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Abstract. Schanuel’s conjecture states that the transcendence degree over Q of
the 2n-tuple (λ1, . . . , λn, e

λ1 , . . . , eλn) is at least n for all λ1, . . . , λn ∈ C which are
linearly independent over Q; if true it would settle a great number of elementary
open problems in number theory, among which the transcendence of e over π.

Wilkie [8], and Kirby [3, Theorem 1.2] have proved that there exists a small-
est countable algebraically and exponentially closed subfield K of C such that
Schanuel’s conjecture holds relative to K (i.e. Q is replaced by K in the state-
ment of Schanuel’s conjecture). We prove a slightly weaker result (i.e. that there
exists such a countable field K without specifying that there is a smallest such)
using the forcing method and Shoenfield’s absoluteness theorem.

This result suggests that forcing can be a useful tool to prove theorems (rather
than independence results) and to tackle problems in domains which are appar-
ently quite far apart from set theory.
MSC: 03C60-03E57-11U99

A brief introduction

We want to give an example of how we might use forcing to study a variety of
expansions of the complex (or real) numbers enriched by arbitrary Borel predicates,
still maintaining certain “tameness” properties of the theory of these expansions.
We clarify what we intend by “tameness” as follows: in contrast with what happens
for example with o-minimality in the case of real closed fields, we do not have to
bother much with the complexity of the predicate P we wish to add to the real
numbers (we can allow P to be an arbitrary Borel predicate), but we pay a price
reducing significantly the variety of elementary superstructures (M,PM) for which
we are able to lift P to PM so that (R, P ) ≺ (M,PM) and for which we are able
to use the forcing method to say something significant on the first order theory of
(M,PM). Nonetheless the family of superstructures M for which this is possible is
still a large class, as we can combine (Woodin and) Shoenfield’s absoluteness for the
theory of projective sets of reals with a duality theorem relating certain spaces of
functions to forcing constructions, to obtain the following:

Theorem 1 (Folklore?— V. and Vaccaro [7]). Let X be an extremally (extremely)
disconnected compact space.

Let C+(X) be the space of continuous functions f : X → S2 = C∪{∞} such that
the preimage of ∞ is nowhere dense (S2 is the one point compactification of C).

Given any Borel predicate R on Cn, there is a predicate RX ⊆ C+(X)n × X
(equivalently a boolean predicate RX : C+(X)n → CL(X) where CL(X) is the boolean
algebra given by clopen subsets of X) such that for all p ∈ X

(C, R) ≺Σ2 (C+(X)/p,RX/p),
1
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where C+(X)/p is the ring of germs in p of functions in C+(X), and RX/p([f1], . . . [fn])
holds if there is a neighboorhood U of p such that R(f1(x), . . . , fn(x)) holds on a dense
set of x ∈ U .

Moreover if we assume the existence of class many Woodin cardinals we get that

(C, R) ≺ (C+(X)/p,RX/p).

It turns out that the above spaces of functions are intrinsically intertwined with
the forcing method: they provide an equivalent description of the forcing names for
complex numbers for the notion of forcing given by the non-empty clopen subsets
of X. Moreover these spaces are universal among the spaces of the form C+(Y )
with Y compact Hausdorff, in the sense that for any such Y there is an isometric
∗-homomorphism of the unital C∗-algebra C(Y ) into a a C∗-algebra of the form
C(X) with X compact and extremely disconnected; this homomorphism extends
to a ∗-monomorphism of the ring C+(Y ) into the ring C+(X) (we refer the reader
to [7, Chapter 4] for more details).

Playing with the choice of the compact space X and of the Borel predicate R
we can cook up spaces in which it is possible to compute the solution of certain
projective statements. Using the elementarity of these structures with respect to
the standard complex numbers, we can conclude that the solution we computed in
these expansions is the correct solution. This is exactly what we plan to do in the
following for a weakening of the well known Schanuel’s conjecture.

1. Main result

For a vector ~v = (v1, . . . , vn) and a function E we let ~v(c) = (v1(c), . . . , vn(c)) if
each vi is a function and c is in the domain. E(~v) = (E(v1), . . . , E(vn)) if each vi is
in the domain of E.

Definition 1.1. Given rings K ⊂ R and ~λ ∈ Rn,

• LdimK(~λ) is the linear dimension of the K-module spanned by ~λ.

• LdimK(~λ/Y ) is the linear dimension over K of the K-module which is the

quotient of the K-module spanned by ~λ ∪ Y and the K-module spanned by
Y .
• TrdgK(~λ) is the transcendence degree over K of the ring K[~λ] ⊂ R, i.e. the

largest size of a subset A of ~λ such that no polynomial with coefficients in
K and |A|-many variables vanishes on the elements of the subset.
• Let (F,+, ·, 0, 1) be a field and E : F → F ∗ be an homomorphism of the

additive group (F,+) on the multiplicative group (F ∗, ·). Let

Z(F ) = {a ∈ F : ∀xE(x) = 1→ E(ax) = 1}.

Then Z(F ) is a ring.
Given a field K with Z(F ) ⊆ K ⊆ F :
– The Ax character of the pair (E,K) is the function:

ACE,K(~λ) = TrdgK(~λ,E(~λ))− LdimZ(F )(~λ/K).

– The Schanuel character of the pair (E,K) is the function:

SCE,K(~λ) = TrdgK(~λ,E(~λ))− LdimK(~λ).
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1.1. Exponential fields. We introduce axioms suitable to formulate our results on
Zilber conjectures on the exponential function relative to some algebraically closed
field K.

Definition 1.2. Consider a language for algebraically closed fields augmented by
predicate symbols for an exponential map E, and for a special sub-field K.

(F,K,E, ·,+, 0, 1)

is a model of TWSP(K) if it satisfies1:

(1) AC FIELD: F is an algebraically closed field of characteristic 0.
(2) EXP FIELD: The exponential map E : F → F ∗ is a surjective homo-

morphism of the additive group (F,+) into the multiplicative group (F ∗, ·)
with

ker(E) = ω · Z(F ) = {ω · λ : λ ∈ Z(F )}
for some ω ∈ F transcendental over Z(F ) ( [4, Axioms 2′a, 2′b, Section 1.2]).

(3) K-SP (Schanuel property for K): K ⊆ F is a field containing Z(F ) and
SCE,K : F<ω → N cannot get negative values.

An exponential field is a pair (F,E) satisfying the field axioms and axiom (2).
Zilber [9] showed that there is a natural axiom system TZilber expanding TWSP(Q)

and axiomatizable in the logic Lω1,ω(Q) (where Q stands for the quantifier for un-
countably many elements) such that for each uncountable cardinal κ there is exactly
one field B and one exponential function E : B→ B∗ with ker(E) = ω · Z for some
ω ∈ B transcendental over Q and such that (B,Q, E,+, 0, 1) is a standard model
of TZilber. Roughly TZilber extends TWSP(Q) requiring that certain kinds of irreducible
algebraic varieties V (the so called rotund (or normal) and free irreducible varieties
on F n× (F ∗)n) admit F0-generic points2 of the form (x1, . . . , xn, E(x1), . . . , E(xn)),
where F0 ⊆ B is a finitely generated field containing a set of generators for the
prime ideal defining the irreducible variety V . Moreover the axioms require that
the number of such generic points is at most countable for the irreducible rotund
varieties of dimension n (see MR2102856 (2006a:03051) for a short account of the
axiom system). Zilber’s conjecture is that (C,Q, ex,+, ·) is a model of TZilber.

We shall give a proof based on forcing and generic absoluteness of the following:

Theorem 1.3 (Kirby [3], Wilkie [8]). There exists a countable (algebraically closed)
field K0 ⊆ C such that (C, K0, e

x,+, ·) is a model of TWSP(K0).

Actually what we will prove is the following:

1The axioms we introduce are mostly taken from [4, Section 1.2], specifically axiom (2) corresponds
to axioms 2′a and 2′b of [4, Section 1.2], we do not insist on the axiom 2′c, while axiom (3) is a
variation of the axiom 3′ of [4, Section 1.2]. In order to be fully consistent with their axiomatization

the Schanuel character in axiom (3) should be replaced by the “predimension” function ∆K(~λ) =

TrdgZ(F )(
~λ,E(~λ)/K) − LdimZ(F )(~λ/K). Nonetheless the fields K ⊆ F we will look at are such

that Z(F ) ∪ ker(E) ⊆ K and it can be checked that for these fields SCK(~λ) ≥ ACK(~λ) − 1 while

∆K(~λ) ≥ ACK(~λ). In our analysis we will focus on the properties of the function ACK , however we
chose to formulate the Schanuel property at K in terms of the function SCK to make transparent
the correspondence with Schanuel’s conjecture.
2Generic according to [6, Def. 1.3].

http://www.ams.org/mathscinet/search/publdoc.html?r=1&pg1=CNO&s1=2102856&loc=fromrevtext
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Theorem 1.4. There exists a countable (algebraically and exponentially closed)
field K0 ⊆ C such that

ACK0,exp(~λ) > 0

for all ~λ ∈ C<N (where exp(λ) = eλ).

The first theorem will be an immediate corollary of the second one by the following

elementary argument: Assume λ1, . . . , λn = ~λ are K0-linearly independent. Then
either λ1, . . . , λn−1 are Z-linearly independent modulo K0 or λ2, . . . , λn are Z-linearly
independent modulo K0. Assume λ1, . . . , λn−1 are Z-linearly independent modulo
K0. By the second theorem we get that

TrdgK0
(~λ, e

~λ) ≥
≥ TrdgK0

(λ1, . . . , λn−1, e
λ1 , . . . , eλn−1) =

= ACK0,exp(λ1, . . . , λn−1) + LdimQ(λ1, . . . , λn−1/K0) >

> LdimQ(λ1, . . . , λn−1/K0) = n− 1

and we are done.
The proof of the second theorem is articulated in three steps and runs as follows:

(1) The above theorem is expressible by the lightface Σ1
2-formula

WSP ≡ ∃f ∈ CN(ran(f) = K0 is a field ∧ ∀~λ ∈ C<NACexp,K0(~λ) > 0),

since it is a rather straightforward calculation to check that the formulae

φ(f) ≡ (f ∈ CN ∧ ran(f) = K0 is a field )

and

WSP(~λ, f) ≡ φ(f) ∧ (~λ ∈ C<N → ACexp,K0(~λ) > 0)

are Borel statements definable over the parameters f, ~λ which require only to
quantify over the countable sets f ,N, Q. It is a classical result of set theory
(known as Shoenfield’s absoluteness) that any Σ1

2-property known to hold in
some forcing extension is actually true. So in order to establish the theorem
it is enough to prove the above formula consistent by means of forcing i.e.
to prove that JWSPKB = 1B in the boolean valued model for set theory V B

for some complete boolean algebra B.
(2) The second step relies on the following observation: whenever B is any com-

plete boolean algebra and V is the universe of sets (i.e. the standard model
of ZFC), the family of B-names for complex numbers in the boolean valued

model V B (which we denote by Ċ) “corresponds” to the space of continuous
functions

C+(St(B)) = {f : St(B)→ S2 : f is continuous and f−1[{∞}] is nowhere dense},

where S2 = C∪{∞} is the one point compactification of C with the euclidean
topology, and St(B) is the space of ultrafilters on St(B) (equivalently of ring
homomorphisms of B onto the boolean algebra {0, 1}). More precisely there
is a natural embedding of the structure C+(St(B)) into the boolean valued

model V B which identifies C+(St(B)) with Ċ.
Various facets of this identification are common knowledge for the set

theory scholars, but until now —at least to my knowledge— nobody has
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ever written down it in due form, presently a complete account appears in
Vaccaro’s master thesis [7].

The reader is averted that these spaces of functions may not be exotic:
for example if MALG is the complete boolean algebra given by Lebesgue-
measurable sets modulo Lebesgue null sets, C(St(MALG)) is isometric to
L∞(R) via the Gelfand-transform of the C∗-algebra L∞(R) and consequently
St(MALG) is homeomorphic to the space of characters of L∞(R) endowed
with the weak-∗ topology inherited from the dual of L∞(R).

What is more important to us is that for all complete boolean algebras
B and for all G ∈ St(B) the space of germs given by C+(St(B))/G is an
algebraically closed field to which any “natural” (i.e. for example Borel)
relation defined on Cn can be extended: for example the exponential function
can be extended to C+(St(B))/G by the map [f ]G 7→ [ef ]G. Moreover we can
identyfy C inside C+(St(B))/G as the subfield given by germs of constant
functions. We invite the reader to skim through [7, Chapters 2,3,4] to get
a thorough presentation of the properties of the spaces C+(St(B)) seen as
B-valued extensions of the complex numbers.

In this paper we are also interested in canonical subfields of C+(St(B))/G
which give the correct lift to C+(St(B))/G of Z,Q,C, these are respectively:
• The field Č/G given by germs of locally constant functions, i.e. functions
f in C+(St(B)) such that⋃

{f−1[{λ}] : λ ∈ C, f−1[{λ}] is clopen}

is an open dense subset of St(B).
• The subfield Q̌/G (respectively the subring Ž/G) of Č/G given by germs

of locally constant functions with range contained in Q (respectively in
Z).

These rings corresponds in the forcing terminology of set theory respectively:
to the B-names for complex numbers of the ground model, to the B-names for
rational numbers of the ground model, to the B-names for integer numbers
of the ground model. This characterization will play an important role in
our proof.

The second step of our proof will show that if G ∈ St(B) and B is a
complete boolean algebra, the structure

(C+(St(B))/G, Č/G, [f ]G/[g]G 7→ [ef/g]G, . . . , [0]G, [1]G)

is a model of TWSP(Č/G) for any G ∈ St(B).
The key arguments in this second step do not require any specific training

in set theory and needs just a certain amount of familiarity with first order
logic, the basic properties of algebraic varieties, and with the combinatorics
of forcing as expressed in terms of complete atomless boolean algebras. In
particular there is no need to be acquainted with forcing or set theory to
follow the proof of the above results (such a familiarity will nonetheless be
of great help to follow the arguments).

The basic ideas for the proof are the following:

(A) For any [~f ]G = ([f1]G, . . . , [fn]G) ∈ (C+(St(B))/G)n, the variety V (ĪG(~f, e
~f ))

on (C+(St(B))/G)2n given by the 0-set of polynomials in Č/G[~x, ~y] van-

ishing at [~f, e
~f ]G has dimension equal to the transcendence degree of
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the tuple [~f, e
~f ]G over Č/G. To establish the Schanuel property for

[~f ]G it is enough to study the algebraic dimension of this variety on
(C+(St(B))/G)2n.

(B) For a dense open set of G, the ideal ĪG(~f, e
~f ) is generated by poly-

nomials p1, . . . , pk with complex coefficients, consequently the algebraic

dimension of V (ĪG(~f, e
~f )) as a variety on (C+(St(B))/G)2n is equal to

the algebraic dimension of the complex variety V (p1, . . . , pk) given by
points in C2n on which all the pj vanish.

(C) Let [~f ]G = ([f1]G, . . . , [fn]G) be given by nowhere locally constant func-
tions which are Q̌/G-linearly independent modulo Č/G, by (B) above

the transcendence degree of the 2n-tuple [~f, e
~f ]G over Č/G is equal to

the transcendence degree of the same 2n-tuple over C (seen as a subfield
of C+(St(B))/G).

(D) For an n-tuple [~f ]G as above we can show that the transcendence degree

over C of the 2n-tuple [~f, e
~f ]G is at least n + 1 as follows: we can find

φ1, . . . , φn analytic functions from [0, 1] to C linearly independent over
Q modulo C with the following property: Let [φ] denote the germ of φ at
0. Then the map [φi] 7→ [fi]G, [eφi ] 7→ [efi ]G extends to an isomorphism
of the corresponding finitely generated subfields. The desired conclusion
follows, since the field of germs at 0 of analytic functions from [0, 1] to
C is a field to which Ax’s theorem on Schanuel’s property for functions
fields apply.

(3) The third step of our paper combines steps (1) and (2) as follows: We
choose a boolean algebra B such that in the boolean valued model V B,q
Č is countable

y
B

= 1B (for example we can choose B to be the boolean

algebra of regular open subsets of CN where C is endowed with the discrete
topology). In particular in V B we will have that

r
Č is countable as witnessed by ḟ ∧WSP(ḟ , Ċ)

z

B
= 1B,

i.e. JWSPKB = 1B holds in V B. By the results of step (1), we thus get that
WSP holds in V concluding the proof of Theorem 1.3.

We will not expand any further on step (1), the core of the paper concerns the
proof of the results in step (2), we add some more comments in the last part regarding
step (3). We try (as much as possible) to make the arguments in step (2) accessible
to persons which are not acquainted with the forcing techniques and more generally
with logic. For this reason we shall limit the use of techniques which are specific of
set theory just to the last step.

2. Step (2)

2.1. Results from complex analysis and algebraic geometry. We need just
classical results in the field and we use as a general reference text [6], though some
of the results we shall need may not be covered in that textbook. We will use the
following theorems:

(1) The following corollary of Ax’s theorem [1, Theorem 3]:
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Theorem 2.1. Assume (F,E) is an exponential field which is algebraically
closed. Let D : F → F be a differential map (i.e. D(f + g) = D(f) + D(g)
and D(fg) = D(f)g+fD(g) for all f, g ∈ F ) such that ker(D) is a field and
D(E(f)) = D(f) · E(f) for all f ∈ F .

Then for all ~f = (f1, . . . , fn) ∈ F n which are Q-linearly independent over
ker(D) we have that

Trdgker(D)(f1, . . . , fn, E(f1), . . . , E(fn)) ≥ n+ 1.

(2) The field of fractions OΩ given by germs at 0 of analytic functions f : [0, 1]→
C with differential D([f ]/[g]) = [f ′g−g′f ]

[g2]
satisfies the assumptions of Ax’s

theorem with ker(D) = C.
(3) Any irreducible affine algebraic variety on Kn with K algebraically closed

field is of the form V (I) with I a finitely generated prime ideal onK[x1, . . . , xn].
Moreover the set of generic points for V (I) over a finitely generated subfield
of K containing generators for I is of second category in the Zariski topology
on V (I).

(4) The linear dimension of the ambient affine space Kn minus the minimal
cardinality of a set of generators for a prime ideal I is the geometric dimension
of the irreducible variety V (I) ⊆ Kn.

(5) Any quasi-projective and smooth irreducible variety contained in Cn (i.e. a
Zariski open set of an irreducible algebraic variety in Cn contained in the
non-singular points of the variety) is also an analytic manifold.

(6) The regular (or smooth) points of an irreducible quasi-projective variety are
an open non-empty Zariski subset of the variety and any generic point of the
variety is smooth.

(7) Any complex analytic manifold of dimension 0 contained in Cn is a discrete
set of points.

(8) Any family of m distinct points {p0, . . . , pm} in an n+1-dimensional complex
analytic manifold can be connected by an analytic path i.e. an analytic map
~φ : [0, 1] → V which is injective in [0, 1) and is such that {p0, . . . , pm} ⊆
ran(~φ) and ~φ(0) = p0.

2.2. Forcing on C+(St(B)). We refer the reader to [7, Chapters 2, 3, 4] for a
detailed account on the material presented here.

• A topological space (X, τ) is 0-dimensional, if its clopen sets form a base for
τ .
• A compact topological space (X, τ) is extremally (extremely) disconnected

if its algebra of clopen sets CL(X) overlaps with its algebra of regular open
sets RO(X).

For a boolean algebra B we let St(B) be the Stone space of its ultrafilters with
topology generated by the clopen sets

Nb = {G ∈ St(B) : b ∈ G}.

We remark the following:

• St(B) is a compact 0-dimensional Haussdorf space and any 0-dimensional
compact space (X, τ) is isomorphic to St(Cl(X)),



8 M. VIALE

• A compact Hausdorff space (X, τ) is extremely disconnected if and only if
its algebra of clopen sets is a complete boolean algebra. In particular St(B)
is extremely disconnected if and only if B = CL(St(B)) is complete.

Recall also that the algebra of regular open sets of a topological space (X, τ) is
always a complete boolean algebra with operations

•
∨
{Ai : i ∈ I} =

˚⋃
{Ai : i ∈ I},

• ¬A = ˚X \ Ai,
• A ∧B = A ∩B.

An antichain on a boolean algebra B is a subset A such that a ∧ b = 0B for all
a, b ∈ A, B+ = B \ {0B} is the family of positive elements of B and a dense subset
of B+ is a subset D such that for all b ∈ B+ there is a ∈ D such that a ≤B b. In a
complete boolean algebra B any dense subset D of B+ contains an antichain A such
that

∨
A =

∨
D = 1B.

Another key observation on Stone spaces of complete boolean algebras we will
often need is the following:

Fact 2.2. Assume B is a complete atomless boolean algebra, then on its Stone space
St(B):

• N∨
B A

=
⋃
a∈ANa for all A ⊆ B.

• N∨
B A

=
⋃
a∈ANa for all finite sets A ⊆ B.

• For any infinite antichain A ⊆ B+,
⋃
a∈ANa is properly contained in N∨

B A

as a dense open subset.

Given a compact Hausdorff topological space X we let C+(X) be the space of
continuous functions

f : X → S2 = C ∪ {∞}
(where S2 is seen as the one point compactification of C) with the property that
f−1[{∞}] is a closed nowhere dense subset of X. In this manner we can endow
C+(X) of the structure of a commutative ring of functions with involution letting the
operations be defined pointwise on all points whose image is in C and be undefined
on the preimage of ∞. More precisely f + g is the unique continuous function

h : X → S2

such that h(x) = f(x) + g(x) whenever this makes sense (it makes sense on an open
dense subset of X, since the preimage of the point at infinity under f, g is closed
nowhere dense) and is extended by continuity on the points on which f(x) + g(x)
is undefined. Thus f + g ∈ C+(X) if f, g ∈ C+(X). Similarly we define the other
operations. We take the convention that constant functions are always denoted by
their constant value, and that 0 = 1/∞.

Definition 2.3. Let G be an ultrafilter on B. For f, g ∈ C+(St(B)) let [f ]G = [h]G
iff for some a ∈ G, f � Na = g � Na.
C+(St(B))/G is the quotient ring of C+(St(B)) by G given by the equivalence

classes [f ]G for f ∈ C+(St(B)).

In the sequel given a vector ~f = (f1, . . . , fn) ∈ C+(St(B))n, b ∈ B, G ∈ St(B):

• [~f ]G is a shorthand for ([f1]G, . . . , [fn]G),

• ~f(G) is a shorthand for (f1(G), . . . , fn(G)),
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• ~f � Nb is a shorthand for (f1 � Nb, . . . , fn � Nb),

• For g : C→ C, g(~f) is a shorthand for (g ◦ f1, . . . , g ◦ fn).

We also define the following family of rings indexed by positive elements of a
complete boolean algebra:

Definition 2.4. Let B be a complete boolean algebra and b ∈ B+.

• Čc ⊆ C+(Nc) is the ring of functions f ∈ C+(Nc) which are locally constant
i.e. such that ⋃{

f−1[{λ}] : f−1[{λ}] is clopen
}

is open dense in Nc. Č stands for Č1B .
• Let K be a structure among Q,Z,N, we define Ǩc to be the family of func-

tions f ∈ Čc such that ran f ⊆ K. Ǩ stands for Ǩ1B .

As a warm-up for the sequel we can already prove the following:

Fact 2.5. Assume B is a complete boolea algebra. Then:

(1) (C+(St(B))/G, [f ]G 7→ [ef ]G) and (Č/G, [f ]G 7→ [ef ]G) are exponential fields
with kernel 2π · (Ž/G) for all G ∈ St(B).

(2) Q̌/G is a field for all G ∈ St(B).

Proof. Left to the reader. For what concerns the field structure of C+(St(B))/G, it
is not hard to check that for a non-zero [f ]G ∈ C+(St(B))/G, we can find some Nb

with b ∈ G so that g ∈ C+(Nb) and g · (f � Nb) = 1 in C+(Nb). We can then extend
g arbitrarily to a continuous function in C+(St(B)) out of Nb. The rest is similar or
easier. �

Germs of continuous functions on Stone spaces and forcing. We need to consider
C+(St(B)) as a B-boolean valued model. This is done as follows:

Definition 2.6. We identify a cba B with the complete boolean algebra of clopen
(regular open) sets of St(B). The equality relation on C+(St(B)) is the map

=:C+(St(B))2 → B

(f, g) 7→ ˚{H : f(H) = g(H)}
We denote = (f, g) by Jf = gK.

This equality boolean relation satisfies:

Jf = gK ∧ Jh = gK ≤ Jf = hK

and
Jf = gK = Jg = fK

for all f, g, h.
A forcing relation on C+(St(B)) is a map

R : C+(St(B))n → B

such that

R(f1, . . . , fn) ∧ Jfi = hK ≤ R(f1, . . . , fi−1, h, fi+1, . . . , fn)

for all f1, . . . , fn, h.
Let R1, . . . , Rn be forcing relations on C+(St(B))n and φ be a formula in the

language {R1, . . . , Rn}. We define:
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•
r
Ri(~f)

z
= Ri(~f) for all i ≤ n,

• Jφ ∧ ψK = JφK ∧ JψK,
• Jφ ∨ ψK = JφK ∨ JψK,
• J¬φK = ¬ JφK,
• r

∃xφ(x, ~f)
z

=
∨
{
r
φ(g, ~f)

z
: g ∈ C+(St(B))}.

GivenG ultrafilter on B we make C+(St(B))/G a structure for the language {R1, . . . , Rn}
letting

C+(St(B))/G |= Ri/G([~f ]G)

if and only if Ri(~f) ∈ G.

We have the following Theorems:

Lemma 2.7 (Mixing Lemma). Assume B is a complete boolean algebra and A ⊆ B
is an antichain. Then for all family {fa : a ∈ A} ⊆ C+(St(B)), there exists f ∈
C+(St(B)) such that

a ≤ Jf = faK

for all a ∈ A.

Proof. Sketch: Let f ∈ C+(St(B)) be the unique function such that f � N(¬
∨
A) = 0

and f � Na = fa � Na for all a ∈ A. Check that f is well defined and works. �

Lemma 2.8 (Fullness Lemma). Let R1, . . . , Rn be forcing relations on C+(St(B))<ω.

Then for all formulae φ(x, ~y) in the language {R1, . . . , Rn} and all ~f ∈ C+(St(B))n

there exists g ∈ C+(St(B)) such that
r
∃xφ(x, ~f)

z
=

r
φ(g, ~f)

z
.

Proof. Sketch: Find A maximal antichain among the b such that
r
φ(gb, ~f)

z
> 0B

for some gb. Now apply the Mixing Lemma to patch together all the ga for a ∈ A
in a g. Check that r

∃xφ(x, ~f)
z

=
r
φ(g, ~f)

z
.

�

Theorem 2.9 (Cohen’s forcing Theorem). Let R1, . . . , Rn be forcing relations on

C+(St(B)). Then for all ~f ∈ C+(St(B))n and all formulae φ(~x) in the language
{R1, . . . , Rn}:

(1) C+(St(B))/G |= φ([~f ]G) if and only if
r
φ(~f)

z
∈ G,

(2) for all a ∈ B the following are equivalent:
(a) Jφ(f1, . . . , fn)K ≥ a,

(b) C+(St(B))/G |= φ([~f ]G) for all G ∈ Na,

(c) C+(St(B))/G |= φ([~f ]G) for densely many G ∈ Na.

Proof. Sketch: Proceed by induction on the complexity of φ using the Mixing Lemma
and the Fullness Lemma to handle the quantificator’s cases. �
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2.3. TWSP(Č/G) holds in C+(St(B))/G.

Theorem 2.10. Assume B is a cba and G ∈ St(B). Then

ACČ/G,exp /G
([~f ]G) > 0

for all [~f ]G ∈ (C+(St(B))/G)n (where exp /G([f ]G) = [ef ]G).

Before embarking in the proof of the above Theorem, let us show how the forcing
theorem simplifies our task and outlines some caveat.

For any b ∈ B we can consider C+(Nb) both as a ring of functions in the usual
sense, or as a boolean valued model on the boolean algebra B � b in which we
consider the sum and product operations as forcing relations, imposing for example
for the sum:

Jf + g = hK =
˚{H ∈ Nb : f(H) + g(H) = h(H)}

and similarly for the other field operations. By the forcing theorem, we will get
that JφK = 1B for all field axioms φ expressed in the language with ternary relation
symbols to code the operations, since each C+(St(B))/G is a field for all G ∈ St(B).
Notice in sharp contrast that C+(St(B)) is not a field when we consider it as an
algebraic ring. This starts to outline a serious distinction between the theory of
C+(St(B)) seen as a boolean valued model and its theory seen as an algebraic ring.

Moreover in the sequel we do not work simply with the boolean valued model
C+(St(B)) in the language for fields. We will consider it as a boolean valued model
in the language with predicate symbols for the relations and operations Č, exp,+, ·,
we will also add a predicate symbol for the ring Q̌ (Ž) given by the locally con-
stant Q-valued (Z-valued) functions and for the forcing relations expressing Ž-linear
independence over Č and the Č-transcendence degree forcing relation.

Definition 2.11. Let B be a complete boolean algebra. For all c ∈ B:

• Čc ⊆ C+(Nc) is the ring of functions which are locally constant and Č stand
for Č1B .
• Let K be a structure among Q,Z,N, we define Ǩc to be the family of func-

tions given by f ∈ Čc such that ran f ⊆ K and Ǩ stand for Ǩ1B .

Given ~f = (f1, . . . , fn) ∈ C+(St(B))n and c ∈ B, let:

• JTrdgČ(~f) = mK =

=
∨
B

{b ∈ B : ∀c ≤ b(TrdgC(~f � Nc) = m)},

• JLdimQ̌(~f/Č) = mK =

=
∨
B

{b ∈ B : ∀c ≤ b(LdimQ(~f � Nc/C) = m)}.

Fact 2.12. The above relations are forcing relation for C+(St(B)).

Proof. Left to the reader. �

On the face of the definitions we get that

JLdimQ̌(~f/Č) = mK =
∨
B

{b ∈ B : ∀c ≤ bLdimQ(~f � Nc/C) = m}
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entails that
LdimQ̌/H([~f ]H/Č/H) = m

only on an open dense subset of

H ∈ NJLdimQ̌(~f/Č)=mK.

Similarly for the boolean predicate JTrdgČ(~f) = mK. First of all we observe that for
these two boolean predicates this open dense subset is the whole of NJLdimČ(~f)=mK

(NJTrdgČ(~f)=mK):

Fact 2.13. Let B be a complete boolean algebra and ~f = (f1, . . . , fn) ∈ C+(St(B))n.
Then for all G ∈ St(B):

(1) JTrdgČ(~f) = mK ∈ G if and only if

TrdgČ/G([~f ]G) = m.

(2) JLdimQ̌(~f/Č) = mK ∈ G if and only if

LdimQ̌/G([~f ]G/(Č/G)) = m.

Proof. The proof is a standard application of the forcing method. To get the reader
acquainted with what we shall be doing in the remainder we give some of its parts.

Let ~f = (f1, . . . , fn) be a tuple of C+(St(B))-functions. Assume towards a contra-
diction that

TrdgČ/G([~f ]G) < m

but JTrdgČ(~f) = mK ∈ G. Then there is a polynomial p(~x) in Č/G[~x] such that

p([~f ]G) = [0]G.

By the forcing theorem we get that Jp(~f) = 0K ∈ G. Assume

p(~x) =
∑
α

fα~x
α,

where α ranges over the appropriate multiindexes and each fα ∈ C+(St(B)). Then

we also get that (fα � Nb) ∈ Čb for all α for some b ∈ G refining Jp(~f) = 0K.
This gives that TrdgČc

(~f � Nc) < m as witnessed by∑
α

(fα � Nc)~x
α

for all c ≤B b.
On the other hand, d = JTrdgČ(~f) = mK ∈ G means that for an open dense subset

A of Nd we have that for all non-empty Ne ⊆ A TrdgC(~f � Ne) = m. Notice that
0B < b ∧ d ∈ G. Thus we can find c ≤ b ∧ d such that Nc ⊆ A is non-empty and
fα � Nc is constant for all multiindexes α; such a c can be found as follows: list all
relevant multiindexes α in the expression of p(~x) with a non-null coefficient fα as
α1, . . . , αm. First refine b ∧ d to a cα1 > 0B such that fα1 � Nc1 is constant, given ci
for i < m, let 0B < ci+1 ≤ ci be such that fαi+1

� Nci+1
is constant, set c = cm.

Then on Nc we have at the same time that TrdgC(~f � Nc) < m as witnessed by
the polynomial

pc(~x) =
∑

j=1,...,m

(fαj
� Nc)~x

αj
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vanishing on ~f � Nc and also that TrdgC(~f � Nc) = m as witnessed by the fact that
Nc ⊆ A. We reached a contradiction.

The converse direction for Trdg and the proof for the other predicate are left to
the reader. �

2.3.1. Key Lemmas. Let b ∈ B, and ~f = (f1, . . . , fn) be a tuple of C+(St(B))-
functions.

• Ib(~f) is the ideal on C[~x] given by polynomials p(~x) with coefficients in C
such that

p(~f(H)) = 0 for all H ∈ Nb.

• IG(~f) is the ideal on C[~x] of polynomials p(~x) with coefficients in C such that

p([~f ]G) = 0.

• Īb(~f) is the ideal on Čb[~x] given by polynomials p(~x) with coefficients in Čb

such that

p(~f � Nb) = 0.

• ĪG(~f) is the ideal on Č/G[~x] of polynomials p(~x) with coefficients in Čb for
some b ∈ G such that

[p]G([~f ]G) = 0.

If no confusion can arise we let Ib denote Ib(~f) and similarly for all the other ideals
defined above.

Notice the following:

• Ib ⊆ IG for all G ∈ Nb,
• Ib ⊆ Īb,
• IG ⊆ ĪG for all G ∈ Nb,
• [p]G ∈ ĪG for all p ∈ Īb and for all G ∈ Nb, where

[p]G =
∑
α

[fα]Gx
α if p =

∑
α

fαx
α.

Fact 2.14. V (IG) and V (ĪG) are irreducible algebraic varieties.

Proof. Assume p(~x)q(~x) ∈ IG(~f). Then [p ◦ ~f ]G[q ◦ ~f ]G = 0 in C+(St(B))/G. Since

the latter is a field we get that [p◦ ~f ]G or [q ◦ ~f ]G must be 0, which yields the desired
conclusion. The proof for V (ĪG) is identical. �

Lemma 2.15. Assume B is a complete boolean algebra. For each b ∈ B+ and
~f = (f1, . . . , fn) tuple of C+(St(B))-functions, there exists c ≤B b in B+ such that
for all G ∈ Nc:

• Ic(~f) = IG(~f),

• [~f ]G is a generic point for V (IG(~f))C
+(St(B))/G, where for any ideal I on

C+(St(B))/G[~x], V (I)C
+(St(B))/G is the variety given by points in (C+(St(B))/G)n

which annihilate all polynomials in I.

Proof. Assume the first conclusion of the Lemma fails for b and ~f . Let b0 = b and

I0 = Ib(~f) and build by induction a strictly increasing chain of ideals In on C and
a decreasing chain of elements bn >B 0B as follows:



14 M. VIALE

Given In = Ibn(~f), find —if possible— some p(~x) ∈ C[~x] which is not in In and

vanishes on [~f ]G for some G ∈ Nbn . Then

p([~f ]G) = [0]G

if and only if

Jp(~f) = 0K ∈ G.
If we can proceed for all n,

{In : n ∈ N}
is a stricly increasing chain of ideals on the Noetherian ring C[x1, . . . , xn]. This is

impossible, so we can find bn = c such that IG(~f) = Ic(~f) for any G ∈ Nc.

We are left to prove that [~f ]G ∈ (C+(St(B))/G)n is a generic point for V (Ic(~f))C
+(St(B))/G

for any G ∈ Nc. This is immediate for all G ∈ Nc, since:

p([~f ]G) = 0 iff p(~x) ∈ IG(~f) = Ic(~f).

The proof of the Lemma is completed. �

Lemma 2.16. Assume B is a complete boolean algebra. Let ~f = (f1, . . . , fn) be a

tuple of C+(St(B))-functions, and c ∈ B be such that Ic(~f) = IG(~f) for all G ∈ Nc.

Then Id(~f) is a set of generators for Īd(~f � Nd) in Čd[~x] for all d ≤B c and IG(~f) is

a set of generators for ĪG(~f) for all G ∈ Nc. In particular

V (IG(~f))C
+(St(B))/G = V (ĪG(~f))C

+(St(B))/G.

Proof. Let p1, . . . , pk ∈ C[~x] be a family of generators for Ic(~f). We claim that

p1, . . . , pk is also a family of generators for Īc(~f) in Čc[~x]: Pick some p ∈ Čc[~x] such

that p ∈ Īc(~f). Since the coefficients of p are locally constant functions defined on
Nc, we can find a maximal antichain {dj : j ∈ J} such that each dj refines c and is
such that

p � Ndj =
∑
α

fα � Ndjx
α ∈ C[~x].

This gives that

p � Ndj(
~f) ∈ Idj(~f) = Ic(~f)

for all j ∈ J . Find thus q1
j , . . . q

k
j ∈ C[~x] such that

p � Ndj =
∑

l=1,...,k

qljpl.

Define for each l = 1, . . . , k ql ∈ C+(Nc) by the requirement that

ql � Ndj = qlj

for all j ∈ J .
Then ql ∈ Čc[~x] for all l = 1, . . . , k and

p =
∑

l=1,...,k

ql · pl ∈ Īc(~f).

Since p ∈ Ic(~f) was chosen arbitrarily, we conclude that p1, . . . , pk are a set of

generators for Īc(~f) in Čc[~x]. This proves the first part of the Lemma.

For the second part observe that p1, . . . , pk are a family of generators for IG(~f)
for all G ∈ Nc.
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Now pick [p]G ∈ ĪG(~f) for G ∈ Nc. Then for some d ≤B c in G p � Nd ∈ Īd(~f). But

since c ≥B d it is immediate to check that p1, . . . , pk are generators also for Īd(~f).
We conclude that p � Nd can be obtained as a linear combination of p1, . . . , pk with
coefficients in Čd[~x]. Thus this occurs as well for [p]G taking the germs of these
coefficients in C+(St(B))/G. The proof of the Lemma is completed. �

Lemma 2.17. Let b ∈ B and ~f = (f1, . . . , fn) be a tuple of C+(St(B))-functions.
Assume that

JLdimQ̌(f1, . . . , fn/Č) = nK ≥B b

(i.e. [f1]H , . . . , [fn]H are Q̌/H-linearly independent modulo Č/H for all H ∈ Nb).
Then there exists an ultrafilter G ∈ Nb such that

TrdgČ/G([~f ]G, [e
~f ]G) ≥ n+ 1.

Clearly the proof of this Lemma concludes the proof of Theorem 2.10 since it
shows that the statement

ACQ̌/H ,exp /H
([~f ]H) > 0

holds for a dense set of H for any fixed ~f ∈ (C+(St(B))<N. In particular we get that
the statement

JACQ̌,exp(~f) > 0KB = 1B

for all ~f ∈ (C+(St(B))<N. Using the observations regarding the properties of the

forcing predicates JLdimQ̌(~f/Č)KB and JTrdgČ(~f)KB and once again the forcing the-
orem, we get that

ACQ̌/H,exp /H
([~f ]H) > 0

holds for all H and for any fixed ~f ∈ (C+(St(B))<N, which is the desired conclusion.
We now prove the Lemma:

Proof. First of all we choose c ≤ b such that

Ic(~f, e
~f ) = IG(~f, e

~f )

for all G ∈ Nc, which is possible by Lemma 2.15. We let I = Ic = IG in what
follows and p1, . . . , pm ∈ C[~x, ~y] be a set of generators of minimal size for I in the
appropriate ring.

We immediately notice —by standard arguments on the dimension of algebraic
varieties— that the dimension of V (I) as a variety over C2n and of V (ĪG) as a variety
over (C+(St(B))/G)2n is always equal to 2n−m for all G ∈ Nc.

Moreover 2n−m is also equal to the transcendence degree of ([~f, e
~f ]G) over C as

well as over Č, since —by Lemma 2.16— the latter is a generic point of the variety

V (I)C
+(St(B))/G = V (ĪG)C

+(St(B))/G

for any G ∈ Nc for the field Č/G.
So in order to prove the Lemma it is enough to study the geometric dimension of

V (I)C
+(St(B))/G as a subvariety of (C+(St(B))/G)2n and to prove that it is at least

n for some G ∈ Nc.
We start this task remarking the following:

Fact 2.18. ([~f, e
~f ]G) is a smooth point of V (I)C

+(St(B))/G for all G ∈ Nc.
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Proof. This follows from the fact that ([~f, e
~f ]G) is a generic point of V (I)C

+(St(B))/G.
�

Now observe that letting U(I) be the set of smooth points of V (I), U(I) is a
quasi-projective algebraic variety. Let

Exp(n) = {(~λ, e~λ) : λ ∈ Cn}.
Remark that U(I) ∩ Exp(n) is the zero-set of a finite set of analytic functions.

Thus it can be split in disjoint closed (in U(I)) connected components. Let V ′ be

the connected component of U(I) ∩ Exp(n) to which (~f(G), e
~f(G)) belongs for some

G ∈ Nc.

Claim 1. dim(V ′) > 0.

Proof. Assume dimV ′ = 0. Then by standard argument regarding the properties of
analytic manifolds, we get that V ′ is an isolated point of U(I) ∩ Exp(n), since any
analytic variety contained in some open neighborhood of C2n having dimension 0 is
a discrete set of points for the Euclidean topology on C2n. In particular V ′, being a
connected component of the dimension 0-part of the analytic variety U(I)∩Exp(n),
must be an isolated point of this variety. Hence we can find an open neighboor-

hood B ⊆ C2n of {(~f(G), e
~f(G))} such that (~f(H), e

~f(H)) ∈ V ′ for all H such that

(~f(H), e
~f(H)) ∈ B ∩ V (I). However

I = IH(~f, e
~f ) = IG(~f, e

~f ) = Ic(~f, e
~f )

for all H ∈ Nc. In particular p(~f(H), e
~f(H)) = 0 for all p ∈ I and all H ∈ Nc, i.e

(~f(H), e
~f(H)) ∈ V (I) for all H ∈ Nc.

Since V ′ consist of just one point we get that (~f(H), e
~f(H)) = (~f(G), e

~f(G)) for all

H ∈ Nc with (~f(H), e
~f(H)) ∈ B. We conclude that ~f is constant with value ~f(G)

on an open subset of Nc, contradicting our assumptions that ~f is nowhere locally
constant on Nb ⊇ Nc. �

We now come to the heart of the proof of this Lemma:

Claim 2. For some G ∈ Nc

TrdgC([f1]G, . . . , [fn]G, [e
f1 ]G, . . . , [e

fn ]G) ≥ n+ 1.

Proof. Let c1 ≤ c be such that (~f(H), e
~f(H)) ∈ V ′ for all H ∈ Nc1 . Our assumptions

give that

(f1(H), . . . , fn(H), ef1(H), . . . , efn(H)) ∈ V ′

for all H ∈ Nc1 and that V ′ is connected and of positive dimension.
Let CΩ([0, 1], V ′) (in the sequel -for the sake of brevity- CΩ(V ′)) denote the vector

valued paths which are analytic with range in V ′ ⊆ C2n.
We will use the following standard fact:

Fact 2.19. For any distinct H1, . . . , Hk with ~f(Hi) 6= ~f(Hj) for all 0 < i 6= j ≤ k
in Nc1 there is a path in CΩ(V ′) passing through

(f1(Hj), . . . , fn(Hj), e
f1(Hj), . . . , efn(Hj))

for all 0 < j ≤ k.



FORCING THE TRUTH OF A WEAK FORM OF SCHANUEL’S CONJECTURE 17

For each H ∈ Nc1 consider the family PathH of CΩ(V ′)-paths

~φ : [0, 1]→ V ′ ⊆ C2n

with
~φ(0) = (f1(H), . . . , fn(H), ef1(H), . . . , efn(H))

Let H be the family of hypersurfaces given by points (~x, ~y) satisfying∑
i=1,...,n

mixi = a;
∏

i=1,...,n

ymi
i = ea

for some a ∈ C and some vector (m1, . . . ,mn) ∈ Nn.

Subclaim 1. For all G ∈ Nc1 the set DG of H ∈ Nc1 such that any CΩ(V ′)-path in
PathG passing through H is contained in some hypersurface in H is nowhere dense.

Proof. Assume not for some G. Let d ∈ B be such that DG ∩Nd is dense in Nd.
By our assumptions, any CΩ(V ′)-path contained in V ′ starting in the point

(f1(G), . . . , fn(G), ef1(G), . . . , efn(G))

and passing through some element of D is contained in an hypersurface in H. Since
V ′ is connected, for any G1, . . . , Gk ∈ DG there is a CΩ(V ′)-path in PathG passing
through

(f1(Gj), . . . , fn(Gj), e
f1(Gj), . . . , efn(Gj)).

By our assumptions this path is contained in some hypersurface of the form∑
i=1,...,n

mixi = a;
∏

i=1,...,n

ymi
i = ea

belonging to H. Now select for as long as it is possible for each 0 ≤ j < n some
Gj ∈ DG so that G0 = G and

(f1(Gj+1), . . . , fn(Gj+1), ef1(Gj+1), . . . , efn(Gj+1)).

does not belong to the unique (j − 1)-dimensional hypersurface Ej determined as
follows: Let Aj be the unique (j − 1)-dimensional hyperplane in Cn passing for the
points

(f1(Gk), . . . , fn(Gk))

with k ≤ j. Let Ej consists of the points of the form (~λ, e
~λ) with ~λ ∈ Aj. Ej is an

hypersuperface contained in some element of H for each 0 ≤ j ≤ n− 1. To proceed
in the construction notice that Ej is a closed subset of C2n for all j < n, thus

Uj = {H ∈ Nd : (f1(H), . . . , fn(H), ef1(H), . . . , efn(H)) ∈ Ej}

is a closed subset of Nd. So either the latter set overlaps with Nd, or its complement
has open and non-empty intersection with Nd, in which case we can find Gj+1 ∈
DG \Uj since DG is dense in Nd. Continue this way for all 0 ≤ j < n for which this
is possible until j = n− 1, if possible.

We show that this j cannot exist, reaching a contradiction.

• If we stop at stage j < n−1, this occurs only if for all H ∈ DG\{G0, . . . , Gj}

(f1(H), . . . , fn(H), ef1(H), . . . , efn(H)) ∈ Ej.
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However Ej ⊆ M for some hypersurface M ∈ H. This M is therefore the
0-set of equations of the form∑

i=1,...,n

mixi = a,
∏

i=1,...,n

ymi
i = ea.

In particular we get that for a dense set of H ∈ Nd

(f1(H), . . . , fn(H), ef1(H), . . . , efn(H)) ∈ Ej.
Since belonging to Ej is a closed property of C2n, and the map H 7→
(f1(H), . . . , fn(H), ef1(H), . . . , efn(H)) is continuous on Nd, we get that for
all H ∈ Nd

(f1(H), . . . , fn(H), ef1(H), . . . , efn(H)) ∈ Ej.
Then in C+(Nd) ∑

i=1,...,n

mifi � Nd = a,

This contradicts the C-linear independence of the vector 1, f1 � Nd, . . . , fn �
Nd on Nd for a d ≤ b, which was an assumption of the Lemma.
• Otherwise we can continue up to stage j = n− 1. This gives that

{(f1(Gk), . . . , fn(Gk)) : 0 ≤ k < n}
are points in Cn in general position, i.e. they are not contained in any
proper affine subspace of Cn. Since (f1(Gk), . . . , fn(Gk), e

f1(Gk), . . . , efn(Gk))
are all in V ′ for all k < n and V ′ is an analytic and connected variety,
there is a CΩ(V ′)-path (φ1, . . . , φ2n) connecting all of them and starting in

(~f(G0), e
~f(G0)). Now observe that ~φ = (φ1, . . . , φn) is an analytic path passing

through n-points in Cn in general position. Thus it cannot be contained in

any hyperplane of Cn. In particular (~φ, e
~φ) ∈ PathG cannot be contained in

any hypersurface belonging to H, which is a contradiction.

The subclaim is proved. �

By the above subclaim we can fix G ∈ Nc1 and find H ∈ Nc1 \ DG (since this
latter set contains a dense open subset of Nc1). Then we can pick an analytic path

(~φ, e
~φ) in PathG passing through (~f(H), e

~f(H)) and not contained in any hyperplane
in H.

Consider finally the field of fractions of germs [f ] of analytic functions f : [0, 1]→
C around the point 0, where [f ] = [g] are equivalent germs if f and g overlap on
[0, t) for some t ≤ 1. This is a differential field OΩ with differential

D : OΩ → OΩ

mapping
[f ]/[g]→ [f ′g − g′f ]/[g2]

and ker(D) = C given by the germs of constant functions.

Since we chose ~φ not contained in E for any hypersurface E ∈ H, we get that [~φ]
is a vector of elements of the differential field OΩ which are Q-linearly independent
modulo C, so that the hypothesis of Ax’s theorem apply to these elements. By Ax’s
result 2.1, we get that

TrdgC([~φ, e
~φ]) ≥ n+ 1.
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Now let
J = {p ∈ C[~x, ~y] : p([~φ, e

~φ]) = 0},
we get that I = INc2

⊆ J since (~φ, e
~φ) has range contained in V (I). In particular

TrdgČ/G([~f ]G, [e
~f ]G) = dim(V (I)) ≥ dim(V (J)) = TrdgC([~φ, e

~φ]) ≥ n+ 1.

This concludes the proof of the claim and of the Lemma3. �

The proof of the Lemma is completed. �

3. Step 3

From now on we shall assume the reader has some familiarity with the boolean
valued model approach to forcing in set theory. Standard references for the material
of this section can be [2] or [5], and a detailed account of the results we sketch here
can be found in [7]. We briefly sketch the general picture of the forcing theory in
the next subsection.

3.1. A brief outline of forcing over the standard model of set theory. Recall
that for (V,∈) the standard model of ZFC for the first order language {∈,=} and B
a complete boolean algebra in V we can define (by transfinite recursion) the class
of B-names V B given by τ ∈ V if τ is a function with domain contained in V B and
range contained in B. We can also define forcing relations

∈B:(V B)2 → B

(τ, σ) 7→ Jτ ∈ σK

=B:(V B)2 → B

(τ, σ) 7→ Jτ = σK

such that (V B,∈B,=B) is a full B-valued model for the language of set theory and
JφK = 1B for all axioms φ of ZFC.

Letting
[τ ]G = {σ : Jτ = σK ∈ G}

and
[τ ]G ∈ [σ]G if and only if Jτ ∈ σK ∈ G

We also have that

Jφ(τ1, . . . , τn)K ∈ G if and only if V B/G |= φ([τ1]G, . . . , [τn]G)

for all formulae φ(x1, . . . , xn) in this language and all G ∈ St(B).
Finally we recall that G is V -generic for a cba B if G ∩D is nonempty for all D

dense subset of B+ and that for such a G and all τ ∈ V B we can define:

τG = {σG : τ(σ) ∈ G}
and let

V [G] = {τG : τ ∈ V B}.
With this choice of G we have that the map [τ ]G 7→ τG define an isomorphism of

(V B/G,∈G) with (V [G],∈).

3With some extra work one can check that J = I for an open dense set of H ∈ Nc1 .
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Moreover any element u ∈ V has a canonical name ǔ ∈ V B such that ǔG = u
whenever G is V -generic for B.

It s well known that V -generic filter cannot exists for atomless complete boolean
algebra, nonetheless there is a wide spectra of solutions to overcome this issue and
work under the assumption that for any such B V -generic filters can be found.

3.2. The relation between C+(St(B)) and V B. We have the following theorem
linking the boolean valued model C+(St(B)) to the set theoretic boolean valued
model V B (see [7, Theorem 4.3.5]):

Theorem 3.1. Let B be a cba, b ∈ B, and {Un : n ∈ ω} be a countable base for
the euclidean topology on C. Given f ∈ C+(Nb) for some b ∈ B, let τf ∈ V B be a
B-name for the unique object in V B satisfying in V B:

Jτf ∈ UnK =
˚

f−1[Un].

Given R a forcing relation on C+(Nb)
n let R̄ ∈ V B be a B-name for a n-ary relation

on the n-tuples of complex numbers Cn as computed in V B such that

q
R̄(τf1 , . . . , τfn)

yV B

= R(f1, . . . , fn).

Then the assignment f 7→ τf , R 7→ R̄ is an embedding of the boolean valued models
C+(St(B)) and C+(Nb) for b ∈ B in the boolean valued model V B such that:

• the equality forcing relation on C+(St(B)) is mapped to the equality relation
on V B;
• for all τ ∈ V B such that

Jτ is a complex number KV
B

= b,

there exists f ∈ C+(Nb) such that

Jτ = τfK
V B

= b;

• for all forcing relations R on C+(St(B))n and all f1, . . . , fn ∈ C+(St(B))

q
R̄(τf1 , . . . , τfn)

yV B

= R(f1, . . . , fn).

3.3. Shoenfield’s absoluteness. We say that A ⊆ Cm is a Σ1
2-property if there is

a Borel predicate R ⊆ C<ω and ~a ∈ C<ω such that A(~a) holds if and only if

∃x∀yR(x, y,~a).

Given a Borel predicate R ⊆ Cn and a complete boolean algebra B, we let

RB :C+(St(B))n → B

(f1, . . . , fn) 7→ ˚{H : R(f1(H), . . . , fn(H))}

and

R̄B :(V B)n → B

(τ1, . . . , τn) 7→
∧

j=1,...,n

Jτj is a complex numberK ∧RB(fτ1 , . . . , fτn)
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Theorem 3.2 (Shoenfield’s absoluteness). Assume A is a Σ1
2-property defined by

the Borel predicate R as ∃y∀xR(x, y,~a). Then A(a1, . . . , an) holds in V for complex
numbers a1, . . . , an if and only if

q
∃x∀yR̄B(x, y, ǎ1, . . . , ǎn)

y
B

= 1B

for some complete boolean algebra B.

3.4. WSP holds for C relative to a countable subfield. We can now prove
Theorem 1.3: Shoenfield’s absoluteness gives a simple proof of the following:

Corollary 3.3. C+(St(B))/G is an algebraically closed field for any G ∈ St(B) and
for any complete boolean algebra B.

Proof. The graph of the multiplication and of the addition are Borel relations on C3,
and the field axioms and the algebraic closure axioms are expressible as Σ2-properties
of these operations. �

Now let B be the complete boolean algebra of regular sets in CN where C is
endowed with the discrete topology. In V [G] there is a new bijection f of CV = C
with N given f(n) = a if and only if

{g ∈ CN : g(n) = a}
is in G. Moreover

V [G] |= φ((τ1)G, . . . , (τn)G) if and only if Jφ(τ1, . . . , τn)K ∈ G.
Now we observe that the following holds if G is V -generic in V [G]:

• C+(St(B),C)/G is isomorphic to the complex numbers of V [G] via the map

[f ]G = (τf )G

• eV [G] is the unique analytic function on the field

CV [G] = {τG : Jτ is a complex numberK ∈ G}
whose power series expansion is∑

n=0,∞

xn/n!.

Moreover eV [G] is the graph of [f ]G 7→ [ef ]G modulo the isomorphism of
C+(St(B),C)/G with CV [G],
• C ∩ V = CV = ČG is identified with Č/G modulo the above isomorphism

and NV [G] ∩ V = NV = NV [G] = ŇG are the natural numbers both in V and
in V [G].

• The Key Lemmas for ~f give that

TrdgCV ([~f ]G, e
[~f ]G) ≥ n

whenever [~f ]G is a family of CV -linearly independent vectors, since the
boolean value of this statement is 1B (notice that such vectors are identi-
fied to complex numbers of V [G] \ V , since the complex numbers of V are
represented by the locally constant functions).
• V [G] models that CV is a countable exponentially and algebraically closed

subfield of CV [G] and the latter is the field of complex numbers in V [G].

In particular V [G] models that:
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There exists CV , countable algebraically and exponentially closed sub-

field of CV [G], such that for all ~f ∈ (CV [G])n

TrdgCV ([~f ]G, e
[~f ]G) ≥ LdimCV (~f).

This is a Σ1
2-statement in no parameters and a few (lightface definable) Borel pred-

icates which holds in

(CV [G],CV ,NV , eV [G],TrdgCV ,LdimCV ).

By Shoenfield’s absoluteness it holds in V , since all of the above predicates are Borel.
More precisely the forcing theorem gives that V B models the above statement

with boolean value 1B and Shoenfield’s absoluteness shows that it also holds in V .
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