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Abstract

Morphogenesis is an eminently three-dimensional process, during which an organism undergoes complex
deformations to acquire a given shape and organisation. The genetic patterning of Drosophila embryos and
the way it regulates the expression of key molecules such as myosin, which can generate local mechanical
action, has been well described. However, the way this integrates at the scale of the embryo to drive
morphogenetic movements is still to be characterised. Understanding this requires us both to express locally
the link between myosin activation and mechanical behaviour, and to calculate globally the resulting force
balance and deformations. Axis extension in Drosophila is a good model system for this, since it involves
a very large deformation of the whole of the embryo and is crucially dependent on a well characterised
anisotropic myosin recruitement pattern. This paper specifically investigates whether this expression pattern
causes the observed morphogenetic movement directly or only via the cell intercalation process.

Our prediction of local mechanical behaviour is based on a rheological law which we have recently
validated for cortical actomyosin and extend to the case when myosin generates an anisotropic prestress.
In order to resolve the stresses and deformations that this produces at the scale of the whole embryo, we
develop a novel finite element technique which allows us to solve the three-dimensional mechanical balance
resulting from a given global distribution of myosin-generated prestress. Because axis extension is observed
to involve in-plane tissue flows, the mechanical problem is expressed as a tangential flow of an emergent fluid
on the curved three-dimensional surface of the embryo.

Numerical simulations confirm that the planar-polarised arrangement of myosin in the germband can
trigger embryo-scale flows which are qualitatively similar to those observed experimentally. Interestingly,
this mechanical behaviour is shown not to rely necessarily on cell intercalation, but rather on the anisotropy
of myosin action, which is known to be a major cause of intercalation in general but can also cause cell
elongation. We also show that the mechanical balance that leads to axis extension towards posterior is
crucially dependent on the geometry of the whole embryo, and specifically on the presence anteriorly of the
cephalic furrow, which can act as a guide for morphogenetic movements. This is thus an instance when a
prior morphogenetic event, cephalic furrow formation, can modify the mechanical feedback on actomyosin
thanks to the geometric dependence of mechanical balance, thus having a cascading influence on further
development.
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Introduction

Mechanical cues have been shown to influence cell and organism phenotypes, through mechanisms of mechanosen-
sation and mechanotransduction [1, 2, 3]. At the cell scale, it has been shown that the mechanical properties

of the environment could lead to a self-organised polarisation of the cytoskeleton [4] and to a different cell
morphology through collective dynamics of cytoskeletal molecules [5], independently of a signaling pathway
activated by transduction. In the case of a whole organism, this type of mechanical driving of morphological
phenotype is of high interest, since the mechanics provide an alternative route to whole-organism coordina-
tion and function as opposed to diffusion and transport of chemical factors. In the context of embryogenesis,
the notion of extrinsic forces has been introduced [6] to highlight the fact that mechanical tension equili-
brates over the size of the whole embryo and can thus be felt far from the location where biochemical energy
has been converted to mechanical action.

Here we focus on how the extrinsic forces integrate at the scale of the whole embryo in order to achieve
the correct deformation. This integration of forces is crucially dependent on the geometry, which is itself
the product of previous morphogenetic movements. The fundamental concept here is Newton’s third law of
action and reaction. In the context of early Drosophila embryogenesis, this law turns out to have implications
of direct practical interest in the analysis of observations, because the interactions of the embryonic epithelial
tissue with other structures is very limited: there is no specific adhesion on neighbouring vitelline membrane,
and no matrix basally. This implies that the mechanical balance applies to the embryonic tissue as an isolated
system, or a nearly isolated system: as in tensegrity structures, the external forces are dominated by internal
ones. In addition, because of the small scale and high viscosity of the tissue, inertial forces are negligible,
thus Newton’s second law yields that, locally also, all forces are quasi-instantaneously balanced: together,
this implies that there is a quasi-instantaneous equilibration of mechanical tension all across the embryonic
tissue. Mechanical tension is thus an efficient messenger with properties that are very complementary to
diffusion of biochemical factors. One additional interesting fact in this respect is the crucial role of geometry
in the mechanical balance established, see figure 1e for an example at human scale. At the embryo scale
too, geometry can be used to obtain very different mechanical balances in the same material and with the
same driving force. Thus, some geometrical features having arisen from previous morphogenetic movements
can crucially affect how subsequent morphogenetic events can be driven by extrinsic forces. Such an effect
is visible for instance for the head involution of Drosophila, which necessitates a sucessful dorsal closure to
be complete [7].

Specifically, this paper addresses the question of the driving of germ-band (GB) extension by the activity
of myosin during Drosophila development. During a 90-minute process, the GB narrows in the dorso-ventral
(DV) direction, which is referred to as convergence, and simulatenously incurs eztension in the antero-
posterior (AP) direction, see figure 1a,b [3]. This extension however is not occurring in a symmetric way
towards the anterior and posterior ends of the embryo: it is very markedly oriented towards the posterior.

Two causes contribute to this extension: within GB, myosin is organised in a so-called planar-polarised
manner, along cell-cell junctions aligned with the DV direction [9, 10]. Ultimately this is shown to lead to
cell intercalation, from a mechanical point of view it thus has to exert a tensile stress in the DV direction.
Concurrently at a separate location, under the action of myosin which lacks planar polarisation, the posterior
endoderm invaginates as a funnel-shaped tube, the posterior midgut (PMG), see figure 1a,b. It has been
shown [11, 12, 13] that either of these phenomena in the absence of the other could cause GB extension,
although to a different extent and with different characteristics (exhibiting more or less cell intercalation
and shape change).

In this paper, we present numerical simulations of the mechanical process during GB extension. For
a given distribution of myosin at the apices of cells, we solve mechanical balance equations and obtain a
prediction of the velocity with which these apices will move. This differs in nature from previously published
approaches for tissue mechanics. Compared to vertex models [reviewed in 14], the tissue is treated as a
continuum made of the apical actomyosin of each cell mechanically connected to neighbouring cells via
adhesive contacts. This modelling approach, while it does not allow to distinguish cell deformation and
rearrangement contributions within the tissue strain [15], has the advantage of introducing fewer parameters
while retaining the main phenomenology of developing epithelia. Continuum approaches have been used by
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several modelling works for ventral furrow formation [reviewed in 16], and also for GB extension in one work
[17]. However, continuum approaches so far have not attempted to use the pattern of myosin activation as the
phenomenon originating in the driving force of the simulated deformations, but have rather been focusing
on integrating the observed cell-intrinsic phenomenology into tissue-scale deformations. Our approach in
this paper is to bypass the cell scale and cell-intrinsic phenomenology, and assess how much of tissue-scale
deformations can be predicted directly from the pattern of myosin activation only. The underlying question
is whether it is mechanically plausible that the patterns of myosin activation in different mutants can alone
give rise to the corresponding morphogenetic movements.

Our modelling is based on some mechanical assumptions on how the apical actomyosin in the developing
epithelium interacts with its environment, and on a rheological model of actomyosin itself [5]. The numerical
simulation of flows on a curved surface is based on a novel finite element technique, which is not limited
to potential flows as in previous literature [18], and for which we have proven convergence properties [19].
Our numerical results confirm that an anisotropic myosin contractility (mimicking its planar-polarised re-
cruitment) in the GB leads to an extension flow along the AP direction. We also focus on the effect of the
invaginating posterior midgut on GB extension, and on the long-distance influence of the embryo geometry
at the time of GB extension.

Additionally, numerical simulations allow us to test the role of geometry on the flows that result from
myosin action. We note that, when posterior midgut contraction is not happening, the distribution of myosin
is close to symmetrical along the AP direction. However, the flow observed is markedly towards the posterior
even in this case. The most prominent nonsymmetrical feature of the embryo at this stage is the presence of
the cephalic furrow (CF), a trough that loops around the embryo dorso-ventrally, whereas no such structure
perturbs the smoothness of the embryo surface at the other limits of the GB. Although mutants exist that do
not form a cephalic furrow [21], the consequences of this on GB extension has not been specifically studied.
Using numerical simulations, we show that the cephalic furrow can act as a barrier for deformations and
guide myosin-driven convergence and extension towards the posterior end.

Results

A continuum shell model of the apical acto-myosin and adherens junctions struc-
ture can produce convergence and extension flows

It is believed that the structure driving the morphogenetic movements in early embryos is the apical acto-
myosin. Indeed, it has been shown [20] that the movements of the whole embryo during gastrulation and
early GB extension could be predicted accurately by the sole knowledge of the displacements of the apical
acto-myosin through time, the other structures (cell cytoplasms, nuclei, membranes, and yolk, see figure 1¢,d)
being passively deformed as a viscous medium. This is consistent with the observation that all morphogenetic
movements are mediated by myosin. From a physics perspective, this means that the source of mechanical
energy in the system is the conversion of biochemical energy by myosin.

Apical acto-myosin, which is located within 1 pum of the cell’s apices, is connected from one cell to the
other by transmembrane adherens junctions. From a mechanical point of view, the embryo should thus be
seen as a thin shell of apical acto-myosin seamed together by adherens junctions, surrounding a viscous-like
medium. Apical acto-myosin organisation, figure 2¢, is either junctional (i.e., lining cell-cell junctions within
each cell) or medial (i.e., lining the apical membrane), and can have an anisotropic organisation within each
cell. In normal development, there is no disconnection within the embryo-wide structure constituted by acto-
myosin and adherens junctions: forces are transmitted across cell-cell junctions via the adherens junctions,
and the whole of this structure forms an embryo-wide shell. This shell is bound to the apical plasma
membranes, making this compound structure mostly impermeable, but, as stressed in the introduction, it
has little mechanical interaction with its environment. On the outer side of the apical shell is the perivitelline
membrane, but no specific adhesions bind them together, and the perivitelline liquid can play the role of
a lubricating fluid between the two. On the inner side, the passive behaviour of the cell cytoplasms and
basolateral membranes implies that they are felt only as a drag (viscous friction). This results in a friction
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Figure 1: (a) Geometry and tissue configuration of Drosophila embryo [6] immediately prior to GB extension.
Tissues situated at the outer surface are in solid colors, dashed lines correspond to structures internal to the
embryo. (b) Sketch of morphogenetic movements and tissue configuration during GB extension and PMG
invagination. (¢) Geometry and structures of mechanical relevance in a transverse cut. The coordinates origin
is in the center. Contiguous cells form a continuous surface at the periphery of the embryo, the external
limit is the cell’s apical side, the internal one (dashed line) their basal side. Only some cells are drawn. On
the ventral side, a ventral furrow forms before GB extension and seals at the ventral midline just as the
GB starts extending. Within the cells, actin structures form apically and are connected from one cell to the
other by adhesive molecules, forming an embryo-scale continuum at the periphery of the embryo. The GB is
highlighted in red, in this region myosin is activated in a planar-polarised manner. (d) Sketch of structures
of mechanical relevance in the epithelial cells. The witelline membrane is a rigid impermeable membrane.
The perivitelline fluid is incompressible and viscous. The actomyosin of Drosophila cells is located at their
apical surface, it is a thin layer (< 1 pm) connected to other cell’s actomyosin via adherens junctions. The
cytoplasm of cells behaves as an incompressible viscous fluid during the flow [20]. It is enclosed in the cell
membranes, which have a low permeability but present excess area compared to cell’s volume. Beyond the
basal surface of the cell monolayer, the yolk is an incompressible viscous fluid. (e) Example of the influence
of geometry on forces. The same Y-shaped system of ropes (blue lines) is arranged in different geometries
(angle o) and is otherwise identical. When subjected to a force F', mechanical balance requires that the forces
at the anchorages (blue circles) are such that Fp + Fr = —F. This leads to a behaviour of the magnitude
of forces at anchorages as 1/tana. (f) Current global morphology as an additional feedback on genotype
control on phenotype. In addition to the well known feedbacks of biochemical phenotype (protein expression)
and morphological phenotype (mechanotransduction) on gene expression (thin dashed arrows), we explore
here a direct mechanical feedback (bold dashed arrow) of currently achieved morphology (i.e., presence of
cephalic furrow) on the way genetically-controlled protein expression (i.e., myosin activity pattern) controls
future morphogenetic events (i.e., GB extension).
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force per unit area proportional to the product of the velocity v by a friction coefficient ¢;. In terms of
forces, the balance of the forces tangentially to the surface is thus:

Vr- o =c¢w. (1)

The stress tensor o is the tension in the apical shell of geometry I', and V- is the surface divergence operator
[22]. In order to obtain a closed model (i.e., a self-sufficient one), we need to supplement mechanical
balance with a material law which links the stress to the deformations of the apical shell, and, in the
present case, to the myosin activity also. We have recently derived and validated such a material law [5] by
quantitative comparison of predictions of forces exerted by actomyosin cortex of single cells with experimental
measurements. In a linear approximation, the apical actomyosin of embryos can be expected to have a similar
material law [23], which can be written in the general form:

N 2ne(v) — np(Vr - v)P = 04 (2)

. . . .V L L
where 7, is the relaxation time of acto-myosin, o the objective derivative of the stress tensor, n and 7, are
effective shear and compression viscosities of acto-myosin, and

€= % (Vrv + VrvT)

is the rate-of-strain tensor. The tensor o, describes the myosin contractility, and can be understood as a
prestress: because of myosin action, the meshwork of actin is continuously being offset from its stress-free
configuration. The pre-stress is proportional to the myosin concentration and rate of power strokes [5, 23],
and P is the projection tensor onto I', which is also the identity tensor on the surface. The relaxation
time was found to be around 15 minutes in this previous work, which means that for the 90-minute germ
band extension process we are interested in times longer than relaxation. We have also shown for similar

equations in another biophysical context and in one dimension [24] that the term 7, o did not introduce
marked qualitative features to the flow for time scales as short as the relaxation time itself. For the sake of

simplicity, we will thus neglect the term 7, o in what follows.

With this hypothesis, the mechanical balance equation 1 and the constitutive equation 2 can be combined
into a single equation:

Vr-oa=-2nVr-éw) —mVrVr- v+ v (3)

On the left-hand side of equation 3 is the myosin term, which provides the energy for the motion. On the
right-hand side are two terms corresponding to energy dissipation: forces of friction with the actomyosin’s
environment, and the viscous forces, corresponding to the cost of deforming the apical shell. These do not
distinguish between inter-cellular dissipation, i.e. the mechanical energy spent during cell rearrangements
in breaking cell-cell adhesive bonds and the one gained when establishing new ones; and intra-cellular
dissipation, such as the cost of deforming the actomyosin cortex. Rather, these are lumped together, and
taking a linear approximation, represented by effective viscosities 1 and 7y,.

The myosin contractility term o, is the source term that provides energy to the system and causes the
deformations. We have shown theoretically and verified experimentally [5, 23] that to a first approximation
it is proportional to the local myosin concentration. However, when myosin is preferentially recruited along
anisotropic actin structures, the tensor o, is also anisotropic [Supplementary materials in 5], and can be
decomposed into a spatially-dependent intensity o, and an orientation tensor A, o, = 0, A. In the case of
GB extension, it is observed experimentally [9, 10, 25] that myosin is activated in the GB, thus o, > 0 in
the GB, and is recruited along DV-oriented cell junctions, thus A = epy ® epvy, see figure 2.

Using the numerical technique described in appendix , we obtain numerical approximations of the solution
of this problem for a geometry I' closely mimicking the shape of Drosophila embryo, see appendix . Figure
3 shows an example of a simulation result. The green colour codes o,(x), the location where myosin is
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Figure 2: Myosin distribution during GB extension. (a) Fluorescently labeled myosin in the GB and midline
over a ventral region, reprinted from [25]. The myosin is significantly denser along DV-oriented cell junctions
(y direction) than along AP-oriented ones (z direction). This planar polarisation can be quantified [9, 26,
25]. (b) Sketch of the geometry of the entire embryo with the planar-polarised GB region (green) and the
isotropically contracting PMG region (red) [6]. The region shown in panel a is shown from below. Isotropic
contraction is assumed to be linked with an isotropic action of myosin, thus o, is an isotropic tensor in the
PMG, whereas planar polarisation results in an anisotropic prestress o, [5], whose orientation we take as
epv ®epy, where epy is a tangential unit vector orthogonal to the main axis of the embryo. (¢) Sketch of the
different pools of myosin present at the cell apices. Junctional myosin is associated with cell-cell junctions,
and may form supracellular cables. Medial myosin is apical myosin not associated with junctions. (d)
Tangential apical stresses in an arbitrary region of the GB. According to the constitutive relation, equation
2, the (opposite of) viscous stress —né and mechanical stress o need to balance the myosin prestress o, in
both AP and DV directions. Since myosin prestress is zero along AP, the mechanical stress is equal to the
viscous stress in this direction, opap = néap, thus AP tension results in extension. In the DV direction, we
have opy — népy = 0a, resulting in a combination of DV tension and contraction (convergence). The global
mechanical balance, equation 1, has to be solved in order to calculate o and &.
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Figure 3: Flow field generated by planar-polarised myosin contractility in the GB. Parameters are n, /n = 102,
ce/n = 1/R, where R is the radius of a transverse cut of T', see figure 1¢. The GB region is defined as the
ventral region posterior to cephalic furrow, and more ventral than a coronal plane zy,.x = —0.2R, see figure
1. (a) Global view. The cephalic furrow is represented by a trough, the ventral furrow is not represented as
we assume it to have sealed completely at the time corresponding to the simulations. Green, ventral region
of the GB where we assume myosin planar-polarised contractility. White arrows, velocity vectors (arbitrary
units, not all vectors calculated are represented). (b) Close-up of the region close to cephalic furrow and
ventral midline. Every velocity vector calculated is represented, in arbitrary units 10 times larger than in
panel (a).
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Figure 4: Flow field generated by planar-polarised myosin contractility in the GB. Parameters are the same
as in figure 3, but the region of planar-polarised myosin recruitment is larger: (a) zmax = 0, (0) zZmax = 0.2R
(compare to figure 3 where zyax = —0.2R). The same phenomenology is observed, with a strong posterior-
oriented GB extension. Close to the midline, the tissue is not extended and goes towards anterior (slightly
for zmax = 0, significantly for zyax = 0.2R).
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activated along dorsoventral direction A = epy ® epy, and the arrows are the predicted velocity of the
surface displacement of the apical continuum. This predicted flow is strongly dominated by two laterally-
located vortices, which have their center slightly dorsal from the edge of the GB region. They are rotating
such that the velocity in the GB is strongly towards the posterior, as is the case in Drosophila GB extension.
The tissues situated dorsally (amnioserosa) are predicted to be strongly deformed by the vortices, this is
indeed the case in Drosophila development, although two other morphogenetic events are not included in
this simulation, namely formation of dorsal folds and post-midgut invagination (see below). On the whole,
the flow obtained is very similar to what is observed during Drosophila GB extension.

Note that we impose mathematically that velocities are tangential with the embryo surface (see appendix
). Indeed, this is what is observed in experiments, we have thus made the simplifying choice of assuming
this rather than try to predict it. A model bypassing this hypothesis would need to be significantly more
complicated, as the force balance in the normal direction would need to be calculated in addition to the
one in the tangent plane. This force balance should include the pressure difference between the periviteline
liquid and the embryo interior beyond the apical membranes (yolk and cytoplasms) and the viscous drag from
these structures, and also the tension and bending forces in the cell apices. Although we do not model this,
the force needed to keep the flow tangential in our simulations is calculated, and is the Lagrange multiplier
associated with the tangentiality constraint.

The complementary role of planar-polarised myosin and post-midgut invagina-
tion

It has been shown [11, 12, 13] that GB extension is not solely due to the action of planar-polarised myosin
within the GB, but also to the pulling force that another morphogenetic movement causes, namely the
invagination of endoderm in the posterior region, also called post-midgut (PMG) invagination.

Our present numerical approach does not allow us to simulate deformations of the surface in the normal
direction, which would be necessary to simulate the PMG invagination process. However, it is possible to
mimick the effect of PMG invagination on neighbouring tissues by simulating an in-plane isotropic contraction
of the PMG tissue, figure 2b. Figure 5e shows that this does generate an extension of the GB area, although
the deformation on the dorsal side is greater in this case. Combined with planar-polarised myosin action in
the GB, figure 56—d shows that PMG invagination does modify the flow pattern substantially and provides
a complementary cause of GB extension, consistently with the experimental studies cited above. In fact,
because of the linearity of equation 1-2, the superposition principle applies and the flows shown in figure
5b—d can be written as the weighted sum of the flows with planar-polarised myosin only, figure 5a, and PMG
invagination only, figure 5e.

Influence of the geometry of genetic patterning

Although in toto imaging of Drosophila embryos is now possible using SPIM [27, 28, 13], a global cartography
of myosin activation during GB extension is still missing, and the precise location of myosin activation is not
available. We thus tested several configurations of the extent of the GB zone in which myosin is expressed,
figure 4. We find that the global flow is relatively robust with respect to the precise myosin patterning, and
GB extension is consistently obtained. However, some features vary, and in particular an anterior-wards
backflow develops along the ventral midline when the myosin activation zone extends more laterally. These
backflows are attenuated or may disappear when the PMG contraction is large enough. These backflows are
not observed experimentally, although mutants such as torsolike that present planar-polarised myosin but
not PMG invagination form ectopic folds in the germband, which could be due to a buckling phenomenon

[13].

Influence of the choice of the mechanical parameters

The material parameters of the cortical actomyosin in Drosophila are not known, and quantifying them
experimentally is very challenging [23], since this early step of development requires the presence of the
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Figure 5: PMG invagination can contribute to GB extension. Parameters are the same as in figure 3,
reprinted in (a), but (b—e) another region (red) is actively contracting in an isotropic way, mimicking the
effect of PMG invagination on neighbouring tissues. From (b) to (d), the isotropic PMG contraction intensity
is doubled each time. (¢), effect of isotropic PMG contraction in the absence of any myosin activity in the
GB itself.
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rigid vitelline membrane that surrounds the embryo and prevents direct mechanical measurements from the
exterior. Magnetic tweezers have been used [3], but the magnetic particles were not directly associated
with the actomyosin cortex and thus measured other mechanical properties than those required by our
model. Laser cuts can provide valuable information on the evolution of tension [29] or its anisotropy [13].
By comparison with a model of subcellular actomyosin, its material parameters can be obtained (medial
actomyosin relaxation time, shear viscosity and friction coefficient) [30]. However, these values are not
necessarily the ones needed for our system, as they correspond to a subcellular system while we focus on
the tissue scale. Indeed, although the model in [30] is formally identical to equation 1-2, their estimated
viscosity does not include tissue-scale viscous-like costs, and their friction coeflicient includes the friction
cost of movements of the actomyosin cortex relative to the cell membrane, whereas both apical membranes
and actomyosin cortices flow in GB extension. Therefore, rather than setting the parameters to measured
values in our simulations, we verify the robustness of our model predictions over a large range of parameter
values.

Four parameters appear in equation 3: the magnitude of myosin prestress o,, the friction coefficient cg,
and the two viscosities 7, and 7. Two of these parameters, o, and 7, set respectively the magnitude of
stresses and velocities, leaving two free parameters: 7y, /n, which is nondimensional; and ¢¢/7n, which is the
inverse of the hydrodynamic length A.

The ratio ny/n compares the bulk to the shear viscosity: if it is very large, then the flow will be nearly
incompressible in surface, meaning that any surface element (and in particular, any cell) will conserve the
same area through flow, and hence all deformations will be locally pure shear deformations. If the ratio
is small, then the viscous cost of locally changing the apical area will be similar to that of pure shear,
and, depending on the global force balance, area changes may dominate. Indeed, if n,/n is 2/3 (such that
the Poisson ratio is zero), then a unixial load (such as a perfectly planar-polarised myosin action could be
supposed to produce) will result in an area change only and no pure shear at all, or, in developmental biology
terms, in convergence only and no extension. This effect is illustrated in figure 6, where 7y, /n covers the
range 10 to 10%. In the latter case, the negative DV strain rate (convergence) exactly balances the positive
AP strain rate (extension), whereas in the former case, convergence strongly dominates. The strain rates in
all cases are not uniform across the ventral side depending on the AP position, with a marked decrease of the
pure shear in the central part of the GB, however other factors are seen to affect this spatial distribution in
the rest of the paper. Between ny, /1 = 10 and n,/n = 100, there is a switch from area-reduction dominated
flow (area reduction rate 4 times AP strain rate) to a shear-dominated flow (area reduction rate of the same
order as AP strain rate). Experimentally in Drosophila embryos, the deformations are not limited to pure
shear but include some area change [11], so by comparison with our numerical result, the correct order of
magnitude of n,/n can be expected to be of the order of 10 to 100. This is much larger than the ratio 3
that could be expected from a simple 3D-isotropic modelling of actomyosin [30], probably because of the
anisotropy of actomyosin meshwork, and possibly of active processes that may regulate the cortex thickness
and density.

The hydrodynamic length A = n/c; is the characteristic length beyond which shear stress transmitted
within the actomyosin will be screened by friction with the exterior: it thus determines the length over
which the effects of a force are felt. It is of interest to test the effect of a hydrodynamic length either much
larger, much smaller or comparable to the size of the embryo (R, the radius of a transverse section, figure
1). The results shown in figure 7 show how the action of myosin gives rise to a more local flow pattern
when the hydrodynamic length is small. This localisation is around the areas in which there is a gradient of
myosin activity, indeed in areas of uniform myosin activity, the resulting effect is a uniform tension (see a
similar effect in models of cells plated on a substrate, e.g. [24, Fig. 3b]). It can be seen on figure 7b,c that
indeed the strain variations are more abrupt when hydrodynamic length is small, whereas the long range
interations allowed by a very large hydrodynamic length give rise to an embryo-scale flow. On the whole,
flows which reproduce experimental observations better are obtained when A is of order 1 or more, that
is, the hydrodynamic length is comparable to or larger than the GB width in DV. This is consistent with
the order of magnitude of hydrodynamic lengths found by laser ablation in other systems [30], although in
laser ablation the likely contributions to friction differ for a part, since the recoiling actomyosin is likely

12


http://dx.doi.org/10.1101/075309
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint first posted online Sep. 16, 2016; doi: http://dx.doi.org/10.1101/075309. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY-NC 4.0 International license.

0 Y T tETaI RS TR RIR
F S it shibd 1.
e o g

3

strain rate €ap, €py
S
o
N}

o
Z

0.04 -

-0.06 -

0.08 L L L L L L

-1 -0.5 0 0.5 1 15 2 25
AP coordinate
(b) DV and AP strain rates
0.01 T T T T T T L 2

area rate of change €pp+€py

-0.06 - L L
-1 -0.5 0 0.5 1 15 2 25

AP coordinate

(¢) Area rate of change

0.06 T T T T T T

0.04 b

area rate of change €pp+€py
o

-0.06 1 L L L
3 2 1 0 1 2 3

DV distance to midline

(d) Area rate of change

Figure 6: See caption on next page

13


http://dx.doi.org/10.1101/075309
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint first posted online Sep. 16, 2016; doi: http://dx.doi.org/10.1101/075309. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY-NC 4.0 International license.

Figure 6: Influence of the bulk viscosity on the convergence and extension of GB. (a) Flows calculated for
(top) nn/n = 103, (center) n,/n = 102, (bottom) my,/n = 10. While the posterior-wards flow at the GB
posterior end is similar, the lateral flow is strongly affected with a much larger ventral-wards convergent
flow along DV when the bulk viscosity is reduced to 10 (whereas no qualitative change is seen between 10°
and 10%). The position of the vortex center is also much modified for low bulk viscosity. (b) Rates of strain
in the DV (J symbols) and AP (++ symbols) directions for the three choices of m,/n (purple, 103, green,
10%, cyan, 10), as a function of AP coordinate = close to the midline (y = 0.2R). In the GB, DV rate is
negative (convergence) and AP rate positive (extension). The DV rate of strain is increasingly negative for
low bulk viscosity, indicating a stronger convergent flow, while the AP rate increases much less, indicating
little change in the rate of GB extension. Posterior to the GB (AP coordinate 2 2), the DV and AP strain
rate values ramp and invert their sign, indicating that the direction of elongation swaps from AP to DV,
which corresponds to the splayed velocity vectors seen at the limit of the GB in panel a. Anterior to the GB
(AP coordinate x ~ —1), the same effect is observed due to the obstacle of the cephalic furrow. (c) Rate of
area change for the same choices of 7y, /7, confirming that area decreases much more for lower bulk viscosity
in the GB region. (d) Rate of area change for the same choices of 7, /1 as a function of the DV distance to
ventral midline, along a transverse cut midway along AP (z = 0). When n,/n is sufficiently small to allow
area variations, the GB region exhibits area reduction and dorsal region area increase.

to move relative to the cell apical membrane. At the tissue scale in GB extension, on the contrary, the
cost of membrane deformations will be lumped in the viscosity of the apical continuum, but friction with
perivitelline membrane may contribute.

The cephalic furrow acts as a guide for morphogenetic movements

In figure 3, it is seen that the flow follows the cephalic furrow in a parallel way. Thus we wondered whether
the presence of the cephalic furrow could be of importance for the flow pattern observed. To test this, we
performed the same simulation on two different meshes, one featuring the cephalic furrow and the other
without it. It is seen in figure 8e that in the absence of a cephalic furrow, the flow at the anterior boundary
of the GB does not deviated laterally but continues towards the anterior. The flow field is thus much more
symmetrical than in the case with a cephalic furrow, figure 8. From purely mechanical considerations,
it is expected that if both the geometry of the embryo and the myosin expression are symmetrical, then
the flow will be symmetrical too (see figure 8d for a verification of this). In real embryos, two sources of
asymmetry arise: the invagination in the midgut, although blocking it does not completely suppress the
posterior-wise extension of GB, and the offset of the planar-polarised myosin recruitment pattern towards
the posterior. Our results suggest that another asymmetry could originate from the geometry of the embryo,
with the cephalic furrow acting as a barrier resisting flow towards the anterior. Indeed, if one introduces
this geometric asymmetry in the otherwise perfectly symmetrical embryo, the flow is strongly asymmetric
towards the posterior end, figure 8a.

Discussion

A mechanical scenario for GB extension

Our simulation results confirm that either of the two mechanisms whose elimination was seen to correlate
with a reduction of GB extension [9, 10, 11, 12, 13] can be the direct mechanical cause of a flow towards the
posterior in the GB. The results in figure 5 indicate that although the GB extends whenever at least one
of the effects is present, the precise flow patterns should differ in these different cases. An important and
obvious next step is therefore to obtain experimentally the distribution and polarisation of myosin on the
entire embryo surface, for example using SPIM, for different mutants, which should allow us to estimate the
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Figure 7: Friction with vitelline membrane and/or cytosol and yolk modifies the flow pattern. (a) Global
flow pattern. Parameters are the same as in figure 3, but the hydrodynamic length varies between A = 10R
(top), A = R (reprinted from figure 3), A = R/10, and A = R/100 (bottom). In all cases the GB extends
posteriorly. In the cases of small hydrodynamic length, convergence and extension flow occur mostly in
regions where there is a gradient of contractility. Overall, friction renders the effect of actomyosin activity
more local to regions where they exhibit a variation, hence vortex structures are more localised next to these
regions with higher friction and have less influence in regions of uniform actomyosin activity (dorsally or
close to ventral midline e.g.) (b) Rates of strain in the AP direction for the four choices of A/R (purple, 10R,
green, 1, cyan, 1/10 and orange, 1/100), as a function of AP coordinate z close to the midline (y = 0.2R).
The overall magnitude of strain decreases with increased friction, as an increasing part of the energy provided
by myosin activity needs to overcome friction in addition to deforming the cell apices. The rate of strain is
uniformly positive (elongation) only when A is close to unity or smaller, else a region of shortening appears
in the central part of GB. (Note that since area change is close to zero, the DV strain value is very close and
opposite to the value of AP strain everywhere.) (¢) Rate of strain in the DV direction for the four choices
of A, as a function of AP coordinate = close to the midline (y = 0.2R). DV rate of strain always peaks close
to the boundary of the GB area where myosin is active, in relative terms the peak is more pronounced for
large frictions. Dorsally, there is always a positive DV rate of strain, indicating a DV elongation due to the
pull of the neighbouring converging GB. This is matched with an AP shortening of a similar magnitude.
Ventrally, the negative rate of strain (indicating convergence) is observed to decay when the hydrodynamic
length becomes small, in that case the DV narrowing is limited to a narrow band at the DV edge of the GB.
This localisation effect of small hydrodynamic length is also seen for the dorsal DV elongation, but to lesser
extent.

parameters and test the predictive power of the model. However, our theoretical work already sheds light
on the fundamental mechanisms at play and how they integrate in the complex 3D geometry of the embryo
to yield the morphogenetic events that are observed.

Based on our simulations and the timings reported in the literature, we can indeed articulate a mechanical
scenario for GB extension. The endoderm contraction that leads to PMG invagination, the first event
correlated with GB extension [13, Fig. 4B], starts 1 to 4 minutes before the onset of GB extension can be
detected. The corresponding simulation is shown in figure 5¢, PMG contraction generates a flow towards
the posterior that does extend the posterior half of the germband but decays rapidly in space. This is
consistent with what is observed e.g. in Kruppel mutants [13]. The presence of the cephalic furrow for
this extension does not have a strong influence there, see figure 8f. Thereafter, from shortly before the
onset and in the course of GB extension, myosin becomes increasingly planar-polarised [25]. The direct
consequence of this is a lateral flow from dorsal to ventral, causing convergence, that is, a negative rate of
strain of GB along the DV direction. Due to a rather large value of n;,, which corresponds to the in-plane
compressibility viscosity of actomyosin, this causes GB extension, see figure 6. Experimental evidence of such
an in-plane low compressibility exists [11, 12], although it is not clear whether this is a passive mechanical
property of the actomyosin cortex or an active one [26, 12]. In the absence of the cephalic furrow, figure
8e, this extension occurs evenly in the anterior and posterior directions, in presence of the cephalic furrow,
the viscous cost of flowing around the posterior end is much less than the cost of flowing into the furrow,
and planar polarisation driven GB extension is biased towards posterior, even if the contribution of PMG
invagination is not accounted for, figure 3.

Cellularisation of GB may not be necessary for convergence and extension of
planar-polarised tissue

The two prominent features in which cellularisation is involved in GB extension in WT Drosophila are the
planar-polarised recruitment of myosin, which preferentially enriches DV-oriented junctions, and the medio-
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Figure 8: Cephalic furrow (CF) can guide GB extension to be mostly posterior-wards. Lateral view of flow
fields generated by myosin contractility in the presence (a—c) or absence (d—f) of a cephalic furrow. (a,d)
With a hypothetical symmetric planar-polarised myosin activity, the presence of CF orients the flow towards
posterior whereas it is perfectly symmetric in its absence. (b,e) With a realistic asymmetric planar-polarised
myosin activity, the presence of CF still has a major role in orienting the flow towards posterior. Although
the asymmetric myosin patterning induces a asymmetric flow in the absence of the CF, the flow is not biased
towards posterior. (¢,f) The flow created by PMG invagination is much less sensitive to the presence of CF.
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lateral cell intercalations [31, 9, 10]. Because the DV-oriented junctions present both the characteristics of
being enriched in myosin and of undergoing shrinkage to lead to intercalation, these two effects have so far
been studied in association. However, some mutants such as eve that lack planar polarisation of myosin
can still exhibit some cell intercalation, although to a much lesser proportion than cell shape changes [11].
Here using our modelling approach we can envision the reverse case of studying convergence-extension due
to planar-polarised myosin activity but without explicit cell intercalation. We show that the anisotropy
of planar-polarised myosin activity is sufficient to explain convergence-extension, without the need for an
intercalation mechanism.

Indeed, from the above, we conclude that a mechanical model that does not involve individual cells
but only a continuum standing for the apical acto-myosin connected from cell to cell by apical junctions
can produce a flow with similarities to GB extension. Cellularisation is of course important for the planar
polarisation of myosin in the GB, and it is observed that acellular embryos do not exhibit myosin polarisation
[13]. Here, planar polarisation is introduced in the mechanical model by means of an anisotropic contractility
action of myosin o,. The fact that no further account of the cellularisation of the embryo is necessary in the
model suggests that at the tissue scale, one can address morphogenetic questions by considering ensemble
displacements. In this approach, the effect of cell intercalation, which is governed by planar-polarised
junctional myosin, is thus not directly taken into account, but rather encapsulated in a global tissue strain
rate and its associate viscosities  and 7y, which also include the cell deformation [15].

This tissue strain rate € and the corresponding tissue-scale tension o are related by the constitutive
relation, 2, which includes the contractility term o, resulting from planar-polarised myosin activity, and is
thus the only term bearing a trace of the embryo’s cellularised organisation. The respective values taken
by € and o locally depend on the mechanical balance, i.e. both the local myosin activity and the tension
transmitted by neighbouring tissue, see figure 2d. In the context of convergence-extension caused partly
by invagination of the PMG, [13], it has been proposed that cell intercalation could relax the stress by
allowing cell shape changes in a GB extended by an extrinsic force. Here we propose that the intrinsic
planar-polarised contraction might still extend the GB in the absence of intercalation, and that intercalation
could in that case too have for primary role the relaxation of the stress generated by the convergence and
extension process.

Geometry-governed mechanical balance as a messenger in early morphogenesis

Planar-polarised myosin in the GB is known to generate a global flow at the surface of the embryo. Our
simulations show that the global flow which is generated by such mechanical activity is dependent on the
pre-existing geometry of the embryo, such as the presence or absence of the cephalic furrow. Thus, a prior
morphogenetic movement such as cephalic furrow formation can affect further movements via mechanical
interactions only, see figure 1f.

This “messaging” proceeds via the establishment of a different mechanical balance depending on the
geometry of the embryo, rather than the diffusion of a morphogen, e.g. [32]. In the early embryo, the
distance over which these forces are transmitted is likely to be much larger than in later organisms, as there
is no extra-cellular matrix structure that will relieve actomyosin from part of the stress. Indeed, we find that
the hydrodynamic length is likely to be at least the width of the GB, consistent with laser ablation results
[30], which implies direct mechanical interaction at this scale.

This mechanical messaging behaves differently from biochemical messaging. Its speed of propagation is
the speed of sound in the force-bearing structure, here, the actomyosin. It does not propagate in an isotropic
way but in a more complex directional one, and contains directional information. Regions of interest within
the embryo should thus not be treated as isolated systems, since a distant geometric property of the embryo
can have a direct impact on the mechanical stress felt locally when intrinsic forces are being generated.

This prompts further development of computational tools such as the one we present. Tangential flows on
curved surfaces are also observed in other epithelia (such as follicular epithelium of Drosophila ovaries), but
is also relevant to cortical flows in single cells, prior to mitotic cleavage for example. Mechanical approaches
of flat epithelia have shed light on many aspects of tissue growth and dynamics [33, 34, 35, 25], in particular
at the scale of a few cells, which is the relevant one for cell rearrangements. At the other end of the spectrum
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of tissue dynamics, 3D phenomenological models of shape changes during ventral furrow formation have been
proposed [16]. Here we propose a first step in bridging the gap between these approaches, with the objective
to be able to address complex morphogenetic events in their actual geometry, and thus to fully account for the
influence of current morphology on the mechanical balance that leads to further morphogenetic movements.

Methods

Lagrange multiplier approach for tangential flows

Equation equation 3 must be resolved for velocities v tangential to the surface I', which corresponds to the
continuum formed by the apical actomyosin cortices of cells and adherens junctions. This constraint can

be written as v € V; = {w € (H! (F))‘3 |w-n= 0}, where (H* (F))‘3 is the set of vector-valued functions

defined on I' whose differential is square-integrable, and m is the outer normal to I'. Using an energetic
formulation, it can then be shown that equation 3 is equivalent to the constrained minimisation:

v = arg 1;161& E(w) (4)

where F is the rate of energy dissipation in the tissue, namely:

B(w) = /F%|w|2 ds—|—/r77|é(w)|2 ds+/Fg|Vp-w|2 ds —/Ff-wds

and f = Vr -0, Our approach is to introduce a vector field 8 that will act as a Lagrange multiplier to
constrain the velocities v to be tangential. This field 8 can be interpreted as the force needed to prevent
normal deformations. In order to do this, we first define 8 by @ = vL (v) where L (v) = (v-n)y — Vrv - n,
y is the curvature vector, and +y is a strictly positive parameter. Then we note that V; = ker L. The problem
can now be rewritten as an unconstrained saddle-point problem :

(v,0) = arg inf sup F(w) —|—/F (L (w) — ,lyﬁ) - &ds

weV ¢gcm

where V = (H' (F))3 and E = (L? (F))g, the set of square-integrable vector fields. We further introduce
the surface pressure p which enforces the finite compressibility of the actomyosin in the tangential plane,
p = —AVr -v. We can then write the problem as :

(v,p,0) = arg inf sup L(w,q,§)
wEquQ

£eE

where Q = L? (T),
1 1 1
L (’U}, q, 5) = 5(1(’11}, w) =+ bl(wa Q) - Ecl(qv Q) + b2(w7 5) - 562(57 6) - é(w)
and a, by, by, c; and co are the bilinear forms defined by :

a(w,w) = /cfw~wds+/2né(w) : € (w) ds,
r r
1
bi(w,q) = /—qu-wds, alp.q) = /qud&
r r

hw§) = [Llw) ds, w@.6 = [0 ¢as
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and £ is the linear form define by : ¢(w) = / f - wds. The saddle point can then be characterized as the
r
solution of the linear problem :

a(v,w) + bi(w,p) + ba(w,0) ((w) Vwe (H ()
bi(v,q) — clp,q) = 0 VgeQ
(v,6) - (0,8 = 0 VE€EE.

=

1
2
Mixed finite element approach

We solve the saddle point problem using the finite element method. This requires us to introduce a mesh
Iy, approximating I'. We use a triangular tessellation of second order, i.e. elements are curved triangles
described by a quadratic transformation and whose largest dimension is smaller than the mesh size h. This
ensures that the distance between any point of I'j, and I is at most Ch?, where C is a constant independent
of h. Using this mesh, we define discrete functional spaces V},, &, for vector fields vy, 8, and @, of scalar
field p;,. We approach the saddle point problem using the following formulation :

ap(vp, wp) + bip(wn,pn) + bon(wr,O0r) = Ch(wy) Yw, €V
bin(Vn,qn) —  c1,n(Phsqn) = 0 Van € Qn
ba.n(vn, &) — cn(On. &) = 0 VE, EE

where ap, by p, b2, c1,5 and cg j, are bilinear forms approximating the original forms, defined by :
ah(vh,wh) = / cevy, - wy, dsy, —‘r/ 277éh (Uh) D€ (wh) dsp,
Ty Tn

b1 n(wh,qn) = /

1
—qnVr, - wrdsy,  c1n(Ph,qn) :/ ~Dnqn dsp,
Fh 1_‘h

A
1
bo.n(wn, &) =/ Ly (wp) - &, dsn,  c2,0(0n,€p) Z/ ;Oh'ghdsh
T'n

'y

and ¢}, is the linear form defined by ¢;,(v),) = / fn-vndsp. The choice of the finite element spaces cannot be
Tn

made arbitrarily because it is a mixed problem. It requires a suitable choice in order for the discrete problem
converges towards the saddle point problem. Indeed, the discrete problem must verify two conditions called
inf-sup or Brezzi-Babuska conditions (see [30]) : first between the spaces V;, and @), through the bilinear
form by 5, then between the spaces V}, and E;, through the bilinear form b 5,. In the absence of theoretical
results on spaces that may verify these conditions, the idea is to produce compatible mixed finite element
combinations in order to obtain the convergence. For this, we guided our choice by similarity with choices for
which inf-sup conditions are verified in the case of classical problems (such as the three-dimensional Stokes
problem).

Numerical validation

Next, finite element spaces V},, @, and Ej; must be specified. We base them on a triangular tesselation of

the surface T’ (see next section) and choose Lagrange finite elemnts of degree 3 for Vj,, 2 for @, and Ej,.
We then check that this choice leads to a convergent approximation of the solution of equation 3. In order
to do so, we make an arbitrary choice of a velocity field on an arbitrary surface (a sphere), and calculate
analytically the prestress that would be needed to achieve such a velocity field. We then run simulations on
a series of meshes of decreasing triangle size h and monitor the evolution of the error v — vj,. We show [19]
that this decreases quadratically when h decreases, leading to pointwise errors (i.e., in L® norm) smaller
than 1073 for all meshes of more than 10000 elements (h = 0.05). For these numerical tests, we chose :
cg=10"% n=1, A =10% and v = 10".
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Figure 9: Convergence test. The mesh is refined (from right to left) and the error on an arbitrary flow field
is seen to decrease. L2 error is the overall squared difference of calculated minus original velocity vectors,
pointwise (L) error is the length of the largest difference between calculated and original velocity vectors
over the whole mesh.
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Finite element mesh of the Drosophila embryo and resolution

We first describe the embryo shape with an analytical function, and then introduce a procedure to create
a finite element mesh which will be fine enough to capture geometric details such as the cephalic furrow,
while remaining of reasonable size in terms of the number of triangles (since the computational cost of our
algorithms increases like N log(/N) with number of triangles N).

The analytical function describing the embryo shape I' = {¢(x,y, z) = 0} is chosen as:

o =1 \/( x >2+< Y >2+ (z—%CAPJQ)Q_i_D y (:C—S’sz—xcp>
x,Y,z)=1— 5 - 5
Y Rap Rpy Rpv crrer Wer

where Rap is the half-length of the embryo in AP, Rpy its maximum radius in a transverse cut, cap a
curvature parameter corresponding to the curvature of the main axis of the embryo (defined as the locus
of the center of all transverse cuts), and parameters indexed with C'F' correspond to the cephalic furrow.
When Do = 0, the cephalic furrow is absent, and the geometry corresponds to an ellipsoid of major axis
along x, with radius Rap, and minor axes along y and z of equal radii Rpy. The curvature parameter
flattens the dorsal side (z > 0). We take Rpy = 1 as the reference adimensional length, R4ap = 3Rpy and
cap = 0.1/Rpy, which leads to a shape close to the one of actual embryos.

The cephalic furrow depth is described by Der = 0.1Rpy, its position along the x axis in the mid-coronal
plane z = 0 is given by zcp = —1.2Rpy, and its inclination with respect to the (y, z) transverse planes is
set by Scr = 0.3. The cephalic furrow has a total width Werp = 0.1Rpy (exaggerated compared to real
embryos, since a very thin and sharp feature would increase tremendously the computational cost), its shape
is described by the function

exp (—ﬁ —|—2> if |s] <1
0 else

Yer(s) = {

which is infinitely derivable, leading to a very smooth profile.

The mesh generation is delegated to gmsh software, and the meshes used have around 46000 elements.
The numerical resolution of the problem on this mesh is implemented in the open-source free software
environment rheolef [37].
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