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Abstract

Whilst Power Kripke-Platek set theory, KP(P), shares many prop-
erties with ordinary Kripke-Platek set theory, KP, in several ways it
behaves quite differently from KP. This is perhaps most strikingly
demonstrated by a result, due to Mathias, to the effect that adding
the axiom of constructibility to KP(P) gives rise to a much stronger
theory, whereas in the case of KP the constructible hierarchy provides
an inner model, so that KP and KP +V = L have the same strength.

This paper will be concerned with the relationship between KP(P)
and KP(P) plus the axiom of choice or even the global axiom of choice,
ACglobal. Since L is the standard vehicle to furnish a model in which this
axiom holds, the usual argument for demonstrating that the addition
of AC or ACglobal to KP(P) does not increase proof-theoretic strength
does not apply in any obvious way. Among other tools, the paper
uses techniques from ordinal analysis to show that KP(P) + ACglobal

has the same strength as KP(P), thereby answering a question of
Mathias. Moreover, it is shown that KP(P) + ACglobal is conservative
over KP(P) for Π1

4 statements of analysis.
The method of ordinal analysis for theories with power set was

developed in an earlier paper. The technique allows one to compute
witnessing information from infinitary proofs, providing bounds for the
transfinite iterations of the power set operation that are provable in a
theory.

As the theory KP(P)+ACglobal provides a very useful tool for defin-
ing models and realizability models of other theories that are hard to
construct without access to a uniform selection mechanism, it is desir-
able to determine its exact proof-theoretic strength. This knowledge
can for instance be used to determine the strength of Feferman’s op-
erational set theory with power set operation as well as constructive
Zermelo-Fraenkel set theory with the axiom of choice.
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1 Introduction

A previous paper [37] gave a characterization of the smallest segment of the
von Neumann hierarchy which is closed under the provable power-recursive
functions of KP(P). It also furnished a proof-theoretic reduction of KP(P)
to Zermelo set theory plus iterations of the powerset operation to any ordinal
below the Bachmann-Howard ordinal.1 The same bound also holds for the
theory KP(P) + AC, where AC stands for the axiom of choice. These
theorems considerably sharpen results of H. Friedman to the extent that
KP(P) + AC does not prove the existence of the first non-recursive ordinal
ωCK1 (cf. [8, Theorem 2.5] and [15, Theorem 10]). However, [37] did not
explicitly address the question of the proof-theoretic strength of KP(P) +
AC. In the present paper it will be shown that even adding global choice,
ACglobal, to KP(P) does not increase its proof-theoretic strength. This is in
stark contrast to the axiom of constructibility V = L which increases it as
was shown by Mathias [14]. That this increase is enormous will also been
borne out by the results of this paper.

Since the global axiom of choice, ACglobal, is less familiar, let us spell out
the details. By KP(P)+ACglobal we mean an extension of KP(P) where the
language contains a new binary relation symbol R and the axiom schemes
of KP(P) are extended to this richer language and the following axioms
pertaining to R are added:

(i) ∀x∀y∀z[R(x, y) ∧R(x, z)→ y = z] (1)

(ii) ∀x[x 6= ∅ → ∃y ∈ xR(x, y)]. (2)

2 Power Kripke-Platek set theory

Before stating the axioms of KP(P), let us recall the axioms of KP. Roughly
speaking, KP arises from ZF by completely omitting the power set axiom
and restricting separation and collection to set bounded formulae but adding
set induction (or class foundation). Quantifiers of the forms ∀x ∈ a, ∃x ∈ a

1The theories share the same ΣP1 theorems, but are still distinct since Zermelo set
theory does not prove ∆P0 -Collection whereas KP(P) does not prove full Separation.
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are called set bounded. Set bounded or ∆0-formulae are formulae wherein all
quantifiers are set bounded. The axioms of KP consist of Extensionality,
Pair, Union, Infinity, ∆0-Separation

∃x ∀u [u ∈ x↔ (u ∈ a ∧ A(u))]

for all ∆0-formulae A(u), ∆0-Collection

∀x ∈ a ∃y G(x, y) → ∃z ∀x ∈ a ∃y ∈ z G(x, y)

for all ∆0-formulae G(x, y), and Set Induction

∀x [(∀y ∈ xC(y))→ C(x)] → ∀xC(x)

for all formulae C(x).
A transitive set A such that (A,∈) is a model of KP is called an admis-

sible set. Of particular interest are the models of KP formed by segments of
Gödel’s constructible hierarchy L. An ordinal α is admissible if the structure
(Lα,∈) is a model of KP.

KP is an important set theory as a great deal of set theory requires only
the axioms of KP and its standard models, the admissible sets, have been
a major source of interaction between model theory, recursion theory and
set theory (cf. [2]). Power Kripke-Platek set theory is obtained from KP
by also viewing the creation of the powerset of any set as a basic operation
performed on sets. In the classical context, subsystems of ZF with Bounded
Separation and Power Set have been studied by Thiele [42], Friedman [8]
and more recently in great depth by Mathias [15]. They also occur naturally
in power recursion theory, investigated by Moschovakis [17] and Moss [18],
where one studies a notion of computability on the universe of sets which
regards the power set operation as an initial function. Semi-intuitionistic
set theories with Bounded Separation but containing the Power Set axiom
were proposed by Pozsgay [19, 20] and then studied more systematically by
Tharp [41], Friedman [7] and Wolf [44]. Such theories are naturally related
to systems derived from topos-theoretic notions and to type theories (e.g.,
see [36]). Mac Lane has singled out and championed a particular fragment
of ZF, especially in his book Form and Function [14]. Mac Lane Set Theory,
christened MAC in [15], comprises the axioms of Extensionality, Null Set,
Pairing, Union, Infinity, Power Set, Bounded Separation, Foundation, and
Choice.

To state the axioms of KP(P) it is convenient to introduce another type
of bounded quantifiers.
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Definition 2.1. We use subset bounded quantifiers ∃x ⊆ y . . . and ∀x ⊆
y . . . as abbreviations for ∃x(x ⊆ y ∧ . . .) and ∀x(x ⊆ y → . . .), respectively.

The ∆P0 -formulae are the smallest class of formulae containing the atomic
formulae closed under ∧,∨,→,¬ and the quantifiers

∀x ∈ a, ∃x ∈ a, ∀x ⊆ a, ∃x ⊆ a.

A formula is in ΣP if belongs to the smallest collection of formulae which
contains the ∆P0 -formulae and is closed under ∧,∨ and the quantifiers ∀x ∈
a, ∃x ∈ a, ∀x ⊆ a and ∃x. A formula is ΠP if belongs to the smallest
collection of formulae which contains the ∆P0 -formulae and is closed under
∧,∨, the quantifiers ∀x ∈ a, ∃x ∈ a, ∀x ⊆ a and ∀x.

Definition 2.2. KP(P) has the same language as ZF. Its axioms are the
following: Extensionality, Pairing, Union, Infinity, Powerset, ∆P0 -Separation,
∆P0 -Collection and Set Induction (or Class Foundation).

The transitive models of KP(P) have been termed power admissible sets
in [8].

Remark 2.3. Alternatively, KP(P) can be obtained from KP by adding
a function symbol P for the powerset function as a primitive symbol to the
language and the axiom

∀y [y ∈ P(x)↔ y ⊆ x]

and extending the schemes of ∆0 Separation and Collection to the ∆0-
formulae of this new language.

Lemma 2.4. KP(P) is not the same theory as KP+Pow. Indeed, KP+
Pow is a much weaker theory than KP(P) in which one cannot prove the
existence of Vω+ω.

Proof : See [37, Lemma 2.4]. ut

Remark 2.5. The system KP(P) in the present paper is not quite the same
as the theory KPP in Mathias’ paper [15, 6.10]. The difference between
KP(P) and KPP is that in the latter system set induction only holds for
ΣP1 -formulae, or what amounts to the same, ΠP1 foundation (A 6= ∅ → ∃x ∈
A x ∩A = ∅ for ΠP1 classes A).

Friedman [8] includes only Set Foundation in his formulation of a formal
system PAdms appropriate to the concept of recursion in the power set
operation P.
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3 Extracting additional explicit results from ordi-
nal analysis

[37] featured an ordinal analysis of KP(P). As it turns out the technique
can be augmented to also yield an ordinal analysis of KP(P)+ACglobal. The
changes mainly concern the infinitary system RSPΩ of [37, §5]. The modified
infinitary system RSPΩ (R) results from RSPΩ by the following changes:

(i) RSPΩ (R)-terms are defined as in Definition 5.1 of [37], except that in
clause 3, F (~x, y) is allowed to be any ∆P0 -formula of KP(P)+ACglobal,
i.e., it may contain the relation symbol R.

(ii) The axioms and rules of RSPΩ in Definition 5.3 of [37], have to be
formulated with respect to the richer language, i.e., ∆P0 and ΣP refer
to the language with R as a basic symbol. This affects (A1), (A3),
(A6), (A7), and the rule ΣP -Ref . Moreover, to these axioms one adds
two new ones:

(A8) Γ,¬(∃y ∈ t)(y ∈ t), (∃y ∈ t)R(t, y) (3)

(A9) Γ,¬R(t, s),¬R(t, r), s = r . (4)

With these changes, the embedding of KP(P) + ACglobal into the infinitary
proof system (cf. [37, Theorem 6.9]) and cut elimination in RSPΩ (R) proceed
in exactly the same way as for RSPΩ in [37, §7], yielding the following result:

Corollary 3.1. Let A be a ΣP-sentence of KP(P) + ACglobal. Suppose that
KP(P) + ACglobal ` A. Then there exists an operator H and an ordinal
ρ < ψΩ(εΩ+1) such that

H ρ

ρ A .

Proof : The same proof as in [37, Corollary 7.7] works here, too. H and
ρ can be explicitly constructed from the proof of A in KP(P) + ACglobal. ut

A refinement of [37, Theorem 8.1] then yields partial conservativity of
KP(P) + ACglobal over KP(P) + AC.

Theorem 3.2. Let A be a ΣP sentence of the language of set theory without
R. If KP(P) + ACglobal ` A then KP(P) + AC ` A.

Proof : Suppose KP(P) + ACglobal ` θ, where θ is a ΣP -sentence. It
follows from Corollary 3.1 that one can explicitly find H and τ < ψΩ(εΩ+1)
such that H ρ

ρ A . The refinement of [37, Theorem 8.1] consists in noticing
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that if H(∅) ⊆ CΩ(ωm(ωΩ+m), 0) and Γ(s1, . . . , sn) is a sequent consisting
only of ΣP -formulae and

H α

ρ Γ(s1, . . . , sn)

with α, ρ < Ω, then, for all variable assignments ` : V AR→ VψΩ(ωm(ωΩ+m)),

VψΩ(ωm(ωΩ+m)) |= Γ(`(s1), . . . , `(sn)) ,

if the predicate R is interpreted as the graph of a choice function on VψΩ(ωm(ωΩ+m)).
The entire ordinal analysis can thus be carried out in KP(P) + AC since
this theory proves the existence of VψΩ(ωm(ωΩ+m)) as well as a choice function
on this set (i.e. a function f defined on this set satisfying f(x) ∈ x whenever
x 6= ∅). As A is ΣP and R does not occur in A, A must be true. This shows
that KP(P) + AC ` A. ut

The next result extracts further information from infinitary proofs in
RSPΩ .

Theorem 3.3. If KP(P) + AC ` θ, where θ is a ΣP-sentence, then one
can explicitly find an ordinal (notation) τ < ψΩ(εΩ+1) such that

KP + AC + the von Neumann hierarchy (Vα)α≤τ exists ` θ.

Proof : First note that AC can be formulated as a ΠP1 -sentence. From
KP(P) + AC ` θ one obtains KP(P) ` AC → θ. As the latter statement
is equivalent to a ΣP -sentence, it follows from [37, Corollary 7.7] and a
refinement of [37, Theorem 8.1] (as above) that one can explicitly find a
τ < ψΩ(εΩ+1) such that

Vτ |= AC→ θ. (5)

As before, the refinement of [37, Theorem 8.1] consists in noticing that if
H(∅) ⊆ CΩ(ωm(ωΩ+m), 0) and Γ(s1, . . . , sn) is a sequent consisting only of
ΣP -formulae and

H α

ρ Γ(s1, . . . , sn)

with α, ρ < Ω, then, for all variable assignments ` : V AR→ VψΩ(ωm(ωΩ+m)),

VψΩ(ωm(ωΩ+m)) |= Γ(`(s1), . . . , `(sn)) .

The entire ordinal analysis can be carried out in

KP + the hierarchy (Vδ)δ<τ exists
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for a suitable τ , e.g. τ = ψΩ(ωm(ωΩ+m)) + ω. Thus

KP + AC + the hierarchy (Vδ)δ<τ exists ` θ.

ut

Below we shall talk about well-orderings ≺. The field of ≺ is the set
{u | ∃v (u ≺ v ∨ v ≺ u)}. If u ∈ Field(≺) we denote by ≺� u the ordering
≺ restricted to the set {v | v ≺ u}. ≺� u is said to be an initial segment
of ≺. We say that ≺ is a cardinal if there is no bijection between Field(≺)
and {v | v ≺ u} for any u ∈ Field(≺).

Theorem 3.4. Let τ be a limit ordinal. If

KP + AC + the von Neumann hierarchy (Vα)α<τ exists

proves a Π1
4 statements Φ of second order arithmetic, then

Z + the von Neumann hierarchy (Vα)α<τ ·4+4 exists

proves Φ.

Proof : We briefly recall the proof that ZF and ZFC prove the same
Π1

4 statements of second order arithmetic. Assume ZFC ` Φ, where

Φ = ∀x ⊆ ω∃y ⊆ ω∀u ⊆ ω∃v ⊆ ω θ(x, y, u, v)

with θ(x, y, u, v) an arithmetic formula. Now fix an arbitrary x ⊆ ω and
build the relativized constructible hierarchy L(x) which is a model of ZFC,
assuming ZF in the background. Then L(x) |= ∀u ⊆ ω∃v ⊆ ωθ(x, y, u, v)
for some y ⊆ ω with y ∈ L(x). It then follows from a version of Shoenfield’s
Absoluteness Lemma with subsets of ω as parameters that ∀u ⊆ ω∃v ⊆
ωθ(x, y, u, v) holds in V and hence Φ holds in V .

We would like to simulate the foregoing proof in the background theory

Z + the von Neumann hierarchy (Vα)α≤τ ·4+4 exists.

The idea is basically that for a given x ⊆ ω and a well-ordering ≺ one
can simulate an initial segment of the constructible hierarchy L(x) along ≺.
Let’s denote this by L≺(x). L≺(x) is basically a set of formal terms built
from the elements of the field of ≺. However, we also need to equip L≺(x)
with an equivalence relation ≈ such that s ≈ s′ signifies that s and s′ denote
the ‘same’ set, and an elementhood relation ε such that sεt ∧ s ≈ s′ → s′εt.
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This is a well known procedure in proof theory, so we shall not dwell on the
details. For another approach based on the Gödel functions see [15].

We need a sufficiently long well-ordering to guarantee that (L≺(x),≈, ε)
is a model of T . We resort to Hartog’s construction (see e.g. [16, 7.34]).
Given a set A let <h(A) be the well-ordering that arises from the set of all
well-orderings on subsets of A by singling out equivalence classes

[l]A = {C |C is a well-ordering of a subset of A order-isomorphic to l}

and setting

[l1]A <h(A) [l2]A iff l1 is isomorphic to a proper intial segment of l2.

Since Z has the powerset axiom and proves comparability of well-orderings,
one can show that <h(A) is a well-ordering; moreover, <h(A) is the smallest
well-ordering such that there is no injection of its field into A (see [16, 7.34]).
As a result, there is no bijection between the field of <h(A) and the field of
a proper initial segment of <h(A), that is, <h(A) behaves like a cardinal.

Now, if l ⊆ Vα × Vα then l ∈ Vα+3 and hence [l]Vα ∈ Vα+4. Therefore
<h(Vα) is a well-ordering on a subset of Vα+4 and hence <h(Vα) has a smaller
order-type than <h(Vα+4), that is <h(Vα) is order-isomorphic to a proper
initial segment of <h(Vα+4). Finally set

≺ := <h(Vτ ·4+ω)

L∗(x) := (L≺(x),≈, ε).

Our goal is to show that L∗(x) is a model of

T := KP + AC + the von Neumann hierarchy (Vα)α<τ exists.

It is a straightforward matter to show that L∗(x) satisfies Pairing, Union,
Infinity, and ∆0-separation, similarly as one shows that any Lλ with λ a limit
> ω satisfies these axioms. Next we address ∆0-Collection. Note that L∗(x)
is a set with a definable well-ordering. So we have definable Skolem functions
on L∗. Moreover, for any v ∈ Field(≺) which is a limit one has a bijection
between L≺�v(x) and ≺� v. Now suppose L∗(x) |= ∀u ∈ a∃yΨ(u, y,~b ) with
all parameters exhibited. Then there exists v ∈ Field(≺) of limit type such
that a,~b ∈ L≺�v(x). Let Y be the Σ1 Skolem hull of L≺�v(x) in L∗. Note
that there is a bijection between Y and and Field(≺� v). Then, similarly as
in the Condensation Lemma (e.g. [5, II.5.2]) one proves that Y is isomorphic
to some L≺�y(x) with v � y and y ∈ Field(≺). The latter follows since ≺
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is a cardinal. As a result, L∗(x) |= ∀u ∈ a ∃y ∈ L≺�y(x) Ψ(u, y,~b ), showing
∆0-Collection.

Finally we have to show that in L∗ the powerset operation can be iterated
at least τ times. By the above we know that all orderings <h(Vα·4) for
α < τ are isomorphic to initial segments ≺� uα of ≺ and that they form an
increasing sequence of cardinals. Using again a condensation argument (e.g.
[5, II.5.5]) one shows that

L∗(x) |= P(L≺�uα(x)) ⊆ L≺�uα+1(x)

from which it follows that

L∗ |= the von Neuman hierarchy (Vβ)β<τ exists.

Since L∗(x) also has a ∆1 definable well-ordering AC holds in L∗(x). ut

Corollary 3.5. If Φ is Π1
4 sentence such that KP(P) + AC ` Φ then

KP(P) ` Φ.

Proof : Suppose KP(P) + AC ` Φ with Φ being Π1
4. Then Φ is also a

ΣP -sentence. By Theorem 3.3 one can explicitly find an ordinal (notation)
τ < ψΩ(εΩ+1) such that

KP + AC + the von Neumann hierarchy (Vα)α≤τ exists ` θ.

With Theorem 3.4 we have

Z + the von Neumann hierarchy (Vα)α<τ ·4+4 exists ` Φ.

Now, KP(P) proves the existence of the ordinal τ · 4 + ω and also proves
that Vτ ·4+ω is a model of Z, it follows that Vτ ·4+ω |= Φ, whence Φ holds. ut

4 On Mathias’ theory KPP and a miscellany of
related work and questions

As explained in the introduction, the difference between KP(P) and KPP

(see [15, 6.10]) is that in the latter system set induction only holds for ΣP1 -
formulae.

Let ϕ be the usual two place Veblen function (see [43]) used by proof
theorists. It is by now well-known how one deals with ΣP1 set induction
proof-theoretically, employing partial cut elimination and an asymmetric
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interpretation of quantifiers. Without the powerset function this is dealt
with in [13, §3]. With the powerset function it is carried out in [4] and also
follows from [23, 6.1] if one substitutes for G the powerset function. The
upshot of this work is the following Theorem.

Theorem 4.1. If KPP + AC ` θ, where θ is a ΣP-sentence, then one can
explicitly find an ordinal (notation) τ < ϕω(0) such that

KP + AC + the von Neumann hierarchy (Vα)α≤τ exists ` θ.

As a consequence, one arrives at the following:

Corollary 4.2. If Φ is Π1
4 sentence such that KPP + AC ` Φ then KPP `

Φ.

Proof : Suppose KPP + AC ` Φ with Φ being Π1
4. Then Φ is also a

ΣP -sentence. By Theorem 4.1 one can explicitly find an ordinal (notation)
τ < ϕω(0) such that

KPP + AC + the von Neumann hierarchy (Vα)α≤τ exists ` θ.

With Theorem 3.4 we have

Z + the von Neumann hierarchy (Vα)α<τ ·4+4 exists ` Φ.

Now, since KPP proves the existence of the ordinal τ ·4 +ω and also proves
that Vτ ·4+ω is a model of Z, it follows that Vτ ·4+ω |= Φ, whence Φ holds. ut

One can slightly strengthen the previous result by also adding ΠP1 set
induction which is the same as ΣP1 foundation.

Let ∆P0 -DC be the schema saying that whenever ∀x∃yR(x, y) holds for
a ∆P predicate R then for every set z there exists a function f with domain
ω such that f(0) = z and

∀n ∈ ωR(f(n), f(n+ 1)).

Lemma 4.3. KPP + AC ` ∆P0 -DC.

Proof : We argue in KPP + AC. Assume ∀x∃yR(x, y). In KPP we
have the function α 7→ Vα. Fix a set z. Using ∆P0 Collection we get

∀α∃β [z ∈ Vβ ∧ ∀x ∈ Vα ∃y ∈ Vβ R(x, y)].

By taking the smallest β we get a ΣP1 class function F such that

∀α[z ∈ VF (α) ∧ ∀x ∈ Vα ∃y ∈ VF (α)R(x, y)].
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Now let α0 := 0, αn+1 = F (αn), and τ := supn∈ω αn. Then z ∈ Vτ ∧ ∀x ∈
Vτ ∃y ∈ Vτ R(x, y). Using AC there is a choice function h : Vτ → Vτ such
that R(x, h(x)) holds for all x ∈ Vτ . Now define f : ω → Vτ by f(0) = z
and f(n+ 1) = f(f(n)). Then R(f(n), f(n+ 1)) holds for all n ∈ ω. ut

Lemma 4.4. KPP + AC ` ΠP1 set induction.

Proof : We argue in KPP + AC. Suppose we have a counterexample to
ΠP1 set induction. Then there is a ΠP1 predicate Q(x) = ∀uS(u, x) with S
∆P0 and a set a0 such that ¬Q(a0) and ∀x [∀y ∈ xQ(y)→ Q(x)]. The latter
is equivalent to ∀x [¬Q(x)→ ∃y ∈ x¬Q(y)] which yields

∀x ∀u∃y ∃v [¬S(u, x)→ y ∈ x ∧ ¬S(y, v)].

The bracketed part of the latter statement is ∆P0 . ¬Q(a0) entails that there
exists b0 such that ¬S(a0, b0). Thus by Lemma 4.3 there exists a function
f with domain ω such that f(0) = 〈a0, b0〉 and, for all n ∈ ω, f(n) is a pair
〈an, bn〉 such that

¬S(an, bn)→ an+1 ∈ an ∧ ¬S(an+1, bn+1).

By induction on n we get S(an, bn) ∧ an+1 ∈ an for all n, contradicting ∆P0
foundation. ut

Corollary 4.5. If Φ is Π1
4 sentence such that KPP+AC+ΠP1 set induction `

Φ then KPP ` Φ.

Adrian Mathias [15, Theorem 9] proved that adding V = L to KPP

results in a stronger theory that proves the consistency of KPP . This can
be strengthened further.

Theorem 4.6. [15, Theorem 9] KP(P) + V = L is much stronger than
KP(P). Even KPP + V = L is much stronger than KP(P).

Proof : We work in KPP + V = L. Pick a limit ordinal κ such that
P(ω) ∈ Lκ. There exists a Σ1(Lκ) map of κ onto Lκ (see [5, II.6.8]). In
particular there exists a map f of κ onto P(ω). We claim that κ is uncount-
able, meaning that there is no surjective function that maps ω onto κ. This
follows since otherwise there would exist a surjection of ω onto the powerset
of ω, contradicting Cantor.

Next we aim at showing that KPP + V = L proves that the Howard-
Bachmann ordinal exists. To this end we invoke [31] section 4. Let B be the
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set of ordinal notations and <hb be its ordering as defined in [31, §4]. The
class Acc of [31, Definition 4.2] consists of those ordinal notations a <hb Ω
such that there exists an ordinal α and an order isomorphism f between
α and the initial segment of B determined by a. However, since B is a
countable set such an α will always be < κ. As a result, Acc is actually
a set in our background theory. One can then show that all the results
in [31, §4] hold in our background theory. However, we can prove more.
The class M of [31, Definition 4.7] will also be a set in our background
theory and therefore the metainduction of [31, Theorem 4.13] can be carried
out as a formal induction in our background theory, and thus it can be
show that the Bachmann-Howard ordinal exists as a set-theoretic ordinal.
Consequently we can carry out the ordinal analysis of KP(P) from [37]
inside our background theory. As a result, we get that KPP+V = L proves
the ΣP1 reflection principle for KP(P). ut

Corollary 4.7. KPP+V = L proves the ΣP1 reflection principle for KP(P).

5 Some applications

The theory KP(P) + ACglobal provides a very useful tool for defining models
and realizability models of other theories that are hard to construct without
access to a uniform selection mechanism. Since its exact proof-theoretic
strength has been determined, this knowledge can be used to determine
the strength of other theories, too. We give two examples, the first being
Feferman’s operational set theory with power set operation.

Jäger, in [11], raised the following question at the very end of §4 in
connection with the strength of OST(P).

Unfortunately, the combination of Theorem 18 and Theorem 22
does not completely settle the question about the consistency
strength of OST(P) yet. So far we have an interesting lower and
an interesting upper bound, but it still has to be determined
what the relationship between KP(P) and KP(P)+(V = L) is.

The theory KP(P)+AC has a translation into OST(P) by [11, Theorem
18] and by [11, Theorem 22] OST(P) can be interpreted in KP(P)+V = L.
However, by Theorem 4.6 this leaves a huge gap. The main difficulty is
posed by the choice operator C of OST. The inductive definition of the
relation ternary R(a, b, c) that serves to interpret the application of OST(P)
in KP(P) is given in stages Rα in [11, Definition 7]. The assumption V = L
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plays a central role in clause 22 when picking a <L-least c that fulfills the
pertaining requirements. Here, instead of Lα one can use Vα, and instead
of picking the <L-least that works one can take the set C of all possible
candidates in Vα and then apply the global choice function to C to select a
particular one. Thus together with [11, Theorem 18] we have

Corollary 5.1. The theories OST(P) and KP(P) + ACglobal are mutually
interpretable in each other and have the same strength as KP(P).

Similar results hold for versions of these three theories where the amount
of ∈-induction is restricted. The result that OST(P) and KP(P) have the
same strength was also obtained by Sato and Zumbrunnen [38, Theorem
114], though using rather different methods.

A question left open in [30] was that of the strength of constructive Zermelo-
Fraenkel set theory with the axiom of choice. There CZF + AC was inter-
preted in KP(P) + V = L ([30, Theorem 3.5]). However, the (realizability)
interpretation works with ACglobal as well. Thus, as CZF + AC proves the
power set axiom, it follows from [36, Theorem 15.1] that we have the follow-
ing:

Corollary 5.2. CZF + AC and KP(P) have the same strength.
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