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It is known that introducing a stochastic resetting in a random-walk process can lead to the
emergence of a stationary state. Here we study this point from a general perspective through the
derivation and analysis of mesoscopic (Continuous-Time Random Walk) equations for both jump
and velocity models with stochastic resetting. In the case of jump models it is shown that stationary
states emerge for any shape of the waiting-time and jump length distributions. The existence of such
state entails the saturation of the mean square displacement to an universal value that depends on
the second moment of the jump distribution and the resetting probability. The transient dynamics
towards this saturation and towards the stationary state depends on how the waiting time probability
density function decays with time. If the moments of the jump distribution are finite then the tail
of the stationary distributions is universally exponential, but for Lévy flights these tails decay as
a power-law whose exponent coincides with that from the jump distribution. For velocity models
we observe that the stationary state emerges only if the distribution of flight durations has finite
moments of lower-order; otherwise, as occurs for Lévy walks, the stationary state does not exist
and the mean square displacement grows ballistically or superdiffusively, depending on the specific
shape of the distribution of movement durations.

PACS numbers:

I. INTRODUCTION

Random walks represent a recurrent tool to explore
transport in systems subject to noise, fluctuations and/or
uncertainty. In many applications, such walks can be in-
terrupted (either by the moving particle/individual itself
or by external forces) in such a way that the walker is
brought back to its initial position and allowed to con-
tinue its movement from there newly. If this process
is also driven by some noisy/fluctuating force we term
it stochastic resetting. For example, in many spatial
searches a natural tendency of living organisms is to re-
turn to the origin and start the search again after an
unsuccessful excursion [1]. This is meaningful for exam-
ple in foraging or other movement processes in animals
which are often constrained by the presence of preda-
tors or other threats that can lead to the interruption
of the movement as a risk-averse strategy or as a form
of sheltering [2]. In a different context, stochastic reset-
ting can be useful to describe information-spreading [3]
or searches through graphs [4], particularly in Internet
or other communication networks. In most of these ex-
amples, the focus is put in understanding the effects of
stochastic resetting as a mechanism to enhance search
efficiency (measured as the mean first passage time to a
given target) under uninformed (random) search scenar-
ios; an idea which has been explored in a formal way both
for the Brownian motion case [5] and for exponential [6]
and Lévy flights [7].

Another interest of resetting is in the dramatic ef-
fects it has over the stationary properties of transport
processes. In [5, 8, 9] the authors found how Brown-
ian particles subject to stochastic resetting evolve to-
wards a nonequilibrium stationary state different from
a Gaussian distribution due to the non-vanishing flux

introduced by the resetting, which violates the detailed
balance condition. However, up to date few attention
has been put in studying the general conditions under
which this nonequilibrium stationary state is expected
to emerge. Moreover, some additional magnitudes which
are typically of interest in random-walk processes, as the
mean square displacement (MSD) (whose behavior can
also give significant hints about the dynamics in the sta-
tionary regime), have not been computed for these situ-
ations. In this work we try to fill this gap by proposing
a mesoscopic framework (based on the Continuous-Time
Random Walk scheme) which includes both jump and
velocity models. It is confirmed in general that the pres-
ence of the stationary state implies that the MSD grows
monotonically towards a saturating value that equals
the second moment of the distribution at the station-
ary state. If such saturating value does not exist, this
is a signature that the stationary state is never reached
(we will see this is the case for Lévy walks and similar
processes). The relaxation dynamics towards this value
depends on the corresponding waiting-time distribution.
We consider several different situations with Markovian
and non-Markovian distributions in both jump and ve-
locity models. Specifically we review and extend here the
results for the Lévy flight case (which has already been
discussed in [5, 7]) and we study for the first time the case
of Lévy walks as a particular case of a velocity model.

II. RESETTING-CTRW

We consider a unidimensional random-walk process
starting from x = 0 such that the walker has the possibil-
ity to reset its position to that origin whenever a single
displacement is completed. We will denote by X1, X2, ...
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the successive positions of the particle after the first, sec-
ond,... event, where each event can be either a displace-
ment or a reset. If we define r as the resetting probability,
then the position Xi+1 of the particle after the (i+ 1)-th
event is chosen as Xi+1 = 0 with probability r, provided
the previous (i-th) event was not a reset. Otherwise, we
choose Xi+1 = Xi+Zi, where the displacement length Zi
is a random variable drawn from the probability distribu-
tion function (pdf) Φ(x). We term this resetting mech-
anism as being subordinated to displacements [6] since
the statistics of the displacements determines in part the
rate at which resetting will occur. Note that this mech-
anism is slightly different to that proposed in [7] since
here we explicitly require that a reset cannot occur im-
mediately after another one. This choice has the advan-
tage that the dynamics in the limit r → 1 will consist of
successive ’one-displacement’ excursions separated by re-
set events. Otherwise, if consecutive resets were allowed
then for r → 1 the particle would remain permanently at
x = 0, which for some applications may be unrealistic.

In order to take into account how different motion pat-
terns affect the emergence of a stationary state in this sys-
tem, we compare here jump and velocity models. In the
former, walkers ”movements” consist of instantaneous
jumps which are separated by random waiting-times or
pauses between them. In the latter these events consist of
displacements done with finite speed v0, so the distance
travelled during one of these events and the movement
duration are coupled variables.

Denote by j(x, t) the density of particles starting a
displacement from x at time t if it was initially at x = 0.
A mesoscopic balance equation for j(x, t) can be written
then as

j(x, t) = δ(t)δ(x)

+ (1− r)
∫ t

0

dt′
∫ ∞
−∞

dx′Ψ(x′, t′)j(x− x′, t− t′)

+ rδ(x)

∫ t

0

dt′
∫ ∞
−∞

dxϕ(t′)j(x, t− t′). (1)

Here, Ψ(x, t) is the joint probability of performing a dis-
placement of length x during time t and the pdf for wait-
ing times (in the jump’s model) or movement duration
(in the velocity’s model) is given by ϕ(t) =

∫
Ψ(x, t)dx.

So, the last term in (1) implicitly indicates that the re-
setting can only occur after a movement event has been
completed.

The density of particles located at x at time t is given
by

P (x, t) =

∫ t

0

dt′
∫ ∞
−∞

dx′φ(x′, t′)j(x− x′, t− t′). (2)

where φ(x, t) is just the probability that a single displace-
ment has not finished yet after having travelled during
a time t and having covered (either to left or right) a
distance x. We define the Fourier-Laplace transform of

an arbitrary function g(x, t) as

g(k, s) =

∫ ∞
0

dte−st
∫ ∞
−∞

dxe−ikxg(x, t). (3)

Transforming both equations (1) and (2) to the Fourier-
Laplace space and combining them we obtain

P (k, s) =

(
1 + r

ϕ(s)

1− ϕ(s)

)
φ(k, s)

1− (1− r)Ψ(k, s)
. (4)

Another quantity of interest in this work is the flux
density of particles j(x, t), which in the Fourier-Laplace
space is given by

j(k, s) =

(
1 + r

ϕ(s)

1− ϕ(s)

)
1

1− (1− r)Ψ(k, s)
. (5)

III. JUMP MODEL

When displacement distances and waiting times are
considered uncoupled random variables we can write
φ(x, t) = Φ(x)ϕ∗(t) and Ψ(x, t) = Φ(x)ϕ(t), where
ϕ∗(t) =

∫∞
t
dt′ϕ(t′) is the survival probability of ϕ(t),

i.e., the probability for the particle not to jump away un-
til time t. In this particular situation, Eq. (4) becomes

P (k, s) =
1

s

1− (1− r)ϕ(s)

Φ(k)−1 − (1− r)ϕ(s)
, (6)

and from Eq. (5) the flux density of particles takes the
form

j(k, s) =

(
1

ϕ(s)
+

r

1− ϕ(s)

)
1

ϕ(s)−1 − (1− r)Φ(k)
.

(7)

A. Relaxation towards the stationary state

In the large time limit t → ∞ (which is equivalent to
the limit s→ 0 in the Laplace space) a waiting time pdf
with finite first moment 〈t〉 (mean waiting time) can be
expanded through ϕ(s) ' 1− s〈t〉, and so Eq. (6) reads

P (k, s) ' 1

s

[r + (1− r)s〈t〉]Φ(k)

1 + s〈t〉 − (1− r)Φ(k)
. (8)

This can be inverted back to the real space in time, after
some algebra, to obtain

P (k, t) ' Ps(k)

[
1 +

1− Φ(k)

rΦ(k)
e−

1−(1−r)Φ(k)
(1−r)Φ(k)

t
〈t〉

]
. (9)

This reflects an exponential relaxation towards the sta-
tionary state

Ps(k) =
rΦ(k)

1− (1− r)Φ(k)
(10)



3

since 0 < Φ(k) ≤ 1 in the Fourier space, or towards

Ps(x) =
r

π

∫ ∞
0

cos(kx)dk

Φ(k)−1 − 1 + r
(11)

in the real space. This is the stationary state distribu-
tion for any symmetric jump pdf Φ(x). This is a non-
equilibrium steady state that is formed and sustained as
a result of the permanent influx of particles to the origin
due to the resetting process.

Let us deal now with the case where ϕ(t) lacks finite
moments. Consider the power-law pdf for waiting times
that in the Laplace space reads ϕ(s) = [1+(sτ)γ ]−1 with
0 < γ < 1. Inserting this into Eq. (6) we get

P (k, s) =
1

s

[r + (sτ)γ ]Φ(k)

1 + (sτ)γ − Φ(k)(1− r)
. (12)

This equation can be inverted exactly by Laplace as fol-
lows

P (k, t) =
rΦ(k)

τγ
tγEγ,γ+1

(
−a(k)

tγ

τγ

)
+ Φ(k)Eγ

(
−a(k)

tγ

τγ

)
(13)

where Eγ(z) and Eγ,γ+1(z) are Mittag-Leffler and Gen-
eralized Mittag-Leffler functions, and a(k) = 1 − (1 −
r)Φ(k). Making use of the asymptotic expansions

Eγ(z) = − 1

zΓ(1− γ)
+O(z−2),

Eγ,γ+1(z) =
Eγ(z)− 1

z
= −z−1 +O(z−2) (14)

as |z| → ∞ if 0 < γ < 1, we can expand Eq. (13) for
t→∞ to get

P (k, t) ' rΦ(k)

a(k)

[
1 +

1

r

(τ
t

)γ
+ ...

]
. (15)

So that, the relaxation towards the stationary distri-
bution follows a power law decay.

B. Properties of the stationary state

The shape of the stationary state given by (11) can
only be found exactly for some particular cases. For ex-
ample, consider the exponential jump pdf

Φ(x) =
1

2λ
exp(−|x|/λ) (16)

with λ > 0 (also known as Laplace kernel). Its Fourier
transform reads Φ(k) = (1 + k2λ2)−1. Then, from (11)
we have that the stationary state reads

Ps(x) =

√
r

2λ
e−|x|

√
r
λ ,

an expression that has been obtained also previously in
[5].

Let us inspect now the form of the stationary distribu-
tion from a more general perspective. First, we consider
the diffusive limit, i.e. expand the jumps pdf Φ(x) up to
the second moment Φ(k) ' 1 − σ2k2/2 as σk � 1. In
this case Eq. (11) reduces to

Ps(x) '
√

2r

2σ
e−|x|

√
2r
σ , for |x| � σ. (17)

Therefore, all jump distance pdf’s with finite moments
have a stationary state decaying as in (17), where σ2 is
its second moment, σ2 =

∫
x2Φ(x)dx. It has been found

recently [9] how such a stationary state is transiently fol-
lowed in the case of Brownian motion by a still further re-
gion (for |x| ≤

√
4Drt, with D the diffusion coefficient of

the Brownian walker) which includes those particles that
have not experienced yet the effect of resetting, and that
becomes eventually negligible in the large-time regime.

Besides the asymptotic behaviour, note that the shape
of the stationary state close to x = 0 can also be approx-
imated by expanding the cos(kx) in power series in Eq.
(11). By doing that we have

Ps(x) ' a0 − a1x2, for x→ 0 (18)

where

a0 =
r

π

∫ ∞
0

dk

Φ(k)−1 − 1 + r

a1 =
r

2π

∫ ∞
0

k2dk

Φ(k)−1 − 1 + r
(19)
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FIG. 1: (Color online) Ps(x) for the Gaussian jump pdf for
different values of the probability of resetting r. The results
calculated from Eq. (11) have been drawn with symbols σ =
1. The solid curves indicate the approximations to the tails
and the central part of Ps(x).

In Figure 1 we plot the stationary state reached when
the jump pdf obeys a Gaussian distribution Φ(x) =
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[σ
√

2π]−1 exp(−x2/2σ2). It is seen how the stationary
distribution is more peaked around x = 0 as r tends to
1, i.e., as the probability of reseting increases. The lines
in the tails correspond to the exponential decay predicted
by Eq. (17). Likewise, the lines of the central part cor-
respond to the approximated solution given in Eq. (18).

We consider now the case of a Lévy distribution for
jumps for which Φ(k) = e−σ

µ|k|µ , with 1 ≤ µ ≤ 2. Since
0 < Φ(k) < 1 then we can convert the right hand side of
(10) into the sum

Ps(k) =
r

1− r

∞∑
j=1

(1− r)jΦ(k)j

=
r

1− r

∞∑
j=1

(1− r)je−jσ
µ|k|µ

=
r

σ(1− r)

∞∑
j=1

(1− r)jj−1/µLµ
[
|x|
σj1/µ

]
,(20)

where Lµ[x] is the normalized Lévy density defined by

Lµ

[
|x|
σ

]
= σ

∫ ∞
−∞

e−ikx−σ
µ|k|µdx.

Expression (20) can be written in terms of Fox functions
Hp,q
n,m(z) [10] in the form

Ps(x) =
rπ

µ(1− r)|x|

×
∞∑
j=1

(1− r)jH1,1
2,2

[
|x|
σ
j
−1
µ

∣∣∣∣ (1, 1
µ ), (1, 12 )

(1, 1), (1, 12 )

]

=
rµ

(1− r)|x|

∞∑
n=1

a(r, n, µ)

(
σ

|x|

)nµ
(21)

for |x| � σ, where

a(r, n, µ) ≡ (−1)n+1Γ(nµ)

(n− 1)!
sin
(nµπ

2

) ∞∑
j=1

jn(1− r)j .

The tail of this stationary distribution behaves as

Ps(x) ' Γ(µ) sin(πµ/2)

r

σµ

|x|µ+1
, (22)

just as the Lévy distribution in the real space. So, unlike
the case where the jump pdf has finite moments the tail
decays as that of the stationary distribution. In Figure 2
we repeat the same analysis as for Figure 1 but now for
a Cauchy distribution

Φ(x) =
a/π

x2 + a2
,

which corresponds to a Lévy distribution with µ = 1 and
σ = a. The lines showed in the Figure 2 correspond to
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FIG. 2: (Color online) Left panel: Ps(x) (symbols) for the
Cauchy jump pdf for different values of the probability of re-
setting r. The symbols correspond to the solutions calculated
from Eq. (11) taking a = 1. Right panel: Log-log plot for
Ps(x) for the Cauchy jump pdf for different values of the prob-
ability of resetting r. The solid curves have been calculated
from Eq. (11) taking a = 1.

the approximations for small x prescribed in Eq. (18).
Again, the stationary distribution is more peaked around
x = 0 for higher values of r and the tails decay heavily.
To study more accurately the behaviour of the tails we
show in Figure 2 (right) the tails for the same curves in
a log-log scale.

The flux density j(x, t) also decays towards a station-
ary value js(x) in the limit t→∞ but when the waiting
time pdf has finite moments only. From Eq. (5), and
proceeding in the same way as we have done for P (x, t),
the stationary flux density reads

js(x) =
r

2π〈t〉

∫ ∞
−∞

eikxdk

1− (1− r)Φ(k)
. (23)

If Φ(x) is exponentially distributed as in Eq. (16) then
from (23) we find the exact solution

js(x) =
(1− r)

√
r

2〈t〉λ
e−
|x|
λ

√
r +

r

〈t〉
δ(x). (24)

Additionally, we consider again the case of a Lévy dis-
tribution for the jump pdf to compute the flux density
at the stationary state. The trick is to convert the inte-
grand of Eq. (23) into a sum and then take the inverse
Fourier transform to end up with

js(x) =
r

σ〈t〉

∞∑
j=0

(1− r)j

j1/µ
Lµ

[
|x|
σj1/µ

]
(25)

Note that in all cases the flux density diverges at x = 0
due to the effect of incoming particles from resetting, ex-
cept trivially for r = 0 (this is, when we remove reset-
ting).
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C. MSD

To compute the MSD we have to assume that Φ(x) has
finite moments. By using Eq. (6) we have

〈
x2(s)

〉
= −[∂kkP (k, s)]k=0 =

〈
l2
〉

s[1− (1− r)ϕ(s)]
, (26)

where
〈
l2
〉

is the second moment of Φ(x), i.e.
〈
l2
〉

=
[Φ′′(k)]k=0. If we consider the Markovian case where
the waiting-time pdf is exponentially distributed, i.e.
ϕ(t) = τ−1e−t/τ (or, equivalently, ϕ(s) = [1 + sτ ]−1),
then employing Eq. (26) it follows

〈
x2(t)

〉
=

〈
l2
〉
r

[
1− (1− r)e−rt/τ

]
. (27)

This shows an exponential convergence to the asymp-
totic value

〈
l2
〉
/r with a characteristic relaxation time

τ/r.
Let us now consider the non-Markovian case where the

waiting -time pdf decays as a power law in time. In the
large time limit (s → 0) we consider ϕ(s) ' 1 − (sτ)γ .
Then, (26) reads

〈
x2(t)

〉
=

〈
l2
〉

(1− r)τγ
tγEγ,γ+1

(
− rtγ

(1− r)τγ

)
. (28)

Using the expansion in (14) into (28) leads to the result

〈
x2(∞)

〉
=

〈
l2
〉
r

(29)

which is independent of the anomalous exponent. This
result illustrates that the MSD converges to the above
result when t → ∞. On the other hand we can check
that this result is precisely equal to the second moment
of the pdf Ps(x). By its definition, the second moment is

〈
x2(∞)

〉
=

∫ ∞
−∞

x2Ps(x)dx = −[∂kkP (k,∞)]k=0 =

〈
l2
〉
r

where we have used (10). The expression (29) corrob-
orates the result that if Φ(x) lacks finite moments then
the same happens for the stationary distribution too. In
Figure 3 we plot the MSD computed from Eq. (28). The
relaxation to the asymptotic value given by Eq. (29)
follows the power law t−γ . As a result the relaxation
is governed by the value of the exponent γ, as can be
checked in Figure 3 for values from γ = 0.8 to γ = 0.4.

IV. VELOCITY MODEL

A. Stationary state

Here Ψ(x, t) = Φ(x|t)ϕ(t) is the joint probability of
performing a movement of length |x| = v0t with constant
speed v0 during time t. So, the quantity Φ(x|t) is the
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FIG. 3: (Color online) Plot of the MDS relaxing to the
asymptotic value

〈
l2
〉
/r. In this case the jump pdf has fi-

nite moments but the waiting-time pdf is a power-law. Here
τ =

〈
l2
〉

= 1, r = 0.1.

conditional probability to perform a movement of dura-
tion t to the right or left with probability 1/2 and with
length v0t. Therefore,

Ψ(x, t) =
1

2
[δ(x− v0t) + δ(x+ v0t)]ϕ(t)

=
1

2v0
δ

(
t− |x|

v0

)
ϕ(t) (30)

The probability of having completed a movement of dis-
tance x is Φ(x), and can be computed from (30)

Φ(x) =

∫ ∞
0

dtΨ(x, t) =
1

2v0
ϕ

(
|x|
v0

)
. (31)

On the other hand,

φ(x, t) ≡ 1

2
[δ(x− v0t) + δ(x+ v0t)]ϕ

∗(t) (32)

is just the probability that a single movement has not
finished yet after having traveled during a time t and
having covered (either to left or right) a distance v0t.

To compute the density at the steady state let us take
the limit s→ 0 in Eq. (4)

P (k, s) ' φ(k, s = 0)

1− (1− r)Ψ(k, s = 0)
lim
s→0

(
1 + r

ϕ(s)

1− ϕ(s)

)
= F (k) lim

s→0

(
1 + r

ϕ(s)

1− ϕ(s)

)
, (33)

where we have defined

F (k) ≡ −Im ϕ(ikv0)

kv0 [1− (1− r)Re ϕ(ikv0)]
(34)

Consider the case where the pdf of movement durations
has finite moments. In the large time limit we can use
the expansion ϕ(s) ' 1− s〈t〉, so in this case

lim
s→0

(
1 + r

ϕ(s)

1− ϕ(s)

)
' r

〈t〉s
+ ... (35)
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Inverting by Fourier (33) and taking into account (34)
and (35), the general expression for the stationary state
reads

Ps(x) =
r

π〈t〉

∫ ∞
0

cos(kx)F (k)dk (36)

If we want to investigate the tail of the stationary dis-
tribution we have to take the large time limit which in
this case is equivalent to the large space limit, since both
variables are coupled through v0. Considering that the
pdf of movement durations has finite moments, in the
large time limit it can be written as ϕ(s) ' 1 − s〈t〉 +
s2〈t2〉/2. After inserting this into (34) we get

F (k) =
1

r + 1
2 (1− r)〈t2〉k2v20

.

Introducing this result into (36) we finally obtain

Ps(x) '
√
r√

2(1− r)〈t2〉v0
exp

(
−

√
2r√

(1− r)〈t2〉v0
|x|

)
.

(37)
This is the stationary distribution for a velocity model

when |x| is large. Unlike the jump model, in the velocity
model the Ps(x) depends also on the second moment of
the movement duration pdf due to the time-space cou-
pling.
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FIG. 4: (Color online) Stationary distribution (symbols) for a

pdf movement durations ϕ(t) = te−t/τ/τ2 for different values
of r. v0 = τ = 1.

In Figure 4 we have plotted the exact results given by
the Eq. (36) when we make use of the Gamma distri-
bution ϕ(t) = te−t/τ/τ2. The lines in the tails corre-
spond to the theoretical asymptotic result predicted by
Eq. (37), and the lines at the central part of the distri-
butions are computed through Ps(x) ' a2 − a3x2, where

a2 =
r

π〈t〉

∫ ∞
0

F (k)dk

a3 =
r

π〈t〉

∫ ∞
0

k2F (k)dk.

This is the highest-order possible approximation to the
central part since the integrals∫ ∞

0

knF (k)dk

diverge for n > 2.
Consider now a non-Markovian example with a power-

law pdf of movement durations ϕ(s) = [1 + (sτ)γ ]−1. In
this case

lim
s→0

(
1 + r

ϕ(s)

1− ϕ(s)

)
' r

(sτ)γ
+ ...

After simplifying (33) we find

P (k, s) ' 1

(sτ)γ
(kτv0)γ−1 sin(πγ/2)

1 + 1+r
r cos(πγ/2)(kτv0)γ + r−1(kτv0)2γ

.

By inverting the Laplace transform, the factor (sτ)−γ

turns into a factor tγ−1 which tends to 0 as t→∞ since
0 < γ < 1. Then, when the pdf of movement durations
lacks finite moments there is no stationary state and the
relaxation to the stationary state Ps(x) = 0 follows the
power-law decay tγ−1.

B. MSD

We finally explore the behaviour of the MSD when the
pdf of movement durations and the pdf of movement dis-
tances have or does not have finite moments. Starting
from the general expression (4) we find after some calcu-
lations〈

x2(s)
〉

= −[∂kkP (k, s)]k=0

= v20

[
(ϕ∗(s))′′

1− ϕ(s)
+

1− r
s

ϕ′′(s)

1− (1− r)ϕ(s)

]
(38)

where the symbol ′′ means second derivative respect to
s. For the case of movement duration pdf’s with finite
moments we consider the asymptotic expansion ϕ(s) '
1− s 〈t〉+ s2

〈
t2
〉
/2− s3

〈
t3
〉
/6. Hence, in the large time

limit Eq. (38) reduces to

〈
x2(∞)

〉
= v20

(〈
t3
〉

3 〈t〉
+

1− r
r

〈
t2
〉)

. (39)

For the case of the exponential distribution ϕ(t) =
e−t/τ/τ we have seen that there exists a stationary state
so it is expected that the MSD tends to a constant. To
find the time dependence of the MSD we make use of
(38) and get

〈
x2(t)

〉
=

2v20τ
2

r

(
1 +

re−t/τ − e−rt/τ

1− r

)
(40)
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Performing the limit t→∞ we find

〈
x2(∞)

〉
=

2v20τ
2

r
.

This result equals the second moment of the pdf at the
stationary state as already happened in the jump model.
Effectively, from (34) we have

F (k) =
τ

r + k2v20τ
2

and together with (36)

〈
x2(∞)

〉
=

∫ ∞
−∞

x2Ps(x)dx

=

√
r

v0τ

∫ ∞
0

x2e−x
√
r

v0τ dx =
2v20τ

2

r
. (41)

Finally, let us consider the case of Lévy walks. They
are random walks where the displacements are performed
with finite velocity but the jump distribution or the
movement duration pdf (lined through Eq. (31)) have
tails which decay according to power-laws, so higher-
order moments are lacking. For example the pdf ϕ(s) =
[1 + (sτ)γ ]−1, with 0 ≤ γ ≤ 1, lacks all moments includ-
ing its mean value. If we insert this expression into Eq.
(38) we find

〈
x2(t)

〉
=

(2− γ)(1− γ)

2
v20t

2 as t→∞

which corresponds to a ballistic transport regime. This
behavior is due to the fact that the probability density of
particles P (x, t) is a sandwich between two ballistic peaks
located at x = ±v0t. Another possibility is to consider
ϕ(s) ' 1 − s〈t〉 + Asµ with 1 < µ < 2. In this case
there exists the first moment (but not the second-order
or higher). Calculation of the MSD for this case gives
from Eq. (38) a superdiffusive behaviour

〈
x2(t)

〉
=

(2− µ)(1− µ)

Γ(4− µ)〈t〉
v20At

3−µ as t→∞.

Again, the result does not depend on the probability of
resetting explicitly because the asymptotic behaviour is
dominated by the fraction of particles which have not ex-
perienced resetting yet. So, in both cases studied (and
in general for Lévy walks) we find that there is no sta-
tionary state, contrary to what happened for the case of
Lévy flights.

V. SUMMARY

In this work we have studied the conditions for the
existence of a resetting-induced stationary state and so
a saturation value for the MSD in the case of a jump
model where jumps distances and waiting times are in-
dependent random variables and the walker is submitted
to stochastic resetting with probability r. The tail of
the stationary distribution is exponential if the jump pdf
has finite moments but when the jumps pdf decays as a
power law the stationary pdf also decays as a power-law
with the same exponent. The MSD grows exhibiting an
exponential saturation if the waiting time pdf has finite
moments or saturates as a power law in time if the wait-
ing time pdf also decays as a power-law. The saturating
value is always 〈l2〉/r, where 〈l2〉 is the second moment of
the jump pdf. In consequence, the finiteness of the sec-
ond moment (at least for isotropic motion) determines
the saturation of the MSD. The situation under advec-
tive or biased movement will require further examination
and will be the focus of a forthcoming work.

In the velocity model, where the movement of the
walker is performed at constant speed v0, the movement
duration pdf defined univocally the jump displacement
pdf. When the movement duration pdf has finite mo-
ments there is a stationary state with again an expo-
nential tail and the MSD saturates always to the value
2v20τ

2/r. When it lacks first or second order moments, as
for the Lévy walks case, there is no stationary state and
the MDS grows ballistically or superdiffusively, respec-
tively. This is a consequence of our choice of resetting
subordinated to displacements; we note that implement-
ing resetting as an independent process of motion (as
was done, for example, in [11] or [6]) then the stationary
state will emerge (both for jump and velocity models)
whenever the mean time for resetting is finite.
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