
A NONLOCAL SAMPLE DEPENDENCE SDE-PDE SYSTEM MODELING

PROTON DYNAMICS IN A TUMOR

Abstract. A nonlocal stochastic model for intra- and extracellular proton dynamics in a
tumor is proposed. The intracellular dynamics is governed by an SDE coupled to a reaction-
diffusion equation for the extracellular proton concentration on the macroscale. In a more
general context the existence and uniqueness of solutions for local and nonlocal SDE-PDE
systems are established allowing, in particular, to analyze the proton dynamics model both,
in its local version and the case with nonlocal path dependence. Numerical simulations are
performed to illustrate the behavior of solutions, providing some insights into the effects of
randomness on tumor acidity.
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1. Introduction

This work is motivated by modeling the interactions between extracellular and intracellular
proton dynamics in the context of tumor growth. Hypoxia is a characteristic of invasive tu-
mors, resulting from an imbalance between oxygen supply and its consumption at the cellular
level. The increased glycolysis metabolism in cancer cells leads to acidification of the peri-
tumoral region, hence conferring an advantage against normal cells, which -unlike neoplastic
tissue- are known to have a reduced capability of surviving at low pH values, see e.g. [17, 21].
The reversed pH gradient between tumors and normal tissue promotes tumor invasion and
proliferation [24]. Starting with the model by Gatenby and Gawlinski [11] involving reaction-
diffusion equations for the dynamics of extracellular protons in interaction with tumor and
normal cell densities, several classes of models extending that setting have been proposed and
analyzed, see e.g., [16, 21] or [6, 7, 23, 18] for more recent, multiscale approaches coupling
the dynamics of intra- and extracellular protons with the evolution of tumor cells and normal
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tissue. Focusing on the proton dynamics, Webb et al. [27] proposed some models for the
interdependence between the activity of several membrane-based ion transport systems and
the changes in the peritumoral space. The models involve even more biological details, like in-
tracellular proton buffering, effects on the expression/activation of matrix metalloproteinases
(MMPs) and proton removal by vasculature. While all these approaches are deterministic,
stochasticity needs to be included, as it is a relevant feature inherent to many biological pro-
cesses occurring on all modeling levels. In particular, it seems to greatly influence subcellular
dynamics and individual cell behavior, see e.g. [25].

Experimental findings suggest stochasticity in pH dynamics: Although all cells follow the
same biochemical mechanisms, there are variations and uncertainties (essentially due to a
random environment) in the behavior of every single cell. Furthermore, the distribution of
intracellular pH (pHi) at any value of extracellular pH (pHe) was found to be broader than
what was predicted by theoretical models based on machine noise and stochastic variation
in the activity of membrane-based mechanisms regulating pHi [14]. Moreover, excess current
fluctuations have been observed in the gating of the ion channels [8]. Recent models by
Hiremath and Surulescu [6, 7] take into account stochastic fluctuations in the intracellular
proton dynamics; the latter is described with the aid of a random ODE featuring a stochastic
term and coupled to a reaction-diffusion PDE for extracellular proton concentration and
two further PDEs for the evolution of normal and cancer cell densities. In this work we
concentrate on the interplay between intra- and extracellular protons, the concentration of
the former satisfying a stochastic differential equation (SDE), hence (due to the coupling)
opening the possibility of carrying the stochasticity from the microscopic, subcellular level to
the macroscopic level of protons diffusing in the tumor microenvironment. The PDE for the
latter dynamics is hence a random PDE (shortly RPDE). We also introduce a model with
nonlocal sample dependence, in which the PDE for the extracellular proton concentration
features only the averaged random fluctuations from the subcellular level. This new setting
has the advantage of the PDE being genuinely deterministic.

Scalar SDEs with nonlocal sample dependence relating to, but extending mean-field SDEs
like those in [26, 10] have been proposed and analyzed in [12]. Our nonlocal (here also called
mean-field) model is analyzed w.r.t. well-posedness of solutions and preserving invariance.
Actually, the analytical results are established in a more general setting for coupled systems
of SDEs and random reaction-diffusion PDEs. The paper is organized as follows: In Section 2
we state the concrete nonlocal proton dynamics model and the setting for general SDE-RPDE
systems. In Section 3 we proceed with the formulation and analysis of its local versions. Using
the results for local SDE-RPDE systems we prove the existence and uniqueness of solutions
for nonlocal systems in Section 4, which implies the well-posedness of the model stated in
Section 2. Finally, the numerical simulations in Section 5 illustrate the proton dynamics for
the model in Section 2.

2. Model set-up

We consider the following system modeling proton dynamics:

dXt =
(
d∆Xt + r(Xt,E(Yt))− αXt

)
dt

∂νXt|∂D = 0, X0 = ζ,

dYt = (−r(Xt, Yt)− βYt + ϕ(t, Yt))dt+ γYt(1− Yt)dWt

Y0 = η,
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where D ⊂ Rn, n = 1, 2, 3, is a bounded domain with smooth boundary ∂D and Wt is a
standard scalar Wiener process.

The model variables are: X, the extracellular proton concentration, and Y , the intracellular
proton concentration. Both are normalized w.r.t. the maximum concentration, i.e., X and
Y take values within the unit interval (0, 1). Thus, Xt is a deterministic quantity satisfying
a reaction-diffusion equation, while Yt is a stochastic process evolving according to an Itô
SDE. The evolution of Xt is influenced by diffusion, the source term r(Xt,E(Yt)) modeling
the proton extrusion through the cell membrane into the extracellular environment, and a
decay term with a rate α characterizing the loss of extracellular protons by processes other
than membrane based transport into the tumor cells (e.g., uptake by vasculature, normal
cells, buffering etc.). The dependence of r on E(Yt) instead of Yt highlights that the effects of
H+ coming from the intracellular regions of a set of tumors are averaged when considering
the proton concentration in the extracellular space. In the intracellular space, however, Yt is
seen as a genuine stochastic process influencing as such the proton extrusion. The function ϕ
models production of Y by glycolysis (which in cancer cells is much amplified when compared
to normal cells and hence non-negligible). The decay term βYt describes the loss of protons
by intracellular buffering (e.g., by organelles), and the diffusion coefficient g(Y ) = γY (1−Y )
quantifies the (stochastic) variability in the production/decay of intracellular H+. It accounts
for the Yt values ranging between 0 (complete alkalinization) and 1 (maximum acidification),
both bounds being lethal for the cell and hence leading to no variability. Also, a maximum
threshold is achieved in the middle of this interval, suggesting that larger spreads of the Yt
distribution are not allowed.

For a concrete choice of the membrane-based transport terms we use the setting in [23],
which in turn was motivated by the choices in [6, 27] using the quantitative information in
[1], where rates of H+ flux due to NDCBE, NHE, and AE transporters were measured. 1

Hence, the above function r will take the form

r(x, y) = a1
y

1 + y2 + a2x2
− a3

x

1 + a4y2
,

where ai, i = 1, . . . , 4, are positive constants.
Thus, for the interaction functions we have

f1(Xt,E(Yt)) := r(Xt,E(Yt))− αXt

= a1
E(Yt)

1 + E(Yt)2 + a2X2
t

− a3
Xt

1 + a4E(Yt)2
− αXt

f2(t,Xt, Yt) := −r(Xt, Yt)− βYt + ϕ(t)

= −a1
Yt

1 + Y 2
t + a2X2

t

+ a3
Xt

1 + a4Y 2
t

− βYt + ϕ(t, Yt).

The space dependent function ζ is positive and bounded by one, and the random variable η
can only have realizations within the unit interval, as well.

In the following section we establish the well-posedness for a more general class of mod-
els including the above mathematical description of proton dynamics as a particular case.

1NDCBE (Na+ dependent Cl−-HCO−3 exchanger), NHE (Na+ and H+ exchanger) and AE (Cl−-HCO−3 or
anion exchanger) are specific ion transporters on the cell membrane.
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Namely, we consider coupled, nonlocal SDE-PDE systems of the form

dXt = {∆Xt + f1(t,Xt, Yt,E(Xt),E(Yt))} dt,
∂νXt|∂D = 0, X0 = ζ,

dYt = f2(t,Xt, Yt,E(Xt),E(Yt))dt+ g(t,Xt, Yt,E(Xt),E(Yt))dWt,

Y0 = η,

(1)

with notations corresponding to the previous ones.
We will first analyze local SDE-RPDE systems in 3 and then apply these results to show

the well-posedness of system (1).

3. Well-posedness of a local SDE–PDE system

Existence and uniqueness of the solution. Let (Ω,F ,P) be a complete probability space
with a normal filtration (Ft)t≥0, let (Wt)t≥0 be a standard scalar Wiener process and dWt

denote the corresponding Itô differential. In this section we prove the well-posedness of
stochastic systems of the form

dXt = (∆Xt + f1(t,Xt, Yt)) dt

∂νXt|∂D = 0, X0 = ζ,

dYt = f2(t,Xt, Yt)dt+ g(t,Xt, Yt)dWt,

Y0 = η,

(2)

where D ⊂ Rn, n = 1, 2, 3, is a bounded domain with smooth boundary ∂D. Moreover,
∆ = ∆x denotes the Laplace operator with respect to the spatial variable x ∈ D, and ∂ν
the outward normal derivative on the boundary. The initial data ζ, η are F0-adapted random
variables in L2(D) such that E‖ζ‖2L2(D) <∞ and E‖η‖2L2(D) <∞.

We denote by A the operator −∆ in D with homogeneous Neumann boundary conditions
and by e−At, t ≥ 0, the analytic semigroup in L2(D) generated by A.

Definition 1. We call (X,Y ) : D × [0, T ]× Ω→ R2 a mild solution of system (2) if X and
Y are Ft-adapted mean-square continuous L2(D)-valued processes in [0, T ] that satisfy the
integral equations

Xt = e−Atζ +

∫ t

0
e−A(t−s)f1(s,Xs, Ys)ds

Yt = e−tη +

∫ t

0
e−(t−s) (f2(s,Xs, Ys) + Ys) ds+

∫ t

0
e−(t−s)g(s,Xs, Ys)dWs.

We remark that the stochastic integral equation in Definition 1 is equivalent to the identity

Yt = η +

∫ t

0
f2(s,Xs, Ys)ds+

∫ t

0
g(s,Xs, Ys)dWs.

Assumptions

(A1) The functions f = (f1, f2) : [0, T ]× R2 → R2 and g : [0, T ]× R2 → R are continuous,
and there exists a constant c ≥ 0 such that

|f(t, x)|+ |g(t, x)| ≤ c(1 + |x|)
|f(t, x)− f(t, x̃)|+ |g(t, x)− g(t, x̃)| ≤ c(|x− x̃|),

for all t ∈ [0, T ], x = (x1, x2) ∈ R2, where | · | denotes the Euclidean norm in Rn.
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Here and in the sequel, we use the following notations

(H, ‖ · ‖) = (L2(D), ‖ · ‖L2(D)), H = H ×H,
〈·, ·〉 = 〈·, ·〉L2(D), 〈·, ·〉H = 〈·, ·〉+ 〈·, ·〉, ‖ · ‖H = ‖ · ‖+ ‖ · ‖.

Theorem 2. We assume (A1) is satisfied. Then, for every T > 0, p ≥ 1 and F0-adapted
initial data (ζ, η) ∈ L2p(Ω;H) there exists a unique mild solution of problem (2) such that
(X,Y ) ∈ C([0, T ];L2p(Ω;H)). Moreover, if p > 1 the solution has continuous sample paths,
i.e., (X,Y ) ∈ L2p(Ω;C([0, T ];H)),

P
(
∪t∈[0,T ]

{
ω ∈ Ω

∣∣ lim sup
s→t

(‖Xs(ω)−Xt(ω)‖+ ‖Ys(ω)− Yt(ω)‖) > 0
})

= 0

and the following estimate holds

E sup
t∈[0,T ]

(‖Xt‖2p + ‖Yt‖2p) ≤ c
(
1 + ‖ζ‖2p + ‖η‖2p

)
, (3)

for some constant c ≥ 0 depending on T.

Proof. We do the proof for p > 1; the case p = 1 follows similarly. For a constant λ > 0
that will be chosen below and p > 1 we denote by Ξp,λ the space of Ft-adapted, continuous
processes in H such that

E
(

sup
t∈[0,T ]

{e−2pλt‖Xt‖2p}
)
<∞.

Then, Ξp,λ is a Banach space equipped with the norm

‖X‖p,λ :=

(
E
(

sup
t∈[0,T ]

{e−2pλt‖Xt‖2p}
)) 1

2p

.

We define X := Ξp,λ×Ξp,λ with norm ‖(X,Y )‖X :=
(
‖X‖2pp,λ + ‖Y ‖2pp,λ

) 1
2p

and show that the

mapping Φ : X → X ,

Φ(X,Y )t =

(
Φ1(X,Y )t
Φ2(X,Y )t

)
:=

(
e−Atζ +

∫ t
0 e
−A(t−s)f1(s,Xs, Ys)ds

η +
∫ t

0 f2(s,Xs, Ys)ds+
∫ t

0 g(s,Xs, Ys)dWs

)
,

is well-defined, Lipschitz-continuous, and has a unique fixed point in X .
From now on, the letter C will always denote a non-negative constant, independent of T ,

that may vary in each occurrence and from line to line.

Step 1: Φ is a well-defined, bounded operator and satisfies the estimate

‖Φ(X,Y )‖X ≤ cT (1 + ‖(ζ, η)‖X + ‖(X,Y )‖X ) (X,Y ) ∈ X , (4)

for some constant cT > 0 depending on T .
Here and in the sequel, we use the notation Zt = (Xt, Yt). By assumption (A1) we obtain

e−2pλt‖
∫ t

0
e−A(t−s)f1(s, Zs)ds‖2p ≤ e−2pλt

(∫ t

0
‖e−A(t−s)‖L(H)‖f1(s, Zs)‖ds

)2p

≤ C
(∫ t

0
e−λt‖f1(s, Zs)‖ds

)2p

≤ C
(∫ t

0
(1 + ‖Zs‖H)e−λse−λ(t−s)ds

)2p

,
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where we used the estimate ‖e−A(t−s)‖L(H) ≤ Ce−C(t−s) and L(H) denotes as usual the space
of linear and continuous functions on H. Now taking the supremum and expectation value
in the above inequality it follows that

∥∥∥∫ ·
0
e−A( · −s)f1(s, Zs)ds

∥∥∥2p

p,λ

≤ C E sup
t∈[0,T ]

(∫ t

0
(1 + ‖Zs‖H)e−λse−λ(t−s)ds

)2p

≤ C E sup
t∈[0,T ]

(
sup
s∈[0,t]

{
(1 + ‖Zs‖H)e−λs

}∫ t

0
e−λ(t−s)ds

)2p

≤ C E sup
t∈[0,T ]

({
1 + e−λt(‖Zt‖H)

} 1

λ

(
1− e−λt

))2p
≤ C

λ2p

(
1 + ‖Z‖2pX

)
.

Similarly, we derive the estimate

∥∥∥∫ ·
0
f2(s, Zs)ds

∥∥∥2p

p,λ
≤ C

λ2p

(
1 + ‖Z‖2pX

)
.

Theorem I.7.2, p.40, in [15] and hypothesis (A1) further imply that

‖
∫ ·

0
g(s, Zs)dWs‖2pp,λ = E sup

t∈[0,T ]

∥∥∥∫ t

0
e−λtg(s, Zs)dWs

∥∥∥2p

≤ CT p−1E
∫ T

0
e−2pλT (1 + ‖Zs‖H)2pds ≤ CT p−1(1 + ‖Z‖2pX )

∫ T

0
e−2pλ(T−s)ds

≤ C

2pλ
T p−1(1 + ‖Z‖2pX ).

Summing up we obtain

‖Φ1(X,Y )‖2pp,λ + ‖Φ2(X,Y )‖2pp,λ

≤ C max
{ 1

λ2p
,
T p−1

2pλ

}(
1 + E‖ζ‖2p + E‖η‖2p + ‖X‖2pp,λ + ‖Y ‖2pp,λ

)
,

for some constant C ≥ 0, which implies estimate (4).
It remains to prove continuity of the image function t 7→ Φ(Z)t. Let 0 ≤ s < t ≤ T. For

the second equation we obtain

Φ2(Z)t − Φ2(Z)s =

∫ t

s
f2(τ, Zτ )dτ +

∫ t

s
g(τ, Zτ )dWτ ,
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and consequently, by a version of the Burkholder-Gundy-Davis inequality (see Theorem 7.1,
p.39, in [15]) it follows that

E‖Φ2(Z)t − Φ2(Z)s‖2p

≤ C

{
E
(∫ t

s
‖f2(τ, Zτ )‖dτ

)2p

+ E
∥∥∥∥∫ t

s
g(τ, Zτ )dWτ

∥∥∥∥2p
}

≤ C

(
E
(∫ t

s
‖f2(τ, Zτ )‖dτ

)2p

+ |t− s|p−1E
∫ t

s
‖g(τ, Zτ )‖2pdτ

)

≤ C

(
E
(∫ t

s
1 + ‖Zτ‖Hdτ

)2p

+ |t− s|p−1E
∫ t

s
(1 + ‖Zτ‖2pH )dτ

)

≤ C
(
|t− s|2p + |t− s|p

)(
1 + E sup

τ∈[0,T ]
‖Zτ‖2pH

)

≤ C|t− s|p(T p + 1)

(
1 + E sup

τ∈[0,T ]
‖Zτ‖2pH

)
.

Moreover, since

E
{

sup
τ∈[0,T ]

‖Zτ‖2pH
}
≤ e2pλT ‖Z‖2pX

Kolmogorov’s continuity criterion (Theorem 2.1 and the subsequent remark , p.6, in [2])
implies the continuity of t 7→ Φ2(X,Y )t. For the first component we obtain

‖Φ1(Z)t − Φ1(Z)s‖

≤ ‖(e−At − e−As)ζ‖+ ‖
∫ t

0
e−A(t−τ)f1(τ, Zτ )dτ −

∫ s

0
e−A(s−τ)f1(τ, Zτ )dτ‖

≤ ‖e−As(e−A(t−s) − Id)ζ‖+ ‖
∫ t

s
e−A(t−τ)f1(τ, Zτ )dτ‖

+ ‖
∫ s

0
(e−A(t−τ) − e−A(s−τ))f1(τ, Zτ )dτ‖

= I1 + I2 + I3.

Semigroup estimates imply

I1 ≤ C‖(e−A(t−s) − Id)ζ‖ ≤ C|t− s|‖ζ‖,

and using (A1) for the second term it follows that

I2 ≤
∫ t

s
‖e−A(t−τ)f1(τ, Zτ )‖dτ ≤ C

∫ t

s
‖f1(τ, Zτ )‖dτ ≤ C

∫ t

s
(1 + ‖Zτ‖H)dτ.
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The last integral can be estimated by

I3 ≤
∫ s

0
‖(e−A(t−s) − Id)e−A(s−τ)f1(τ, Zτ )‖dτ

≤ C
∫ s

0
|t− s|‖e−A(s−τ)f1(τ, Zτ )‖dτ

≤ C|t− s|
∫ s

0
‖f1(τ, Zτ )‖dτ ≤ C|t− s|

∫ s

0
(1 + ‖Zτ‖H)dτ.

Taking the 2p-th power and expectation value and summing up we obtain

E‖Φ1(Z)t − Φ1(Z)s‖2p ≤ C E(‖I1‖2p + ‖I2‖2p + ‖I3‖2p)

≤ C|t− s|2p
{
‖ζ‖2p + (1 + T 2p)

(
1 + E sup

τ∈[0,T ]
‖Zτ‖2pH

)}
.

As before, the continuity of t 7→ Φ1(X,Y )t now follows from Kolmogorov’s continuity crite-
rion.

Step 2: For λ sufficiently large Φ is a contraction in X .

We assume Z = (X,Y ) and Z̃ = (X̃, Ỹ ) are processes in X . Then, Φ(X,Y ) − Φ(X̃, Ỹ )
satisfies the system

Φ1(Z)t − Φ1(Z̃)t =

∫ t

0
e−A(t−s)

(
f1(s, Zs)− f1(s, Z̃s)

)
ds,

Φ2(Z)t − Φ2(Z̃)t =

∫ t

0

(
f2(s, Zs)− f2(s, Z̃s)

)
ds+

∫ t

0

(
g(s, Zs)− g(s, Z̃s)

)
dWs.

Assumption (A1) implies for the first equation

e−2pλt‖Φ1(Z)t − Φ1(Z̃)t‖2p ≤ C
(∫ t

0
e−λt‖f1(s, Zs)− f1(s, Z̃s)‖ds

)2p

≤ C
(∫ t

0
‖Zs − Z̃s‖He−λse−λ(t−s)ds

)2p

,

and taking the supremum and expectation value we obtain

‖Φ1(Z)− Φ1(Z̃)‖2pp,λ ≤ C
(
‖Z − Z̃‖2pX

)(∫ T

0
e−λ(t−s)ds

)2p

≤ CT
λ2p
‖Z − Z̃‖2pX ,

for some constant CT ≥ 0. Similarly, we derive a bound for the first integral in the second
equation

∥∥∥∫ ·
0
f2(s, Zs)− f2(s, Z̃s)ds

∥∥∥2p

p,λ
≤ C

λ2p
‖Z − Z̃‖2pX .
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To estimate the remaining term we use Theorem I.7.2, p.40, in [11] and hypothesis (A1)

E sup
t∈[0,T ]

∥∥∥e−λt ∫ t

0
g(s, Zs)− g(s, Z̃s)dWs

∥∥∥2p

≤ CT p−1 E
∫ T

0
e−2pλT ‖g(s, Zs)− g(s, Z̃s)‖2pds

≤ CT p−1 E
∫ T

0
e−2pλs‖Zs − Z̃s‖2pH e

−2pλ(T−s)ds ≤ C

2pλ
T p−1‖Z − Z̃‖2pX .

Adding the inequalities deduced above we obtain

‖Φ(Z)− Φ(Z̃)‖2pX ≤ C max
{ 1

λ2p
,
T p−1

2pλ

}
‖Z − Z̃‖2pX ,

for some constant C ≥ 0. Consequently, if λ > 0 is sufficiently large Φ is a contraction in
X = Ξp,λ × Ξp,λ.

Step 3: Existence and uniqueness.
For λ large enough Φ is a contraction in X = Ξp,λ×Ξp,λ. By Banach’s fixed point theorem

it possesses a unique fixed point (X,Y ), which is the unique mild solution of the initial value
problem (2).

Step 4: Estimate (3).
Let (X,Y ) = Z = Φ(Z) be the mild solution of (2). By Hölder’s inequality and (A1) it

follows that

E sup
t∈[0,T ]

‖Xt‖2p ≤ C

(
E‖ζ‖2p + E sup

t∈[0,T ]

(∫ t

0
‖f1(s, Zs)‖ds

)2p
)

≤ C
(
E‖ζ‖2p + T 2p−1E

∫ T

0
‖f1(s, Zs)‖2pds

)
≤ C

(
E‖ζ‖2p + T 2p−1E

∫ T

0
(1 + ‖Zs‖2pH )ds

)
≤ C

(
E‖ζ‖2p + T 2p + T 2p−1

∫ T

0
E sup
s∈[0,t]

‖Zs‖2pH dt

)
and similarly,

E sup
t∈[0,T ]

‖Yt‖2p ≤ C

(
E‖η‖2p + T 2p + T 2p−1

∫ T

0
E sup
s∈[0,t]

‖Zs‖2pH dt

)

+ E sup
t∈[0,T ]

∥∥∥∫ t

0
g(s,Xs, Ys)dWs

∥∥∥2p
.

To estimate the stochastic integral we use again Theorem I.7.2, p.40, in [15] and (A1),

E sup
t∈[0,T ]

∥∥∥∫ t

0
g(s, Zs)dWs

∥∥∥2p
≤ CT p−1E

∫ T

0
‖g(s, Zs)‖2pds

≤ CT p−1E
∫ T

0
(1 + ‖Zs‖2pH )ds ≤ C

(
T p + T p−1

∫ T

0
E sup
s∈[0,t]

‖Zs‖2pH dt

)
.
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Adding the relevant inequalities we obtain

E sup
t∈[0,T ]

(
‖Xt‖2p + ‖Yt‖2p

)
≤ C

(
E(‖ζ‖2p + ‖η‖2p) + T p + T 2p

+ (T p−1 + T 2p−1)

∫ T

0
E sup
s∈[0,t]

(
‖Xs‖2p + ‖Ys‖2p

)
dt
)
,

for some constant C ≥ 0, which by Gronwall’s lemma implies (3). �

3.1. Invariance. The solutions of mathematical models in biology often describe quantities
that are non-negative and bounded by a maximum value. The following conditions ensure
that solutions emanating from viable initial data remain within the admissible range.

(A2) There exist constants m∗1,m
∗
2 > 0 such that f1 and f2 satisfy

f1(t, 0, x2) ≥ 0, f1(t,m∗1, x2) ≤ 0 ∀ 0 ≤ x2 ≤ m∗2, t ∈ [0, T ],

f2(t, x1, 0) ≥ 0, f2(t, x1,m
∗
2) ≤ 0 ∀ 0 ≤ x1 ≤ m∗1, t ∈ [0, T ],

and the stochastic perturbation fulfills

g(t, x1, 0) = g(t, x1,m
∗
2) = 0 ∀ 0 ≤ x1 ≤ m∗1, t ∈ [0, T ].

Remark 1. Hypothesis (A2) implies that the set [0,m∗1]× [0,m∗2] is invariant for system (2);
i.e., solutions corresponding to initial data (ζ, η) such that 0 ≤ ζ ≤ m∗1, 0 ≤ η ≤ m∗2 are
almost surely non-negative and uniformly bounded by m∗1 and m∗2.

An admissible stochastic perturbation is, e.g., the function

g(Y ) = σY (m∗2 − Y ), σ ∈ R,

on the invariant set [0,m∗1]× [0,m∗2].

Theorem 3. In addition to the hypotheses of Theorem 2 we assume that (A2) holds and the
initial data (ζ, η) are deterministic and satisfy 0 ≤ ζ ≤ m∗1, 0 ≤ η ≤ m∗2 in D. Then, the
solutions are almost surely non-negative and uniformly bounded by m∗1 and m∗2, respectively.

Proof. Let (ζ, η) be given initial data satisfying the stated assumptions. We first assume that
f = (f1, f2) and g satisfy the conditions in (A2) for all (x1, x2) ∈ R2, t ∈ [0, T ]. We denote

by f̃ = (f̃1, f̃2) and g̃ the modified functions that coincide on [0,m∗1]× [0,m∗2] with f and g.

Moeover, we denote the solutions of the corresponding modified system by X̃ and Ỹ . Due to
the continuity of solutions shown in Step 1 the first equation can be considered pathwise. By

deterministic comparison principles for scalar parabolic equations it follows that X̃ remains
pathwise non-negative and bounded by m∗1. On the other hand, for every fixed x ∈ D the
SDE in (2) fulfills the hypothesis of the stochastic invariance criterion (see [19] or [3]), which

implies that Ỹ takes values within the interval [0,m∗2] with probability 1.

Finally, the solutions X̃ and Ỹ satisfy the original system with f = (f1, f2) and g, and
by the uniqueness of solutions we conclude that the set [0,m∗1] × [0,m∗2] is invariant for the
original problem (2). Consequently, solutions corresponding to initial data within the given
range are non-negative, uniformly bounded and exist globally.

�
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3.2. Boundedness properties of the solutions. We will need the following properties of
solutions of (2) to show the well-posedness of stochastic mean-field models.

Proposition 4. Under the hypotheses of Theorem 2, the solutions of system (2) satisfy

sup
s∈[0,t]

(
E‖Xs‖2 + E‖Ys‖2

)
≤
(
E‖ζ‖2 + E‖η‖2 + c1t

)
ec1t ∀t ∈ [0, T ],

for some constant c1 ≥ 0 depending on T .

Proof. Let Z = (X,Y ) be the mild solution of (2). Itô’s formula and the previous invariance
result imply that ‖Yt‖2 satisfies the SDE

‖Yt‖2

= ‖η‖2 + 2

∫ t

0
Ysf2(s,Xs, Ys)ds+ 2

∫ t

0
(g(s,Xs, Ys))

2ds+ 2

∫ t

0
Ysg(s,Xs, Ys)dWs.

Since

E
( ∫ t

0
Ysg(s,Xs, Ys)dWs

)
= 0,

taking the expectation value in the above equality we obtain

E‖Yt‖2 = E‖η‖2 + 2

∫ t

0
E(Ysf2(s,Xs, Ys))ds+ 2

∫ t

0
E(g(s,Xs, Ys))

2ds

≤ E‖η‖2 + C

(∫ t

0
E(1 + ‖Ys‖2 + ‖Xs‖2)ds

)
= E‖η‖2 + Ct+ C

∫ t

0
E(‖Ys‖2 + ‖Xs‖2)ds,

where we used hypothesis (A1).
On the other hand, multiplying the PDE in (2) by X and integrating over Ω leads to

1

2

d

dt
‖Xt‖2 = −

∫
Ω
|OXt|2dx+

∫
Ω
Xtf1(t,Xt, Yt)dx.

We integrate the equation from 0 to t, disregard the negative term, and use (A1) to conclude

‖Xt‖2 − ‖ζ‖2 = −2

∫ t

0

∫
Ω
|OXs|2dxds+ 2

∫ t

0

∫
Ω
Xsf1(s,Xs, Ys)dxds

≤ C
∫ t

0

∫
Ω
|Xs|(1 + |Xs|+ |Ys|)dxds

≤ C
∫ t

0

∫
Ω

(1 + |Xs|2 + |Ys|2)dxds.

Taking expectation values we obtain

E‖Xt‖2 ≤ E‖ζ‖2 + Ct+ C

∫ t

0
E‖Xs‖2 + E‖Ys‖2ds.

Adding both estimates leads to

E(‖Xt‖2 + |Yt‖2) ≤ E‖ζ‖2 + E‖η‖2 + Ct+ C

∫ t

0
E(‖Xs‖2 + ‖Ys‖2)ds,

and the proposition follows from Gronwall’s Lemma. �
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Proposition 5. Under the hypotheses of Theorem 2, for every p ∈ N the solutions of system
(2) satisfy the estimate

E(‖Xt −Xs‖2p + ‖Yt − Ys‖2p) ≤ c2|t− s|p
(
E‖ζ‖2p + E‖η‖2p + 1

)
∀t, s ∈ [0, T ],

for some constant c2 ≥ 0 depending on T .

Proof. Let Z = (X,Y ) be the mild solution of (2) and t, s ∈ [0, T ] be such that t > s. For the
first component we obtain

‖Xt −Xs‖

≤ ‖(e−At − e−As)ζ‖+
∥∥∫ t

0
e−A(t−τ)f1(τ, Zτ )dτ −

∫ s

0
e−A(s−τ)f1(τ, Zτ )dτ

∥∥
≤ ‖e−As(e−A(t−s) − Id)ζ‖+

∥∥∫ t

s
e−A(t−τ)f1(τ, Zτ )dτ

∥∥
+
∥∥∫ s

0
(e−A(t−τ) − e−A(s−τ))f1(τ, Zτ )dτ

∥∥
= J1 + J2 + J3.

Semigroup estimates imply

J1 ≤ C‖(e−A(t−s) − Id)ζ‖ ≤ C|t− s|‖ζ‖,

and using (A1) the second term can be estimated by

J2 ≤
∫ t

s
‖e−A(t−τ)f1(τ, Zτ )‖dτ ≤ C

∫ t

s
‖f1(τ, Zτ )‖dτ ≤ C

∫ t

s
(1 + ‖Zτ‖H)dτ.

Taking the 2p-th power and expectation value and using Hölder’s inequality we obtain

E‖J2‖2p ≤ C|t− s|2p−1

∫ t

s
E(1 + ‖Zτ‖2pH )dτ

≤ C
(
|t− s|2p + |t− s|2p−1

∫ t

s
E‖Zτ‖2pH dτ

)
.

Furthermore,

J3 ≤
∫ s

0
‖(e−A(t−s) − Id)e−A(s−τ)f1(τ, Zτ )‖dτ

≤ C
∫ s

0
|t− s|‖e−A(s−τ)f1(τ, Zτ )‖dτ ≤ C|t− s|

∫ s

0
‖f1(τ, Zτ )‖dτ

≤ C|t− s|
∫ s

0
(1 + ‖Zτ‖)dτ ≤ C|t− s|

(
s+

∫ s

0
‖Zτ‖dτ

)
.

Taking the 2p-th power and expectation value it follows by Hölder’s inequality that

E‖J3‖2p ≤ C|t− s|2p
(
s2p + s2p−1

∫ s

0
E‖Zτ‖2pH dτ

)
≤ C|t− s|2ps2p

(
1 +

(
E‖Z0‖2pH + c1s

)
ec1s

)
≤ CT |t− s|2p

(
1 + E‖Z0‖2pH

)
,
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for some constant CT ≥ 0, where we used Proposition 4 in the second inequality. The solution
of the SDE satisfies

Yt − Ys =

∫ t

s
f2(τ, Zτ )dτ +

∫ t

s
g(τ, Zτ )dWτ .

The first integral can be estimated similarly to J2,

E
(∫ t

s
‖f2(τ, Zτ )‖dτ

)2p

≤ C
(
|t− s|2p + |t− s|2p−1

∫ t

s
E‖Zτ‖2pH dτ

)
,

and the stochastic integral by applying Theorem I.7.1, p.39, in [15],

E
∥∥∥∫ t

s
g(τ, Zτ )dWτ

∥∥∥2p
≤ C|t− s|p−1

∫ t

s
E‖g(τ, Zτ )‖2pdτ

≤ C|t− s|p−1

∫ t

s
E(1 + ‖Zτ‖2pH )dτ

= C
(
|t− s|p + |t− s|p−1

∫ t

s
E‖Zτ‖2pH dτ

)
.

Summing up all previous estimates we obtain

E(‖Zt − Zs‖2pH ) ≤ CT
(
|t− s|p

(
E‖Z0‖2pH + 1

)
+ |t− s|p−1

∫ t

s
E‖Zτ‖2pH dτ

)
≤ CT

(
|t− s|p

(
E‖Z0‖2pH + 1

)
+ |t− s|p

(
E‖Z0‖2pH + c1T

)
ec1T

)
,

for some constant CT ≥ 0, hence obtaining the stated inequality. �

4. The nonlocal SDE-PDE system

4.1. Well-posedness of the nonlocal model. To prove the well-posedness of (1) we use
the results for local SDE–PDE systems in Section 3 and ideas applied in [12] about scalar
SDEs with nonlocal sample dependence.
Assumptions

(H1) The functions f = (f1, f2) : [0, T ]× R4 → R2 and g : [0, T ]× R4 → R are continuous,
and there exists a constant c ≥ 0 such that

|f(t, x, y)|+ |g(t, x, y)| ≤ c(1 + |x|),
|f(t, x, y)− f(t, x̃, y)|+ |g(t, x, y)− g(t, x̃, y)| ≤ c|x− x̃|,

for all t ∈ [0, T ], (x, y) ∈ R4, x̃ ∈ R2.
(H2) For all r > 0 there exists a constant cr such that

|f(t, x, y)− f(t, x, ỹ)|+ |g(t, x, y)− g(t, x, ỹ)| ≤ cr|y − ỹ|(1 + |x|),

for all t ∈ [0, T ], x ∈ R2 and y, ỹ ∈ R2 such that |y| ≤ r.

Theorem 6. We assume (H1) and (H2) are satisfied. Then, for every F0-adapted initial
data (ζ, η) ∈ L2(Ω;H) there exists a unique mild solution u ∈ C([0, T ];L2(Ω;H)) of problem
(1) such that

sup
t∈[0,T ]

E(‖Xt‖2 + ‖Yt‖2) ≤ c
(
1 + E‖ζ‖2 + E‖η‖2

)
,
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for some constant c ≥ 0 depending on T . Moreover, if the initial data belongs to L2p(Ω;H)
with p > 1, then the solution (X,Y ) has continuous sample paths.

Proof. We construct approximate solutions on equidistant partitions of the interval [0, T ].
This will provide a Cauchy sequence in C([0, T ];L2(Ω;H)) that converges to the solution of
the original model (1).

For n ∈ N such that 2n > T we set hn := T
2n and tnk := khn for k = 0, . . . , 2n. We denote by

Zn = (Xn, Y n) the approximate solution obtained by successively solving the local systems

dXn
t =

{
∆Xn

t + f1

(
t,Xn

t , Y
n
t ,E(Xn

tnk
),E(Y n

tnk
)
)}
dt,

∂νX
n
t |∂D = 0,

dY n
t = f2

(
t,Xn

t , Y
n
t ,E(Xn

tnk
),E(Y n

tnk
)
)
dt+ g

(
t,Xn

t , Y
n
t ,E(Xn

tnk
),E(Y n

tnk
)
)
dWt,

on the intervals [tnk , t
n
k+1] with initial data Zn(tnk) = Zntnk

, k = 0, . . . , 2n − 1. On every such

subinterval there exist unique mild solutions Zn ∈ C([tnk , t
n
k+1];L2(Ω;H)), by hypothesis (H1)

and Theorem 2.
From Proposition 4 and Proposition 5 we deduce that there exist constants c1 ≥ 0 and

c2 ≥ 0 independent of n such that

E‖Zns ‖2H ≤
(
E‖(ζ, η)‖2H + c1s

)
ec1s ≤

(
E‖(ζ, η)‖2H + 1

)
e2c1T ,

E‖Zn[sn] − Z
n
s ‖2H ≤ c2hn(E‖(ζ, η)‖2H + 1),

(5)

for all s ∈ [0, T ] and n ∈ N, where [sn] := max{tnk | tnk ≤ s, k ∈ N}. For given initial data

Z0 = (ζ, η) we set r :=
(
E‖Z0‖2H + 1)e2c1T , and cr denotes the corresponding constant in

(H2).
For m < n the difference of two approximations satisfies

Xn
t −Xm

t =

∫ t

0
e−A(t−s)(f1(s, Zns ,E(Zn[sn]))− f1(s, Zms ,E(Zm[sm]))

)
ds,

Y n
t − Y m

t =

∫ t

0
f2(s, Zns ,E(Zn[sn]))− f2(s, Zms ,E(Zm[sm]))ds

+

∫ t

0
g(s, Zns ,E(Zn[sn]))− g(s, Zms ,E(Zm[sm]))dWs.
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Assumptions (H1), (H2) and Hölder’s inequality imply

‖Xn
t −Xm

t ‖2 ≤ t
∫ t

0
‖e−A(t−s)‖2L(H)

∥∥f1(s, Zns ,E(Zn[sn]))− f1(s, Zms ,E(Zm[sm]))
∥∥2
ds

≤ Ct
∫ t

0

(∥∥f1(s, Zns ,E(Zn[sn]))− f1(s, Zns ,E(Zns ))
∥∥2

+
∥∥f1(s, Zns ,E(Zns ))− f1(s, Zms ,E(Zns ))

∥∥2

+
∥∥f1(s, Zms ,E(Zns ))− f1(s, Zms ,E(Zms ))

∥∥2

+
∥∥f1(s, Zms ,E(Zms ))− f1(s, Zms ,E(Zm[sm]))

∥∥2
)
ds

≤ Ct
∫ t

0

(
‖E(Zn[sn] − Z

n
s )‖2H(1 + ‖Zns ‖2H)

+ ‖Zns − Zms ‖2H +
∥∥E(Zns − Zms )

∥∥2

H(1 + ‖Zms ‖2H)

+
∥∥E(Zms − Zm[sm])

∥∥2

H(1 + ‖Zms ‖2H)
)
ds.

Similarly, we can estimate the first integral in the second equation,∥∥∥∫ t

0
f2(s, Zns ,E(Zn[sn]))− f2(s, Zms ,E(Zm[sm]))ds

∥∥∥2

≤ Ct

∫ t

0

(
‖E(Zn[sn] − Z

n
s )‖2(1 + ‖Zns ‖2H)

+ ‖Zns − Zms ‖2H +
∥∥E(Zns − Zms )

∥∥2

H(1 + ‖Zms ‖2H)

+
∥∥E(Zms − Zm[sm])

∥∥2
(1 + ‖Zms ‖2H)

)
ds,

and for the stochastic integral Itô’s isometry implies that

E
∥∥∥∫ t

0
g(s, Zns ,E(Zn[sn]))− g(s, Zms ,E(Zm[sm]))dWs

∥∥∥2

≤ E
∫ t

0

∥∥g(s, Zns ,E(Zn[sn]))− g(s, Zms ,E(Zm[sm]))
∥∥2
ds.

Estimating this integral accordingly and taking the expectation value in the previous inequal-
ities we arrive at

E‖Znt − Zmt ‖2H

≤ Cet
∫ t

0

(
‖E(Zn[sn] − Z

n
s )‖2H(1 + E‖Zns ‖2H) + ‖E(Zns − Zms )‖2H

+ E‖Zns − Zms ‖2H(1 + E‖Zms ‖2H) + E‖Zms − Zm[sm]‖
2
H(1 + E‖Zms ‖2H)

)
ds

≤ Cet
∫ t

0

(
E‖Zn[sn] − Z

n
s ‖2H(1 + E‖Zns ‖2H) + E‖Zns − Zms ‖2H(1 + E‖Zms ‖2H)

+ E‖Zms − Zm[sm]‖
2
H(1 + E‖Zms ‖2H)

)
ds.



16 PETER KLOEDEN, STEFANIE SONNER, AND CHRISTINA SURULESCU

Moreover, using (5) we obtain

E‖Znt − Zmt ‖2H

≤ Cet
∫ t

0

(
2hm(E‖(ζ, η)‖2H + 1)

(
1 + (E‖(ζ, η)‖2H + 1)e2c1T

)
+ E‖Zns − Zms ‖2H

(
1 + (E‖(ζ, η)‖2H + 1)e2c1T

))
ds

≤ CT (E‖(ζ, η)‖2H + 1)
(
hm(E‖(ζ, η)‖2H + 1) +

∫ t

0
E‖Zns − Zms ‖2Hds

)
,

and Gronwall’s lemma yields a uniform bound for the mean square difference

sup
n>m

sup
t∈[0,T ]

E‖Znt − Zmt ‖2H ≤ hmCT (1 + E‖(ζ, η)‖2H)2eCTT (1+E‖(ζ,η)‖2H).

Consequently, Zn is a Cauchy sequence in C([0, T ];L2(Ω;H)), and we denote its limit by Z.
We will show that Z = (X,Y ) is the unique mild solution of the mean-field system (1). To

this end we consider the local system

dUt = {∆Ut + f1(t, Ut, Vt,E(Xt),E(Yt))} dt,
∂νUt|∂D = 0,

dVt = f2(t, Ut, Vt,E(Xt),E(Yt))dt+ g(t, Ut, Vt,E(Xt),E(Yt))dWt,

(6)

with initial data (U0, V0) = (ζ, η). A unique mild solution S = (U, V ) exists by Theorem 2.
To assess the difference between S and Zn consider the system

Xn
t − Ut =

∫ t

0
e−A(t−s)(f1(s, Zns ,E(Zn[sn]))− f1(s, Ss,E(Zs))

)
ds,

Y n
t − Vt =

∫ t

0
f2(s, Zns ,E(Zn[sn]))− f2(s, Ss,E(Zs))ds

+

∫ t

0
g(s, Zns ,E(Zn[sn]))− g(s, Ss,E(Zs))dWs.

We split the difference for f1 as follows:∥∥f1(s, Zns ,E(Zn[sn]))− f1(s, Ss,E(Zs))
∥∥ ≤ ∥∥f1(s, Zns ,E(Zn[sn]))− f1(s, Zns ,E(Zns )

∥∥
+
∥∥f1(s, Zns ,E(Zns ))− f1(s, Zns ,E(Zs))

∥∥+
∥∥f1(s, Zns ,E(Zs))− f1(s, Ss,E(Zs))

∥∥,
and hypotheses (H1) and (H2) lead to

E
∥∥∫ t

0
e−A(t−s)(f1(s, Zns ,E(Zn[sn]))− f1(s, Ss,E(Zs))

)
ds
∥∥2

≤ Ct

∫ t

0
E
∥∥f1(s, Zns ,E(Zn[sn]))− f1(s, Ss,E(Zs))

∥∥2
ds

≤ Ct

∫ t

0

(
(‖E(Zn[sn] − Z

n
s )‖2H + ‖E(Zns − Zs)‖2H)(1 + E‖Zns ‖2H) + E‖Zns − Ss‖2

)
ds.
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The other integrals can be estimated accordingly. Summing up and using Itô’s isometry and
(5) we arrive at

E
∥∥Znt − St∥∥2

H

≤ Ct

∫ t

0
E
∥∥f1(s, Zns ,E(Zn[sn]))− f1(s, Ss,E(Zs))

∥∥2
ds

+ Ct

∫ t

0
E
∥∥f2(s, Zns ,E(Zn[sn]))− f2(s, Ss,E(Zs))

∥∥2
ds

+ C

∫ t

0
E
∥∥g(s, Zns ,E(Zn[sn]))− g(s, Ss,E(Zs))

∥∥2
ds

≤ Cet
∫ t

0

(
‖E(Zn[sn] − Z

n
s )‖2H + ‖E(Zns − Zs)‖2H

)(
1 + E‖Zns ‖2H

)
+ E‖Zns − Ss‖2ds

≤ Cet
∫ t

0

(
hn(E‖(ζ, η)‖2H + 1) + E‖Zns − Zs‖2H

)(
1 + (E‖(ζ, η)‖2H + 1)e2c1T

)
+ E‖Zns − Ss‖2Hds

≤ CT

((
hn(E‖(ζ, η)‖2H + 1)2 + (E‖(ζ, η)‖2H + 1) sup

s∈[0,T ]
E‖Zns − Zs‖2H

)
+

∫ t

0
E‖Zns − Ss‖2Hds

)
.

Using the fact that Z is the limit of the sequence Zn, it follows by Gronwall’s lemma that
Zn converges to S in C([0, T ];L2(Ω;H)), which implies Z = S. The sample path continuity
of S = Z follows from Proposition 5.

To prove uniqueness of solutions we assume that Z = (X,Y ) and S = (U, V ) are two
solutions corresponding to the initial data (ζ, η). To assess their difference consider the system

Xt − Ut =

∫ t

0
e−A(t−s)(f1(s, Zs,E(Zs))− f1(s, Ss,E(Ss))

)
ds,

Yt − Vt =

∫ t

0
f2(s, Zs,E(Zs))− f2(s, Ss,E(Ss))ds

+

∫ t

0
g(s, Zs,E(Zs))− g(s, Ss,E(Ss))dWs.

We split the difference for f1 as follows:

∥∥f1(s, Zs,E(Zs))− f1(s, Ss,E(Ss))
∥∥

≤
∥∥f1(s, Zs,E(Zs))− f1(s, Zs,E(Ss))

∥∥+
∥∥f1(s, Zs,E(Ss))− f1(s, Ss,E(Ss))

∥∥,
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and obtain for the first integral

E
∥∥∫ t

0
e−A(t−s)(f1(s, Zs,E(Zs))− f1(s, Ss,E(Ss))

)
ds
∥∥2

≤ Ct

∫ t

0
E
∥∥f1(s, Zs,E(Zs))− f1(s, Zs,E(Ss))

∥∥2

+
∥∥f1(s, Zs,E(Ss))− f1(s, Ss,E(Ss))

∥∥2
ds

≤ Ct

∫ t

0
‖E(Zs − Ss)‖2H(1 + E‖Zs‖2H) + ‖E(Zs − Ss)‖2Hds

≤ CT (1 + E‖(ζ, η)‖2H)

∫ t

0
E‖Zs − Ss‖2Hds,

where we used (H1), (H2) and (5). The other integrals can be estimated similarly. It follows
that

E‖Zt − St‖2H ≤CT (1 + E‖(ζ, η)‖2H)

∫ t

0
E‖Zs − Ss‖2Hds,

and Gronwall’s lemma implies that S = Z, which concludes the proof.
The solution (X,Y ) is the limit of the Cauchy sequence (Xn, Y n) and coincides with the

solution (U, V ) of the local system (6). Hence, if the initial data belong to L2p(Ω;H), the
pathwise continuity follows from Theorem 2. �

4.2. Invariance.
For its relevance in modeling applications we formulate conditions ensuring that solutions of
the mean-field system (1) are non-negative and bounded by a certain maximum value.

(H3) There exist constants m∗1,m
∗
2 > 0 such that f1 and f2 satisfy

f1(t, 0, x2, y) ≥ 0, f1(t,m∗1, x2, y) ≤ 0 ∀ 0 ≤ x2 ≤ m∗2, t ∈ [0, T ], y ∈ R2

f2(t, x1, 0, y) ≥ 0, f2(t, x1,m
∗
2, y) ≤ 0 ∀ 0 ≤ x1 ≤ m∗1, t ∈ [0, T ], y ∈ R2,

and the stochastic perturbation fulfills

g(t, x1, 0, y) = g(t, x1,m
∗
2, y) = 0 ∀ 0 ≤ x1 ≤ m∗1, t ∈ [0, T ], y ∈ R2.

Theorem 7. In addition to the hypotheses of Theorem 6 we assume that (H3) holds and the
initial data (ζ, η) is deterministic and satisfies 0 ≤ ζ ≤ m∗1, 0 ≤ η ≤ m∗2 in D. Then, the
solutions are almost surely non-negative and uniformly bounded by m∗1 and m∗2, respectively.

Proof. The solution (X,Y ) is the limit of the Cauchy sequence (Xn, Y n) in the proof of
Theorem 6. Moreover, it coincides with the solution (U, V ) of the local system (6). Theorem
3 and hypothesis (H3) imply that the solution (U, V ) takes values within the set [0,m∗1]×[0,m∗2]
almost surely, which proves the invariance of the mean-field model. �

5. Numerical simulations

To illustrate the qualitative behavior of solutions we present numerical simulations for the
proton dynamics model in Section 2,

dXt =
(
d∆Xt + r(Xt,E(Yt))− αXt

)
dt

dYt = (−r(Xt, Yt)− βYt + ϕ(t, Yt))dt+ γYt(1− Yt)dWt,
(7)
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as well as for its local version

dXt =
(
d∆Xt + r(Xt, Yt)− αXt

)
dt

dYt = (−r(Xt, Yt)− βYt + ϕ(t, Yt))dt+ γYt(1− Yt)dWt,
(8)

in D × [0, T ] = (0, 1)× [0, T ]. The extracellular proton concentration X and the intracellular
proton concentration Y are normalized w.r.t. the maximum concentration, i.e., the dependent
variables X and Y take values within the unit interval (0, 1). We endow the system with the
initial and boundary values

∂xXt|x=0 = 0, ∂xXt|x=1 = µ,

X0 = ζ, Y0 = η

where µ is a positive constant and the (deterministic) functions ζ and η are non-negative and
bounded by 1 in D = (0, 1). We use the functions in [23] for the membrane-based transport
terms

r(x, y) = a1
y

1 + y2 + a2x2
− a3

x

1 + a4y2
,

and assume that the production of intracellular protons by glycolysis is determined by

ϕ(t, y) = ϕ0
y

1 + a2y
,

where the constant ϕ0 is positive, and where ai, i = 1, . . . , 4 are positive constants.

Table 1. Parameters used in the simulations

parameter symbol value
diffusion coefficient d 0.0001
decay rate for X α 1
decay rate for Y β 2
activity of transporter 1 a1 2
normalization constant a2 0.001
activity of transporter 2 a3 0.5
normalization constant a4 0.1
production rate of Y ϕ0 2
intensity of the stochastic perturbation γ 1
Neumann boundary conditions at x = 1 µ 0.5

We use finite differences and an explicit Euler scheme to solve the PDE and the Euler-
Mayurama method for the SDE. The parameters used in the simulations are summarized in
Table 1, and the initial data is chosen as

ζ(x) = 0.6e−x
2
, η(x) = 0.3e−2x2 , x ∈ D.

Observe that for this choice of interaction functions and parameter values the conditions
ensuring invariance are satisfied, i.e., for any initial data 0 ≤ ζ ≤ 1, 0 ≤ η ≤ 1 the proton con-
centrations X and Y are non-negative and bounded by 1. The shape of the initial conditions
is motivated by the assumption that the tumor is located at the left end of the space interval
and the cancer cells emit protons, rendering the tumor microenvironment acidic. The acidity
is supposed to decrease towards the tumor edge (hence with advancing space). The concen-
tration of intracellular protons should be lower than that of their extracellular counterparts,
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in order to allow the survival and proliferation of tumor cells (thus the maintenance of proton
dynamics).

Figure 1. Five sample paths for the solutions of the local SDE-PDE model.
Left column: concentration X of extracellular protons. Right column: con-
centration Y of intracellular protons.

Figure 1 shows the time evolution of extra- and intracellular protons. We plotted five sample
paths for solutions of the local model (8). Notice the inter-path differences in both proton
populations, suggesting corresponding tumor-to-tumor variability w.r.t. acidity, although the
same type of cancer is considered.

Figure 2 shows the behavior of solutions of the deterministic model and of the nonlocal
system (7). The expectation values involved in the PDE for extracellular protons were com-
puted by averaging over 20 (Figure 2b) and 1000 sample paths (Figure 2c). Figure 2a shows
the solutions of the deterministic model, i.e., the model with γ = 0, while each of Figures
2b and 2c shows the solution X of the mean-field SDE-PDE system and one sample path for
the intracellular protons Y . As expected, when averaging over a large number of tumors the
differences between the nonlocal model and the pure deterministic one are small. However,
in the case of a much reduced number of tumors (corresponding to a less frequent cancer
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(a) deterministic ODE-PDE model

(b) nonlocal SDE-PDE model: X by using the average over 20 sample paths (left) and sample path
for Y (right)

(c) nonlocal SDE-PDE model: X by using the average over 1000 sample paths (left) and sample path
for Y (right)

Figure 2. Simulations for the deterministic and nonlocal SDE-PDE model.
Left column: concentration X of extracellular protons. Right column: con-
centration Y of intracellular protons.

type) the randomness (inter-tumor variations) seems to play a significant role in acidification.
This can be relevant for the sensitivity against therapies and for tumor aggressiveness, as it
is well known by now that the low extracellular pH (pHe) and the gradients between intra-
cellular (pHi) and pHe significantly influence the response of tumors to various treatments
like radiotherapy and chemotherapy [4, 22, 20]. Our findings seem to endorse the necessity
of paying particular attention to individualized treatment, especially for rare tumors, where
it is difficult to rely on clinical experience aquired with a rather small number of patients.

The next step will be to include the dynamics of tumor cells and normal tissue and assess
the behavior of the two cell populations under the influence of the stochastic proton dynamics
studied here. This is ongoing work.
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