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Abstract: Organogenesis has been studied for 
decades, but fundamental questions regarding the 
control of growth and shape remain unsolved. 
We have recently shown that of all proposed 
mathematical models only ligand-receptor based 
Turing models successfully reproduce the 
experimentally determined growth fields of the 
embryonic lung and thus provide a mechanism 
for growth control during embryonic lung 
development.  Turing models are based on at 
least two coupled non-linear reaction-diffusion 
equations. In case of the lung model, at least two 
distinct layers (mesenchyme and epithelium) 
need to be considered that express different 
components (ligand and receptor, respectively). 
The Arbitrary Lagrangian-Eulerian (ALE) 
method has previously been used to solve this 
Turing system on growing and deforming 
(branching) domains, where outgrowth occurs 
proportional to the strength of ligand-receptor 
signalling. However, the ALE method requires 
mesh deformations that eventually limit its use. 
Therefore, we incorporate the phase field method 
to simulate 3D embryonic lung branching with 
COMSOL. 
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1. Introduction  
 

The development of an organism from a 
single cell, the fertilized oocyte, involves 
innumerous symmetry breaks that need to occur 
at the right time and the right place to give rise to 
a functional organism. During mouse lung 
development, thousands of branches form in a 
highly stereotyped process [1, 2]. The underlying 
mechanism that repetitively guides such a highly 
deterministic patterning and growth process has 

long fascinated biologists and theoreticians  [3].   
 

In 1952, Alan Turing described a reaction-
diffusion mechanism that can give rise to such 
deterministic symmetry breaks [4]. 20 years later 
Gierer and Meinhardt [5] as well as Prigogine [6] 
independently defined chemical reactions that 
are consistent with such a Turing patterning 
mechanism. Turing mechanisms have since been 
suggested for a wide range of biological 
patterning phenomena [7]. While experiments 
have confirmed the Turing mechanism in 
chemical reaction systems [8, 9], their proof in a 
biological system is still outstanding. In fact, 
alternative mechanisms are more likely in 
several systems where Turing mechanisms have 
previously been proposed [10, 11]. 
 

The increasing availability of quantitative 
imaging data offers new opportunities to test and 
challenge proposed Turing mechanisms [12]. We 
have previously shown that only a ligand-
receptor based Turing mechanism [13], but none 
of the other proposed alternative mechanisms, 
can reproduce the measured embryonic growth 
fields during early lung development [14]. In the 
lung, the ligand-receptor based Turing 
mechanism is based on the interaction of the 
ligand (𝐿) FGF10 with its receptor (𝑅) FGFRIIb 
[14, 15] as FGF10 signalling has been shown to 
be both necessary and sufficient for branch 
formation [16-20]. Accordingly, we compared 
the measured embryonic growth fields to the 
predicted concentration fields of the ligand-
receptor complex (𝑅#𝐿).  

 
The ligand and receptor dynamics can be 

described by the following set of non-
dimensionalized partial differential equations 
(PDEs) where the ligand 𝐿 is defined in the 
domain Ω%&' surrounding the epithelium (red in 
Fig. 1), while the receptor 𝑅 is defined only on 
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the cell surface of the epithelial layer, Γ) [13, 15, 
21-23] (Fig 1).  
 
*+
*,
= 	  𝛥𝑅 + 𝛾 𝑎 − 𝑅 + 𝑅#𝐿 	  	  	  	  on	  Γ)   (1) 

*7
*,
= 	  𝐷	  𝛥𝐿 + 𝛾𝑏	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  in	  Ω%&'       (2) 

𝐷𝑛 ⋅ 𝛻𝐿 = 	  −𝛾𝑅#𝐿	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  on	  Γ)	  	    (3) 
 

Here, in Eqs. 1 and 2, the terms on the left 
hand side denote the time derivatives, and the 
first term on the right hand side are the diffusion 
terms. 𝐷 > 1 refers to the relative diffusion 
coefficient of ligand and receptor, and 𝛾 is a 
scaling constant that defines the relative speed of 
the reaction terms. a and b refer to the 
constitutive receptor and ligand production rates. 
The epithelium expresses the receptor, while the 
mesenchyme produces the ligand. The ligand can 
diffuse throughout the domain, while the 
receptor can diffuse only in the epithelial layer. 
Receptors are internalized constitutively at rate 
– 𝑅, while ligand is removed mainly upon 
receptor binding at rate – 𝑅#𝐿 (boundary 
condition described in Eq. 3). A key requirement 
of the Turing mechanism is that ligand binding 
triggers receptor accumulation on the cell surface 
at rate 𝑅#𝐿. FGF10-dependent receptor recycling 
to the cell surface is indeed observed [24].  
 

Further analysis of the Turing mechanism in 
branching morphogenesis requires the simulation 
of the 3D branching process over time. This is 
numerically challenging because the growth and 
deformation of two distinct tissue layers, the 
branching epithelium and the surrounding 
mesenchyme, needs to be coupled to a changing 
concentration field.  
 

 
2. Phase Field Method 
 

Many numerical techniques are available to 
handle the coupling of surface and bulk 
equations on evolving geometries [25]. In 
particular, the Arbitrary Lagrangian-Eulerian 
(ALE) method has been used to solve this Turing 
system on growing and deforming (branching) 
domains, but meshing problems develop over 
time that limit its use [14, 15, 22, 26-28]. For the 
problem considered here, interface-capturing 
methods are advantageous since they can handle 
arbitrarily complex geometries without re-
meshing. In these methods, the surface is 
implicitly described as a level-set of an auxiliary 
field variable 𝜙. The most popular methods of 
this kind are the level-set method [29-31] and the 
phase field method, which we choose here. 
 

The phase field method has a long history in 
the theory of phase transitions dating back to van 
der Waals [32]. The phase field 𝜙 describes the 
physical phases by taking distinct values in each 
of the domains (e.g. 𝜙 = 	  0 within the 
epithelium and 𝜙 = 	  1 outside the epithelium) 
with a smooth transition in between, around the 
interface (Fig. 2). Hence, the interface is diffuse 
with a finite width 𝜖, and an intermediate level 
set of the phase field (e.g. 𝜙 = 	  0.5) may be used 
to get a discrete interface location.  
 

A phase field method to simulate partial 
differential equations (PDEs) in complex 
evolving geometries has been presented in [33] 
for bulk geometries and in [34] for surfaces. In a 
biological context, the approach has been used to 
solve equations on complex geometries such as 
trabecular bone [35] and to describe vesicle 
budding during endocytosis [36]. The coupling 
of surface and bulk equations has been presented 
in [37]. The method is capable to model 
transport, diffusion, reaction and 
adsorption/desorption of arbitrary material 
quantities on deformable surfaces. The approach 
has been used to model two-phase flows with 
soluble nanoparticles [38] and soluble surfactants 
[39]. 
 

The general idea to use a phase field for 
coupled bulk and surface equations is 
intriguingly simple: the integrals of the weak 
form of the equations are multiplied by 

Figure 1: 2D Setting. The mesenchymal bulk Ω%&' 
(red) encloses the epithelium (blue). The ligand L is 
defined in ΩF%&' only. The receptor R is defined on the 
epithelial-mesenchymal border Γ). 



characteristic functions, which allows to extend 
the integration domains to a larger computational 
box Ω	  (see Fig. 1). For example, multiplication 
by 𝜙 can be used to extend integrals defined on 
the epithelium exterior to a surrounding box. 
Analogously, the approximate Dirac delta 
function |𝛻𝜙| can be used for integration along 
the epithelium surface. As a result, the phase 
field enters the corresponding equations. Since 
the receptor 𝑅 is defined only on the epithelial 
boundary, we multiply the integrands in the 
weak form of Eq. 1 with 𝛿 = |𝛻𝜙|	  which leads 
(in strong from) to  
 

𝛿
𝜕𝑅
𝜕𝑡

= 𝛻 ⋅ 𝛿𝛻𝑅 + 𝛾𝛿 𝑎 − 𝑅 + 𝑅#𝐿 	  	  	  in	  Ω. 
 

Matched asymptotic analysis shows 
convergence towards Eq. 1 as 𝜖 tends to zero 
[34]. To increase numerical stability, we 
introduced some further modifications. First, to 
ensure that the interaction term is restrained to 
the interface we multiply the 𝑅#𝐿 term with 

 

𝜒 𝜙 = 	   1	  	  0.01 < 𝜙 < 0.99
0	  	  	  	  	  	  	  	  	  	  	  	  	  𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒.

 
 

Second, R is constantly extended off the 
epithelial interface in normal direction similar to 
[36] by including the term 𝐷T𝛻 ⋅ (𝛿𝑛	  𝑛 ⋅ 𝛻𝑅), 
where 𝑛 = 𝛻𝜙/ 𝛻𝜙  represents the outward 
normal on the epithelial boundary. In summary, 
Eq. 1 becomes 
  
𝛿 *+
*,
= 𝛻 ⋅ 𝛿𝛻𝑅 + 𝛾𝛿 𝑎 − 𝑅 + 	  𝜒 𝜙 𝑅#𝐿 +

	  𝐷T𝛻 ⋅ 𝛿𝑛	  𝑛 ⋅ 𝛻𝑅 	  	  in	  Ω.       (4) 
 
Similarly, we restrict Eq. (2) to the mesenchyme 
by multiplication with 𝜙. To include the 
boundary condition given in Eq. 3, we limit the 
interaction term, 𝑅#𝐿, with the 𝛿-function to the 
epithelial boundary, as discussed for Eq. 1. We 
do not need the stabilizing 𝜒-function in Eq. 2 
because the non-linear term dampens the 
evolution of 𝐿. Thus, the diffuse-domain version 
of Eq. 2 reads 

	  
𝜙 *7
*,
= 	  𝐷	  𝛻 ⋅ 𝜙𝛻𝐿 + 𝛾 𝜙𝑏 − 𝛿𝑅#𝐿 	  	  	  in	  Ω.  (5) 

 
In this way Eq. 5 approaches the sharp interface 
equation for interface thickness 𝜖 → 0 [33].   
 

Advection of the phase field can be realized 
by a stabilized level-set equation [40]. In our 
model, lung growth depends on the 𝑅#𝐿-
concentration and is directed in the normal 
direction of the epithelium boundary. Therefore, 
we evolve the phase field with the concentration 
dependent velocity field   

 
            𝑣YZ[\,] = 𝑠 ⋅ 	  𝑅#𝐿 ⋅ 𝑛,                         (6) 
 
where 𝑠 is a scaling factor.  
 
 
3. Use of COMSOL Multiphysics® Software 
 

We use COMSOL Multiphysics® to perform 
all simulations and post-processing tasks. The 
initial lung geometries were obtained from 
embryonic lung images and were imported as 
STL-files through the CAD Import Module.   In 
the previous ALE-simulations we employed the 
Coefficient Form PDE-, the Surface Reaction- 
and the Moving Mesh-module to simulate the 
growing embryonic lung with Eqs. 1-3, 6. A 
more detailed description can be found in [27, 
28, 41]. 

Figure 2: Difference between a sharp and a 
diffuse interface representation. (A) A black circle 
embedded in a rectangle containing a cut-line. (B) 
The profile along the cut line (grey) in panel A is 
shown for a sharp interface as would be used in an 
ALE approach (black), and for a smooth transition 
between	  𝜙 = 	  0 and 𝜙 = 	  1, corresponding to the 
phase field transition (red).  

 



To circumvent the problems that arise in the 
ALE-implementation due to the highly displaced 
mesh, we implement the modified Eqs. 4 and 5 
instead of Eqs. 1-3. COMSOL offers two 
different types of phase fields, one based on the 
Cahn-Hilliard equation and one based on a level-
set approach, described in [40]. The Cahn-
Hilliard implementation is available in the Phase 
Field module. It defines the two phases by 𝜙 =
−1 and 𝜙 = 1 respectively, allowing values 
slightly below −1 and above 1. The level-set 
approach is available in the Level-Set module 
and defines the phases by 𝜙 = 0 and 𝜙 = 1. For 
this study we used the Level-Set module as the 
governing equation exhibits less unwanted self-
dynamics, even though the Cahn-Hilliard 
equations can be solved more efficiently (data 
not shown). We define the phase field as 𝜙 = 0 
in the epithelium and 𝜙 = 	  1 within the 
mesenchyme, such that the continuous interface 
in-between represents the epithelial-
mesenchymal border (see Fig. 1, 2). To 
overcome over- and undershoots and to smooth 
𝜙 at the two ends of the interface we further 
transformed 𝜙 as 
 
𝜑(𝑥) = 	  max	  (	  min	  (𝜙(𝑥), 1 − 10de), 10de)	  , 
 
and used this modified 𝜑 in Eqs. 4, 5. Similarly, 
we have to set a lower bound for 𝛿,  
 

𝛿(𝑥) = max	  (𝛿(𝑥), 10de). 
 

The last modification affects the resulting 
velocity field 𝑣YZ[\,]. By multiplying 𝑣YZ[\,] 
with 𝛿 we focus the displacement on the 
geometry interface at 𝜙 = 0.5. The reaction-
diffusion process on the epithelium as well as the 
diffusion in the mesenchyme bulk are modelled 
with the Coefficient Form PDE-module.  

4. Results 
 

We first solved the system of equations for L, 
R and 𝜙 on a highly regular 2D geometry 
(extended Fig. 1) with the Level-Set module. 
With 𝐷 = 100, 𝑎 = 	  0.15, 𝑏 = 	  0.1, 𝛾 = 0.1 and 
𝐷T = 100 on a quadratic domain of size 200, we 
obtain the plausible stable patterning shown in 
Fig. 3A, without requiring the 𝜒 𝜙  stabilisation 
function. The geometry was meshed with the 
COMSOL standard settings for “Extremely 
fine”. The re-initialization parameter 𝛾 of the 
Level-Set-module was set to 𝛾 = 	  0.1 and the 
interface thickness was half the maximum mesh 
element size in the region of the interface (𝜖fg =
ls. hmax/2). Enabling growth after reaching this 
stable pattern (with the scaling factor 𝑠	   =
0.001) leads to several branching events, 
resulting in the deformation shown in Fig. 3B-D. 
The growing geometry fills the domain over time 
without touching the boundaries. This behaviour 
arises because the ligand L is produced only in 
the space between the branching epithelium and 
the bounding box, and its concentration becomes 
too low to support outgrowth as the epithelial 
boundary (that acts as a sink for ligand) 
approaches the bounding box. In Fig. 3D on the 
right, two branches grow together. This is not a 
physiological behaviour of the embryonic lung, 
but the fusion of branches has been observed in 
the developing pancreas.  
 

Figure 4 shows the concentration fields of R 
and L, which are defined in the whole domain 
(Fig. 4A,B), as well as their reaction domains 
(Fig. 4C,D) at time t = 15000. The effect of the 
stabilization term for R, which extends the 
concentration constantly in normal direction, can 
be seen in Fig. 4A. The restriction of R to the 
epithelial boundary via multiplication with 𝛿 is 

Figure 3: 2D branching behavior. The phase field is indicated by the 𝜙 = 0.5	  contour-line and colored based on the 
value of  𝑅#𝐿 (colour bar). (A) Stationary pattern on the initial geometry. (B-D) Enabling growth leads to deforming 
outgrowth. (B) Until 𝑡 = 15000, growth is axis-symmetric, but (C) irregularities occur afterwards. (D) The space-
filling behavior is based on the decreasing L concentration at the boundaries of the domain. The merging of two 
branches is not observed in the development of the lung. 



shown in Fig. 4C.  Similarly, the actual reaction 
domain of L, that is obtained by multiplying the 
concentration of L with 𝜙, is shown in Fig. 4D. 

 
Finally, we used the phase field method with 

a 3D embryonic lung geometry (Fig. 5). 
Contrary to the 2D case we need the 𝜒 𝜙  
stabilisation function. On a static domain we 
again obtain stable patterns (Fig. 5A); the 
parameters for the Turing mechanism are the 
same as in 2D, except for 𝛾 = 0.2. The 

mesenchyme geometry is meshed with the 
COMSOL standard settings of “Extra fine”. The 
level set re-initialization parameter is 𝛾 = 0.3 
and the same interface thickness based on the 
mesh size as in 2D was chosen. Growth is, 
however limited by the small size of the 
mesenchyme, the bounding box (grey part in Fig. 
5A), which does not grow in our simulations. To 
demonstrate the potential of the method to 
handle strong deformations of the epithelium, we 
repeat the simulations with an artificially 1.5-
fold enlarged mesenchyme (compare grey parts 
in Fig. 5A,B). In this case, the spatial pattern 
(Fig. 5B) changes because the L-secreting region 
is now bigger and thus the concentration of L 
changes.  Enabling growth with 𝑠 = 0.015 leads 
to more pronounced spots and prolonged branch 
outgrowth (Fig. 5C,D). As in the 2D simulations, 
some branches fuse (black arrow in Fig. 5D).  
 
5. Conclusions 
 

The phase-field module in COMSOL offers a 
robust method to solve models where domain 
growth and deformation is coupled to dynamic 
reaction-diffusion reactions, whose concentration 
domains are restricted to dynamic geometric 
subdomains. We have implemented and tested 
the method with a Turing model for lung 
branching morphogenesis, and we obtain similar 
patterns as with the ALE-approach. As the 
complexity of the geometry increases over time, 
the phase field approach, however, seems not to 
suffer from numerical instabilities. We will use 
the phase field method in our future research to 
understand how size and shape are controlled 
during development, and during branching 
morphogenesis in particular. 

Figure 4: Concentration of R and L at t = 15000. 
(A, B) Concentration of (A) R and (B) L, which both 
exist in the whole domain. (C, D) The concentration 
domains of active R and L. (C) R is restricted to the 
interface via multiplication with 𝛿, while (D) L is 
restricted to its reaction domain via multiplication 
with 𝜙. The white contour-lines are at 𝜙 = 0.5. 

Figure 5: Turing patterns on 3D embryonic lung geometries and concentration-based growth. (A) Turing pattern 
on the epithelial surface, represented by the 𝜙 = 0.5 isosurface. The receptor R is defined on this surface only. The 
ligand L is defined in the grey area. (B-D) Turing pattern and branch outgrowth when the mesenchyme is enlarged 1.5-
fold. The resulting patterns differ due to a bigger domain where the ligand L is produced. In (D), two branches grow 
together (indicated by the black arrow). This would not occur during embryonic lung development. 
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