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Abstract

Assuming AD + DC, the hierarchy of norms is a wellordered structure of equiv-
alence classes of ordinal-valued maps. We define operations on the hierarchy
of norms, in particular an operation that acts as multiplication of the ranks
of norms, and use these operations to establish a considerably improved lower
bound for the length of the hierarchy of norms.

1. Introduction

As usual in set theory, we refer to the elements of Baire space ωω as real
numbers and use the notation R for ωω. A surjective function ϕ from R onto
some ordinal α is called a norm. In analogy to the usual Wadge ordering of
sets of reals, we can order the norms by setting ϕ ≤N ψ if and only if there
is a continuous f : R → R such that for all x ∈ R, we have ϕ(x) ≤ ψ(f(x)).
The First Periodicity Theorem [1] shows that in the theory ZF+AD+DC, this
ordering is a prewellordering (cf. Theorem 3).

As a consequence, in ZF + AD + DC, we can define an ordinal Σ, the length
of the hierarchy of norms, to be the order-type of ≤N. Defining as usual Θ :=
sup{α ; there is a surjection from R to α}, the second author proved in [6,
Corollary 3 and Theorem 5] that Θ2 ≤ Σ < Θ+.

In this paper, we shall improve the lower bound to Θ(ΘΘ). In § 2, we give
the basic definitions needed for this paper. The structure theory of the Wadge
hierarchy will serve as a template for the later sections; in § 3, we give a brief
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overview of this structure theory. One particularly important notion in this
context is the notion of self-duality; in § 4, we introduce the analogous notion
for the hierarchy of norms and some basic operations that are specific for the
hierarchy of norms. In § 5, we discuss operations on the hierarchy of norms that
can be directly transferred from the Wadge hierarchy (such as addition).

The heart of the paper are §§ 6 and 7, where we define a multiplication
operation for the hierarchy of norms (which is the analogue of the operation for
the Wadge hierarchy defined by Steel in [7, § III.D]) and prove the main theorem
about it (Theorem 22). Finally, in § 8, we apply the main theorem to get the
improved lower bound for Σ (Theorem 27) and finish with some open questions.

The content of this paper is based on the first author’s Master’s thesis [3].

2. Basic definitions & properties

Our axiomatic framework will be ZF; if we assume additional axioms, we
shall state them explicitly.

Our main object of study will be the set of functions from the reals to Θ,
i.e., ΘR. We write

lh(ϕ) := sup{α+ 1 ; α ∈ ϕ[R]}

for the length of a function ϕ : R → Θ. A function ϕ is called a weak norm if
lh(ϕ) < Θ. We have the following fact:

Lemma 1. The ordinal Θ is singular if and only if there is some ϕ : R → Θ
with lh(ϕ) = Θ; thus, Θ is regular if and only if the set of weak norms coincides
with ΘR.

Proof. If cf(Θ) = α < Θ, then there are a cofinal f : α→ Θ and a surjection g :
R→ α, thus lh(f ◦ g) = Θ. Conversely, if ϕ : R→ Θ, then α := otyp(ran(ϕ)) <
Θ by definition of Θ. For β < α, we define f(β) to be the βth element of ran(ϕ).
If lh(ϕ) = Θ, then f : α→ Θ is cofinal, and hence cf(Θ) ≤ α < Θ.

A weak norm is called a norm if its range is an ordinal. If ϕ is a norm, then
lh(ϕ) = ran(ϕ). We denote the set of weak norms by wN and the set of norms
by N .

A relation is called a preorder if it is transitive and reflexive. If ≤ is a
preorder on a set X, then we can define the corresponding equivalence relation
≡ by a ≡ b :⇔ a ≤ b ∧ b ≤ a for all a, b ∈ X, and the corresponding strict
preorder relation < by a < b :⇔ a ≤ b ∧ ¬a ≡ b for all a, b ∈ X. A preorder
≤ induces a partial order on the ≡-equivalence classes; we denote this partial
order with the same symbol ≤.

As mentioned before, for ϕ,ψ ∈ ΘR, we write ϕ ≤N ψ if and only of there is
a continuous f : R → R such that for all x ∈ R, we have ϕ(x) ≤ ψ(f(x)). We
write ϕ ≤NL ψ if there is a Lipschitz function with the same property. These
relations are preorders and we denote the corresponding equivalence relations
by ≡N and ≡NL and their corresponding strict preorder relations by <N and
<NL.
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It is easy to see that if lh(ϕ) < lh(ψ), then ϕ <NL ψ; furthermore, any two
norms of length α+1 for some α are Lipschitz-equivalent. As usual, for x, y ∈ R,
we define their Turing sum x ∗ y as follows:

(x ∗ y)(n) :=

{
x(k), if n = 2k,

y(k), if n = 2k + 1.

Proposition 2. For any weak norm ϕ there is a norm ψ such that lh(ϕ) = lh(ψ)
and ϕ ≡N ψ.

Proof. Let α := lh(ϕ) and let π : R � α+ 1 be a surjection. Then the following
ψ : R→ Θ is a norm as claimed:

ψ(x ∗ y) :=

{
π(x), if π(x) ≤ ϕ(y),

ϕ(y), otherwise.

The relations ≤N and ≤NL can be defined in terms of games as follows:
let R be any binary relation on ordinals and let ϕ,ψ ∈ N . Then we define
GR

W(ϕ,ψ) as follows: players I and II play by turns; player I always plays a
natural number, and player II plays either a natural number or a special token
p, which shall symbolize passing a turn. Player II loses if she plays only finitely
many natural numbers. Otherwise, let a ∈ R be the sequence of moves of player
I and let b ∈ R be the sequence of natural number moves of player II. Then
player II wins if and only if 〈ϕ(a), ψ(b)〉 ∈ R. The game GR

L (ϕ,ψ) is the special
case where player II is not allowed to play p-moves at all.

It is immediate that ϕ ≤N ψ if and only if Player II has a winning strategy
in G≤W(ϕ,ψ) and ϕ ≤NL ψ if and only if Player II has a winning strategy

in G≤L (ϕ,ψ). Via this game representation, the proof of the First Periodicity
Theorem yields:

Theorem 3. Assume AD and DC. Then both (ΘR,≤N) and (ΘR,≤NL) are
prewellorders, i.e., ≤N and ≤NL are linear and well-founded.

We let 〈λα ; α < Θ〉 be the strictly increasing sequence of all limit ordinals
below Θ. If AD + DC holds, we write |ϕ|N and |ϕ|NL for the ranks of ϕ in the
wellfounded relations given by Theorem 3. For α < Θ, we define

Σα := sup{|ϕ|N ; lh(ϕ) ≤ λα}

and Σ :=
⋃
{Σα ; α < Θ}. By Proposition 2, it does not matter whether we

take the supremum over all norms or over all weak norms as the structures

({ϕ ∈ N ; lh(ϕ) ≤ λα}/≡N,≤N) and ({ϕ ∈ wN ; lh(ϕ) ≤ λα}/≡N,≤N)

are isomorphic via the inclusion function. We call (N/≡N,≤N) the hierarchy
of norms and (N/≡NL,≤NL) the Lipschitz hierarchy of norms; the ordinal Σ is
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the length of the hierarchy of norms. As stated in Lemma 1, if (and only if) Θ
is regular, then wN = ΘR, and hence under the assumption of AD + DC+“Θ is
regular”, otyp(ΘR/≡N,≤N) = Σ.

The stratification of Σ in terms of the Σα is an important feature of the
hierarchy of norms (that does not have an analogue in the Wadge hierarchy)
and was used in [6, Theorem 4] to give the lower bound of Θ2. We shall illustrate
this in the following argument which is implicit in the proof of the main result
[6, Corollary 3]:

In [6, Lemma 4], it was proved that there is a function (·)+ : N → N such
that for any norm ϕ we have that lh(ϕ) = lh(ϕ+) and ϕ <N ϕ+. We say that a
norm ϕ is embedded in a norm ψ iff there is some x ∈ R such that for all y ∈ R,
ψ(x ∗ y) = ϕ(y). It is easy to see that if ϕ is embedded in ψ, then ϕ ≤NL ψ.

Lemma 4. Let α, β < Θ be arbitrary. Then there is a strictly ≤N-increasing
sequence 〈ϕν ; ν < α〉 of norms such that for all ν < α we have lh(ϕν) = λβ.

Proof. We fix a surjection s : R � α and a norm ϕ with lh(ϕ) = λβ . Then we
define ϕν for ν < α recursively as follows. We set ϕ0 := ϕ. For ν 6= 0 we first
define a norm ϕ∗ν by setting for all x, y ∈ R:

ϕ∗ν(x ∗ y) :=

{
ϕs(x)(y), if s(x) < ν,

ϕ(y), otherwise.

Based on this we let ϕν := (ϕ∗ν)
+

. It is clear that lh(ϕν) = lh(ϕ) = λβ for all
ν < α. Furthermore for any ν < α and any ξ < ν we have that ϕξ is embedded
in ϕ∗ν and so we get that ϕξ ≤NL ϕ

∗
ν <N (ϕ∗ν)+ = ϕν .

It is crucial here that the operations used in the definition of the sequence do
not change the length of the norms, and therefore produce a sequence below Σβ ,
thus inductively giving Σβ ≥ Θ · β, and consequently Σ ≥ Θ2 (cf. [6, Theorem
4]).

To conclude this section we introduce a few pieces of general notation that
we shall use in the following. Let s be a finite or countable sequence of natural
numbers (i.e., s ∈ ω<ω or s ∈ R) and n ∈ ω. Then we denote by s + n the
sequence obtained by increasing each member of s by n. Let s be a finite
sequence and x a finite or countable sequence. Then sax refers to the sequence
obtained by concatenating s with x. For K ≤ ω we use 0(K) to denote the
sequence of length K that is constantly 0.

Let s ∈ ω<ω and p ∈ ΘR. Then we define ϕbsc : R → Θ by setting for all
x ∈ R

ϕbsc(x) := ϕ(sax).

Finally, if τ and σ are strategies for Players I and II, respectively, in an
infinite game, and if x and y are infinite plays for Players I and II, respectively,
we write (x ∗ σ)II for the play of Player II resulting from playing according to
σ against x and (τ ∗ y)I for the play of Player I resulting from reacting to y
according to τ .
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3. Operations for the Wadge hierarchy

Since our main result is motivated by an analogous result for the Wadge
hierarchy, we shall give an overview of the basic structure theory of the Wadge
hierarchy in this section. The theorems in this section are due to Wadge, Steel
and Van Wesep. The organization of this section follows very closely an unpub-
lished monograph by Alessandro Andretta.

As usual, we denote Lipschitz and Wadge reducibility by ≤L and ≤W, re-
spectively. These are preorders on ℘(R), and we call their quotient structures
modulo their corresponding equivalence relations the Lipschitz hierarchy and
the Wadge hierarchy, respectively. Assuming AD + DC, these hierarchies are
well-founded (by the Martin-Monk Theorem, cf. [2, Corollary 9]). Although
these hierarchies are not linear, they satisfy the so-called Semi-Linear Ordering
Principle that is the statement of the following theorem (which in particular
implies that antichains in the Wadge hierarchy cannot have more than two ele-
ments):

Theorem 5. Assume AD. Let A,B ⊆ R. Then either A ≤W B or R\B ≤W A.
An analogous result holds for ≤W replaced by ≤L. [10, Theorem IV.1]

We call A L-self-dual iff A ≡L R \A. We call A W-self-dual iff A ≡W R \A.
The nontrivial antichains are all of the form ([A]L , [R \A]L) in the Lipschitz
hierarchy or ([A]W , [R \A]W) in the Wadge hierarchy for some set A ⊆ R,
i.e., they consist of the equivalence classes for a non-self-dual set and for its
complement. These two notions of self-duality coincide, and we can use the
word “self-dual” to refer to both L-self-duality and W-self-duality:

Theorem 6 (Steel-Van Wesep). Assume AD. Let A ⊆ R. Then A is L-self-dual
iff A is W-self-dual. [9, Theorem 3.1]

Self-duality is crucial for the structure theory of the Wadge hierarchy since
many of the properties of operations on the Wadge hierarchy depend on whether
you apply them to self-dual or non-self-dual sets:

Definition 7. Let A,B ∈ ℘(R), 〈Ai ; i ∈ ω〉 ∈ (℘(R))ω.

1. A⊕B := {〈2n〉aa ; n ∈ ω, a ∈ A} ∪ {〈2n+ 1〉ab ; n ∈ ω, b ∈ B}.

2.
⊕

n∈ω An := {〈n〉aa ; n ∈ ω, a ∈ An}.

3. A? := {0(n)a 〈m+ 1〉aa ; n,m ∈ ω, a ∈ A}.

4. A◦ := A? ∪ {0(ω)}.

5. A�B := {(s+ 1)a 〈0〉aa ; s ∈ ω<ω, a ∈ A} ∪ {b+ 1 ; b ∈ B}.

6. A] := {sa 〈0〉a(a+ 1) ; s ∈ ω<ω, a ∈ A} ∪ {a+ 1 ; a ∈ A}.

7. A[ := A] ∪ {x ∈ R ; ∃∞n(x(n) = 0)}.

Proposition 8. Assume AD and DC. Let A,B ∈ ℘(R), 〈Ai ; i ∈ ω〉 ∈ (℘(R))ω.
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1. Then
∣∣⊕

n∈ω An
∣∣
L

= supn∈ω |An|L. If, furthermore, for all n ∈ ω there is
m ∈ ω such that An <L Am, then

⊕
n∈ω An is self-dual. [10, Theorems

V.1 & V.2]

2. If A is non-self-dual, then |A⊕ (R \A)|W = |A|W + 1 and A⊕ (R \A) is
self-dual. [9, Lemma 2.3]

3. If A is self-dual, then |A?|W = |A◦|W = |A|W + 1 and ([A?]W , [A◦]W) is
a non-self-dual pair. [10, Theorem V.6]

4. If A is self-dual, then |A�B|W = |A|W + 1 + |B|W. [10, Proposition V.7
& Theorems V.8 & V.9]

5. If A is self-dual, then
∣∣A]∣∣

W
=
∣∣A[∣∣

W
= |A|W · ω1 and (

[
A]
]
W
,
[
A[
]
W

) is
a non-self-dual pair. [10, Theorems V.16 & V.17]

In his doctoral dissertation, Steel introduced an operation that acts as mul-
tiplication on Wadge ranks [7, Definition III.D.6]:

Definition 9. We define three binary relations M1,M2,M3 on R as follows:

M1(x, y) :⇔ ∃n ∈ ω∃〈s0, . . . , s2n〉 ∈ (ω<ω \ {∅})2n+1

[x = (s0 + 1)a 〈0〉a(s1 + 1)a 〈0〉a . . .a 〈0〉a(s2n + 1)a 〈0〉a(y + 1)]

M2(x, y) :⇔ x = y + 1∨
∃n ∈ ω∃〈s0, . . . , s2n+1〉 ∈ (ω<ω \ {∅})2n+2∃z ∈ R
[x = (s0 + 1)a 〈0〉a(s1 + 1)a 〈0〉a . . .a 〈0〉a(s2n+1 + 1)a 〈0〉a(z + 1)

∧ y = s0
as2

a . . .as2n
az]

M3(x, y) :⇔ ∃〈si ; i ∈ ω〉 ∈ (ω<ω \ {∅})ω

[x = (s0 + 1)a 〈0〉a(s1 + 1)a 〈0〉a . . .a 〈0〉a(sn + 1)a . . .

∧ y = s0
as2

as4
a . . . ]

Now let A,B ∈ ℘(R). Then

A�B := {x ∈ R ; ∃a ∈ A(M1(x, a))} ∪ {x ∈ R ; ∃b ∈ B(M2(x, b) ∨M3(x, b))}.

Using the concept of backtrack reducibility introduced in Van Wesep’s doc-
toral dissertation [8, § II.3], Steel proved:

Proposition 10. Assume AD and DC. Let A,B ∈ ℘(R), A self-dual and B
such that |B|W is a limit ordinal of uncountable cofinality. Then

|A�B|W = |A|W · ω1 · |B|W .

[7, Theorem III.D.4]
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4. Self-duality in the hierarchy of norms

The aim of the remainder of this paper will be to translate the operations
introduced in § 3 to the hierarchy of norms in order to show that the length of this
hierarchy is closed under the corresponding ordinal operations. By Proposition
2, we can work with weak norms instead of norms (i.e., we do not need to make
sure that the operations preserve surjectivity).

We stressed in § 3 that some of the operations in the Wadge case use that
Wadge degrees come in two types: self-dual degrees and non-self-dual degrees.
In the Wadge hierarchy, non-self-dual pairs were the two-element antichains.
But the hierarchy of norms is linear and hence does not have any two-element
antichains. Consequently, we shall need a different notion of self-duality.

Our notion is a special case of the general notion of self-duality for Wadge-
like hierarchies on sets of functions from R to a fixed better quasi-order (BQO)
from [5, Definition 5]. In the context of the hierarchy of norms, it was studied
by Duparc in [4], where, however, the term “self-dual” was not used.

Definition 11. Let ϕ be a weak norm. Then ϕ is L-self-dual if and only if
Player II wins the game G<

L (ϕ,ϕ). We call ϕ W-self-dual if and only if Player
II wins the game G<

W(ϕ,ϕ).

We have an analogue of the Steel-Van Wesep Theorem in this context:

Theorem 12. Assume AD. Let ϕ be a weak norm. Then ϕ is L-self-dual if
and only if ϕ is W-self-dual.

Proof. Assume towards a contradiction that ϕ is W-self-dual, but not L-self-
dual. We take winning strategies for Player II in the games G<

W(ϕ,ϕ), G≤W(ϕ,ϕ)
and, using AD, a winning strategy for Player I in the game G<

L (ϕ,ϕ). Using
these winning strategies we play a global game exactly as in the proof of the
Steel-Van Wesep Theorem for the Wadge hierarchy in [9, Theorem 3.1]. From
this global game we then obtain a set of reals {xn ; n ∈ ω} such that ϕ(xn+1) <
ϕ(xn), which gives us an infinitely descending chain of ordinals.

As in the Wadge case, we drop the designations “W-” and “L-” in light of
Theorem 12 and just speak of “self-dual” and “non-self-dual” norms. In [4],
Duparc proves a number of useful facts about these notions restricted to Borel
weak norms; however, the proofs immediately translate to the hierarchy of weak
norms under the assumption of AD:

Proposition 13 (Duparc). Assume AD. Let ϕ,ψ be weak norms such that ψ
is non-self-dual. Then ϕ <N ψ if and only if Player II wins G<

W(ϕ,ψ). Also
ϕ <NL ψ if and only if Player II wins G<

L (ϕ,ψ). [4, Remark 5.b]

Corollary 14. Assume AD. Let ϕ,ψ be weak norms such that ϕ is non-self-
dual. Then ϕ ≡NL ψ if and only if ϕ ≡N ψ.

Proof. Assume that ϕ ≡N ψ, but ϕ <NL ψ. Then ψ is non-self-dual and so
Player II has a winning strategy in G<

L (ϕ,ψ). But with the same winning
strategy, Player II can also win G<

W(ϕ,ψ) and so ϕ <N ψ, contradicting ϕ ≡N

ψ.
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For any weak norm ϕ we define the tree T(ϕ) ⊆ ω<ω by

T(ϕ) := {s ∈ ω<ω ; ϕbsc ≡N ϕ}.

For weak norms ϕi for i ∈ ω, we define a weak norm
⊕

n∈ω ϕn by setting for
any n ∈ ω and x ∈ R: [⊕

n∈ω
ϕn

]
(〈n〉ax) = ϕn(x).

Proposition 15 (Duparc). Assume AD. Let ϕ be a weak norm.

1. The function ϕ is non-self-dual if and only if T(ϕ) is ill-founded [4, Propo-
sition 10].

2. If ϕ is self-dual, then there is a sequence 〈ϕi ; i ∈ ω〉 of non-self-dual weak
norms such that ϕ ≡W

⊕
n∈ω ϕn [4, Proposition 15].

3. Assume DC. Let 〈ϕi ; i ∈ ω〉 be a sequence of non-self-dual weak norms.
Then

∣∣⊕
n∈ω ϕn

∣∣
N

= supn∈ω |ϕn|N [4, Claim 17].

4. Assume DC. Then ϕ is self-dual if and only if |ϕ|N is a limit ordinal of
countable cofinality [4, Proposition 16].

Lemma 16. Assume AD and DC. Let 〈ϕi ; i ∈ ω〉 be a sequence of weak norms
such that for all m ∈ ω there is n ∈ ω such that ϕm <L ϕn. Then∣∣∣∣∣⊕

i∈ω
ϕi

∣∣∣∣∣
NL

= sup
i∈ω
|ϕi|NL .

Proof. Similar to the proof of [4, Proposition 15].

5. Basic operations on the hierarchy of norms

In the following, we shall give a list of operations on the hierarchy of norms
used in this paper; for a real x such that there are infinitely many n ∈ ω with
x(n) 6= 0, we write unstretch(x) to denote the real y obtained by erasing all
occurrences of 0 from x and decreasing all remaining members of the sequence
by 1.

Definition 17. Let ϕ,ψ be weak norms, n ∈ ω \ {0}, α < ω1, and x ∈ R. We
define

ϕsucc(x) :=

{
ϕ(unstretch(x)) + 1, if ∃∞n ∈ ω(x(n) 6= 0),

0, otherwise;

ϕ+n(x) :=

{
ϕ(unstretch(x)) + n, if ∃∞n ∈ ω(x(n) 6= 0),

n− 1, otherwise;
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ϕ+ω(〈n〉ax) :=

{
ϕ(unstretch(x)) + n, if ∃∞n ∈ ω(x(n) 6= 0),

n, otherwise;

ϕ∨(〈n〉ax) := ϕ(x) + n;

(ϕ+ 1)(x) := ϕ(x) + 1;

ϕstretch(x) :=

{
ϕ(unstretch(x)), if ∃∞n ∈ ω (x(n) 6= 0),

0, otherwise;

(ϕ� ψ)(x) :=

{
ϕ(y), if there is s ∈ ω<ω such that x = (s+ 1)a 〈0〉ay,
ψ(y), if x = y + 1;

ϕ](x) :=


ϕ(y), if ∃s ∈ ω<ω(x = sa 〈0〉a(y + 1)),

ϕ(y), if x = (y + 1),

0, if ∃∞n ∈ ω(y(n) = 0).

Lemma 18. We assume AD and DC; let ϕ and ψ be weak norms.

1. We have that |ϕsucc|N = |ϕ|N + 1 and ϕsucc is non-self-dual.

2. For any n ≥ 1, we have that |ϕ+n|N = |ϕ|N + n.

3. We have that ϕ+ω ≡NL

⊕
n∈ω ϕ

+(n+1). As a consequence, |ϕ+ω|N =
|ϕ|N + ω and ϕ+ω is self-dual.

4. If ϕ is non-self-dual, then ϕstretch ≡NL ϕ.

5. If ϕ is non-self-dual, then ϕ∨ ≡NL ϕ
+ω.

6. The operations � and (·)] are monotone: for any four weak norms ϕ,ϕ′,ψ,
ψ′ with ϕ ≤N ϕ′ and ψ ≤N ψ′ we have that ϕ�ψ ≤N ϕ′�ψ′ and ϕ] ≤ (ϕ′)].

7. If ϕ is self-dual, then |ϕ� ψ|N = |ϕ|N + 1 + |ψ|N.

8. If ϕ is self-dual, then ϕ] is non-self-dual and
∣∣ϕ]∣∣

N
= |ϕ|N · ω1.

9. We have that (ϕ])] ≡NL ϕ
].

Proof. The proofs of claims 1. to 6. are easy exercises for the reader (using
Proposition 15 and Lemma 16; furthermore, 4. is an auxiliary result to prove
5.). The proofs of claims 7. to 9. are analogous to the proofs for addition and the
sharp operation on the Wadge degrees which can be found in Wadge’s doctoral
dissertation [10, Theorems V.9 and V.17].

All operations in Definition 17 make only minor changes to the length of
a weak norm: if lh(ϕ), lh(ψ) ≤ λα and χ is the result of applying one of the
operations from Definition 17 to ϕ and ψ, then lh(χ) ≤ λα. Thus, Lemma
18 implies that the ordinals Σα are closed under ordinal addition and ordinal
multiplication with ω1.
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We stress that the first four operations are quite different from the case of the
Wadge hierarchy: in the Wadge hierarchy, self-dual and non-self-dual degrees
alternate, and therefore, the successor operation consists of the operations A 7→
A?, A 7→ A◦, and A 7→ A ⊕ (R \ A). In the hierarchy of norms, the operations
ϕ 7→ ϕsucc and ϕ 7→ ϕ+ω give a non-self-dual norm and a self-dual norm strictly
above a given arbitrary norm, respectively. This will be of central importance
in § 6.

The operations (ϕ,ψ) 7→ ϕ�ψ and ϕ 7→ ϕ] are straightforward adaptations
from the Wadge context (cf. § 3); the operations (·)stretch and (·) + 1 are purely
auxiliary.

If ~n : R → Θ is the constant function with range {n}, then |~n|N = n, and
hence

∣∣⊕
n∈ω ~n

∣∣
N

= ω. Thus, Proposition 18 gives that |ω̂1|N = ω1 for

ω̂1 :=

(⊕
n∈ω

~n

)]
.

We shall make use of ω̂1 in the following two sections.

6. Multiplication of norms

We now define the multiplication operation for the hierarchy of weak norms.

Definition 19. Let ϕ and ψ be weak norms. Then we define a weak norm
ϕ� ψ by setting for any x ∈ R:

(ϕ� ψ)(x) :=


ϕ(y), if M1(x, y),

ψ(y), if M2(x, y) or M3(x, y),

0, otherwise,

where M1,M2 and M3 are defined as in Definition 9.

As the operations defined in § 5 this definition is a straightforward adaptation
of Steel’s multiplication operation in the Wadge hierarchy. However, the proof
of our main result, Theorem 22, will not be a straightforward adaptation due
to the structural differences between the two hierarchies.

In this section, we give the motivation behind Steel’s (and our) definition of
the multiplication operation, together with a discussion of the basic notion of a
product conforming real, used in § 7. Our motivation follows the exposition in
Steel’s doctoral dissertation [7, Section III.D]; since it is not readily available,
we believe that repeating it here serves the reader.

We call an x ∈ R such that there is y ∈ R such that M1(x, y) or M2(x, y)
or M3(x, y) holds a product conforming real. It is easy to see that an x ∈ R is
product conforming if and only if x(0) 6= 0 and x contains no subsequent 0’s. We
can consider a product conforming real x = (s0 + 1)a 〈0〉a(s1 + 1)a 〈0〉a(s2 +
1)a 〈0〉a . . . as a scheme of sequences of natural numbers entered into two rows
as in

10



Row 1

Row 2

s0

l
s1

l
s2

l . . . . . .

,

where the s2n’s are entered into row 1, the s2n+1’s are entered into row 2 and
we use l to denote changes of the row (corresponding to 0’s in x).

Then we can understand, e.g., the game G≤L (χ, ϕ � ψ) as a game in which
Player I plays natural numbers and Player II builds up a two-row scheme of
sequences of natural numbers as above. Schematically a game of this form looks
as follows:

I

II
Row 1

Row 2

a0 a1 a2 a3 a4 a5 a6 a7 a8

b0 b1 l
c0 c1

l b2 l
c′0

. . . . . .

Then the winning conditions for G≤L (χ, ϕ � ψ) translate as follows, when we
denote Player I’s play in a given match by x:

Case 1 is that Player II settles for row 2 eventually, i.e., Player II plays as
in

Row 1

Row 2

a0 . . .
an l

c0 c1 . . . cm cm+1 . . . . . . .

Then let c ∈ R be the real entered into row 2 after Player II’s last change to
row 2. In this case Player II wins if and only if

χ(x) ≤ ϕ(c).

This case corresponds to M1.
Case 2 is that Player II settles for row 1 eventually, i.e., Player II plays as

in

Row 1

Row 2

a0 . . .
an an+1 . . . . . .

or Player II changes rows indefinitely as indicated in the following schematic

Row 1

Row 2

a0 . . .
an l

c0 . . . cm
l

an+1 . . . an′ l
c′0

. . . . . .

.

Then let a ∈ R be the real entered into row 1 throughout the whole match. In
this case Player II wins if and only if

χ(x) ≤ ψ(a).

This case corresponds to M2 and M3.
In all these considerations we neglected the possibility that Player II plays

a real that is not product conforming. But this is without loss of generality by
the following result:
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Lemma 20. Let ϕ,ψ be weak norms. If Player II wins the game G≤W(χ, ϕ�ψ),
then there is a winning strategy τ for Player II such that for any x ∈ R the real
(x ∗ τ)II played by Player II as a response is product conforming.

Analogous results hold for G≤W(χ, ϕ�ψ) replaced by G<
W(χ, ϕ�ψ), G≤L (χ, ϕ�

ψ) or G<
L (χ, ϕ� ψ).

Proof. We note that y ∈ R is not product conforming if and only if either
y(0) = 0 or y contains two consecutive 0’s. This can be easily avoided by Player
II in all the above games by just playing 1 instead of any move that will lead
to her playing a real that is not product conforming.

Lemma 21. Assume AD and DC. Let ϕ,ϕ′, ψ, ψ′, χ, ψn be weak norms (for
n ∈ ω).

1. If ϕ ≤NL ϕ
′ and ψ ≤N ψ′, then ϕ� ψ ≤N ϕ′ � ψ′.

2. If ϕ is self-dual and ϕ� ψ ≤N ϕ� ψ′, then ψ ≤N ψ′.

3. If ϕ is self-dual and ϕ� ψ ≤NL ϕ� ψ′, then ψ ≤NL ψ
′.

4. If ϕ is self-dual, then ϕ� ψ is self-dual if and only if ψ is self-dual.

5. ϕ� (ψ � χ) ≡NL (ϕ� ψ) � (ϕ� χ).

6. ϕ�
(⊕

n∈ω ψn
)
≡N

⊕
n∈ω((ϕ� ψn) � ϕ).

7. ϕ� (ψ]) ≡N (ϕ� ψ)].

Proof. Easy unravelling of the definitions.

7. The Main Theorem

The overall aim of this section will be to prove the following theorem.

Theorem 22. Assume AD and DC. If ϕ is a self-dual weak norm and ψ is a
weak norm such that |ψ|N is a limit ordinal of uncountable cofinality, then

|ϕ� ψ|N = |ϕ|N · ω1 · |ψ|N .

Theorem 22 allows us to show that the ordinals Σα are closed under multipli-
cation: Let ϕ,ψ be weak norms with lh(ϕ), lh(ψ) ≤ λα. Then also lh(ϕ+ω) ≤ λα
and lh(ψ+ω) ≤ λα. Using the explicitly given weak norm ω̂1 defined in § 5, we
get that lh(ϕ+ω�(ψ+ω� ω̂1)) ≤ λα and also |ϕ+ω � (ψ+ω � ω̂1)|N ≥ |ϕ|N · |ψ|N.
So we get for any β, γ < Σα that β · γ < Σα, once we have established Theorem
22.

The proof of Theorem 22 follows Steel’s proof of Proposition 10 in [7, The-
orem III.4]; it is a proof by induction on |ψ|N. For the benefit of the reader
we shall give the complete argument, even in those parts which are only minor
modifications of Steel’s argument. However, some of the cases of the inductive
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proof cannot be directly transferred from Steel’s proof, since he uses the op-
erations A 7→ A ⊕ R \ A and A 7→ A[ on Wadge degrees which do not have
analogues in the hierarchy of norms. Moreover, if you replace A 7→ A ⊕ R \ A
by ϕ 7→ ϕ+ω (since both assign the next self-dual degree to a given non-self-
dual degree), then the ordinal behavior on the level of ranks is different, since
|A⊕ R \A|N = |A|N + 1, whereas |ϕ+ω|N = |ϕ|N + ω. Also, the operation
A 7→ A[ is used by Steel in the base case of the induction to define A 7→ A][ and
A 7→ A[], corresponding on the level of ranks roughly to multiplication with
ω2

1 . We need an appropriate operation replacing these in the context of the
hierarchy of norms. This operation will be ϕ 7→ ϕ♠ := ((ϕ])∨)], which has the
property that

∣∣ϕ♠∣∣
N

= |ϕ|N · ω2
1 for any self-dual norm ϕ. Using this operation

and the weak norm ω̂1, we can establish the base case of the proof as follows.

Proposition 23. Assume AD. Let ϕ be self-dual weak norm. Then ϕ� ω̂1 ≡N

ϕ♠. Therefore, additionally assuming DC, if ϕ is a self-dual weak norm and ψ
is a weak norm such that |ψ|N = ω1, then |ϕ� ψ|N = |ϕ|N · ω2

1.

Proof. We only show that ϕ♠ ≤N ϕ� ω̂1. The other direction is similar, but a
bit easier.

We note that by construction of ϕ♠ and ω̂1 the game G≤L (ϕ♠, ϕ � ω̂1) is

equivalent to the two-player game G̃(ϕ), which we define as follows. Player I
and Player II take turns at their moves as usual, but in addition to playing
natural numbers both players have special moves. Player I can announce to
erase his target, a move which we denote by et, or to start recording a real, a
move which we denote by sr. Player II can change rows—in the sense of a norm
of the form ϕ�ψ—or announce to erase her target, which we also denote by et.
However, we impose a few side conditions on possible plays as follows:

1. Player I cannot start recording in his first move.

2. Player II must play product conforming, i.e., not changing the row in her
first move and not changing rows in immediate succession.

3. If Player I erases his target, his next move must be a natural number.

4. Player II can only erase her target while playing in row 1.

Now we fix the winning conditions for the game G̃(ϕ) by assigning ordinal values
to plays by Players I and II and comparing these values.

A play by Player I is evaluated as follows:

Case 1. If Player I starts recording a real at least once, but only finitely often
and after his last move of this kind he only plays natural numbers, then let y ∈ R
be the real composed of these natural numbers. Also we fix a natural number
n as follows: If Player I makes the move et at least once, then n is the natural
number occurring immediately after Player I’s last such move. Otherwise n is
just Player I’s first move, which by the side conditions is a natural number. We
then assign to I’s play the value ϕ(y) +n. We call y the real recorded by Player
I and n the target number of Player I.

13



Case 2. If the first case is not the case, but Player I makes the move et at most
finitely often, then the value of his play is n, where n is the natural number
occurring immediately after the last et-move, or just his first move at all, if
none such exists. Again we call n the target number of Player I.

Case 3. Otherwise I’s play gets the value 0.

A play by Player II is evaluated as follows:

Case 1. If Player II settles for row 2, we let y be the real recorded in row 2
after the last change to row 2 and assign to II’s play the value ϕ(y). We call y
the real recorded by Player II.

Case 2. If Player II does not settle for row 2 and Player II erases her target
only finitely often, then we assign to her play the value n, where n is either the
first natural number occurring in row 2 after her last et-move, or simply her
first move, if none such last occurrence exists. We call n the target number of
Player II.

Case 3. Otherwise II’s play gets the value 0.

Now given a match of G̃(ϕ), Player II wins if and only if the value of her
play is greater or equal the value of Player I’s play. Otherwise Player I wins.

We give a winning strategy for Player II in G̃(ϕ), thereby showing that
ϕ♠ ≤N ϕ� ω̂1. For this we first note that Player II wins all games of the form
GL(ϕ + n, ϕ) for n ∈ ω, since ϕ is self-dual. So (using ACω(R), a consequence
of AD) we choose for n ∈ ω winning strategies σn for Player II in GL(ϕ+n, ϕ).
Now we let Player II move in G̃(ϕ) as follows. She starts by copying Player I’s
moves into her row 1, as long as Player I only plays natural numbers. If Player
I erases his target, Player II stays in row 1 or changes to row 1 (if necessarily,
entering a dummy 0 into row 2 first to avoid having consecutive row changes)
and announces to change her target there.

Afterwards Player II resumes copying Player I’s moves as long as the latter
plays natural numbers. If I starts recording, Player II resets row 2 by either
changing to row 1 and afterwards to row 2 or directly changing from row 1 to row
2, while playing dummy 0-moves to avoid successive row changes. Then Player
II begins reacting to Player I’s moves directly after his move of sr according
to the strategy σn, where n is the target of I’s play up to this point as long as
Player I continues playing natural numbers.

This strategy is indeed winning for Player II in G̃(ϕ), since on the one
hand it ensures that the target of II’s play is identical to the target of I’s play,
whenever it exists. On the other hand it ensures that if I records a real y, then
II records a real y′ such that ϕ(y) +n ≤ ϕ(y′), where n is the target of I’s play.

For the “therefore”, we just note that for any two norms χ, χ′ of rank ω1 we
have χ ≡NL χ

′ by Propositions 13 and 15.

In the inductive proof on the rank of the right hand side of the �-term,
Steel considers the continuity in this right hand side, his [7, Lemma III.6], as
the core of the argument. The analogue for the hierarchy of norms is the next
proposition. We note that the proof in the case of norms is far simpler than the
one for the Wadge hierarchy; Steel’s proof distinguishes four cases, the fourth
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of which uses the concept of backtrack-reducibility, while the argument for the
hierarchy of norms collapses to Steel’s case 4 while at the same time getting rid
of the need to consider any other reducibility concept than norm reducibility.

Proposition 24. Assume AD and DC. Let ϕ be a self-dual weak norm and ψ
a non-self-dual weak norm. Then we have that

|ϕ� ψ|N = sup
ψ′<Nψ

|ϕ� ψ′|N

Proof. It already follows from Lemma 21 that |ϕ� ψ|N ≤ supψ∗<Nψ |ϕ� ψ∗|N.
Thus we take a regular norm χ with χ <N ϕ�ψ and show that there is a regular
norm ψ∗ with ψ∗ <N ψ such that χ ≤N ϕ � ψ∗. Since ψ is non-self-dual we
get that also ϕ � ψ is non-self-dual. Thus by Proposition 13 Player II has a
winning strategy τ in the game G<

W(χ, ϕ � ψ). Without loss of generality we
assume that the strategy τ only produces product conforming reals. Then we
define a set Z ⊆ ωω as follows:

Z := {x ∈ ωω ; Player II settles for row 1, when playing with τ against x}.

Using this we define a regular norm ψ∗ by setting for any x ∈ ωω

ψ∗(x) :=

{
χ(x), ifx ∈ Z,
0, otherwise.

We note that Player II can win the game G<
W(ψ∗, ψstretch) according to

the following strategy: Player II follows her winning strategy τ for the game
G<

W(χ, ϕ�ψ), whenever τ tells her to play into row 1. Otherwise she just plays
0.

Since ψ is non-self-dual, we have that ψ ≡N ψstretch and so it follows (again
by non-self-duality of ψ) that ψ∗ <N ψ.

Finally we have to show that χ ≤N ϕ � ψ∗. To this end we give a winning
strategy for Player II in the game G≤W(χ, ϕ � ψ∗) as follows: To determine

Player II’s reaction in the game G≤W(χ, ϕ�ψ∗) to moves made by Player I, we

play a shadow match of the game G≤W(χ, ϕ � ψ), in which Player I makes the
same moves and Player II reacts with her winning strategy τ . As long as in the
shadow match Player II passes or stays in row 1, in the actual match player II
just copies Player I’s moves into row 1. If x is a real such that (x ∗ τ)II never
leaves row 1, then clearly x ∈ Z, Player II produces the real (x + 1) in the
actual game and so Player II wins, since (ϕ� ψ∗)(y) = ψ∗(x) = χ(x) ≥ χ(x).

If, however, at some point in the shadow match Player II changes to row 2,
then in the actual match we let Player II also change to row 2 and from then
on follow the strategy τ , i.e., copy the moves she makes in row 2 in the shadow
match. If x is a real such that (x ∗ τ)II only changes to row 2 once and then

stays there and y is the real played by Player II in the game G≤W(χ, ϕ � ψ∗)
following the strategy we just specify, then (ϕ�ψ)((x ∗ τ)II) = (ϕ�ψ∗)(y) and

so Player II wins again, since τ is a winning strategy in G≤W(χ, ϕ�ψ). We refer
to the sequence of moves specified in this paragraph by (∗).
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If in the shadow match Player II changes back from row 2 to row 1, then
in the actual match Player II resumes copying the moves of Player I in the
shadow match, but starting from the first move that she hasn’t already copied,
so possibly lagging a finite amount of moves behind. Then, again, if x is a real
such that (x ∗ τ)II settles for row 1 from this point on, then x ∈ Z and as we
have already seen, Player II wins according to the strategy we just specify in
the game G≤W(χ, ϕ � ψ∗). If, however, Player II changes back to row 2, then
our strategy proceeds exactly according to (∗).

Inductively we get that we have just specified a winning strategy for Player
II in G≤W(χ, ϕ� ψ∗) and so χ ≤N ϕ� ψ∗.

Now we get to the last technical lemma before we can prove the main theo-
rem.

Lemma 25. Assume AD and DC. Let ϕ,ψ be weak norms such that ϕ is self-
dual and ψ is non-self-dual. Then we have that∣∣ϕ� ψ+ω

∣∣
N
≤ |ϕ� ψ|N + ω + |ϕ|N .

Proof. Unraveling the relevant definitions one can easily check that for any two
norms χ, χ′ we have that χ�(χ′+1) ≡NL (χ�χ′)+1. Also for any non-self-dual
χ we have that χstretch ≡NL χ. Now in total we can calculate that for self-dual
ϕ and non-self-dual ψ we get

ϕ� ψsucc = ϕ� (ψstretch + 1) ≡NL ϕ� (ψ + 1) ≡NL (ϕ� ψ) + 1

≡NL (ϕ� ψ)stretch + 1 = (ϕ� ψ)succ,

where for the penultimate equivalence we used Lemma 21.4. Inductively we
get from this that (ϕ � ψ)+n ≡NL ϕ � (ψ+n) for all n ∈ ω \ {0}. Noting that
ψ+ω ≡NL

⊕
n∈ω\{0} ψ

+n we obtain that

ϕ� (ψ+ω) ≡N ϕ�

 ⊕
n∈ω\{0}

ψ+n

 ≡N

⊕
n∈ω\{0}

((ϕ� ψ+n) � ϕ),

which implies that∣∣ϕ� (ψ+ω)
∣∣
N

= sup
n∈ω\{0}

∣∣(ϕ� ψ+n) � ϕ
∣∣
N

≤
∣∣((ϕ� ψ)+ω) � ϕ

∣∣
N

= |ϕ� ψ|N + ω + |ϕ|N ,

as claimed.

Now we can prove the main theorem.

16



Proof of Theorem 22. The proof proceeds by induction on α := |ψ|N. The base
case of |ψ|N = ω1 is already dealt with in Proposition 23. Thus let α > ω1

and take the unique sequences 〈ξm ; m ≤ k〉 and 〈ηm ; m ≤ k〉 of ordinals with
ξm > ξm+1 for all m < k and 0 < ηm < ω1 for all m ≤ k such that

α =
∑
m≤k

ωξm1 · ηm.

We distinguish two cases with several subcases.
Case 1 is that k > 0. Then we fix a weak norm χ of minimal ≤NL-rank such

that |χ|N = ωξ01 · η0.

Subcase 1.1 is that cf(ωξ01 · η0) = ω, i.e., that χ is self-dual. Then by
Proposition 18 we take a weak norm ψ∗ with χ� ψ∗ ≡ ψ and get that |ψ∗|N =∑
0<m≤k

ωξm1 · ηm and also that cf(|ψ∗|N) > ω. It follows by induction hypothesis

that |ϕ� ψ∗|N = |ϕ|N · ω1 · |ψ∗|N.
Next we take a strictly increasing sequence 〈νn ; n ∈ ω〉 of limit ordinals

cofinal in ωξ01 · η0 such that for all n ∈ ω, cf(νn) > ω. Then we choose (using
ACω) for any n ∈ ω a weak norm χn such that |χn|N = νn. Then by induction
hypothesis, |ϕ� χn|N = |ϕ|N · ω1 · |ψ∗|N. Also by construction we have that
χ ≡NL

⊕
n∈ω χn and so we get that

|ϕ� χ|N =

∣∣∣∣∣ϕ�

(⊕
n∈ω

χn

)∣∣∣∣∣
N

=

∣∣∣∣∣⊕
n∈ω

((ϕ� χn) � ϕ)

∣∣∣∣∣
N

= sup
n∈ω
|(ϕ� χn) � ϕ|N .

But now for any n ∈ ω we calculate that

|(ϕ� χn) � ϕ|N ≤
∣∣(ϕ� χn)+ω � ϕ

∣∣
N

≤ |ϕ� χn|N + ω + |ϕ|N
= |ϕ|N · ω1 · |χn|N + ω + |ϕ|N
< |ϕ|N · ω1 · |χn+1|N .

Thus we get that

sup
n∈ω
|(ϕ� χn) � ϕ|N = sup

n∈ω
(|ϕ|N · ω1 · |χn|N) = |ϕ|N · ω1 · |χ|N ,

which lets us conclude that

|ϕ� ψ|N = |ϕ� (χ� ψ∗)|N
= |(ϕ� χ) � (ϕ� ψ∗)|N = |ϕ� χ|N + |ϕ� ψ∗|N
= |ϕ|N · ω1 · |χ|N + |ϕ|N · ω1 · |ψ∗|N
= |ϕ|N · ω1 · |ψ|N .
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Subcase 1.2 is that cf(ωξ01 · η0) > ω, i.e., that χ is non-self-dual. Then we
distinguish two subsubcases.

Subsubcase 1.2.1 is that there is n ∈ ω such that |ψ|N = ωξ01 + ω1 · (n+ 1).
Then we define weak norms χ` for ` < ω recursively by setting χ0 := χ, χ`+1 :=
χ+ω
` � ω̂1 and get for all ` ∈ ω that |χ`|N = |χ|N + ω1 · `. In particular for

any ` < ω, |χ`|N is a limit ordinal of uncountable cofinality and hence χ` is
non-self-dual. So by comparing norm ranks we get that ψ ≡NL χn+1. Thus we
get the following:

ϕ� ψ ≡N ϕ� χn+1 = ϕ� (χ+ω
n � ω̂1) ≡N (ϕ� χ+ω

n ) � (ϕ� ω̂1).

But by the induction hypothesis we get that

|ϕ|N · ω1 · |ψ|N = |ϕ|N · ω1 · |χn|N + |ϕ|N · ω
2
1

= |ϕ� χn|N + |ϕ� ω̂1|N
≤
∣∣ϕ� χ+ω

n

∣∣
N

+ |ϕ� ω̂1|N
=
∣∣ϕ� (χ+ω

n � ω̂1)
∣∣
N

= |ϕ� ψ|N .

Since |ϕ� χ+ω
n |N ≤ |ϕ� χn|N + ω + |ϕ|N, we furthermore get that

|ϕ� ψ|N =
∣∣ϕ� χ+ω

n

∣∣
N

+ |ϕ� ω̂1|N
≤ |ϕ� χn|N + ω + |ϕ|N + |ϕ|N · ω

2
1

= |ϕ|N · ω1 · (|χn|N + ω1)

= |ϕ|N · ω1 · |ψ|N .

In total this shows that |ϕ� ψ|N = |ϕ|N · ω1 · |ψ|N, as claimed.

Subsubcase 1.2.2 is that |ψ|N ≥ ω
ξ0
1 · η0 + ω1 · ω. Then we consider χ+ω and

fix by Proposition 18 a weak norm ψ∗ such that ψ ≡N χ+ω �ψ∗ and so by non-
self-duality of ψ furthermore ψ ≡NL χ

+ω�ψ∗. Also clearly |ψ|N = |χ|N + |ψ∗|N
and by induction hypothesis we have that |ϕ� ψ∗|N = |ϕ|N · ω1 · |ψ∗|N. Since
ϕ� χ+ω is self-dual we now get that |ϕ� ψ|N = |ϕ� χ+ω|N + |ϕ|N · ω1 · |ψ∗|N.
Also, by induction hypothesis we have that

|ϕ|N · ω1 · |χ|N ≤ |ϕ� χ|N ≤
∣∣ϕ� (χ+ω + ω̂1)

∣∣
N

= |ϕ|N · ω1 · (|χ|N + ω1).

So finally, using that |ψ∗|N ≥ ω1 · ω, we get that

|ϕ� ψ|N =
∣∣ϕ� χ+ω

∣∣
N

+ |ϕ|N · ω1 · |ψ∗|N
≤ |ϕ|N · ω1 · (|χ|N + ω1) + |ϕ|N · ω1 · |ψ∗|N
= |ϕ|N · ω1 · (|χ|N + ω1 + |ψ∗|N)

= |ϕ|N · ω1 · (|χ|N + ω1 + |ψ∗|N)

= |ϕ|N · ω1 · |ψ|N
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and

|ϕ|N · ω1 · |ψ|N = |ϕ|N · ω1 · |χ|N + |ϕ|N · ω1 · |ψ∗|N
= |ϕ� χ|N + |ϕ� ψ∗|N
≤
∣∣ϕ� χ+ω

∣∣
N

+ |ϕ� ψ∗|N
= |ϕ� ψ|N .

Case 2 is that k = 0 and that |ψ|N = ωξ01 · η0. Since cf(|ψ|N) > ω, then η0

is a successor and ξ0 is either a successor or a limit of uncountable cofinality.
Subcase 2.1 is that η0 > 1, i.e., there is γ > 0 such that η0 = γ+1. But then

|ψ|N = ωξ01 · γ + ωξ01 and we take regular norms χ, ψ∗ of minimal ≤NL-rank such

that |χ|N = ωξ01 · γ and |ψ∗|N = ωξ01 . Arguing from here exactly as in Subcase
1.2 we can show that |ϕ� ψ|N = |ϕ|N · ω1 · |ψ|N.

Subcase 2.2 is that η0 = 1 and ξ0 is a successor ordinal, i.e., there is an
ordinal ϑ such that ξ0 = ϑ+ 1. Then |ψ|N = ωϑ1 · ω1 and we fix a weak norm χ
of minimal ≤NL-rank such that |χ|N = ωϑ1 .

If χ is self-dual, then we have that ψ ≡NL χ
] and so

|ϕ� ψ|N =
∣∣ϕ� (χ])

∣∣
N

=
∣∣(ϕ� χ)]

∣∣
N

= |ϕ� χ|N · ω1.

Now since χ is self-dual, we have that cf(|χ|N) = ω and so arguing as in Subcase
1.1 we get that |ϕ� χ|N = |ϕ|N · ω1 · |χ|N and so in total that |ϕ� ψ|N =
|ϕ|N · ω1 · |ψ|N.

If, however, χ is non-self-dual, then we have that ψ ≡NL (χ+ω)
]
. Since χ+ω

is self-dual, we get as in the case that χ is self-dual that

|ϕ� ψ|N =
∣∣ϕ� (χ+ω)

∣∣
N
· ω1.

By induction hypothesis and Lemma 25 we get that

|ϕ|N · ω1 · |ψ|N ≤ |ϕ� χ|N ≤
∣∣ϕ� χ+ω

∣∣
N
≤ |ϕ|N · ω1 · |χ|N + ω + |ϕ|N .

Using this we calculate that

|ϕ|N · ω1 · |ψ|N = |ϕ|N · ω1 · |χ|N · ω1 ≤
∣∣ϕ� χ+ω

∣∣
N
· ω1 = |ϕ� ψ|N

and

|ϕ� ψ|N =
∣∣ϕ� χ+ω

∣∣
N
· ω1

≤ (|ϕ|N · ω1 · |χ|N + ω + |ϕ|N) · ω1

≤ |ϕ|N · ω1 · (|χ|N + 1) · ω1

= |ϕ|N · ω1 · |χ|N · ω1

= |ϕ|N · ω1 · |ψ|N .

This shows that |ϕ� ψ|N = |ϕ|N · ω1 · |ψ|N, as claimed.
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Subcase 2.3 is that η0 = 1 and ξ0 is a limit ordinal of uncountable cofinality.
Then by Proposition 24 and the induction hypothesis we get that

|ϕ� ψ|N = sup
ψ′<Nψ

|ϕ� ψ′|N = sup
ψ′<Nψ

cf(|ψ′|
N

)>ω

|ϕ� ψ′|N

= sup
ψ′<Nψ

cf(|ψ′|
N

)>ω

(|ϕ|N · ω1 · |ψ′|N) = |ϕ|N · ω1 · |ψ|N

8. Application

We have already seen that by Theorem 22 all ordinals Σα with α < Θ are
closed under multiplication. However, we can even strengthen this a bit by
showing that in fact the ordinals Σα are closed under exponentiation with any
ordinal β < Θ as exponent.

Proposition 26. Assume AD and DC. For any α < Θ and any β < Θ we have
that γ < Σα implies γβ < Σα. As a consequence for every γ < Σα we have that
γΘ ≤ Σα.

Proof. Take a weak norm with lh(ϕ) ≤ λα, i.e., such that |ϕ|N < Σα. Fix
β < Θ and a surjection π : R � β + 1. Now for any δ ≤ β we construct
weak norms ϕδ with lh(ϕδ) ≤ λα and |ϕδ|N ≥ |ϕ|

δ
N recursively on δ as follows.

First we set ϕ0 := ϕ. Then for a successor ordinal δ, say δ = ϑ + 1, we set
ϕδ := ϕ+ω

ϑ � (ϕ+ω � ω̂1) and get by induction hypothesis that

|ϕδ|N = (|ϕϑ|N + ω) · ω1 · (|ϕ|N + ω1) ≥ |ϕ|ϑN · |ϕ|N = |ϕ|δN .

If δ is a limit ordinal, then we define ϕδ by setting for any x, y ∈ R:

ϕδ(x ∗ y) :=

{
ϕπ(x)(y), if π(x) < δ,

ϕ(y), otherwise.

Then for any δ′ < δ we have by construction that ϕδ embeds into ϕδ′ and so we
get by induction hypothesis that

|ϕδ|N ≥ sup
δ′<δ
|ϕδ′ |N ≥ sup

δ′<δ
|ϕ|δ

′

N = |ϕ|δN .

By construction it is clear that for any δ < β, lh(ϕδ) ≤ λα. So in particular

we have that |ϕ|βN ≤ |ϕβ |N < Σα.

This gives us a new lower bound for the hierarchy of norms as follows.

Theorem 27. Assume AD and DC . Then we have that Σ ≥ Θ(ΘΘ).
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Proof. We show by induction on α < Θ that Σα ≥ Θ(Θα). For the base case we
just note that Θ(Θ0) = Θ ≤ Σ0. For a successor ordinal γ + 1 we note that by
induction hypothesis Θ(Θγ) ≤ Σγ < Σγ+1 and so by Proposition 26 we get that(
Θ(Θγ)

)Θ
= Θ(Θγ+1) ≤ Σγ+1. The limit case is immediate by continuity of the

ordinal function α 7→ Θ(Θα).

Putting this together with the known upper bound for Σ we thus get that

Θ(ΘΘ) ≤ Σ < Θ+. It would be desirable to improve the lower and upper bounds
to calculate the exact value of Σ. We close the paper with a list of concrete
open questions:

Question 28. Is there an operation on weak norms acting like ordinal expo-
nentiation?

To the best of our knowledge, the answer to this question is unknown even
for the Wadge hierarchy. If this is the case (in fact, it would be enough to
have an operation that dominates ordinal exponentiation for a <N-unbounded
set of norms), then Σ is closed under ordinal exponentiation. Using the ideas
of the proofs of Proposition 26 and Theorem 27, we would get Σ ≥ εΘ+Θ (the
(Θ + Θ)th epsilon-number).

Question 29. If Σ′ := otyp(ΘR/≡N,≤N), then we had observed that Σ′ = Σ if
and only if Θ is regular (cf. Lemma 1). Can we say more about the relationship
between Σ and Σ′ under the assumption AD + DC+“Θ is singular”?
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