0(s))

λ+ − h(φ0(s))
, (2.9)

and

h(φ0(s)) =
qφ0(s)

[

1− qφ2
0(s)

]

1 + q(q − 2)φ2
0(s)

. (2.10)

Substituting (2.7) into (2.5) and (2.6) and using the
resulting expressions in (2.3), we obtain an equation of
the form (2.2) with

φ(s) =
φ0(s)

2− (1− q)φ2
0(s)

1− (1− q)φ0(s)G(q, φ0(s))

, (2.11)

whose Laplace inversion yields φ(τ). The waiting time
PDF φ(τ) incorporates the dynamics along the branches
and can be understood as the effective waiting time PDF
for a walker moving along the backbone only. This is
our first main result. We have derived an exact analyti-
cal expression for the effective waiting time PDF φ(τ) of
the backbone dynamics in terms of the mesoscopic char-
acteristics of the random walk on the comb, namely the
local waiting time PDF φ0(τ), the bias probability q, and
the number of branch nodes N . This result allows us to
obtain exact analytical expressions for key observables of
the transport on the comb as we show in the next Section.

III. STATISTICAL PROPERTIES

A. N finite

If the local waiting time PDF φ0(τ) has finite moments,
its Laplace transform reads [2], φ0(s) ≃ 1 − st̄, in the
large time limit s → 0, where t̄ is the local mean waiting
time at each node. Taking the limit s → 0 in (2.11), we
obtain the effective waiting time PDF for the backbone
dynamics,

φ(s) ≃ (1 + s 〈t〉)−1. (3.1)

The effective mean waiting time 〈t〉 for backbone nodes
is given by

〈t〉 = t̄

2q − 1

[

2(1− q)1−NqN + 4q − 3
]

. (3.2)

In Fig. 3, we plot this effective mean waiting time versus
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FIG. 3. (Color online) Dimensionless mean waiting time of
the effective backbone dynamics.

N and q. The mean waiting time 〈t〉 is a monotonically
increasing function of both q and N . If the random walk
inside the branches is isotropic, q = 1/2, we obtain by
L’Hopital’s rule from (3.2) that

lim
q→1/2

〈t〉 = (1 + 2N) t̄. (3.3)

To determine the diffusion coefficient D for diffusion
through the comb, we first calculate the MSD. Perform-
ing the Fourier-Laplace transform on (2.1), we obtain

P (k, s) =
1− φ(s)

s[1− Φ(k)φ(s)]
. (3.4)

The MSD in Laplace space reads (see, e.g., [2])

〈

x2(s)
〉

= − lim
k→0

d2P (k, s)

dk2
. (3.5)

As mentioned in Sec. II, we assume that the motion on
the backbone is unbiased and that the walker only jumps
to nearest neighbors. This implies that the kernel Φ(x)
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is given by Φ(x) = δ(x−a)/2+δ(x+a)/2, and we obtain
from (3.5),

〈

x2(s)
〉

=
a2

s [φ(s)−1 − 1]
. (3.6)

If the local waiting time PDF φ0(t) possesses a finite
first moment, then so does the effective waiting time PDF
φ(t), see (3.1), and the MSD along the backbone corre-
sponds to normal diffusion,

〈

x2(t)
〉

= 2Dt. The diffusion
coefficient is given by

D =
a2

2 〈t〉 =
a2

2t̄

2q − 1

2(1− q)1−NqN + 4q − 3
. (3.7)

Note that in the limit of an isotropic random walk (q =
1/2), D behaves like N−1 for large N , by virtue of (3.3)
and (3.7), in agreement with the scaling results found in
[38]. In Fig. 4 we compare the result provided by (3.7)
with numerical simulations. As Fig. 3 demonstrates, 〈t〉
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FIG. 4. (Color online) Main Figure: Plot of the diffusion
coefficient for transport through the comb for N = 2, N = 3,
and N = 6 versus q with a = 1. Solid curves correspond to
exact analytical results given by (3.7). Results from numerical
simulations are depicted with symbols. Inset: MSD/2D for
N = 5 and three different values of q: q = 0.4 (squares),
q = 0.5 (circles) and q = 0.6 (triangles).

increases monotonically withN for q < 1/2 and saturates
at (4q−3)/(2q−1) for N → ∞. Consequently, the mean
waiting time 〈t〉 is finite for N → ∞; the overall diffusion
along the backbone is normal. However, for q ≥ 1/2,
the mean waiting time 〈t〉 increases without bound as
N increases, and anomalous transport is expected for
N → ∞. In Fig. 4 (inset), we plot the MSD scaled by
the diffusion coefficient. It illustrates the result given by
(3.7) for the MSD. The transport is diffusive for finite N ,
regardless of the value of q and the specific form of the
local waiting time PDF φ0(τ), as long as the latter has
finite moments.
We consider now the case of a local waiting time PDF

with the large time limit φ0(τ) ∼ τ−1−γ , with Laplace

transform φ0(s) ≃ 1 − (sτ0)
γ and 0 < γ < 1, which does

not possess finite moments. Here τ0 is a parameter with
units of time. In this case, the effective waiting time
PDF for the backbone dynamics is obtained by simply
replacing st̄ with (sτ0)

γ , and (3.1) reads φ(s) ≃ [1 +
(sτ0)

γ 〈t〉 /τ0]−1. Substituting this result into (3.6), we
find

〈

x2(t)
〉

=
a2τ0
〈t〉

(t/τ0)
γ

Γ(1 + γ)
, (3.8)

for large t, where 〈t〉 is given by (3.2), with τ0 instead of
t̄. If the local waiting time PDF φ0(τ) at each node of
the comb has a power-law tail, then the overall transport
along the backbone is anomalous. Note that the anomaly
exponent of the effective backbone transport is the same
as the anomaly exponent of the CTRW on the comb.

B. N → ∞

If the number of nodes of the branches goes to infin-
ity, the mean time spent by the walker visiting a branch
increases monotonically, see (3.2). If the diffusion coef-
ficient tends asymptotically to a constant, which is the
case for q < 1/2, the diffusive scaling will saturate at
D = a2(2q − 1)/[2t̄(4q − 3)], according to (3.7). For
q ≥ 1/2, the limit N → ∞ leads to D → 0 and we
expect a different scaling. For N → ∞, the quotient
(λ−/λ+)

N → 0 and also H → 0. We obtain from (2.8),

G(q, φ0(s)) =
2qφ0(s)

1 +
√

1− 4q(1− q)φ2
0(s)

≡ 2qφ0(s)

1 + g(q)
,

(3.9)

where we define g(q) ≡
√

1− 4q(1− q)φ2
0(s) for conve-

nience. Equation (2.11) for the Laplace transform of the
effective waiting time PDF reduces to

φ(s) =
φ0(s)

[

1 + g(q)− 2q(1− q)φ2
0(s)

]

2− (1 + 3q − 4q2)φ2
0(s) + [2− (1 − q)φ2

0(s)]g(q)
.

(3.10)

We take the limit s → 0 and consider first the case
where the local waiting time PDF φ0(τ) has finite mo-
ments. Then φ0(s) ≃ 1 − st̄, as s → 0, and the effective
waiting time PDF of the backbone dynamics is given by

φ(s) ≃



































(

1 +
4q − 3

2q − 1
st̄

)−1

, q < 1/2,

(

1 +
√
2st̄

)−1

, q = 1/2,

(

3q − 1

q
+

4q2 − 3q + 1

(2q − 1)q
st̄

)−1

, q > 1/2.

(3.11)
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Substituting (3.11) into (3.6), we find for large t,

〈

x2(t)
〉

=































a2
2q − 1

4q − 3

t

t̄
, q < 1/2,

a2
√

2t

πt̄
, q = 1/2,

a2
q

2q − 1
(1− e−αt) , q > 1/2,

(3.12)

where the rate of saturation is

α =
(2q − 1)2

(4q2 − 3q + 1)t̄
. (3.13)

In Fig. 5 we compare these results with numerical sim-
ulations for N = 104. For q = 1/2, we obtain the well
known result of subdiffusive transport with the MSD
∼

√
t. However, for q 6= 1/2, the side branches expe-

rience advection, and the transport is remarkably differ-
ent. Namely, for q > 1/2 the advection is away from
the backbone along the branches, y → ±∞. The walker
is effectively trapped inside the branches, and stochas-
tic localization (diffusion failure) occurs,

〈

x2(∞)
〉

< ∞,
[37]. For q < 1/2, the advection is towards the backbone.
It enhances the backbone dynamics and normal diffusion
takes place.
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FIG. 5. (Color online) MSD for three values of q, displaying
the three different transport regimes. Solid curves correspond
to the results given by (3.12) for q = 0.4, q = 0.5, and q = 0.6.
Symbols correspond to the results of numerical simulations
with N = 104 and a = 1.

Of course the limit N → ∞ cannot be attained in a
strict sense for real systems. However, transport on a
comb structure will display the behavior discussed above
for N sufficiently large. Note that the numerical results
in Fig. 5 were obtained for N = 104. On the other hand,
we expect that (3.12) holds experimentally only up to
a large finite time, namely as long as the walker does
not experience the finite size of the branches. This is il-
lustrated in Fig. 6, where we have used an intermediate
value N = 100. We show only the case q = 1/2 for easier

visualization. We clearly observe that the result (3.12)
holds for an intermediate time regime. For large times,
when the walkers have had time to reach the extremes
of the branches and return to the backbone, the diffu-
sive scaling, with D given by (3.7), is recovered. This is

0

20

40

60

80

100

120

140

0 5000 10000 15000 20000

〈x
2
(t
)〉

t

∼ t

∼ t1/2

FIG. 6. (Color online) MSD behavior for q = 1/2 for N large.
Here N = 100 is used. The numerical results (circles) fit the
result (3.12) for intermediate times, as if the branches were
infinite. For large times, the linear scaling corresponding to
N finite is recovered.

in agreement with the scaling results for the dynamical
crossover obtained in [38].
We consider now the case where the local waiting time

PDF is φ0(τ) ∼ τ−1−γ , i.e., φ0(s) ≃ 1 − (sτ0)
γ with

0 < γ < 1, as s → 0. The MSD in this case can be
obtained straightforwardly by replacing st̄ with (sτ0)

γ in
(3.11). For large times it reads

〈

x2(t)
〉

=



































a2

Γ(1 + γ)

2q − 1

4q − 3

(

t

τ0

)γ

, q < 1/2,

a2√
2Γ(1 + γ/2)

(

t

τ0

)γ/2

, q = 1/2,

a2q(2q − 1)

(4q2 − 3q + 1)
µ(t/τ0), q > 1/2,

(3.14)

where

µ(t/τ0) = (t/τ0)
γEγ,γ+1

[

−
(

t

τ0

)γ
(2q − 1)2

4q2 − 3q + 1

]

(3.15)
is expressed in terms of the generalized Mittag-Leffler
function Eα,β(z). We use the following property of inte-
gration of the Mittag-Leffler function [39],

∫ t

0

Eα,β (bz
α) zβ−1dz = tβEα,β+1 (bt

α) . (3.16)

Subdiffusion in the branches results in backbone subdif-
fusion for q ≤ 1/2. For advection towards the backbone,
q < 1/2, the anomaly exponent of the effective backbone
transport is the same as the anomaly exponent of the
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CTRW on the comb. For the case of no bias, q = 1/2, the
anomaly exponent of the effective backbone transport is
half that of the CTRW on the comb. For advection away
from the backbone, q > 1/2, we find again stochastic lo-
calization. For t/τ0 ≫ 1, Eα,β(−atα) ∼ t−α/Γ(β − α)
[40], and consequently µ(t/τ0) approaches a finite value
as t → ∞.
The validity of (3.14) is confirmed by the numerical

results shown in the Figures 7 and 8, which are the ana-
log of Fig. 5, for γ = 0.7 and γ = 0.4, respectively. The
numerical results were obtained by explicitly introducing
waiting times between jumps in the random walk process
along the comb structure. These random times were gen-
erated according to the PDF φ0(t) = γt−1

min
(t/tmin)

−1−γ

defined for the interval t > tmin. Note that this choice
leads straightforwardly to the desired asymptotic behav-
ior φ0(s) ≃ 1 − (sτ0)

γ in Laplace space, with τγ0 =
γπ csc [(1 + γ)π] /Γ(1 + γ).

100

101

102

101 102 103 104 105

⟨x
2
(t
)⟩

t

q < 1/2

q = 1/2

q > 1/2

FIG. 7. (Color online) MSD for three values of q, displaying
the different transport regimes, for γ = 0.7. Lines correspond
to the asymptotic results given by (3.14) for q = 0.4, q = 0.5,
and q = 0.6. Symbols correspond to results from numerical
simulations with N = 104, a = 1, and tmin = 1.

IV. CONCLUSION

We have derived an effective mesoscopic equation,
given by (2.2) and (2.11), for a random walk on a
regular comb structure. The random walk along the
branches consists of, possibly biased, jumps to the
nearest-neighbor nodes, while the walker waits at each
node for a random time τ distributed according to the
local waiting time PDF φ0(τ) before proceeding with the
next jump. The overall dynamics along the branches
has been reduced to an effective waiting time PDF φ(τ),
given by (2.11), for motion solely along the backbone. We
have obtained exact analytical expressions for the statis-
tical properties, such as the effective mean waiting time,
〈t〉, for the backbone nodes, the diffusion coefficient, D,

100

101

102

102 103 104 105 106

⟨x
2
(t
)⟩

t

q < 1/2

q = 1/2

q > 1/2

FIG. 8. (Color online) MSD for three values of q, displaying
the different transport regimes, for γ = 0.4. Lines correspond
to the asymptotic results given by (3.14) for q = 0.4, q = 0.5,
and q = 0.6. Symbols correspond to results from numerical
simulations with N = 104, a = 1, and tmin = 1.

and the MSD of the overall structure in terms of the bias
probability q for the cases where the number of nodes N
of the branches is finite or infinite. We have established
that a comb can display normal diffusion, subdiffusion,
and stochastic localization, dependent on the character-
istic parameters of the CTRW.

If N is finite and the local waiting time PDF φ0(τ) has
finite moments, exact expressions for both 〈t〉 and D are
derived analytically in terms of the bias probability q, the
number of nodes N on the branch, and the mean wait-
ing time probability at each node. The transport always
corresponds to normal diffusion in this case. If the local
waiting time PDF φ0(τ) ∼ τ−1−γ for large time, it does
not posses finite moments and the MSD of the random
walker along the backbone behaves like tγ . The transport
on the comb corresponds to anomalous diffusion.

If N is infinite, the value of q is the crucial factor. If
the local waiting time PDF φ0(τ) has finite moments, the
transport corresponds to normal diffusion for q < 1/2. If
q = 1/2, the MSD behaves like t1/2, and the transport is
subdiffusive. If q > 1/2, the MSD approaches a constant
finite value for large time, corresponding to stochastic
localization (diffusion failure). If the local waiting time
PDF φ0(τ) does not have finite moments, φ0(τ) ∼ τ−1−γ

for large time, the MSD behaves like tγ for q < 1/2
and like tγ/2 for q = 1/2; the transport is subdiffusive.
Stochastic localization occurs again for q > 1/2. In all
cases the theoretical predictions have been verified by
numerical simulations. In summary, if the bias proba-
bility of moving away from the backbone is q > 1/2,
then stochastic localization occurs, regardless of the other
characteristic parameters related to the random walk on
the branches.
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Appendix: Derivation of Eq. (2.7)

Generalizing (2.5) to any node of the branches located
between 2a ≤ y ≤ (N − 2)a, we obtain the balance equa-
tion for the upper branches

P (y, s) = φ0(s) [qP (y − a, s) + (1 − q)P (y + a, s)] ,
(A.1)

where P (y, t) is short-hand for P (x, y, t), the PDF of find-
ing the walker at time t at node y on the branch origi-
nating at x from the backbone, and P (y, s) is its Laplace
transform.
To determine the Laplace transform φ(s) of the ef-

fective backbone node waiting time PDF, we need to
determine P (y = a, s) and P (y = −a, s) in (2.3) in
terms of P (x, s), so that (2.3) can be cast in the form
of (2.2). Given (2.5) and (2.6), this goal can be achieved
if P (y = 2a, s) and P (y = −2a, s) can be related to
P (y = a, s) and P (y = −a, s). We proceed as follows.
The solution of (A.1) reads

P (y, s) = A1λ
y/a
+ +A2λ

y/a
− , (A.2)

where

λ± =
1±

√

1− 4q(1− q)φ2
0(s)

2(1− q)φ0(s)
. (A.3)

To find expressions for the quantities A1 and A2, whose
dependence on x and s is not displayed, we apply (A.2)
to the node y = 2a:

P (y = 2a, s) = A1λ
2
+ +A2λ

2
−. (A.4)

On the other hand, setting y = 2a in (A.1), we find

P (y = 2a, s)− φ0(s)qP (y = a, s) =

φ0(s)(1 − q)P (y = 3a, s). (A.5)

Setting y = 3a in (A.2) we obtain

P (y = 2a, s)− qφ0(s)P (y = a, s) =

φ0(s)(1 − q)
[

A1λ
3
+ +A2λ

3
−

]

. (A.6)

Solving the system of equations (A.4) and (A.6) for the
quantities A1 and A2, we obtain

A1 =
P (y = 2a, s)− qφ0(s)P (y = a, s)

λ2
+ (λ+ − λ−)φ0(s)(1− q)

− λ−P (y = 2a, s)

λ2
+ (λ+ − λ−)

, (A.7)

A2 =
−P (y = 2a, s) + qφ0(s)P (y = a, s)

λ2
− (λ+ − λ−)φ0(s)(1 − q)

+
λ+P (y = 2a, s)

λ2
− (λ+ − λ−)

. (A.8)

A special situation occurs at the end of the branches,
where we have to impose reflecting boundary conditions,
i.e.,

P (y = Na, s) = qφ0(s)P (y = (N − 1)a, s). (A.9)

The node at y = (N − 1)a also needs a special balance
equation (see Fig. 2),

P (y = (N − 1)a, s) = qφ0(s)P (y = (N − 2)a, s)

+ φ0(s)P (y = Na, s). (A.10)

Substituting y = (N − 2)a into (A.1) and taking into
account (A.9), we can write

P (y = (N − 2)a, s) = h(φ0(s))P (y = (N − 3)a, s),
(A.11)

where

h(φ0(s)) =
qφ0(s)

[

1− qφ2
0(s)

]

1 + q(q − 2)φ2
0(s)

. (A.12)

Substituting the solutions from (A.2), (A.7), and (A.8)
into (A.11), we find

P (y = 2a, s) = G(q, φ0(s))P (y = a, s), (A.13)

where

G(q, φ0(s)) =
2qφ0(s)

1 +
1 +H(q, φ0(s))

1−H(q, φ0(s))

√

1− 4q(1− q)φ2
0(s)

,

(A.14)

H(q, φ0(s)) =

(

λ−

λ+

)N−5
λ− − h(φ0(s))

λ+ − h(φ0(s))
. (A.15)

For the lower branch we obtain in a similar manner,

P (y = −2a, s) = G(q, φ0(s))P (y = −a, s). (A.16)

We have achieved our goal of expressing P (y = 2a, s) and
P (y = −2a, s) in terms of P (y = a, s) and P (y = −a, s).
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