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Abstract

We study σ-ideals and regularity properties related to the “filter-Laver” and “dual-
filter-Laver” forcing partial orders. An important innovation which enables this study
is a dichotomy theorem proved recently by Miller [Mil].

1 Introduction

In this paper, F will always be a filter on ω (or a suitable countable set). We will use F−

to refer to the ideal of all a ⊆ ω such that ω \ a ∈ F , and F+ to the collection of a ⊆ ω such
that a /∈ F−. Cof and Fin denote the filter of cofinite subsets of ω and the ideal of finite
subsets of ω, respectively.

Definition 1.1. An F -Laver tree is a tree T ⊆ ω<ω such that for all σ ∈ T extending
stem(T ), SuccT (σ) ∈ F . An F+-Laver-tree is a tree T ⊆ ω<ω such that for all σ ∈ T
extending stem(T ), SuccT (σ) ∈ F+. We use LF and LF+ to denote the partial orders of
F -Laver and F+-Laver trees, respectively, ordered by inclusion.

If F = Cof then LF+ is the standard Laver forcing L, and LF is (a version of) the
standard Hechler forcing D. Both LF and LF+ have been used as forcing notions in the
literature, see, e.g., [Gro87]. As usual, the generic real added by these forcings can be defined
as the limit of the stems of conditions in the generic filter. It is easy to see that in both
cases, this generic real is dominating. It is also known that if F is not an ultrafilter, then
LF adds a Cohen real, and if F is an ultrafilter, then LF adds a Cohen real if and only if
F is not a nowhere dense ultrafilter (see Definition 4.9). Moreover, LF is σ-centered and
hence satisfies the ccc, and it is known that LF+ satisfies Axiom A (see [Gro87, Theorem]
and Lemma 2.5 (3)).

In this paper, we consider σ-ideals and regularity properties naturally related to LF and
LF+ , and study the regularity properties for sets in the low projective hierarchy, following
ideas from [BL99, Ike10, Kho12]. An important technical innovation is a dichotomy theorem
proved recently by Miller in [Mil] (see Theorem 3.6), which allows us to simplify the σ-ideal
for LF+ when restricted to Borel sets, while having a Σ1

2 definition regarding the membership
of Borel sets in it.

∗This research was partially done whilst the author was a visiting fellow at the Isaac Newton Institute
for Mathematical Sciences in the programme Mathematical, Foundational and Computational Aspects of
the Higher Infinite (HIF) funded by EPSRC grant EP/K032208/1.
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One question may occur to the reader of this paper: why are we not considering the
filter-Mathias forcing alongside the filter-Laver forcing, when clearly the two forcing notions
(and their derived σ-ideals and regularity properties) are closely related? The answer is
that, although the basic results from Section 2 do indeed hold for filter-Mathias, there is no
corresponding dichotomy theorem like Theorem 3.6. In fact, by a result of Sabok [Sab12],
even the σ-ideal corresponding to the standard Mathias forcing is not a Σ1

2-ideal on Borel
sets, implying that even in this simple case, there is no hope of a similar dichotomy theorem.
It seems that in the Mathias case, a more subtle analysis is required.

In Section 2 we give the basic definitions and prove some easy properties. In Section 3
we present Miller’s dichotomy and the corresponding σ-ideal. In Section 4 we study direct
relationships that hold between the regularity properties regardless of the complexity of F ,
whereas in Section 5 we prove stronger results under the assumption that F is an analytic
filter.

2 (LF )- and (LF+)-measurable sets.

In [Ike10], Ikegami provided a natural framework for studying σ-ideals and regularity prop-
erties related to tree-like forcing notions, generalising the concepts of meager and Baire
property. This concept proved to be very useful in a number of circumstances, see, e.g.,
[Kho12, Lag14, KL15].

Definition 2.1. Let P be LF or LF+ and let A ⊆ ωω.

1. A ∈ NP iff ∀T ∈ P ∃S ≤ T ([S] ∩A = ∅)}.

2. A ∈ IP iff A is contained in a countable union of sets in NP.

3. A is P-measurable iff ∀T ∈ P ∃S ≤ T ([S] ⊆∗ A or [S] ∩ A =∗ ∅), where ⊆∗ and =∗

stands for “modulo a set in IP”.

Lemma 2.2. The collection {[T ] | T ∈ LF } forms a topology base. The resulting topology
refines the standard topology and the space satisfies the Baire category theorem (i.e., [T ] /∈
ILF for all T ∈ LF ).

Proof. Clearly, for all S, T ∈ LF the intersection S ∩ T is either empty or an LF -condition.
A basic open set in the standard topology trivially corresponds to a tree in LF . For the
Baire category theorem, let An be nowhere dense and, given an arbitrary T ∈ LF , build a
sequence T = T0 ≥ T1 ≥ T2 ≥ . . . with strictly increasing stems such that [Tn] ∩ An = ∅
for all n. Then the limit of the stems is an element in [T ] \

⋃
nAn.

We use τLF to denote the topology on ωω generated by {[T ] | T ∈ LF }. Clearly NLF is
the collection of τLF -nowhere dense sets and ILF the collection of τLF -meager sets. Moreover,
we recall the following fact, which is true in arbitrary topologal spaces (the proof is similar
to [Kec95, Theorem 8.29]):

Fact 2.3. Let X be any topological space, and A ⊆ X . Then the following are equivalent:

1. A satisfies the Baire property.

2. For every basic open O there is a basic open U ⊆ O such that U ⊆∗ A or U ∩A =∗ ∅,
where ⊆∗ and =∗ refer to “modulo meager”.
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In particular, A ⊆ ωω is LF -measurable iff A satisfies the τLF -Baire property.

What about the dual forcing LF+? Notice that a topological approach cannot work in
general:

Lemma 2.4. The collection {[T ] | T ∈ LF+} generates a topology base iff F is an ultrafilter.

Proof. If F is not an ultrafilter, fix Z such that Z ∈ F+ and (ω \ Z) ∈ F+ and consider
trees S, T ∈ LF+ defined so that ∀σ ∈ S (SuccS(σ) = Z ∪ {0}) and ∀τ ∈ T (SuccT (τ) =
(ω \ Z) ∪ {0}).

Instead, to study LF+ , we rely on combinatorial methods familiar from Laver forcing.
For every n, define ≤n by:

S ≤n T :⇔ S ≤ T and S ∩ ω≤k+n = T ∩ ω≤k+n,

where k = |stem(T )|. If T0 ≥0 T1 ≥1 . . . is a decreasing sequence then T :=
⋂
n Tn ∈ LF+

and T ≤ Tn for every n.

Lemma 2.5. Let F be a filter on ω. Then:

1. LF+ has pure decision, i.e., for every φ and every T ∈ LF+ , there is S ≤0 T such that
S 
 φ or S 
 ¬φ.

2. For all A ⊆ ωω, the following are equivalent:

(a) A ∈ NLF+ ,

(b) ∀T ∈ LF+ ∃S ≤0 T ([S] ∩A = ∅).

3. NLF+ = ILF+ .

4. For all A ⊆ ωω, the following are equivalent:

(a) A is (LF+)-measurable,

(b) ∀T ∈ LF+ ∃S ≤ T ([S] ⊆ A or [S] ∩A = ∅),

(c) ∀T ∈ LF+ ∃S ≤0 T ([S] ⊆ A or [S] ∩A = ∅).

5. The collection of (LF+)-measurable sets forms a σ-algebra.

Proof. Since many of the arguments here are similar, we prove the first assertion and only
sketch the others.

1. Fix φ and T and let u := stem(T ). For σ ∈ T extending u, say:

• σ is positive-good if ∃S ≤0 T↑σ such that S 
 φ,

• σ is negative-good if ∃S ≤0 T↑σ such that S 
 ¬φ,

• σ is bad if neither of the above holds.

We claim that u is good, completing the proof. Assume that u is bad. Partition
SuccT (u) into Z0, Z1 and Z2 by setting n ∈ Z0 iff u_ 〈n〉 is positive-good, n ∈ Z1 iff
u_ 〈n〉 is negative-good, and n ∈ Z2 iff u_ 〈n〉 is bad. One of the three components
must be in F+. But if it is Z0 then S :=

⋃
n∈Z0

T↑(u_ 〈n〉) ≤0 T and S 
 φ, thus u is
positive-good contrary to assumption; likewise, if Z1 is in F+ then u is negative-good
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contrary to assumption. Hence, Z2 must be in F+. Now, for each n ∈ Z2, use the
same argument to obtain an F+-positive set Z2,2 of successors of u_ 〈n〉 such that for
all m ∈ Z2,2, u_ 〈n,m〉 is bad, and so on.

This way we construct a tree T ∗ ≤ T such that all σ ∈ T ∗ are bad. But there is a
T ∗∗ ≤ T ∗ deciding φ, which means that stem(T ∗∗) is either positive-good or negative-
good, leading to a contradiction.

2. Let A ∈ NLF+ , fix T , and let u = stem(T ). For σ ∈ T extending u, say that σ is good
if ∃S ≤0 T↑σ such that [S] ∩ A = ∅, and σ is bad otherwise. By the same argument
as above we prove that u is good.

3. Suppose An ∈ NLF+ for all n. Fix T ∈ LF+ . Clearly it is enough to produce a
fusion sequence T = T0 ≥0 T1 ≥1 . . . such that for all n, [Tn] ∩ An = ∅. So suppose
we have constructed Tn. Let {ui | i < ω} enumerate all the nodes in Tn of length
|stem(Tn) + n|. For each ui, use (2) to find Si ≤0 Tn↑ui with [Si] ∩ An+1 = ∅. Let
Tn+1 :=

⋃
i Si. Then clearly Tn+1 ≤n Tn and [Tn+1] ∩An+1 = ∅ as required.

4. For (a)⇒ (b), use the fact that ILF+ = NLF+ . For (b)⇒ (c), use the same argument
as in (1).

5. It suffices to show closure under countable unions. Suppose An is LF+ -measurable and
fix T ∈ LF+ . If for one n, there is S ≤ T with [S] ⊆ An then we are done. Otherwise
(using the equivalence from (4)) for every n, there is S ≤ T such that [S] ∩ An = ∅.
Then an argument like in (3) shows that there is S ≤ T such that [S]∩

⋃
nAn = ∅.

Remark 2.6. Note that an argument like in (4) above in fact shows that LF+ satisfies a
stronger form of properness, namely, for all countable elementary models M ≺ Hθ and all
T ∈ LF+ , there exists S ≤ T such that every x ∈ [S] is LF+ -generic over M .

Again it is interesting to ask whether any of the “simplifications” (1)–(4) from the above
Lemma might go through for LF , too.

Lemma 2.7. If we replace LF+ with LF in Lemma 2.5, then the statements (1)–(4) are all
equivalent to each other, and equivalent to the statement “F is an ultrafilter”.

Proof. If F is not an ultrafilter, let Z be such that Z ∈ F+ and (ω \ Z) ∈ F+, let An :=
{x ∈ ωω | ∀m ≥ n (x(m) ∈ Z)} and A =

⋃
nAn = {x ∈ ωω | ∀∞m (x(m) ∈ Z)}. Also, xG

denotes the LF -generic real. We leave it to the reader to verify that

• the statement “xG(0) ∈ Z” cannot be decided by any LF -condition with empty stem
(falsifying (1)),

• Zω ∈ NLF but for every T ∈ LF with empty stem we have [T ] ∩ Zω 6= ∅ (falsifying
(2)),

• An ∈ NLF for all n, but A /∈ NLF (falsifying (3)), and

• A is LF -measurable (see Theorem 2.8), but for every T ∈ LF we have [T ] 6⊆ A and
[T ] ∩A 6= ∅ (falsifying (4)).
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Thus, the situation can be neatly summarized as follows: when F is not an ultrafilter, LF
generates a topology but does not satisfy properties 1–4 from Lemma 2.5, while LF+ satisfies
those properties but does not generate a topology. LF -measurability is the Baire propery in
the τLF -topology, whereas LF+ -measurability is the “Marczewski”-property corresponding
to the partial order LF+ , and ILF+ is the “Marczewski”-ideal corresponing to LF+ .

In the interesting scenario when F is an ultrafilter everything coincides, and the ideal
ILF of τLF -meager sets is the same as the ideal of τLF -nowhere dense sets. In this context,
the ideal has been studied by Louevau in [Lou76] and is sometimes called the Louveau ideal.

Theorem 2.8. Let F be a filter on ω. Every analytic and co-analytic set A ⊆ ωω is both
LF -measurable and LF+-measurable.

Proof. Since τLF refines the standard topology on ωω, analytic (co-analytic) sets are also
analytic (co-analytic) in τLF . By classical results, such sets have the τLF -Baire property.

For LF+ , suppose A is analytic, defined by a Σ1
1(r) formula φ. Let T ∈ LF+ . Let S ≤ T be

a stronger condition forcing φ(ẋG) or ¬φ(ẋG), without loss of generality the former. Let M
be a countable elementary submodel of a sufficiency large Hθ with S, r, F ∈M . By Remark
2.6, we can find an S′ ≤ S such that all x ∈ [S′] are LF+ ∩M -generic over M . Then for
all such x we have M [x] |= φ(x). By Σ1

1-absoluteness, φ(x) is really true. Thus we have
[S′] ⊆ A. The co-analytic case is analogous.

A different (forcing-free) proof of the second assertion will follow from Theorem 3.6.

From the above it follows that there we have dense embeddings LF ↪−→d Borel(ω
ω)/ILF

and LF+ ↪−→d Borel(ω
ω)/ILF+ .

Definition 2.9. Let Γ be a projective pointclass. The notation Γ(LF ) and Γ(LF+) ab-
breviates the propositions “all sets of complexity Γ are LF -measurable” and “all sets of
complexity Γ are LF -measurable”, respectively.

The statements Σ1
2(LF ) and Σ1

2(LF+) are independent of ZFC, and we will study the
exact strength of these statements in Section 4 (for arbitrary F ) and Section 5 (for definable
F ).

3 A dichotomy theorem for LF+

While ILF is a ccc Borel-generated ideal exhibiting many familiar properties, ILF+ is a
“Marczewski-style” ideal, which is not Borel-generated and rather difficult to study. The
rest of the paper depends crucially on the dichotomy result presented in this section, which
simplifies the ideal ILF+ when it is restricted to Borel sets. The proof, as well as several
key insights, are due to Arnold Miller [Mil]. For motivation, recall the Laver dichotomy,
originally due to Goldstern et al [GRSS95].

Definition 3.1. If f : ω<ω → ω and x ∈ ωω, we say that x strongly dominates f if
∀∞n (x(n) ≥ f(x�n)). A family A ⊆ ωω is called strongly dominating if for every f : ω<ω →
ω there exists x ∈ A which strongly dominates f . D denotes the ideal of sets A which are
not strongly dominating.
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It is easy to see that if T ∈ L then [T ] /∈ D, and the classical result [GRSS95, Lemma
2.3] shows that if A is analytic, then either A ∈ D or there is a Laver tree T such that
[T ] ⊆ A. The ideal D was discovered independently by Zapletal (cf. [Zap03, Lemma 3.3.])
and was studied, among others, in [DR13, Deč15]. Generalising this, we obtain the following
definitions:

Definition 3.2. Let F be a filter on ω. If ϕ : ω<ω → F and x ∈ ωω, we say that x
F -dominates ϕ iff ∀∞n (x(n) ∈ ϕ(x�n)). A family A ⊆ ωω is F -dominating if for every
ϕ : ω<ω → F there exists x ∈ A which dominates ϕ. DF+ denotes the ideal of sets A which
are not F -dominating. In other words:

A ∈ DF+ :⇐⇒ ∃ϕ : ω<ω → F ∀x ∈ A ∃∞n (x(n) /∈ ϕ(x�n)).

In the above context, the terminology “F -dominates” might seem inappropriate, but we
choose it in order to retain the analogy with Definition 3.1. Note that D = DCof+ .

Lemma 3.3. DF+ is a σ-ideal.

Proof. Suppose Ai ∈ DF+ for i < ω. Let ϕi witness this for each i, and define ϕ by setting
ϕ(σ) :=

⋂
i<|σ| ϕi(σ). We claim that ϕ witnesses that A =

⋃
i<ω Ai ∈ DF+ . Pick x ∈ A.

There is i such that x ∈ Ai, hence for infinitely many n we have x(n) /∈ ϕi(x�n). But if n > i
then ϕ(x�n) ⊆ ϕi(x�n). Therefore, for infinitely many n we also have x(n) /∈ ϕ(x�n).

Lemma 3.4. Let A ⊆ ωω. The following are equivalent:

1. A ∈ DF+ .

2. ∀σ ∈ ω<ω ∃T ∈ LF with stem(T ) = σ, such that [T ] ∩A = ∅.

3. ∀S ∈ LF ∃T ≤0 S ([S] ∩A = ∅)

Proof. The equivalence between 2 and 3 is clear so we prove the equivalence between 1 and
2.

First, note that if ϕ : ω<ω → F and σ ∈ ω<ω, then there is a unique Tσ,ϕ ∈ LF such
that stem(Tσ,ϕ) = σ and ∀τ ⊇ σ, SuccTσ,ϕ(τ) = ϕ(τ). Conversely, for every T ∈ LF with
stem(T ) = σ, there exists a (not unique) ϕ such that T = Tσ,ϕ.

Now suppose A ∈ DF+ , as witnessed by ϕ, and let σ ∈ ω<ω. Then A ∩ [Tσ,ϕ] = ∅, since if
x ∈ A ∩ [Tσ,ϕ] then ∀n > |σ| (x(n) ∈ ϕ(x�n)), contrary to the assumption.

Conversely, suppose for every σ there is Tσ ∈ LF such that stem(Tσ) = σ and A∩ [Tσ] = ∅.
For each σ, let ϕσ : ω<ω → F be such that Tσ = Tσ,ϕσ . Then define ϕ : ω<ω → F by

ϕ(σ) =
⋂
τ⊆σ

ϕτ (σ).

We claim that ϕ witnesses that A ∈ DF+ . Let x ∈ A be arbitrary. Let σ ⊆ x. Then
x /∈ [Tσ] = [Tσ,ϕσ ], hence, there is n > |σ| such that x(n) /∈ ϕσ(x�n). But by definition,
since σ ⊆ x�n, we have ϕ(x�n) ⊆ ϕσ(x�n). Therefore also x(n) /∈ ϕ(x�n).

The following are easy consequences of the above; the proofs are left to the reader.

Lemma 3.5.
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1. DF+ ⊆ NLF .

2. DF+ ⊆ ILF+ (in particular, if T ∈ LF+ then [T ] /∈ DF+).

3. If F is an ultrafilter then DF+ = NLF = ILF = ILF+ .

4. If F is not an ultrafilter then there is a closed witness to DF+ 6= NLF .

Theorem 3.6 (Miller). For every analytic A, either A ∈ DF+ or there is T ∈ LF+ such
that [T ] ⊆ A.

Proof. See the proof of Theorem 3 and the comment after Theorem 8 in [Mil].1 We need
a slight modification of this proof: rather than talking about trees with empty stem, we
consider trees with a fixed stem σ. If A /∈ DF+ , then by Lemma 3.4 (2), there exists
σ ∈ ω<ω such that for all S ∈ LF with stem(S) = σ, [S] ∩ A 6= ∅. By applying the same
argument as in [Mil, Theorem 3], we obtain a T ∈ LF+ (with stem(T ) = σ) such that
[T ] ⊆ A.

Remark 3.7. As a direct consequence of this theorem, we obtain an alternative (forcing-
free) proof of the second part of Theorem 2.8. Namely: let A be analytic and let T ∈ LF+

be arbitrary, so A ∩ [T ] is analytic. If there exists S ∈ LF+ with [S] ⊆ A ∩ [T ] we are done,
and if A ∩ [T ] ∈ DF+ , use Lemma 3.4 to find a tree U ∈ LF with stem(U) = stem(T ) and
[U ] ∩A ∩ [T ] = ∅. Notice that T ∩ U ∈ LF+ , so we are done.

Also, we now have a dense embedding LF+ ↪−→d Borel(ωω)/DF+ , with DF+ being a
Borel-generated σ-ideal which is far easier to study than ILF+ . This will be of particular
importance in Section 5 where we look at analytic filters.

4 Direct implications

We first look at some straightforward implications between various statements of the form
Γ(LF ), Γ(LF+) and Γ(P) for other well-known forcings P. Here Γ denotes an arbitrary
boldface pointclass, i.e., a collection of subsets of ωω closed under continuous pre-images and
intersections with closed sets. No further assumptions on the complexity of F are required.

Recall the following reducibility relations for filters on a countable set:

Definition 4.1. Let F,G be filters on dom(F ) and dom(G), respectively. We say that:

1. G is Katetov-reducible to F , notation G ≤K F , if there is a map π : dom(F )→ dom(G)
such that a ∈ G⇒ π−1[a] ∈ F .

2. G is Rudin-Keisler-reducible to F , notation G ≤RK F , if there is a map π : dom(F )→
dom(G) such that a ∈ G⇔ π−1[a] ∈ F .

Remark 4.2. Note that G ≤K F and G ≤RK F are equivalent to the reducibility relation
between ideals (i.e., between G− and F−). Also, it is clear that if π witnesses G ≤K F , then
a ∈ F+ ⇒ π[a] ∈ G+, and if π witnesses G ≤RK F then, in addition, a ∈ F ⇒ π[a] ∈ G.

1Here we should also note that Miller’s Theorem 3 is, in fact, a direct consequence of Goldstern et al’s
dichotomy [GRSS95, Lemma 2.3]. However, the point is that its generalisation to filters does not follow
from the proof in [GRSS95], which uses infinite games and determinacy. Miller’s proof, on the other hand,
uses only classical methods and generalises directly to filters.
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Notation 4.3. We use the following slight abuse of notation: if F is a filter and a ∈ F+,
then F �a denotes the set {b ⊆ a | (a \ b) ∈ F−}. In other words, F �a is the filter with
dom(F �a) = a which is dual to the ideal (F−)�a.

Definition 4.4. A filter F is called K-uniform if for every a ∈ F+, F �a ≤K F .

Lemma 4.5. Suppose G�a ≤K F for all a ∈ G+. Then Γ(LF+)⇒ Γ(LG+). In particular,
this holds if G is K-uniform and G ≤K F .

Proof. Let A ∈ Γ and T ∈ LG+ arbitrary. For all σ ∈ T extending stem(T ), let Xσ :=
SuccT (σ) and fix πσ witnessing G�Xσ ≤K F . Define f ′ : ω<ω → ω<ω by f ′(∅) := stem(T )
and f ′(τ_ 〈n〉) := f ′(τ)_

〈
πf ′(τ)(n)

〉
, and let f : ωω → ωω be the limit of f ′. Let A′ :=

f−1[A]. Then A ∈ Γ, so by assumption there is an S ∈ LF+ such that [S] ⊆ A′ or
[S] ∩A′ = ∅, without loss of generality the former.

By assumption, we know that for every σ ∈ S extending stem(S), πf ′(σ)[SuccS(σ)] ∈ G+.
To make sure that the image under f is an LG+ -tree, prune S to S∗ ⊆ S, so that stem(S∗) =
stem(S), and for all σ ∈ S∗ extending stem(S∗), πf ′(σ)[SuccS∗(σ)] = πf ′(σ)[SuccS(σ)], and
πf ′(σ)�SuccS∗(σ) is injective. Then f [S∗] is the set of branches through an LF+ -tree, and
moreover f [S∗] ⊆ [T ] ∩A.

Lemma 4.6. Suppose G�a ≤K F for all a ∈ G+. Then Γ(LF )⇒ Γ(LG+). In particular, if
F is K-uniform then Γ(LF )⇒ Γ(LF+)

Proof. Let A ∈ Γ and T ∈ LG+ be arbitrary. Let f and A′ := f−1[A] be as above. By the
same argument, it suffices to find S ∈ LF+ such that [S] ⊆ A′ or [S] ⊆ A′.

By assumption, there is an LF -tree U with [U ] \A′ ∈ ILF or [U ]∩A′ ∈ ILF , without loss of
generality the former. Since ILF is Borel-generated, let B be a Borel ILF -positive set such
that B ⊆ A′ ∩ [U ]. By Lemma 3.5 B is also DF+ -positive. But then, by Theorem 3.6 there
exists an S ∈ LF+ such that [S] ⊆ B, which completes the proof.

Lemma 4.7. Suppose G ≤RK F . Then Γ(LF )⇒ Γ(LG).

Proof. Let π witness G ≤RK F and let f : ωω → ωω be defined by f(x)(n) := π(x(n)).
Clearly f is continuous in the standard sense. Moreover, we claim the following:

Claim. f is continuous and open as a function from (ωω, τLF ) to (ωω, τLG).

Proof. If [T ] is a basic open set in τLG , then T ∈ LG and so f−1[T ] is a union of LF -trees
(one for each f -preimage of the stem of T ), so it is open in τLF . Conversely, if [S] is basic
open in τLF , then S ∈ LF . Although f [S] is not necessarily a member of LG, we can argue
as follows: given y ∈ f [S], let x ∈ [S] be such that f(x) = y. Then prune S to S∗ in a similar
way as in the proof of Lemma 4.5, in such a way that the function π restricted to SuccS∗(σ)
is injective for each σ while the image π[SuccS∗(σ)] remains unchanged. Moreover, we can
do this so that x ∈ [S∗]. Then f [S∗] is indeed an LG-tree, and moreover y ∈ f [S∗] ⊆ f [S].
Since this can be done for every y ∈ f [S], it follows that f [S] is open in τLG . � (Claim)

From this, it is not hard to conclude that if A ∈ ILG then f−1[A] ∈ ILF . To complete the
proof, let A ∈ Γ and let O be τLG-open. It suffices to find a non-empty τLG -open U ⊆ O
such that U ⊆∗ A or U ∩A =∗ ∅, where ⊆∗ and =∗ refers to “modulo ILG .
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Let A′ := f−1[A] and O′ := f−1[O]. Since A′ has the Baire property in τLF , there is an open
U ′ ⊆ O′ such that U ⊆∗ A′ or U ∩ A′ =∗ ∅ (wlog the former) where ⊆∗ and =∗ refers to
“modulo ILF ”. Then there is a Borel set B such that B /∈ ILF and B ⊆ A′∩U ′. Hence f [B]
is an analytic subset of A ∩ O, and by the Claim, f [B] /∈ ILG . By the τLG -Baire property
of analytic sets, there is an τLG-open U such that U ⊆∗ f [B]. Hence U ∩ O ⊆∗ A′, which
completes the proof.

The relationships established in the above three theorems are summarised in Figure 1.

Γ(LG)
G K-uniform +3 G(LG+)

(∗) ∀a ∈ G+(G�a ≤K F )

Γ(LF )
F K-uniform +3

G≤RKF

KS

(∗)

8@

Γ(LF+)

(∗)

KS

Figure 1: Implications between the properties for filters F and G.

In particular, since Cof�a ≤K F holds for every F and every infinite a, we obtain the
following corollary:

Corollary 4.8. Γ(LF )⇒ Γ(L) and Γ(LF+)⇒ Γ(L) for all F .

Next, we look at the relationship between LF -measurability and the classical Baire prop-
erty. In accordance to common usage, we denote the statement “all sets in Γ have the Baire
property” by Γ(C) (C denoting the Cohen forcing partial order). It is known that if F is
not an ultrafilter then LF adds a Cohen real. Specifically, if Z is such that Z /∈ F and
(ω \ Z) /∈ F , and f : ωω → 2ω is defined by

f(x)(n) :=

{
1 if x(n) ∈ Z
0 if x(n) /∈ Z

then f is continuous with the property that if A is meager then f−1[A] ∈ ILF .

Concerning ultrafilters, the following is known.

Definition 4.9. Let NWD ⊆ 2<ω denote the ideal of nowhere dense subsets of 2<ω, that
is, those H ⊆ 2<ω such that ∀σ ∃τ ⊇ σ ∀ρ ⊇ τ (ρ /∈ H). An ultrafilter U is called nowhere
dense iff NWD 6≤K U−.

It is known that LU adds a Cohen real iff U is not a nowhere dense ultrafilter. Specifically,
if U is not nowhere dense and π : ω → 2<ω is a witness to NWD ≤K U−, then we can define
a continuous function f : ωω → 2ω by f(x) := π(x(0))_π(x(1))_ . . . . We leave it to the
reader to verify that if A is meager then f−1[A] ∈ ILU . This easily leads to the following:

Lemma 4.10. If F is not an ultrafilter, or a non-nowhere dense ultrafilter, then Γ(LF )⇒
Γ(C).

9



Proof. In either case, we have a continuous f : ωω → 2ω such that f -preimages of meager
sets are ILF -small, as above. Let A ∈ Γ and σ ∈ 2<ω arbitrary. Let ϕ be a homeomorphism
from 2ω to [σ] and A′ := (ϕ ◦ f)−1[A]. Then A′ ∈ Γ, so let B be a Borel ILF -positive set
with B ⊆ A′ or B ∩A′ = ∅, without loss the former. Then f [B] is an analytic non-meager
subset of A ∩ [σ], so there exists [τ ] ⊆ [σ] such that [τ ] ⊆∗ A, which is sufficient.

Finally, an argument from [Mil] yields the following implication. Recall that a set A ⊆
[ω]ω is Ramsey iff there exists H ∈ [ω]ω such that [H]ω ⊆ A or [H]ω ∩A = ∅.

Lemma 4.11. If U is an ultrafilter then Γ(LU )⇒ Γ(Ramsey).

Proof. In fact, we prove a stronger statement: if A ⊆ ω↑ω (strictly increasing sequences) is
LU -measurable then {ran(x) | x ∈ A} is Ramsey. First note that, by Lemma 2.5 (4), there
exists a T ∈ LU with empty stem, such that [T ] ⊆ A or [T ] ∩ A = ∅. Also, without loss of
generality, we can assume that [T ] ⊆ ω↑ω.

Now proceed inductively:

• Let n0 ∈ SuccT (∅) be arbitrary.

• Let n1 ∈ SuccT (∅) ∩ SuccT (〈n0〉).

• Let n2 ∈ SuccT (∅) ∩ SuccT (〈n0〉) ∩ SuccT (〈n1〉) ∩ SuccT (〈n0, n1〉).

• etc.

Since U is a filter we can always continue this process and make sure that for any k, any
subsequence of the sequence 〈n0, . . . , nk〉 is an element of T . It then follows that any infinite
subsequence of the sequence 〈ni | i < ω〉 is an element of [T ]. This is exactly what we
need.

If U is not an ultrafilter, then the above result does not hold in general. For example,
considering the cofinite filter, both implications Γ(L)⇒ Γ(Ramsey) and Γ(D)⇒ Γ(Ramsey)
are consistently false for Γ = ∆1

2 (see [FFK14, Section 6]).

5 Analytic filters

In this section, we focus on analytic filters (or ideals). This is important if we want the
forcings to be definable, and if we want to apply results from [Ike10, Kho12]. Note that just
for absoluteness of the forcing, it would have been sufficient to consider Σ1

2 or Π1
2 filters, by

Shoenfield absoluteness. However, we also require the ideals and other related notions to
have a sufficiently low complexity. For this reason, in this section the following assumption
will hold:

Assumption. F is an analytic filter on ω.

It is clear that the statement “T ∈ LF ” is as complex as F itself. Recall from [BJ95,
Section 3.6]) that a forcing notion is Suslin ccc if it is ccc and the statements “T ∈ LF ”,
“T ⊥ S” and “S ≤ T” are Σ1

1-relations on the codes of trees. The following is clear:

Fact 5.1. Let F be analytic. Then LF is a Suslin ccc forcing notion.

Lemma 5.2. Let F be analytic. Then the ideals ILF and DF+ are Σ1
2 on Borel sets (i.e.,

the membership of Borel sets in the ideal is a Σ1
2-property on the Borel codes).
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Proof. A Borel set B is in DF+ iff ∃ϕ : ω<ω → F ∀x (x ∈ B → ∃∞n (x(n) /∈ ϕ(x�n))). This
is easily seen to be a Σ1

2 statement if F is Σ1
1.

For ILF , let B be a Borel set. Notice that B is τLF -nowhere dense iff there exists a τLF -open
dense set O such that B ∩ O = ∅, iff there is a maximal antichain A ⊆ LF such that
B ∩

⋃
{[T ] | T ∈ A} = ∅. By the ccc, one such maximal antichain can be coded by a real.

The resulting computation yields a Σ1
2 statement.

In [BHL05, Ike10] the concept of quasi-generic real was introduced—a real avoiding all
Borel sets in a certain σ-ideal coded in the ground model. This concept coincides with
generic reals for ccc ideals, but yields a weaker concept for other (combinatorial) ideals, see
e.g. [Kho12, Section 2.3].

In the case of LF , “quasi-generic reals” are the LF -generic ones, whereas in the case of
LF+ , they have a simple characterisation due to the combinatorial ideal DF+ .

Lemma 5.3. Let M be a model of set theory. A real x is LF -generic over M iff x /∈ B for
every Borel set B ∈ ILF with code in M .

Proof. See [Kho12, Lemma 2.3.2].

Definition 5.4. Let M be a model of set theory. We will call a real x ∈ ωω F -dominating
over M if for every ϕ : ω<ω → F with ϕ ∈M , x F -dominates ϕ, i.e., ∀∞n (x(n) ∈ ϕ(x�n))
(note that the statement ϕ : ω<ω → F is absolute for between M and larger models).

Lemma 5.5. Let M be a model of set theory with ω1 ⊆M . A real x is F -dominating over
M iff x /∈ B for every Borel set B ∈ DF+ with code in M .

Proof. This is easy to verify from the definition, using Σ1
2-absoluteness between M and V

and the fact that B ∈ DF+ is a Σ1
2-statement for Borel sets.

As an immediate corollary of the above and the general framework from [Ike10] and
[Kho12], we immediately obtain the following four characterizations for (LF )- and (LF+)-
measurability.

Corollary 5.6. Let F be an analytic filter. Then:

1. ∆1
2(LF ) ⇐⇒ ∀r ∈ ωω ∃x (x is LF -generic over L[r]).

2. Σ1
2(LF ) ⇐⇒ ∀r ∈ ωω {x | x not LF -generic over L[r]} ∈ ILF .

3. ∆1
2(LF+)⇐⇒ ∀r ∈ ωω ∀T ∈ LF+ ∃x ∈ [T ] (x is F -dominating over L[r]).

4. Σ1
2(LF+) ⇐⇒ ∀r ∈ ωω {x | x not F -dominating over L[r]} ∈ ILF+ .

Proof. See [Ike10, Theorem 4.3 and Theorem 4.4] and [Kho12, Theorem 2.3.7 and Corollary
2.3.8]. Note that both ideals LF and DF+ are Σ1

2, the forcings have absolute definitions and
are proper, so the above results can be applied.

Only one non-trivial fact requires some explanation. In point 1, the above abstract theorems
only yield the statement “∆1

2(LF ) ⇐⇒ ∀r ∈ ωω ∀T ∈ LF ∃x ∈ [T ] (x is LF -generic over
L[r])”. In order to eliminate the clause “∀T ∈ LF . . . ”, we use the following fact: for every
non-principal filter F and every X ∈ F , there exists a bijection π : ω → X, such that for
all a ⊆ X, a ∈ F ⇔ π−1[a] ∈ F . See, e.g., [MZ16, Lemma 3]. We leave it to the reader to
verify that this implies homogeneity of LF , in the sense that if there exists an LF -generic
real then there also exists an LF -generic real inside T for every T ∈ LF .
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We are interested in more elegant characterizations of the four above statements.

Theorem 5.7. Σ1
2(LF ) ⇐⇒ ∀r ∈ ωω (ω

L[r]
1 < ω1).

The proof uses methods similar to [LR95, Theorem 6.2] (see also [BL99, Theorem 5.11]).
It follows using a series of definitions and lemmas.

Definition 5.8. For every open dense set D ⊆ LF , define a rank function rkD : ω<ω → ω1

by

• rkD(σ) := 0 iff there is T ∈ D with stem(T ) = σ and

• rkD(σ) := α iff rkD(σ) 6< α and ∃Z ∈ F+ ∀n ∈ Z (rkD(σ_ 〈n〉) < α).

A standard argument shows that rkD(σ) is well-defined for every σ.

Definition 5.9. An (F−)-mad family is a collection A ⊆ F+ such that ∀a 6= b ∈ A
(a ∩ b) ∈ F−, and ∀a ∈ F+ there exists b ∈ A such that (a ∩ b) ∈ F+.

Fact 5.10. For every analytic filter F , there exists an (F−)-mad family of size 2ℵ0 .

Proof. See [FKV, Corollary 1.8].

Lemma 5.11. Let A be an (F−)-mad family. For each a ∈ A, let Xa := {x ∈ ωω |
ran(x) ∩ a = ∅} ∈ NLF . Then, for any X ∈ ILF , the collection {a ∈ A | Xa ⊆ X} is at
most countable.

Proof. Let X ⊆
⋃
nXn where Xn are closed nowhere dense in τLF , and let Dn := {T |

[T ] ∩ Xn = ∅}. Then the Dn are open dense in LF . Consider a countable elementary
submodel N of some sufficiently large Hθ containing A, the Dn, and the defining parameter
of F (i.e., the r ∈ ωω such that F ∈ Σ1

1(r)). The proof will be completed by showing that
if a ∈ A \N , then there exists x ∈ Xa ∩

⋂
n

⋃
{[T ] | T ∈ Dn}, hence x ∈ Xa \X.

Sublemma. For every Dn, every a ∈ A \ N , and every T ∈ LF , if ran(stem(T )) ∩ a = ∅
then there exists S ≤ T with S ∈ Dn and such that ran(stem(S)) ∩ a = ∅ as well.

Proof. Let Y := {τ ∈ T | stem(T ) ⊆ τ and ran(τ)∩ a = ∅}. Let τ ∈ Y be of least Dn-rank.
We claim that rkDn(τ) = 0, which completes the proof. Towards contradiction, assume
rkDn(τ) = α > 0 and let Z ∈ F+ witness this. By elementarity and using the fact that all
relevant objects are in N and F is absolute for N as well, it follows that Z ∈ N .

By elementarity and absoluteness of F , N |= “A is an (F−)-mad family”, hence there exists
b ∈ A ∩ N such that Z ∩ b ∈ F+. Since b 6= a, it follows that b ∩ a ∈ F−, so there exists
n ∈ (Z \ a). Then τ_ 〈n〉 is an element of Y with Dn-rank less than α, contradicting the
minimality of τ . � (Sublemma)

Now, it is clear that we can inductively apply the sublemma to find a sequence T0 ≥ T1 ≥
T2 ≥ . . . , with strictly increasing stems, such that Tn ∈ Dn for every n, and moreover
ran(stem(Tn)) ∩ a = ∅ for every n. Then x :=

⋃
n stem(Tn) has all the required properties,

i.e., x ∈ Xa \X.

Proof of Theorem 5.7. We need to prove the equivalence between

1. ∀r {x | x not LF -generic over L[r]} ∈ ILF and
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2. ∀r (ω
L[r]
1 < ω1).

By Lemma 5.3, the former statement is equivalent to ∀r
⋃
{B | B is a Borel ILF -small set

with code in L[r]} ∈ ILF . The direction from 2 to 1 is thus immediate.

Conversely, fix r and assume that ω
L[r]
1 = ω1. Let A be an (F−)-mad family such that

|A ∩ L[r]| = ω1 (this can be done by extending an (F−)-almost disjoint family of size ω1

in L[r]). For every a ∈ A ∩ L[r], Xa is a Borel ILF -small set with code in L[r]. If 1 was
true, then in V there would be an X ∈ ILF such that Xa ⊆ X for all such a, contradicting
Lemma 5.11.

Remark 5.12. The same argument yields add(ILF ) = ω1 and cof(ILF ) = 2ℵ0 for ana-
lytic filters (where add and cof denote the additivity and cofinality numbers of the ideal,
respectively).

Next, we consider ∆1
2(LF ) and ∆1

2(LF+). In [BS99, Theorem 2], the covering number
of ILU for an ultrafilter U was determined to be the minimum of b and a certain combi-
natorial characteristic of U called πp(U). This was generalised by Hrusak and Minami in
[HM14, Theorem 2] to arbitrary filters. Similar proofs yield characterisations of ∆1

2(LF )
and ∆1

2(LF+).

Definition 5.13. Let M be a model of set theory and F an analytic filter. We say that a
real C ∈ [ω]ω is

1. F -pseudointersecting over M if C ⊆∗ a for all a ∈ F ∩M .

2. F -separating over M if it is F -pseudointersecting over M , and additionally, for all
b ∈ (F+) ∩M , |C ∩ b| = ω.

We use the shorthand “∃F -pseudoint” and “∃F -sep” to abbreviate the statements “∀r ∈
ωω ∃C (C is F -pseudointersecting/separating over L[r])”.

Question 5.14. Are there natural regularity properties equivalent to “∃F -pseudoint” and
“∃F -sep” for ∆1

2 sets of reals?

Recall that Σ1
2(C) is equivalent to ∆1

2(C)∧∆1
2(L) and equivalent to ∆1

2(D), where C,L
and D stand for the Baire property, Laver- and Hechler-measurability, respectively. Also,
recall that ∆1

2(C) is equivalent to the existence of Cohen reals over L[r], ∆1
2(L) is equivalent

to the existence of dominating reals over L[r], and ∆1
2(D) is equivalent to the existence of

Hechler-generic reals over L[r]. See [BL99, Theorem 4.1 and Theorem 5.8]. Also, note that
D and L are just LCof and LCof+ .

Theorem 5.15. ∆1
2(LF ) ⇐⇒ Σ1

2(C) ∧ ∃F -sep.

Proof. By Corollary 4.8 and Lemma 4.10, we know that ∆1
2(LF ) implies ∆1

2(L) and ∆1
2(C),

which in turns implies Σ1
2(C) as mentioned above. Moreover, a standard density argument

shows that if LF generically adds an F -separating real, specifically, if x is LF -generic then
ran(x) is F -separating.

For the converse direction, fix r ∈ ωω and let C be F -separating over L[r]. Let DC denote
Hechler forcing as defined on Cω (i.e., the conditions are trees in C<ω with branching into
all of C except for finitely many points). Clearly DC is isomorphic to the ordinary Hechler
forcing. Notice that for every T ∈ LF , if ran(stem(T )) ⊆ C then T ∩ C<ω ∈ DC .
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For every D ∈ L[r] dense in LF , let D′ := {T ∩ C<ω | T ∈ D and ran(stem(T )) ⊆ C}. We
claim that D′ is predense in DC . Let S ∈ DC be arbitrary, with σ := stem(S). Recall the
rank-function from Definition 5.8. Since D ∈ L[r], we consider the rank function rkD as
defined inside L[r]. If rkD(σ) = 0 then there is T ∈ D with stem(T ) = σ, hence S and T
are compatible. Otherwise, let rkD(σ) = α. By definition of rkD and the fact that rkD is
in L[r], there exists Z ∈ F+ with Z ∈ L[r], such that rkD(σ_ 〈n〉) < α for all n ∈ Z. Since
SuccS(σ) ∩ Z is also in F+, by assumption, there is n ∈ C ∩ SuccS(σ) ∩ Z. Continuing this
process, we arrive at some τ extending σ, such that τ ∈ S, ran(τ) ⊆ C and rkD(τ) = 0.
Then we are done as before.

By the remark above, Σ1
2(C) implies ∆1

2(D), which implies the existence of Hechler-generic
reals. In particular, there is a d ∈ Cω which is DC-generic real over L[r][C]. But then
d is LF -generic over L[r], since for every D ∈ L[r] dense in LF , we find T ∈ D with
d ∈ [T ∩ C<ω].

A similar argument can be used to simplify ∆1
2(LF+); however, here the homogeneity

of LF+ provides an additional obstacle, since LF+ is, in general, only homogeneous if F is
K-uniform.

Theorem 5.16. ∆1
2(LF+) =⇒ ∆1

2(L) ∧ ∃F -pseudoint. If F is K-uniform, then the
converse implication holds.

Proof. By Corollary 4.8 we know that ∆1
2(LF+)⇒∆1

2(L). Let x be F -dominating over L[r]
and let C := ran(x). For each a ∈ F ∩L[r] let ϕ be the function given by ϕ(σ) := a \ |σ| for
all σ ∈ ω<ω. Since ∀∞n (x(n) ∈ ϕ(x�n)), clearly C is infinite and C ⊆∗ a.

Conversely, assume that F is K-uniform. We leave it to the reader to verify that, if T ∈ LF+ ,
then there exists a continuous function f : ωω → [T ] such that f -preimages of DF+ -small
sets are DF+ -small. In particular, the statements

• ∃x (x is F -dominating over L[r]), and

• for all T ∈ LF+ ∃x ∈ [T ] (x is F -dominating over L[r])

are equivalent for all T ∈ LF+ ∩ L[r].

So, fix r ∈ ωω and let T ∈ LF+ be arbitrary. Without loss of generality, assume T ∈ L[r]
(otherwise, use L[r][T ] instead). Let C be F -pseudointersecting over L[r]. For each ϕ :
ω<ω → F from L[r], define gϕ : ω<ω → ω by gϕ(σ) := min{nminC \ n ⊆ ϕ(σ)}. Then all
gϕ are in L[r], by ∆1

2(L) there is a dominating real g over L[r], so, in particular, g dominates
all gϕ. Let x ∈ ωω be such that x(n) ∈ C and x(n) ≥ g(x�n) for every n. Clearly for every
ϕ ∈ L[r] we have ∀∞n (x(n) ∈ ϕ(x�n)), hence x is F -dominating over L[r]. This suffices by
what we mentioned above.

Currently, we do not have a similarly elegant characterization for Σ1
2(LF+).

Question 5.17. Is there a characterization of Σ1
2(LF+) similar to the above? Is Σ1

2(LF )
equivalent to ∆1

2(LF+)?
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