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Abstract

We outline a duality existing between commutative C∗-algebras and the family of
B-names for complex numbers in a boolean valued model for set theory V B given by
a complete boolean algebra B. In particular we can describe these families of boolean
names as spaces of functions obtained by a natural limit process over the commutative
and unital C∗-algebras whose spectrum is extremely disconnected. We also outline how
this duality could be combined with generic absoluteness results in the forcing theory
to yield new methods to analyze the theory of the complex numbers as well as that of
commutative C∗-algebras.

1. Introduction

This paper outlines a duality between the theory of commutative unital C∗-algebras, a
specific domain of functional analysis, and the theory of Boolean valued models, which
pertains to logic and set theory. More specifically, the main purpose will be to show that
a commutative unital C∗-algebra A, whose spectrum is extremely disconnected, can be
identified with the B-names for complex numbers in the boolean valued model for set
theory V B, where B is the complete boolean algebra given by clopen sets on the spectrum
of A.

We will also show how to transform generic absoluteness results, such as Shoenfield’s
absoluteness and Woodin’s proof of the invariance of the theory of L(R) under set forcing in
the presence of class many Woodin cardinals, in tools to describe the degree of elementarity
between the complex numbers and the ring of germs at points of the spectrum of these
C∗-algebras. In this respect the major outcome of the results we will present can be
summarized in the following:

Theorem 1. Let X be an extremally (extremely) disconnected compact Hausdorff space.
Let C+(X) be the space of continuous functions f : X → S2 = C ∪ {∞} such that the

preimage of ∞ is nowhere dense (S2 is the one point compactification of C).
Given any Borel predicate R on Cn, there is a predicate RX ⊆ C+(X)n × X (equiv-

alently a boolean predicate RX : C+(X)n → CL(X) where CL(X) is the boolean algebra
given by clopen subsets of X) such that for all p ∈ X

〈C, R〉 ≺Σ2 〈C+(X)/p,RX/p〉,

where C+(X)/p is the ring of germs in p of functions in C+(X), and RX/p([f1], . . . [fn])
holds if there is a neighborhood U of p such that R(f1(x), . . . , fn(x)) holds on a dense set
of x ∈ U .

Moreover if we assume the existence of class many Woodin cardinals we get that

〈C, R〉 ≺ 〈C+(X)/p,RX/p〉.
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Our main purpose is to provide a language suitable to translate deep results in the
theory of forcing in useful tools to analyze certain spaces of functions which can be of
interest in various domains of mathematics. We try to make the statements of the theorems
comprehensible to most readers with a fair acquaintance with first order logic. On the
other hand the proofs will require a great familiarity with the forcing method.

We organize the paper as follows: In section 2 we introduce the spaces of functions
C+(X) with X compact, Hausdorff and extremally (extremely) disconnected and we out-
line their simplest properties. In section 3 we introduce the notion of B-valued model for
a first order signature and we show how to endow C+(X) of the structure of a B-valued
model for B the boolean algebra given by regular open sets of X. In section 4 we show the
natural isomorphism existing between these B-valued models and the family of boolean
names for complex numbers in the boolean valued model for set theory V B. In section 5 we
show how to translate generic absoluteness results in a proof of the above theorem. This
paper outlines the original parts of the master thesis of the first author [7]. A thorough
presentation of all the results (and the missing details) presented here can be found there.
We encounter a problem in the exposition: those familiar with forcing arguments will find
most of the proofs redundant or trivial, those unfamiliar with forcing will find the paper
far too sketchy. We aim to address readers of both kinds, so the current presentation tries
to cope with this tension at the best of our possibilities.

2. The space of functions C+(St(B))

We refer the reader to [7, Chapter 2] for a detailed account on the material presented in
this section.

• A topological space (X, τ) is 0-dimensional, if its clopen sets form a base for τ .

• A compact topological space (X, τ) is extremally (extremely) disconnected if its
algebra of clopen sets CL(X) overlaps with its algebra of regular open sets RO(X).

For a boolean algebra B we let St(B) be the Stone space of its ultrafilters with topology
generated by the clopen sets

Ob = {G ∈ St(B) : b ∈ G}.

The following holds:

• St(B) is a compact 0-dimensional Hausdorff space and any 0-dimensional compact
space (X, τ) is isomorphic to St(CL(X)),

• A compact Hausdorff space (X, τ) is extremely disconnected if and only if its alge-
bra of clopen sets is a complete boolean algebra. In particular St(B) is extremely
disconnected if and only if B = CL(St(B)) is complete.

Recall also that the algebra of regular open sets of a topological space (X, τ) is always a
complete boolean algebra with operations

•
∨
{Ai : i ∈ I} =

˚⋃
{Ai : i ∈ I},

• ¬A = ˚X \A,

• A ∧B = A ∩B.
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An antichain on a boolean algebra B is a subset A such that a∧ b = 0B for all a, b ∈ A,
B+ = B \ {0B} is the family of positive elements of B and a dense subset of B+ is a subset
D such that for all b ∈ B+ there is a ∈ D such that a ≤B b. In a complete boolean algebra
B any dense subset D of B+ contains an antichain A such that

∨
A =

∨
D = 1B.

Another key observation on Stone spaces of complete boolean algebras we will often
need is the following:

Fact 2.1. Assume B is a complete atomless boolean algebra, then on its Stone space St(B):

• O∨
B A

=
˚⋃

a∈AOa for all A ⊆ B.

• O∨
B A

=
⋃
a∈AOa for all finite sets A ⊆ B.

• For any infinite antichain A ⊆ B+,
⋃
a∈AOa is properly contained in O∨

B A
as a

dense open subset ({1B − a : a ∈ A} has the finite intersection property and can be
extended to an ultrafilter disjoint form A).

Given a compact Hausdorff topological space X, we let C+(X) be the space of contin-
uous functions

f : X → S2 = C ∪ {∞}

(where S2 is seen as the one point compactification of C) with the property that f−1[{∞}]
is a closed nowhere dense (i.e. with a dense open complement) subset of X. In this
manner we can endow C+(X) of the structure of a commutative ring of functions with
involution letting the operations be defined pointwise on all points whose image is in C
and be undefined on the preimage of ∞. More precisely f + g is the unique continuous
function

h : X → S2

such that h(x) = f(x) + g(x) whenever this makes sense (it makes sense on an open dense
subset of X, since the preimage of the point at infinity under f, g is closed nowhere dense)
and is extended by continuity on the points on which f(x) + g(x) is undefined. Thus
f + g ∈ C+(X) if f, g ∈ C+(X). Similarly we define the other operations. We take the
convention that constant functions are always denoted by their constant value, and that
0 = 1/∞. We leave to the reader as an instructive exercise the following:

Lemma 2.2. Let X be compact Hausdorff extremally disconnected. Then for any p ∈ X
the ring of germs C+(X)/p is an algebraically closed field.

Its proof will be an immediate corollary of the main theorem we stated in the in-
troduction, since the theory of algebraically closed fields is axiomatizable by means of
Π2-formulae using simple Borel predicates on Cn for all n. However, as a warm up for the
sequel, the reader can try to prove that it is a field.

Remark 2.3. The reader is averted that the spaces of functions C+(X) we are considering
may not be exotic: for example if MALG is the complete boolean algebra given by Lebesgue-
measurable sets modulo Lebesgue null sets, C(St(MALG)) is isometric to L∞(R) via the
Gelfand-transform of the C∗-algebra L∞(R) and consequently St(MALG) is homeomorphic
to the space of characters of L∞(R) endowed with the weak-∗ topology inherited from the
dual of L∞(R). C+(St(MALG)) = L∞+(R) is obtained adding to L∞(R) the measurable
functions which are essentially bounded on all sets of finite Lebesgue measure.

Moreover by means of Gelfand transform the spaces C+(X) we are considering are
always obtained canonically from a commutative unital C∗-algebras with extremely dis-
connected spectrum by a completion procedure as the one described above for L∞+(R).
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3. Boolean Valued Models

In a first order model a formula can be interpreted as true or false. Given a complete
boolean algebra B, B-boolean valued models generalize Tarski semantics associating to
each formula a value in B, so that there are no more only true and false propositions (those
associated to 1B and 0B respectively), but also other “intermediate values” of truth. The
classic definition of boolean valued models for set theory and of their semantic for the
language L = {∈} may be found in [3, Chapter 14]. As mentioned earlier, we need to
generalize the definition to any first order language and to any theory of the language. A
complete account of the theory of these boolean valued models can be found in [6]. Since
this book is a bit out of date, we recall below the basic facts we will need and we invite
the reader to consult [7, Chapter 3] for a detailed account on the material of this section.

Definition 3.1. Given a complete boolean algebra B and a first order language

L = {Ri : i ∈ I} ∪ {fj : j ∈ J}

a B-boolean valued model (or B-valued model) M in the language L is a tuple

〈M,=M, RMi : i ∈ I, fMj : j ∈ J〉

where:

1. M is a non-empty set, called domain of the B-boolean valued model, whose elements
are called B-names;

2. =M is the boolean value of the equality:

=M: M2 → B

(τ, σ) 7→ Jτ = σKMB

3. The forcing relation RMi is the boolean interpretation of the n-ary relation symbol
Ri:

RMi : Mn → B

(τ1, . . . , τn) 7→ JRi(τ1, . . . , τn)KMB

4. fMj is the boolean interpretation of the n-ary function symbol fj :

fMj : Mn+1 → B

(τ1, . . . , τn, σ) 7→ Jfj(τ1, . . . , τn) = σKMB

We require that the following conditions hold:

for τ, σ, χ ∈M ,

(i) Jτ = τKMB = 1B;

(ii) Jτ = σKMB = Jσ = τKMB ;

(iii) Jτ = σKMB ∧ Jσ = χKMB ≤ Jτ = χKMB ;

for R ∈ L with arity n, and (τ1, . . . , τn), (σ1, . . . , σn) ∈Mn,
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(iv) (
∧
h∈{1,...,n} Jτh = σhKMB ) ∧ JR(τ1, . . . , τn)KMB ≤ JR(σ1, . . . , σn)KMB ;

for fj ∈ L with arity n, and (τ1, . . . , τn), (σ1, . . . , σn) ∈Mn and µ, ν ∈M ,

(v) (
∧
h∈{1,...,n} Jτh = σhKMB ) ∧ Jfj(τ1, . . . , τn) = µKMB ≤ Jfj(σ1, . . . , σn) = µKMB ;

(vi)
∨
µ∈M Jfj(τ1, . . . , τn) = µKMB = 1B;

(vii) Jfj(τ1, . . . , τn) = µKMB ∧ Jfj(τ1, . . . , τn) = νKMB ≤ Jµ = νKMB .

If no confusion can arise, we will omit the pedix B and we will confuse a function or
predicate symbol with its interpretation.

Given a B-model (M,=M ) for equality a forcing relation R on M is a map R : Mn → B
satisfying condition (iv) above for boolean predicates.

We now define the relevant maps between those objects.

Definition 3.2. LetM be a B-valued model andN a C-valued model in the same language
L. Let

i : B→ C

be a morphism of boolean algebras and Φ ⊆ M × N a relation. The couple 〈i,Φ〉 is a
morphism of boolean valued models if:

1. domΦ = M ;

2. given (τ1, σ1), (τ2, σ2) ∈ Φ:

i(Jτ1 = τ2KMB ) ≤ Jσ1 = σ2KNC ,

3. given R an n-ary relation symbol and (τ1, σ1), . . . , (τn, σn) ∈ Φ:

i(JR(τ1, . . . , τn)KMB ) ≤ JR(σ1, . . . , σn)KNC ,

4. given f an n-ary function symbol and (τ1, σ1), . . . , (τn, σn), (µ, ν) ∈ Φ:

i(Jf(τ1, . . . , τn) = µKMB ) ≤ Jf(σ1, . . . , σn) = νKNC ,

An injective morphism is a morphism such that in 2 equality holds.
An embedding of boolean valued models is an injective morphism such that in 3 and 4

equality holds.
An embedding 〈i,Φ〉 from M to N is called isomorphism of boolean valued models if

i is an isomorphism of boolean algebras, and for every b ∈ N there is a a ∈ M such that
(a, b) ∈ Φ.

Suppose M is a B-valued model and N a C-valued model (both in the same language
L) such that B is a complete subalgebra of C and M ⊆ N . Let J be the immersion of M
in N . N is said to be a boolean extension of M if 〈idB, J〉 is an embedding of boolean
valued models.

Remark 3.3. When B = C we will consider i = idB unless otherwise stated.

Since we are allowing function symbols in L, the definition of the semantic is a bit
more intricate than in the case of a purely relational language.
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Definition 3.4. Given a B-valued modelM in a language L, let ϕ be a L-formula whose
free variables are in {x1, . . . , xn}, and let ν be a valuation of the free variables inM whose
domain contains {x1, . . . , xn}. We denote with Jϕ(ν)KMB the boolean value of ϕ(ν).

First, let t be an L-term and τ ∈ M ; we define recursively J(t = τ)(ν)KMB ∈ B as
follows:

• if t is a variable x, then

J(x = τ)(ν)KMB = Jν(x) = τKMB

• if t = f(t1, . . . , tn) where ti are terms and f is an n-ary function symbol, then

J(f(t1, . . . , tn) = τ)(ν)KMB =
∨

σ1,...,σn∈M

 ∧
1≤i≤n

J(ti = σi)(ν)KMB

∧Jf(σ1, . . . , σn) = τKMB

Given a formula ϕ, we define recursively Jϕ(ν)KMB as follows:

• if ϕ ≡ t1 = t2, then

J(t1 = t2)(ν)KMB =
∨
τ∈M

J(t1 = τ)(ν)KMB ∧ J(t2 = τ)(ν)KMB

• if ϕ ≡ R(t1, . . . , tn), then

J(R(t1, . . . , tn))(ν)KMB =
∨

τ1,...,τn∈M

 ∧
1≤i≤n

J(ti = τi)(ν)KMB

 ∧ JR(τ1, . . . , τn)KMB

• if ϕ ≡ ¬ψ, then
Jϕ(ν)KMB = ¬ Jψ(ν)KMB

• if ϕ ≡ ψ ∧ θ, then
Jϕ(ν)KMB = Jψ(ν)KMB ∧ Jθ(ν)KMB

• if ϕ ≡ ∃yψ(y), then

Jϕ(ν)KMB =
∨
τ∈M

Jψ(y/τ, ν)KMB

If no confusion can arise, we omit the index M and the pedix B, and we simply denote
the boolean value of a formula ϕ with parameters in M by JϕK.

By definition, an isomorphism of boolean valued models preserves the boolean value
of the atomic formulas. Proceeding by induction on the complexity, one can get the result
for any formula.

Proposition 3.5. Let M be a B-valued model and N a C-valued model in the same
language L. Assume 〈i,Φ〉 is an isomorphism of boolean valued models. Then for any
L-formula ϕ(x1, . . . , xn), and for every (τ1, σ1), . . . , (τn, σn) ∈ Φ we have that:

i(Jϕ(τ1, . . . , τn)KMB ) = Jϕ(σ1, . . . , σn)KNC

With elementary arguments it is possible prove the Soundness Theorem also for boolean
valued models.
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Theorem 3.6 (Soundness Theorem). Assume that ϕ is a L-formula which is syntactically
provable by a L-theory T , and that each formula in T has boolean value at least b ∈ B in
a B-valued model M. Then Jϕ(ν)KM ≥ b for all valuations ν in M.

We get a first order model from a B-valued model passing to a quotient by a ultrafilter
G ⊆ B. This corresponds for spaces of type C+(St(B)) to a specialization of the space to
the ring of germs in G. In the general context we are considering it is defined as follows.

Definition 3.7. Let B a complete boolean algebra, M a B-valued model in the language
L, and G a ultrafilter over B. Consider the following equivalence relation on M :

τ ≡G σ ⇔ Jτ = σK ∈ G

The first order model M/G = 〈M/G,=M/G, R
M/G
i : i ∈ I, f

M/G
j : j ∈ J〉 is defined

letting:

• For any n-ary relation symbol R in L

RM/G = {([τ1]G, . . . , [τn]G) ∈ (M/G)n : JR(τ1, . . . , τn)K ∈ G}.

• For any n-ary function symbol f in L

fM/G : (M/F )n →M/G

([τ1]G, . . . , [τn]G) 7→ [σ]G.

where σ is such that Jf(τ1, . . . , τn) = σK ∈ G. Def. 3.1(vii) guarantees that this
function is well defined.

If we require M to satisfy a key additional condition, we get an easy way to control
the truth value of formulas in M/G.

Definition 3.8. A B-valued model M for the language L is full if for every L-formula
ϕ(x, y) and every τ ∈M |y| there is a σ ∈M such that

J∃xϕ(x, τ)K = Jϕ(σ, τ)K

Theorem 3.9 (Boolean Valued Models  Loś’s Theorem). Assume M is a full B-valued
model for the language L Then for every formula ϕ(x1, . . . , xn) in L and (τ1, . . . , τn) ∈Mn:

(i) M/G |= ϕ([τ1]G, . . . , [τn]G) if and only if Jϕ(τ1, . . . , τn)K ∈ G for all G a ultra-
filter over B.

(ii) For all a ∈ B the following are equivalent:

(a) Jϕ(f1, . . . , fn)K ≥ a,

(b) M/G |= ϕ([τ1]G, . . . , [τn]G) for all G ∈ Oa,

(c) M/G |= ϕ([τ1]G, . . . , [τn]G) for densely many G ∈ Oa.
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3.1. C+(St(B)) as a boolean valued extension of C

[2, Chapter 10] is a reference for the proofs of all the facts mentioned above, else we refer
the reader to [7, Chapters 2, 3].

The following example shows how to obtain a boolean extension of a topological space
X for a language composed of symbols which are interpreted as Borel subsets of Xn.

Example 3.10. Fix a complete boolean algebra B, a topological space X such that

∆X = {(x, x) ∈ X ×X : x ∈ X}

is Borel1 on X × X. Consider M = C(St(B), X), the set of continuous functions from
St(B) to X.

We define a structure of B-valued extension of X on M for the language with equality
as follows: Given f, g ∈M , the set

W = {G ∈ St(B) : f(G) = g(G)}

is a Borel subset of St(B) since both f and g are continuous. Recall that A ⊆ X is meager
if it is contained in the countable union of closed nowhere dense sets and A has the Baire
property if U∆A is meager for some (unique) regular open set U . Since every Borel set B
has the Baire property [3, Lemma 11.15], and St(B) is compact Hausdorff, by [2, Chapter
29, Lemma 5], we get that

˚{G ∈ St(B) : f(G)Rg(G)}

is the unique regular open with a meager symmetric difference with W . Identifying B with
RO(St(B)) (B is complete), we have that

=St(B) (f, g) = Jf = gKSt(B) =
˚{G ∈ St(B) : f(G)Rg(G)}

is a well defined element of B and satisfies the clauses of Def. 3.1 for the equality relation.
For any Borel R ⊆ Xn, the predicate RSt(B) : C(St(B), X)n → B defined by

RSt(B)(f1, . . . , fn) = JR(f1, . . . , fn)KSt(B) =
˚{G ∈ St(B) : R(f1(G), . . . , fn(G))}

is a forcing relation R satisfying the clauses of Def. 3.1 for an n-ary relation on C(St(B), X).
Similarly we can lift Borel functions F : Xn → X.

With these definitions it can be checked that

M = 〈C(St(B), X),=St(B), R
St(B)
i : i ∈ I, FSt(B)

j : j ∈ J〉

is a B-valued model for the signature given by the Borel relations Ri : i ∈ I and Borel
functions Fj : j ∈ J chosen on X. Moreover the set {cx ∈ M : x ∈ X}, where cx is the
constant function with value x, is a copy of X in M , i.e: the complete homomorphism
given by the inclusion of 2 in B induces an embedding of the 2-valued model 〈X,=, Ri :
i ∈ I, Fj : j ∈ J〉 into the B-valued model M mapping x 7→ cx (however we do not as yet
assert that this embedding preserves the truth of formulae with quantifiers). Thus we can
infer thatM is a B-valued extension of an isomorphic copy of X seen as a 2-valued model.

Finally if G is a ultrafilter on St(B), i.e. a point of St(B), we can define the ring
C(X,Y )/G of germs in C(X,Y ) letting

[f ]G = {h : Jf = gKSt(B) ∈ G}
1I.e. belonging to the smallest σ-algebra on X2 containing the open sets.
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and RSt(B)([f1]G, . . . , [fn]G]) iff RSt(B)(f1, . . . , fn) ∈ G. We can easily check that the map
x 7→ [cx]G defines an embedding of 2-valued models of 〈X,=, Ri : i ∈ I, Fj : j ∈ J〉 into
M/G.

If X is Polish (i.e. second countable and completely metrizable), ∆X is closed (X is
Hausdorff), therefore, for any fixed language L whose elements are Borel relations and
functions on X, we can define a structure of B-valued extension of X for the language
L. If X = C, the domain of such extension is the C∗-algebra C(St(B)) with extremely
disconnected spectrum.

It can be checked that if X is compact C(St(B), X) endowed with suitable lifting
of Borel predicates is a full B-valued model, while if X is not compact and contains an
infinite set with discrete relative topology (i.e. N as a subset of C) C(St(B), X) is not a
full B-valued model (see Remark 4.4 below).

The latter observation is one of the compelling reasons which leads us to associate to C
(which is Polish non-compact, locally compact) the space of functions C+(St(B)) (which
we will show to be a full B-valued model). Similar tricks will be needed to properly
describe the full boolean extensions of arbitrary (non-compact) Polish spaces by means of
spaces of functions.

We resume the above observations in the following definition:

Definition 3.11. LetX be a compact Hausdorff extremely disconnected topological space.

(i) Let Y be a topological space such that ∆Y is Borel in Y 2. For any Borel relation R
on Y n, RX : C(X,Y )n → CL(X) maps (f1, . . . , fn) to the clopen set

˚{G ∈ X : R(f1(G), . . . , fn(G))}.

The lifting of Borel functions on Y to C(X,Y ) is obtained by lifting their graph to
a forcing relation on C(X,Y ).

(ii) We let C+(X) be the space of continuous functions

f : X → S2 = C ∪ {∞}

(where S2 is seen as the one point compactification of C) with the property that
f−1[{∞}] is a closed nowhere dense subset of X. We lift Borel relations R ⊆ Cn to
RX again letting

RX(f1, . . . , fn) =
˚{G ∈ X : R(f1(G), . . . , fn(G))}.

We let 〈C(X)/G,RX/G〉 and 〈C+(X)/G,RX/G〉 be the associated ring of germs with
RX/G defined for both rings by the requirement: RX([f1]G, . . . , [fn]G]) iffRX(f1, . . . , fn) ∈
G.

We have the following Theorems:

Lemma 3.12 (Mixing Lemma). Assume B is a complete boolean algebra and A ⊆ B is
an antichain. Then for all family {fa : a ∈ A} ⊆ C+(St(B)), there exists f ∈ C+(St(B))
such that

a ≤ Jf = faK

for all a ∈ A.
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Proof. Sketch: Let f ∈ C+(St(B)) be the unique function such that f � O(¬
∨
A) = 0 and

f � Oa = fa � Oa for all a ∈ A. Check that f is well defined and works.

Lemma 3.13 (Fullness Lemma). Let R1, . . . , Rn be forcing relations on C+(St(B))<N.
Then for all formulae ϕ(x, ~y) in the language {R1, . . . , Rn} and all ~f ∈ C+(St(B))n there
exists g ∈ C+(St(B)) such that

r
∃xϕ(x, ~f)

z
=

r
ϕ(g, ~f)

z
.

Proof. Sketch: Find A maximal antichain among the b such that
r
ϕ(gb, ~f)

z
≥ b for some

gb. Now apply the Mixing Lemma to patch together all the ga for a ∈ A in a g. Check
that r

∃xϕ(x, ~f)
z

=
r
ϕ(g, ~f)

z
.

4. B-names for complex numbers

We refer the reader to [3] for a comprehensive treatment of the forcing method and to [7,
Chapter 3] for a sketchy presentation covering in more details the results of this section. All
over this section we assume the reader has some familiarity with the standard presentations
of forcing and we follow notation standard in the set theoretic community (for example N
is often denoted as the ordinal ω). Through this section we will assume V (the universe
of sets) to be a transitive model of ZFC, and B ∈ V a boolean algebra which V models
to be complete. V B will denote the boolean valued model of set theory as defined in
[3, Chapter 14] and ǎ ∈ V B will denote the canonical B-names for sets a ∈ V . If G
is a V -generic ultrafilter in B, V [G] will denote the generic extension of V and σG the
interpretations of B-names in V B by G. In this situation there is a natural isomorphism
between (V B/G,∈B /G) and (V [G],∈) defined by [σ]G 7→ σG. Cohen’s forcing theorem
in this setting states the following for any formula ϕ(x1, . . . , xn) in the language of set
theory:

• V [G] |= ϕ((σ1)G, . . . , (σn)G) if and only if Jϕ(σ1, . . . , σn)K ∈ G,

• Jϕ(σ1, . . . , σn)K ≥ b if and only if V [G] |= ϕ((σ1)G, . . . , (σn)G) for all V -generic filters
G to which b belongs.

It is well known that V -generic filter cannot exists for atomless complete boolean algebra,
nonetheless there is a wide spectra of solutions to overcome this issue and work under the
assumption that for any such B V -generic filters can be found2. We will also use in several
points the following forms of absoluteness for ∆1-properties: for all provably ∆1-definable
property ϕ(x, r) with r ⊆ ω over the theory ZFC + (r ⊆ ω) the following holds:

• ϕ(a, r) holds in a transitive N which is a model of (a large enough fragment of) ZFC
with a, r ∈ N if and only if Jϕ(ǎ, ř)K = 1B holds in N for all boolean algebra B ∈ N
which N models to be complete.

• ϕ(a, r) holds in V if and only if it holds in any (some) transitive set N which is a
model of (a large enough fragmnt of) ZFC with a, r ∈ N .

2See also how we handle this issue recurring to generic filters for countable elementary substructures of
some Vθ in the proofs to follow.
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Let X be a Polish space. Then X can be identified to a Gδ-subset of the Hilbert cube
H = [0, 1]N [4, Theorem 4.14].

Let
B̂ = {Br(q) : r ∈ Q, q ∈ D}

where Br(q) is the open ball of radius r and center q and D is the set of points in H with
rational coordinates which are non-zero just on a finite set. Then B̂ is a countable basis
for the topology on H = [0, 1]N described by a provably ∆1-definable property defined by
a lightface Borel predicate.

Definition 4.1. Let X be a Polish space in V , w.l.o.g.

X =
⋂
n∈N

⋃
{Brmn(qmn) : m ∈ N}

for a suitably chosen family of elements Brmn(qmn) of B̂. σ ∈ V B is a B-name for an
element of X if

t

σ ∈
⋂
n∈N

⋃
{Ḃrmn(qmn) : m ∈ N}

|V B

= 1B,

where (Ḃr(q))G is in V [G] the ball of radius r and center q of the space H as defined in
V [G] for all V -generic filter G.

We denote by XB the set of all B-names (of minimal rank) for elements in X modulo
the equivalence relation:

σ ≡ τ ⇔ Jσ = τK = 1B

We will write B-name for a complex numbers to denote an element of the family CB.

We can similarly lift Borel relations on Xn to boolean relations on (XB)n:

Remark 4.2. Let X be a Polish space. Without loss of generality, X is a Gδ-subset of
H = [0, 1]N. B̂ induces a countable open basis on X:

B̂X = {Br(q) ∩X : r ∈ Q, q ∈ D}.

Every Borel subset of X is obtained, in fewer than ℵ1 steps, from the elements of B̂X by
taking countable unions and complements. It is possible to code these operations with r a
subset of ω (see [3, Chapter 25]). For our purposes it is enough to say that if R is a Borel
subset of Xn, there is some r ⊆ ω and a (ZFC provably) ∆1-property P (~x, y) such that

~x ∈ R⇔ P (~x, r)

Suppose r ∈ V . We denote with RV the set {~x ∈ V : P (~x, r)}. Guided by these consider-
ations, we define in V the following B-name:

RB = {(~τ , JP (~τ , ř)K) : ~τ is a B-name for an element of Xn}

RB ∈ V B is a canonical name to interpret the Borel relation R in any generic extension of
V by a generic filter G.

Definition 4.3. Given R a Borel n-ary relation on X we define, for σ1, . . . , σn ∈ XB, we
let ~σ ∈ V B denote the canonical name for the tuple (σ1, . . . , σn) and we set:

RB(σ1, . . . , σn) =
r
~σ ∈ RB

zV B

,

similarly we define Borel functions f : Xn → X.

11



With these definitions

〈XB, RB
1 , . . . , R

B
k , F

B
1 , . . . , F

B
l 〉

is a B-valued extension of X, where each Ri (Fj) is an arbitrary Borel relation (function)
on Xni (from Xmj to X).

Remark 4.4. So far we have defined a structure of B-valued models for Borel relations and
functions on both XB and C(St(B), X). However, whenever X is not compact, we cannot
exhibit a natural isomorphism between these two models, unless we enlarge C(St(B), X).
The problem (that can be appreciated by the reader familiar with forcing) is the following.
Assume we split a complete atomless boolean algebra B in a countable maximal antichain
A = {an : n ∈ ω}. Then

∨
n∈ω an = 1B but

⋃
n∈ωOan is just an open dense subset of St(B),

as the family {1− an : n ∈ ω} has the finite intersection property and can be extended to
an ultrafilter H missing the antichain A. Now consider the function f : G 7→ n iff an ∈ G.
This should naturally correspond to the B-name for a natural number

σf = {〈ň, an〉 : n ∈ ω}.

Notice also that the function is continuous on its domain since the target is a discrete
subspace of C and the preimage of each point is clopen. Moreover this function naturally
extends to a continuous function in C+(St(B))\C(St(B) mapping the G out of its domain
to ∞. This shows that C(St(B)) is a space of functions too small to capture all possible
B-names for complex numbers. The reader who has grasped the content of this remark
will find the proofs of the following Lemmas almost self-evident, however we decided to
include them in full details, since at some points there are delicate issues regarding the way
to formulate certain simple properties of Polish spaces in an absolute (i.e ∆1-definable)
manner which can be tricky for those who are not fully familiar with forcing.

Definition 4.5. Let X be a Polish space presented as a Gδ-subset of the Hilbert cube
H = [0, 1]N. Let B be a complete boolean algebra.

C+(St(B), X) is the family of continuous functions f : St(B)→ H such that f−1[H\X]
is nowhere dense in St(B).

We can define a structure of B-valued extension on X over C+(St(B), X) repeating
verbatim what we have done in Section 3.1 for C(St(B), X). Everything will work smoothly
since for all Borel R ⊆ Xn and f1, . . . , fn ∈ C+(St(B), X), the set of H ∈ St(B) such that
R(f1(H), . . . , fn(H)) is not defined is always a meager subset of St(B). We are ready to
prove the following theorem.

Theorem 4.6. Let X be a Polish space. Then 〈C+(St(B), X),=St(B)〉 and 〈XB,=B〉 are
isomorphic B-valued models.

We are mainly interested in what happens for X = C, and we will give the full proof of
the theorem above for this special case. However, with minimal modifications, the reader
will be able to generalize by himself the proof to any Polish space (for spaces admitting a
one point compactification it suffices to replace all occurrences of C with X in the proof
to follow, for other spaces this is slightly more delicate).

Remark 4.7. In the following given a complete boolean algebra B, we will often confuse
it with RO(St(B)). If U is a regular open set of St(B) and G ∈ St(B), we may write
equivalently

G ∈ U,U ∈ G
depending on whether we are considering U as an element of RO(St(B)) or as the corre-
spondent element in B.
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Remark 4.8. The definitions given in Remark 4.2 and Definition 4.5 can be simplified when
working in C. Instead of B̂C from Remark 4.2, we will work directly with B = {Un : n ∈ ω},
the countable basis of C whose elements are the open balls with rational radius and whose
centre has rational coordinates. Moreover, instead of Definition 4.5, we shall work with
C+(St(B)) as defined in Def. 3.11(ii).

Proof of Theorem 4.6

The proof splits in several Lemmas.
The first Lemma gives a characterization of the B-name to associate to an f ∈

C+(St(B)) which we will need to define the boolean isomorphism we look for.

Lemma 4.9. Assume f ∈ V is an element of C+(St(B)). For H ∈ St(B) we define

ΣH
f = {Un :

˚
f−1[Un] ∈ H}

Then, for H ∈ St(B), we have:
f(H) = σHf

where σHf it is the only element in
⋂

ΣH
f if ΣH

f is non-empty, and σHf =∞ otherwise.

Remark 4.10. The Lemma shows that in ZFC, given f ∈ C+(St(B)), it holds that

f(H) = x⇔ x = σHf .

The latter is a (ZFC provably) ∆1-property with ω,B, and {an =
˚

f−1[Un] : n ∈ N} as
parameters. Thus, given V a transitive model of ZFC, B a complete boolean algebra in
V , G a V -generic filter in B, any f ∈ V element of C+(St(B))V can be extended in an
absolute manner to V [G] by the rule:

fV [G] : St(B)V [G] → CV [G]

H 7→ σHf

where σHf is defined as in the previous lemma through the set ΣH
f = {Un : an ∈ H}.

This observation is used in the following proposition defining the boolean isomorphism
between CB and C+(St(B)).

Proposition 4.11. Fix V a transitive model of ZFC and B ∈ V a boolean algebra which
V models to be complete. Let f ∈ C+(St(B)) and consider

B = {Un : n ∈ ω}

the countable basis of C defined in Remark 4.8. For each n ∈ ω let

an =
˚

f−1[Un]

There exists a unique τf ∈ CB such that3

r
τf ∈ U̇n

z
= an.

3U̇n denotes the B-name for the complex numbers in the open ball of the generic extension determined
by the rational coordinates and rational radius of the ball Un.
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Corollary 4.12. With the hypotheses of Proposition 4.11, if G is a V -generic filter in B
then:

fV [G](G) = (τf )G.

By Proposition 4.11 we conclude that the map f 7→ τf defines a function between
C+(St(B)) and CB. We still need to show that the function is a surjective boolean map
i.e. it maps boolean equality on C+(St(B)) to boolean equality on CB and is surjective
(in the sense of boolean embeddings). The latter is performed by the following Lemma:

Lemma 4.13. Assume τ ∈ CB. Consider

fτ : St(B)→ C ∪ {∞}
H 7→ σHτ

where, given

ΣH
τ = {Un :

r
τ ∈ U̇n

z
∈ H}

σHτ is the only element in
⋂

ΣH
τ if ΣH

f is non-empty, σHτ =∞ otherwise. The function f

belongs to C+(St(B)) and τfτ = τ .

Finally we need to show that f 7→ σf respects boolean equality, i.e. that:

Jf = gKC
+(St(B)) = Jτf = τgKC . (1)

Since it makes no difference to prove the equality for this relation or for an arbitrary
Borel relation (or function), we will prove the following stronger result:

Lemma 4.14. Assume R ⊆ Cn is a Borel relation. Then RSt(B)(f1, . . . , fn) = RB(σf1 , . . . , σfn).

It is clear that these Lemmas entails the conclusion of the theorem. We prove all of
them in the next subsection.

Proof of the key Lemmas

Proof of Lemma 4.9. Assume ΣH
f is empty. If f(H) ∈ Un for some n ∈ ω it follows that:

H ∈ f−1[Un] ⊆ ˚
f−1[Un]

hence
˚

f−1[Un] ∈ ΣH
f , which is absurd. Suppose now that ΣH

f is non-empty.

Claim 4.14.1. Assume ΣH
f is non-empty. Then

⋂
ΣH
f is a singleton.

Proof. Let m ∈ ω be such that Um ∈ ΣH
f .

Existence: The family

Σ̂H
f = {Um ∩ Un :

˚
f−1[Un] ∈ H}

is a family of closed subsets of Um. ΣH
f inherits the finite intersection property from

H, hence so does Σ̂H
f . We can conclude that

∅ 6=
⋂

Σ̂H
f ⊆

⋂
ΣH
f

14



Uniqueness: Suppose there are two different points x, y ∈
⋂

ΣH
f . There exists p ∈ ω such

that x ∈ Up, y /∈ Up. The last relation guarantees that Up /∈ ΣH
f . Now we show that

for w ∈
⋂

ΣH
f , w ∈ Un implies

˚
f−1[Un] ∈ H. Therefore x ∈ Up implies Up ∈ ΣH

f ,

which is absurd. Suppose
˚

f−1[Up] /∈ H, we have that:

H ∈ ¬ ˚
f−1[Up] ∩ ˚

f−1[Um] ⊆ f−1[Um \ Up]

For each z ∈ Um \ Up there exists Unz such that

z ∈ Unz ∧ x /∈ Unz
This family of open balls covers the compact space Um \ Up, so that there are
z1, · · · , zk ∈ Um \ Up which verify the following chain of inclusions:

f−1[Um \ Up] ⊆
⋃

1≤i≤k
f−1[Unzi ] ⊆

⋃
1≤i≤k

˚
f−1[Unzi ]

There is therefore a zj such that
˚

f−1[Unzj ] ∈ H, hence U zj ∈ ΣH
f . This is absurd

since x /∈ U zj .

Suppose f(H) 6= σHf and consider two open balls U1, U2 in B such that

U1 ∩ U2 = ∅

f(H) ∈ U1

σHf ∈ U2

It easily follows that both
˚

f−1[U1] and
˚

f−1[U2] are in H (the second assertion, can be
shown along the same lines of the uniqueness proof in Claim 4.14.1). These two sets are
disjoint, a contradiction follows.

The Lemma is proved.

In order to prove Proposition 4.11, we need to generalize what we have exposed in
Remark 4.2 about Borel codes. Something similar can be performed in St(B), here the
parameters for the “code” have to be taken among real numbers (to code the complexity
of the Borel relation) and elements of B (to code the basic open sets), since a basis for
St(B) is {Oa : a ∈ B}. The following can be shown starting from the elements clopen
basis and then extending the proof to cover the case of arbitrary open or closed sets.

Fact 4.15. Let G a V -generic filter over B. Assume RV , SV are two open or closed sets
in St(B)V . Then

RV ⊆ SV ⇔ RV [G] ⊆ SV [G]

Proof. See [7, Lemma 4.3.3].

Proof of Proposition 4.11. Consider the B-name

Σf = {(U̇n, an) : n ∈ ω}

Standard argument in forcing give that
r
∃!x(x ∈

⋂
Σf )

z
= 1B, (2)

we give a proof of this equality for the sake of completeness:
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Proof of equation (2).

Claim 4.15.1. Assume4 M ≺ V in V is a countable model of ZFC such that ω∪{an : n ∈
ω} ∪ {B, f} ⊆ M , and π : M → N is the Mostowski’s Collapse. Let G be an N -generic
filter for π(B). Then:

N [G] |= ∃!x
(
x ∈

⋂
ΣG
π(f)

)
where ΣG

π(f) = {UN [G]
n : π(an) ∈ G}.

Proof of the claim. Notice that since ω ⊆ M is transitive, rational and complex numbers
(the power-set of a transitive set is transitive) are preserved by π, and CN = C∩N . First,
we prove that ΣG

π(f) is non-empty (notice that π(f) preserves all the properties of f since

π is an isomorphism). The preimage of CN through π(f) contains an open dense subset
of St(π(B))N in N , hence (observe that π(f)−1[UNn ] = π(f−1[Un])) it follows that

{π(an) : n ∈ ω}

is an open dense subset of π(B)+ in N as well. Since G is N -generic, G ∩ D 6= ∅. Thus

π(am) ∈ G and U
N [G]
m ∈ ΣG

π(f) for some m ∈ ω. The proof that
⋂

ΣG
π(f) is a singleton can

be carried in N as in Claim 4.14.1.

Since the Claim holds for all N -generic filters G for π(B), by the forcing theorem
applied to N and π(B), we get that N models

r
∃!x(x ∈

⋂
Σπ(f))

z
= 1π(B).

Thus M models r
∃!x(x ∈

⋂
Σf )

z
= 1B.

Since M ≺ V , we get that the latter holds in V , completing the proof of equation (2).

Now V B is full, there is therefore a B-name τf such that

r
τf ∈

⋂
Σf

z
= 1B.

This is a B-name for a complex number. Moreover, if τ is a B-name for a complex number
and r

τ ∈
⋂

Σf

z
= 1B,

then, from

(τf ∈
⋂

Σf ) ∧ (τ ∈
⋂

Σf ) ∧ (∃!x(x ∈
⋂

Σf ))→ τ = τf

follows that:
Jτ = τf K = 1B.

This shows that the map f 7→ τf is well defined.
To conclude the proof of Proposition 4.11 we still must show that

r
τf ∈ U̇n

z
=

˚
f−1[Un] = an (3)

4More precisely M ≺ Vθ for some Vθ large enough to reflect all the relevant properties of V and to
contain all relevant objects of V we are interested in. M ∈ V is a countable subset of Vθ which is elementary
in (Vθ,∈) and contains all the relevant objects. In particular Vθ and M might not be models of ZFC but
of enough of its axioms to carry on the arguments to follow.
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Proof of equation (3). Let again M ≺ V be a countable structure as in Claim 4.15.1, π :
M → N its Mostowski’s Collapse, and G an N -generic filter for π(B). On the one hand we

have (using the same proof of the uniqueness part in Claim 4.14.1) that if (τπ(f))G ∈ U
N [G]
n

then π(an) ∈ G, which gives r
τf ∈ U̇n

z
≤ an.

On the other hand

G ∈ π(f)N [G]−1
[UN [G]
n ]⇒ π(f)N [G](G) = τGπ(f) ∈ U

N [G]
n ⇒

r
τπ(f) ∈ U̇n

zNπ(B)

∈ G

which means, interpreting
r
τπ(f) ∈ U̇n

zNπ(B)

as a clopen subset of St(π(B))N [G], that

π(f)N [G]−1
[UN [G]
n ] ⊆

(r
τπ(f) ∈ U̇n

zNπ(B)
)N [G]

Lemmas 4.15 and 4.9 guarantee that this is equivalent to

π(f)−1[UNn ] ⊆
r
τπ(f) ∈ U̇n

zNπ(B)

Since
r
τπ(f) ∈ U̇n

zNπ(B)

is clopen this implies that

π(an) ≤
r
τπ(f) ∈ U̇n

zNπ(B)

and therefore: (
an ≤

r
τf ∈ U̇n

z)M
The thesis in V follows from M ≺ V .

Proposition 4.11 is proved.

Proof of Lemma 4.13. The proof that ΣH
τ is non-empty when its intersection has one

single point can be carried as in Claim 4.14.1 substituting all over the proof
˚

f−1[Un] withr
τ ∈ U̇n

z
.

Preimage of {∞} is nowhere dense: We show that the preimage of C through fτ contains
an open dense set. Set

an =
r
τ ∈ U̇n

z

and consider the set A = {an : n ∈ ω}. We show that:∨
n∈ω

an = 1B.

Let M ≺ V be a countable structure such that B, τ ∈ M , ω,A ⊆ M , and as usual
let π : M → N be the Mostowski’s Collapse.

Notice that (since ω,C,Q, Un are all defined by lightface ∆1-properties) ωN = ω =
ωN [G], QN = Q = QN [G], C ∩ N [G] = CN [G], and Un ∩ N [G] = π(U̇n)G for all G
N -generic for π(B).
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Since τ is a B-name for a complex number in M , π(τ) is a π(B)-name for a complex
number in N . Let G be an N -generic filter over π(B), we have therefore:

N [G] |= π(τ)G ∈ C.

We can thus infer

N [G] |= ∃n ∈ ω(π(τ)G ∈ Un = π(U̇n)G)

for all N -generic filter G, since C ∩N [G] =
⋃
n∈ω Un ∩N [G]. Thus:∨

n∈ω
π(an) =

r
∃n ∈ ω̌(π(τ) ∈ π(U̇n))

z
≥ 1π(B).

Pulling back the above to M ≺ V we get that∨
n∈ω

an =
r
∃n ∈ ω̌(τ ∈ U̇n)

z
≥ 1B

holds in M and thus in V . This implies that A is predense and therefore that⋃
n∈ωOan is dense in St(B).

Continuous: Let H ∈ St(B) be in the preimage of C and let U be an open subset of C
containing fτ (H). Consider Uk ∈ B such that

fτ (H) ∈ Uk

Uk ⊆ U

Since
fτ (H) ∈ Uk ⇒ ak ∈ H, (1)

(this can be proved as in the uniqueness part in Claim 4.14.1 substituting
˚

f−1[Un]

with
r
τ ∈ U̇n

z
), and since the following inclusion holds

Oak ⊆ f
−1
τ (U),

the continuity of fτ for points in the preimage of C is proved.

Consider now H ∈ f−1
τ ({∞}). Let A be an open neighborhood of∞, and let Uk ∈ B

be such that:
U
c
k ⊆ A

We also consider Ul such that
Uk ⊆ Ul

By definition of fτ we have that H ∈ Ocal , and by equation (1) the image of any
element in the open set Ocal can not belong to Ul. Thus

Ocal ⊆ f
−1
τ [U cl ] ⊆ f−1

τ [U
c
k] ⊆ f−1

τ [A]

τfτ = τ : We already know that (see equation (1)):

f−1
τ [Un] ⊆ Oan
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The second set is clopen, therefore:

r
τfτ ∈ U̇n

z
=

˚
f−1
τ [Un] ⊆ Oan (2)

Toward a contradiction, assume Jτ = τfτ K 6= 1B. Let M ≺ V a countable structure
with B, τ, f ∈M , ω ⊆M , let π : M → N is the Mostowski’s Collapse, then there is
an N -generic filter G which verifies

N [G] |= π(τ)G 6= π(τfτ )G

Thus there exists n ∈ ω such that:

π(τfτ )G ∈ UN [G]
n

π(τ)G /∈ UN [G]
n

The inclusion relation (2) implies

r
π(τfτ ) ∈ π(U̇n)

z
≤ π(an) =

r
π(τ) ∈ π(U̇n)

z
,

but by Cohen’s Forcing Theorem
r
π(τfτ ) ∈ π(U̇n)

z
∈ G. This is a contradiction.

The Lemma is proved.

Proof of Lemma 4.14. We will consider in detail the case of R ⊆ C a unary Borel relation
in C, the general case for n-ary R is immediate. Given f ∈ C+(St(B)), consider JR(f)K
and

r
τf ∈ Ṙ

z
as regular open subsets of St(B). In order to show that they overlap, it is

sufficient to prove that their symmetric difference is meager. By definition, we already
know that JR(f)K has meager difference with the set

{H ∈ St(B) : f(H) ∈ R} = f−1[R].

Therefore it suffices to prove that
r
τf ∈ Ṙ

z
and f−1[R] have meager difference. The proof

proceeds step by step on the hierarchy of Borel sets Σ0
α, Π0

α, for α a countable ordinal.

Σ0
1: Let R be an element of the basis

B = {Un : n ∈ ω}

defined in Remark 4.2. The thesis follows from Proposition 4.11, in fact

r
τf ∈ U̇n

z
=

˚
f−1[Un]

which has meager difference with f−1[Un]. Consider now

R =
⋃
i∈I

Ui

where I is a countable set of indexes. In this case we have that

f−1[R] =
⋃
i∈I

f−1[Ui]
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and r
τf ∈ Ṙ

z
=
∨
i∈I

r
τf ∈ U̇i

z
= Å

where A =
⋃
i∈I

r
τf ∈ U̇i

z
. For each i ∈ I, the sets f−1[Ui] and

r
τf ∈ U̇i

z
have mea-

ger difference, thus f−1[R]∆A is meager. The proof is therefore concluded because

A∆ Å is meager.

Σ0
α ⇒ Π0

α: Suppose R ∈ Π0
α, and that the thesis holds for Borel sets in Σ0

α. By definition

Rc ∈ Σ0
α, therefore:

f−1[Rc]∆
r
τf ∈ Ṙc

z
is meager

hence
f−1[R]∆

r
τf ∈ Ṙ

z
is meager

Π0
α ⇒ Σ0

α+1: This item can be proved as the second part of the case α = 1, substituting

the Un with Borel sets in Π0
α.

Σ0
β for β limit ordinal: If the thesis holds for α < β, then the proof can be carried similarly

to the case Π0
α ⇒ Σ0

α+1.

The Lemma is proved.

4.1. C(St(B))/G and C+(St(B))/G in generic extensions

The following proposition shows that if we restrict our attention to V -generic filters for B
then C(St(B)) is a family of names large enough to describe all complex numbers of V [G].

Proposition 4.16. Assume V is a model of ZFC, B a complete boolean algebra in V and
G a V -generic filter in B. Then

C+(St(B))/G ∼= C(St(B))/G

Proof. We need to show that for each f ∈ C+(St(B)) we can find a f̃ ∈ C(St(B)) such
that r

f = f̃
z
∈ G

which, by Corollary 4.12, is equivalent to

fV [G](G) = f̃V [G](G)

We denote again:

an =
˚

f−1[Un]

Proceeding as in Claim 4.15.1, we can find m ∈ ω such that am ∈ G. For each H ∈ Oam
we have that:

f(H) ∈ Um
by Lemma 4.9. We can therefore consider the restriction of f to Oam (which is clopen)
and extend it to a f̃ ∈ C(St(B)) setting it to be constantly 0 on O¬am . The implication

f �OVam= f̃ �OVam⇒ fV [G] �OV [G]
am

= f̃V [G] �OV [G]
am

guarantees the thesis since G ∈ OV [G]
am .
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4.2. Extensions of the boolean isomorphism

In general any boolean predicate or function on the B-valued model C+(St(B), X) can
be transferred to a corresponding boolean predicate on XB using the above isomorphism
f 7→ σf .

Definition 4.17. Let X be a Polish space and B a complete boolean algebra. For any
boolean relation RSt(B) : C+(St(B), X)n → B (and boolean function FSt(B))

RB(σ1, . . . , σn) = RSt(B)(fσ1 , . . . , fσn),

(accordingly we can define the boolean function FB).

By Theorem 4.6, we immediately have the following.

Theorem 4.18. Fix a signature

L = {Ri : i ∈ I} ∪ {Fj : j ∈ J}.

and assume R
St(B)
i : i ∈ I, F

St(B)
j : j ∈ J are boolean interpretations of the signature

making C+(St(B)) a B-valued model. The map

Γ : C+(St(B), X)→ XB

f 7→ τf

is an isomorphism of the B-valued model

〈C+(St(B), X), R
St(B)
i : i ∈ I, FSt(B)

j : j ∈ J〉

with the B-valued model
〈XB, RB

i : i ∈ I, FB
j : j ∈ J〉.

5. Generic absoluteness

We can now show that for any polish space X the B-valued models (C+(St(B), RSt(B)),
with R a Borel (universally Baire) relation on Xn, is an elementary superstructure of
(X,R). By Lemma 4.14, wheneverR is a Borel relation onXn withX Polish, RB(σ1, . . . , σn) =
RSt(B)(fσ1 , . . . , fσn) (where RB is defined as in Def. 4.2). This equality is a special case of
the much more general result which can be proved for Universally Baire relations.

Definition 5.1 (Feng, Magidor, Woodin [1]). Let X be a Polish space. A ⊆ Xn is
Universally Baire if f−1[Y ] has the Baire property in Y for all continuous f : Y → Xn

and all compact Hausdorff spaces Y .

UB denote the class of universally Baire subsets of H (or any other Polish space).

Fact 5.2. Let X be a Polish space. A ⊆ Xn is Universally Baire if and only if f−[Y ]
has the Baire property in Y for all continuous f : Y → Xn with Y compact and extremely
disconnected.

Proof. We need to prove just one direction, and we prove it as follows: Assume f : Y →
Xn is continuous for some Y compact Hausdorff but not extremally disconnected. Set
Y ∗ = St(RO(Y )) and define π : Y ∗ → Y by π(G) = x if x is the unique point in Y
belonging to

ΣG = {U : U ∈ G}.
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The same arguments we encountered in the proof of the isomorphism of C+(St(B)) with
CB show that π is continuous, open and surjective. In particular f−1[Xn] has the Baire
property in Y iff g−1[Xn] has the Baire property in Y ∗, where g = f ◦ π.

By [2, Chapter 29, Lemma 5] Borel sets are universally Baire as already observed
in Example 3.10. Woodin [5, Theorem 3.4.5, Remark 3.4.7] showed that the theory of
L(R,UB) is generically invariant in the presence of class many Woodin cardinals which
are a limit of Woodin, and moreover that these assumptions entail that any Σ1

n-property
defines a universally Baire relation. Shoenfield [3, Lemma 25.20], (or [7, Theorem 3.5.3,
Remark 3.5.4] or [8, Lemma 1.2]) showed that the Σ1

2-theory of any Polish space X is
generically invariant under set forcing. This translates by the results of this paper in the
following:

Theorem 5.3. Assume Ri : i ∈ I and Fj : j ∈ J are Borel predicates and functions on
some Polish space Y . Let X be a compact Hausdorff extremely disconnected space and
p ∈ X. Then

〈Y,Ri : i ∈ I, Fj : j ∈ J〉 ≺Σ2 〈C+(X,Y )/p,RXi /p : i ∈ I, FXj /p : j ∈ J〉.

Moreover if we assume the existence of class many Woodin cardinals which are a limit of
Woodin cardinal then we can let each Ri and Fj be arbitrary universally Baire relations
and functions and we have the stronger conclusion that

〈Y,Ri : i ∈ I, Fj : j ∈ J〉 ≺ 〈C+(X,Y )/p,RXi /p : i ∈ I, FXj /p : j ∈ J〉.

Proof. By Shoenfield (or Woodin’s) theorem we have that for all Σ1
2 (Σ1

n for any n) property
ϕ(~x) in the parameters Ri : i ∈ I, Fj : j ∈ J with each Ri, Fj Borel (Universally Baire)
the following are equivalent:

• ϕ(~r) holds in 〈Y,Ri : i ∈ I, Fj : j ∈ J〉,

• Jϕ(~r)KV
B

= 1B in CB for some complete boolean algebra B,

• Jϕ(~r)KV
B

= 1B in CB for all complete boolean algebras B.

Since X is compact Hausdorff and extremely disconnected, CL(X) is a complete boolean
algebra and X is homeomorphic to St(CL(X)). By Theorem 4.18 C+(X,Y ) and Y B are
isomorphic B-valued models. In particular C+(X,Y ) is full. By the first two equivalent

items we get that Jϕ(~r)KC
+(X,Y ) = 1B in C+(X,Y ) if and only if ϕ(~r) holds in Y . Since

the above holds for all relevant property ϕ we can apply Los theorem to the full B-valued
models C+(X,Y ) and in the point (ultrafilter) p to conclude that

〈Y,Ri : i ∈ I, Fj : j ∈ J〉 ≺(Σ2) 〈C+(X,Y )/p,RXi /p : i ∈ I, FXj /p : j ∈ J〉.

We remark that these results suggest the following “original” proof strategy. Prove
that a certain problem regarding for example complex numbers and analytic functions has
a solution in some forcing extension. Then argue that its solution can be formalized as
a first order property of the structure C+(X)/p. Conclude using elementarity that the
solution of the problem for the complex numbers is really the one computed in C+(X)/p.
We have already successfully applied the above to prove a result related to Schanuel’s
conjecture in number theory (unfortunately for us already proved by other means): the
interested reader is referred to [9].
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