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Figure 7: Friction with vitelline membrane and/or cytosol and yolk modifies the flow pattern. (a) Global
flow pattern. Parameters are the same as in figure 3, but the hydrodynamic length varies between A = 10R
(top), A = R (reprinted from figure 3), A = R/10, and A = R/100 (bottom). In all cases the GB extends
posteriorly. In the cases of small hydrodynamic length, convergence and extension flow occur mostly in
regions where there is a gradient of contractility. Overall, friction renders the effect of actomyosin activity
more local to regions where they exhibit a variation, hence vortex structures are more localised next to these
regions with higher friction and have less influence in regions of uniform actomyosin activity (dorsally or
close to ventral midline e.g.) (b) Rates of strain in the AP direction for the four choices of A/R (purple, 10R,
green, 1, cyan, 1/10 and orange, 1/100), as a function of AP coordinate z close to the midline (y = 0.2R).
The overall magnitude of strain decreases with increased friction, as an increasing part of the energy provided
by myosin activity needs to overcome friction in addition to deforming the cell apices. The rate of strain is
uniformly positive (elongation) only when A is close to unity or smaller, else a region of shortening appears
in the central part of GB. (Note that since area change is close to zero, the DV strain value is very close and
opposite to the value of AP strain everywhere.) (¢) Rate of strain in the DV direction for the four choices
of A, as a function of AP coordinate = close to the midline (y = 0.2R). DV rate of strain always peaks close
to the boundary of the GB area where myosin is active, in relative terms the peak is more pronounced for
large frictions. Dorsally, there is always a positive DV rate of strain, indicating a DV elongation due to the
pull of the neighbouring converging GB. This is matched with an AP shortening of a similar magnitude.
Ventrally, the negative rate of strain (indicating convergence) is observed to decay when the hydrodynamic
length becomes small, in that case the DV narrowing is limited to a narrow band at the DV edge of the GB.
This localisation effect of small hydrodynamic length is also seen for the dorsal DV elongation, but to lesser
extent.

parameters and test the predictive power of the model. However, our theoretical work already sheds light
on the fundamental mechanisms at play and how they integrate in the complex 3D geometry of the embryo
to yield the morphogenetic events that are observed.

Based on our simulations and the timings reported in the literature, we can indeed articulate a mechanical
scenario for GB extension. The endoderm contraction that leads to PMG invagination, the first event
correlated with GB extension [13, Fig. 4B], starts 1 to 4 minutes before the onset of GB extension can be
detected. The corresponding simulation is shown in figure 5¢, PMG contraction generates a flow towards
the posterior that does extend the posterior half of the germband but decays rapidly in space. This is
consistent with what is observed e.g. in Kruppel mutants [13]. The presence of the cephalic furrow for
this extension does not have a strong influence there, see figure 8f. Thereafter, from shortly before the
onset and in the course of GB extension, myosin becomes increasingly planar-polarised [25]. The direct
consequence of this is a lateral flow from dorsal to ventral, causing convergence, that is, a negative rate of
strain of GB along the DV direction. Due to a rather large value of n;,, which corresponds to the in-plane
compressibility viscosity of actomyosin, this causes GB extension, see figure 6. Experimental evidence of such
an in-plane low compressibility exists [11, 12], although it is not clear whether this is a passive mechanical
property of the actomyosin cortex or an active one [26, 12]. In the absence of the cephalic furrow, figure
8e, this extension occurs evenly in the anterior and posterior directions, in presence of the cephalic furrow,
the viscous cost of flowing around the posterior end is much less than the cost of flowing into the furrow,
and planar polarisation driven GB extension is biased towards posterior, even if the contribution of PMG
invagination is not accounted for, figure 3.

Cellularisation of GB may not be necessary for convergence and extension of
planar-polarised tissue

The two prominent features in which cellularisation is involved in GB extension in WT Drosophila are the
planar-polarised recruitment of myosin, which preferentially enriches DV-oriented junctions, and the medio-
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Figure 8: Cephalic furrow (CF) can guide GB extension to be mostly posterior-wards. Lateral view of flow
fields generated by myosin contractility in the presence (a—c) or absence (d—f) of a cephalic furrow. (a,d)
With a hypothetical symmetric planar-polarised myosin activity, the presence of CF orients the flow towards
posterior whereas it is perfectly symmetric in its absence. (b,e) With a realistic asymmetric planar-polarised
myosin activity, the presence of CF still has a major role in orienting the flow towards posterior. Although
the asymmetric myosin patterning induces a asymmetric flow in the absence of the CF, the flow is not biased
towards posterior. (¢,f) The flow created by PMG invagination is much less sensitive to the presence of CF.
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lateral cell intercalations [31, 9, 10]. Because the DV-oriented junctions present both the characteristics of
being enriched in myosin and of undergoing shrinkage to lead to intercalation, these two effects have so far
been studied in association. However, some mutants such as eve that lack planar polarisation of myosin
can still exhibit some cell intercalation, although to a much lesser proportion than cell shape changes [11].
Here using our modelling approach we can envision the reverse case of studying convergence-extension due
to planar-polarised myosin activity but without explicit cell intercalation. We show that the anisotropy
of planar-polarised myosin activity is sufficient to explain convergence-extension, without the need for an
intercalation mechanism.

Indeed, from the above, we conclude that a mechanical model that does not involve individual cells
but only a continuum standing for the apical acto-myosin connected from cell to cell by apical junctions
can produce a flow with similarities to GB extension. Cellularisation is of course important for the planar
polarisation of myosin in the GB, and it is observed that acellular embryos do not exhibit myosin polarisation
[13]. Here, planar polarisation is introduced in the mechanical model by means of an anisotropic contractility
action of myosin o,. The fact that no further account of the cellularisation of the embryo is necessary in the
model suggests that at the tissue scale, one can address morphogenetic questions by considering ensemble
displacements. In this approach, the effect of cell intercalation, which is governed by planar-polarised
junctional myosin, is thus not directly taken into account, but rather encapsulated in a global tissue strain
rate and its associate viscosities  and 7y, which also include the cell deformation [15].

This tissue strain rate € and the corresponding tissue-scale tension o are related by the constitutive
relation, 2, which includes the contractility term o, resulting from planar-polarised myosin activity, and is
thus the only term bearing a trace of the embryo’s cellularised organisation. The respective values taken
by € and o locally depend on the mechanical balance, i.e. both the local myosin activity and the tension
transmitted by neighbouring tissue, see figure 2d. In the context of convergence-extension caused partly
by invagination of the PMG, [13], it has been proposed that cell intercalation could relax the stress by
allowing cell shape changes in a GB extended by an extrinsic force. Here we propose that the intrinsic
planar-polarised contraction might still extend the GB in the absence of intercalation, and that intercalation
could in that case too have for primary role the relaxation of the stress generated by the convergence and
extension process.

Geometry-governed mechanical balance as a messenger in early morphogenesis

Planar-polarised myosin in the GB is known to generate a global flow at the surface of the embryo. Our
simulations show that the global flow which is generated by such mechanical activity is dependent on the
pre-existing geometry of the embryo, such as the presence or absence of the cephalic furrow. Thus, a prior
morphogenetic movement such as cephalic furrow formation can affect further movements via mechanical
interactions only, see figure 1f.

This “messaging” proceeds via the establishment of a different mechanical balance depending on the
geometry of the embryo, rather than the diffusion of a morphogen, e.g. [32]. In the early embryo, the
distance over which these forces are transmitted is likely to be much larger than in later organisms, as there
is no extra-cellular matrix structure that will relieve actomyosin from part of the stress. Indeed, we find that
the hydrodynamic length is likely to be at least the width of the GB, consistent with laser ablation results
[30], which implies direct mechanical interaction at this scale.

This mechanical messaging behaves differently from biochemical messaging. Its speed of propagation is
the speed of sound in the force-bearing structure, here, the actomyosin. It does not propagate in an isotropic
way but in a more complex directional one, and contains directional information. Regions of interest within
the embryo should thus not be treated as isolated systems, since a distant geometric property of the embryo
can have a direct impact on the mechanical stress felt locally when intrinsic forces are being generated.

This prompts further development of computational tools such as the one we present. Tangential flows on
curved surfaces are also observed in other epithelia (such as follicular epithelium of Drosophila ovaries), but
is also relevant to cortical flows in single cells, prior to mitotic cleavage for example. Mechanical approaches
of flat epithelia have shed light on many aspects of tissue growth and dynamics [33, 34, 35, 25], in particular
at the scale of a few cells, which is the relevant one for cell rearrangements. At the other end of the spectrum
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of tissue dynamics, 3D phenomenological models of shape changes during ventral furrow formation have been
proposed [16]. Here we propose a first step in bridging the gap between these approaches, with the objective
to be able to address complex morphogenetic events in their actual geometry, and thus to fully account for the
influence of current morphology on the mechanical balance that leads to further morphogenetic movements.

Methods

Lagrange multiplier approach for tangential flows

Equation equation 3 must be resolved for velocities v tangential to the surface I', which corresponds to the
continuum formed by the apical actomyosin cortices of cells and adherens junctions. This constraint can

be written as v € V; = {w € (H! (F))‘3 |w-n= 0}, where (H* (F))‘3 is the set of vector-valued functions

defined on I' whose differential is square-integrable, and m is the outer normal to I'. Using an energetic
formulation, it can then be shown that equation 3 is equivalent to the constrained minimisation:

v = arg 1;161& E(w) (4)

where F is the rate of energy dissipation in the tissue, namely:

B(w) = /F%|w|2 ds—|—/r77|é(w)|2 ds+/Fg|Vp-w|2 ds —/Ff-wds

and f = Vr -0, Our approach is to introduce a vector field 8 that will act as a Lagrange multiplier to
constrain the velocities v to be tangential. This field 8 can be interpreted as the force needed to prevent
normal deformations. In order to do this, we first define 8 by @ = vL (v) where L (v) = (v-n)y — Vrv - n,
y is the curvature vector, and +y is a strictly positive parameter. Then we note that V; = ker L. The problem
can now be rewritten as an unconstrained saddle-point problem :

(v,0) = arg inf sup F(w) —|—/F (L (w) — ,lyﬁ) - &ds

weV ¢gcm

where V = (H' (F))3 and E = (L? (F))g, the set of square-integrable vector fields. We further introduce
the surface pressure p which enforces the finite compressibility of the actomyosin in the tangential plane,
p = —AVr -v. We can then write the problem as :

(v,p,0) = arg inf sup L(w,q,§)
wEquQ

£eE

where Q = L? (T),
1 1 1
L (’U}, q, 5) = 5(1(’11}, w) =+ bl(wa Q) - Ecl(qv Q) + b2(w7 5) - 562(57 6) - é(w)
and a, by, by, c; and co are the bilinear forms defined by :

a(w,w) = /cfw~wds+/2né(w) : € (w) ds,
r r
1
bi(w,q) = /—qu-wds, alp.q) = /qud&
r r

hw§) = [Llw) ds, w@.6 = [0 ¢as
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and £ is the linear form define by : ¢(w) = / f - wds. The saddle point can then be characterized as the
r
solution of the linear problem :

a(v,w) + bi(w,p) + ba(w,0) ((w) Vwe (H ()
bi(v,q) — clp,q) = 0 VgeQ
(v,6) - (0,8 = 0 VE€EE.

=

1
2
Mixed finite element approach

We solve the saddle point problem using the finite element method. This requires us to introduce a mesh
Iy, approximating I'. We use a triangular tessellation of second order, i.e. elements are curved triangles
described by a quadratic transformation and whose largest dimension is smaller than the mesh size h. This
ensures that the distance between any point of I'j, and I is at most Ch?, where C is a constant independent
of h. Using this mesh, we define discrete functional spaces V},, &, for vector fields vy, 8, and @, of scalar
field p;,. We approach the saddle point problem using the following formulation :

ap(vp, wp) + bip(wn,pn) + bon(wr,O0r) = Ch(wy) Yw, €V
bin(Vn,qn) —  c1,n(Phsqn) = 0 Van € Qn
ba.n(vn, &) — cn(On. &) = 0 VE, EE

where ap, by p, b2, c1,5 and cg j, are bilinear forms approximating the original forms, defined by :
ah(vh,wh) = / cevy, - wy, dsy, —‘r/ 277éh (Uh) D€ (wh) dsp,
Ty Tn

b1 n(wh,qn) = /

1
—qnVr, - wrdsy,  c1n(Ph,qn) :/ ~Dnqn dsp,
Fh 1_‘h

A
1
bo.n(wn, &) =/ Ly (wp) - &, dsn,  c2,0(0n,€p) Z/ ;Oh'ghdsh
T'n

'y

and ¢}, is the linear form defined by ¢;,(v),) = / fn-vndsp. The choice of the finite element spaces cannot be
Tn

made arbitrarily because it is a mixed problem. It requires a suitable choice in order for the discrete problem
converges towards the saddle point problem. Indeed, the discrete problem must verify two conditions called
inf-sup or Brezzi-Babuska conditions (see [30]) : first between the spaces V;, and @), through the bilinear
form by 5, then between the spaces V}, and E;, through the bilinear form b 5,. In the absence of theoretical
results on spaces that may verify these conditions, the idea is to produce compatible mixed finite element
combinations in order to obtain the convergence. For this, we guided our choice by similarity with choices for
which inf-sup conditions are verified in the case of classical problems (such as the three-dimensional Stokes
problem).

Numerical validation

Next, finite element spaces V},, @, and Ej; must be specified. We base them on a triangular tesselation of

the surface T’ (see next section) and choose Lagrange finite elemnts of degree 3 for Vj,, 2 for @, and Ej,.
We then check that this choice leads to a convergent approximation of the solution of equation 3. In order
to do so, we make an arbitrary choice of a velocity field on an arbitrary surface (a sphere), and calculate
analytically the prestress that would be needed to achieve such a velocity field. We then run simulations on
a series of meshes of decreasing triangle size h and monitor the evolution of the error v — vj,. We show [19]
that this decreases quadratically when h decreases, leading to pointwise errors (i.e., in L® norm) smaller
than 1073 for all meshes of more than 10000 elements (h = 0.05). For these numerical tests, we chose :
cg=10"% n=1, A =10% and v = 10".
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Figure 9: Convergence test. The mesh is refined (from right to left) and the error on an arbitrary flow field
is seen to decrease. L2 error is the overall squared difference of calculated minus original velocity vectors,
pointwise (L) error is the length of the largest difference between calculated and original velocity vectors
over the whole mesh.
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Finite element mesh of the Drosophila embryo and resolution

We first describe the embryo shape with an analytical function, and then introduce a procedure to create
a finite element mesh which will be fine enough to capture geometric details such as the cephalic furrow,
while remaining of reasonable size in terms of the number of triangles (since the computational cost of our
algorithms increases like N log(/N) with number of triangles N).

The analytical function describing the embryo shape I' = {¢(x,y, z) = 0} is chosen as:

o =1 \/( x >2+< Y >2+ (z—%CAPJQ)Q_i_D y (:C—S’sz—xcp>
x,Y,z)=1— 5 - 5
Y Rap Rpy Rpv crrer Wer

where Rap is the half-length of the embryo in AP, Rpy its maximum radius in a transverse cut, cap a
curvature parameter corresponding to the curvature of the main axis of the embryo (defined as the locus
of the center of all transverse cuts), and parameters indexed with C'F' correspond to the cephalic furrow.
When Do = 0, the cephalic furrow is absent, and the geometry corresponds to an ellipsoid of major axis
along x, with radius Rap, and minor axes along y and z of equal radii Rpy. The curvature parameter
flattens the dorsal side (z > 0). We take Rpy = 1 as the reference adimensional length, R4ap = 3Rpy and
cap = 0.1/Rpy, which leads to a shape close to the one of actual embryos.

The cephalic furrow depth is described by Der = 0.1Rpy, its position along the x axis in the mid-coronal
plane z = 0 is given by zcp = —1.2Rpy, and its inclination with respect to the (y, z) transverse planes is
set by Scr = 0.3. The cephalic furrow has a total width Werp = 0.1Rpy (exaggerated compared to real
embryos, since a very thin and sharp feature would increase tremendously the computational cost), its shape
is described by the function

exp (—ﬁ —|—2> if |s] <1
0 else

Yer(s) = {

which is infinitely derivable, leading to a very smooth profile.

The mesh generation is delegated to gmsh software, and the meshes used have around 46000 elements.
The numerical resolution of the problem on this mesh is implemented in the open-source free software
environment rheolef [37].
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