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Abstract. This paper proves that the universal homogeneous triangle-free graph H3 has finite big Ramsey

degrees: For each finite triangle-free graph G, there is a finite number T (G) such that for any coloring of all
copies of G in H3 into finitely many colors, there is a subgraph of H3 which is again universal homogeneous

triangle-free in which the coloring takes no more than T (G) colors. This is the first result on big Ramsey

degrees for a homogeneous structure omitting copies of some non-trivial finite structure.
The following structures and techniques were developed for the proof: a new flexible method for con-

structing trees which code the universal triangle-free graph, called strong coding trees; a new notion of strict

similarity type for finite subtrees of a strong coding tree; Ramsey theorems for strong coding trees, yielding
analogues of the Halpern-Läuchli and Milliken Theorems; and new notions of envelope. The proofs of the

Ramsey theorems for strong coding trees involve the set-theoretic technique of forcing and new styles of

forcing posets, but the theorem and its proof hold in ZFC, building on ideas from Harrington’s forcing proof
of the Halpern-Läuchli Theorem.

Overview

It is a central question in the theory of homogeneous relational structures as to which structures have finite
big Ramsey degrees. This question, of interest for several decades, has gained recent momentum as it was
brought into focus by Kechris, Pestov, and Todorcevic in [16]. An infinite structure S is ultrahomogeneous, or
simply homogeneous, if any isomorphism between two finitely generated substructures of S can be extended
to an automorphism of S. A homogeneous structure S is said to have finite big Ramsey degrees if for each
finite substructure A of S, there is a number n, depending on A, such that any coloring of the copies of
A in S into finitely many colors can be reduced down to no more than n colors on some substructure S′

isomorphic to S. This is interesting not only as a Ramsey property for infinite structures, but also because
of its implications for topological dynamics.

Prior to work in this paper, finite big Ramsey degrees had been proved for a handful of homogeneous
structures: the rationals ([2]), the Rado graph ([31]), ultrametric spaces ([25]), and enriched versions of the
rationals and related circular directed graphs ([17]). According to [27], “so far, the lack of tools to represent
ultrahomogeneous structures is the major obstacle towards a better understanding of their infinite partition
properties.” This paper addresses this obstacle by providing new tools to represent the ultrahomogeneous
triangle-free graph and developing the necessary Ramsey theory to deduce finite big Ramsey degrees. The
methods developed seem robust enough that correct modifications should likely apply to a large class of
ultrahomogeneous structures omitting some finite substructure.

1. Introduction

Ramsey theory is the study of finding well-organized structures within a seemingly disorganized structure.
By beginning with a large enough structure, it is often possible to find substructures in which order emerges
and persists among all smaller structures within it. Although Ramsey-theoretic statements are often simple,
they can be powerful tools for solving problems. In recent decades, the heart of many problems in mathe-
matics have turned out to have at their core some Ramsey-theoretic content. This has been seen clearly in
Banach spaces and topological dynamics.
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The field of Ramsey theory opened with the following celebrated result.

Theorem 1.1 (Ramsey, [29]). Let k and l be positive integers, and suppose Pi, 0 ≤ i < k, is a partition of
all l-element subsets of N. Then there is an infinite subset M of natural numbers and an integer i < k such
that all l-element subsets of M lie in Pi.

The finite version of Ramsey’s Theorem states that given positive integers k, l,m, there is a number n
large enough so that given any partition of the l-element subsets of {0, . . . , n − 1} into k pieces, there is a
subset X of {0, . . . , n − 1} of size m such that all l-element subsets of X lie in one piece of the partition.
This follows from the infinite version using a compactness argument. The set X is called homogeneous for
the given partition.

The idea of partitioning certain subsets of a given finite set and looking for a large homogeneous subset
can be extended to structures. A Fräıssé class K of finite structures is said to have the Ramsey property if
for any A,B ∈ K with A embedding into B, (written A ≤ B), and for any finite number k, there is a finite
ordered graph C such that for any coloring of the copies of A in C into k colors, there is a copy B′ ≤ C of
B such that all copies of A in B′ have the same color. We use the standard notation

(1) C→ (B)Ak

to denote that for any coloring of the copies of A in C, there is a copy B′ of B inside C such that all copies
of A in C have the same color. Examples of Fräıssé classes of finite structures with the Ramsey property,
having no extra relations, include finite Boolean algebras (Graham and Rothschild, [12]) and finite vector
spaces over a finite field (Graham, Leeb, and Rothschild, [10] and [11]). Examples of Fräıssé classes with
extra structure satisfying the Ramsey property include finite ordered relational structures (independently,
Abramson and Harrington, [1] and Nešetřil and Rödl, [23], [24]). In particular, this includes the class of finite
ordered graphs, denoted G<. The papers [23] and [24] further the quite general result that all set-systems of
finite ordered relational structures omitting some irreducible substructure have the Ramsey property. This
includes the Fräıssé class of finite ordered graphs omitting n-cliques, denoted K<n .

In contrast, the Fräıssé class of unordered finite graphs does not have the Ramsey property. However, it
does posses a non-trivial remnant of the Ramsey property, called finite Ramsey degrees. Given any Fräıssé
class K of finite structures, for each A ∈ K, let t(A,K) be the smallest number t, if it exists, such that for
each B ∈ K with A ≤ B and for each k ≥ 2, there is some C ∈ K, into which B embeds, such that

(2) C → (B)Ak,t,

where this means that for each coloring of the copies of A in C into k colors, there is a copy B′ of B in C such
that all copies of A in B′ take no more than t colors. Then K has finite (small) Ramsey degrees if for each
A ∈ K the number t(A,K) exists. The number t(A,K) is called the Ramsey degree of A in K ([9]). Note that
K has the Ramsey property if and only if t(A,K) = 1 for each A ∈ K. A strong connection between Fräıssé
classes with finite Ramsey degrees and ordered expansions is made explicit in Section 10 of [16], where it
is shown that if an ordered expansion K< of a Fräıssé class K has the Ramsey property, then K has finite
small Ramsey degrees, and the degree of A ∈ K can be computed from the number of non-isomorphic order
expansions it has in K<. A similar result holds for pre-compact expansions (see [27]). It follows from the
results stated above that the classes of finite graphs and finite graphs omitting n-cliques have finite small
Ramsey degrees.

At this point, it is pertinent to mention recent advances connecting Ramsey theory with topological dy-
namics. A new connection was established in [16] which accounts for previously known phenomena regarding
universal minimal flows. In that paper, Kechris, Pestov, and Todorcevic proved several strong correspon-
dences between Ramsey theory and topological dynamics. A Fräıssé order class is a Fräıssé class which
has at least one relation which is a linear order. One of their main theorems (Theorem 4.7) shows that the
extremely amenable (fixed point property on compacta) closed subgroups of the infinite symmetric group S∞
are exactly those of the form Aut(F∗), where F∗ is the Fräıssé limit of some Fräıssé order class satisfying the
Ramsey property. Another main theorem (Theorem 10.8) provides a way to compute the universal minimal
flow of topological groups which arise as the automorphism groups of Fräıssé limits of Fräıssé classes with
the Ramsey property and the ordering property. That the ordering property can be relaxed to the expansion
property was proved by Nguyen Van Thé in [26].
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We now turn to Ramsey theory on infinite structures. One may ask whether analogues of Theorem 1.1 can
hold on more complex infinite relational structures, in particular, for Fräıssé limits of Fräıssé classes. The
Fräıssé limit F of a Fräıssé class K of finite relational structures is said to have finite big Ramsey degrees if
for each member A in K, there is a finite number T (A,K) such that for any coloring c of all the substructures
of F which are isomorphic to A into finitely many colors, there is a substructure F′ of F which is isomorphic
to F and in which c takes no more than T (A,K) colors. When this is the case, we write

(3) F→ (F)Ak,T (A,K).

This notion has been around for several decades, but the terminology was initiated in [16].
The first homogeneous structure shown to have finite big Ramsey degrees is the rationals, which are the

Fräıssé limit of the class of finite linear orders LO. That the upper bounds exist was known by Laver,
following from applications of Milliken’s Theorem (see Theorem 2.5). The lower bounds were proved by
Devlin in 1979 in his PhD thesis [2], where he showed that the numbers T (k,LO) are actually tangent
numbers, coefficients of the Talyor series expansion of the tangent function. In particular, T (1,Q) = 1, as
any coloring of the rationals into finitely many colors contains a copy of the rationals in one color; thus, the
rationals are indivisible. On the other hand, T (2,Q) = 2, so immediately for colorings of pairsets of rationals,
one sees that there is no Ramsey property for the rationals when one requires that the substructure Q′ of Q
be “big”, meaning isomorphic to the original infinite one.

The next homogeneous structure for which big Ramsey degrees have been proved is the the Rado graph,
denoted R. Also known as the random graph, R is the countable graph which is universal for all countable
graphs, meaning each countable graph embeds into R as an induced substructure. Equivalently, the Rado
graph is the Fräıssé limit of the class of finite graphs, denoted G. It is an easy exercise from the defining
property of the Rado graph to show that the Rado graph is indivisible, meaning that the big Ramsey degree
for vertices in the Rado graph is 1. The first non-trivial lower bound result for big Ramsey degrees was
proved by Erdős, Hajnal and Pósa in [6] in 1975, where they showed there is a coloring of the edges in R
into two colors such that for any subgraph R′ of the Rado graph such that R′ is also universal for countable
graphs, the edges in R′ take on both colors. That this upper bound is sharp was proved over two decades
later in 1996 by Pouzet and Sauer in [28], and thus, the big Ramsey degree for edges in the Rado graph
is 2. The problem of whether every finite graph has a finite big Ramsey degree in the Rado graph took
another decade to solve. In [31], Sauer proved that the Rado graph, and in fact a general class of binary
relational homogeneous structures, have finite big Ramsey degrees. As in Laver’s result, Milliken’s Theorem
plays a central role in obtaining the upper bounds. The sharp lower bounds were proved the same year by
Laflamme, Sauer, and Vuksanovic in [18].

Sauer’s result on the Rado graph in conjunction with the attention called to big Ramsey degrees in [16]
sparked new interest in the field. In 2008, Nguyen Van Thé investigated big Ramsey degrees for homogeneous
ultrametric spaces. Given S a set of positive real numbers, US denotes the class of all finite ultrametric spaces
with strictly positive distances in S. Its Fräıssé limit, denoted QS , is called the Urysohn space associated
with US and is a homogeneous ultrametric space. In [25], Nguyen Van Thé proved that QS has finite big
Ramsey degrees whenever S is finite. Moreover, if S is infinite, then any member of US of size greater than
or equal to 2 does not have a big Ramsey degree. Soon after, Laflamme, Nguyen Van Thé, and Sauer proved
in [17] that enriched structures of the rationals, and two related directed graphs, have finite big Ramsey
degrees. For each n ≥ 1, Qn denotes the structure (Q, Q1, . . . , Qn, <), where Q1, . . . , Qn are disjoint dense
subsets of Q whose union is Q. This is the Fräıssé limit of the class Pn of all finite linear orders equipped
with an equivalence relation with n many equivalence classes. Laflamme, Nguyen Van Thé, and Sauer proved
that each member of Pn has a finite big Ramsey degree in Qn. Further, using the bi-definability between Qn
and the circular directed graphs S(n), for n = 2, 3, they proved that S(2) and S(3) have finite big Ramsey
degrees. Central to these results is a colored verision of Milliken’s theorem which they proved in order to
deduce the big Ramsey degrees. For a more detailed overview of these results, the reader is referred to [27].

A common theme emerges when one looks at the proofs in [2], [31], and [17]. The first two rely in an
essential way on Milliken’s Theorem, Theorem 2.5 in Section 2. The third proves a new colored version of
Milliken’s Theorem and uses it to deduce the results. The results in [25] use Ramsey’s theorem. This would
lead one to conclude or at least conjecture that, aside from Ramsey’s Theorem itself, Milliken’s Theorem
contains the core combinatorial content of big Ramsey degree results. The lack of such a result applicable
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to homogeneous structures omitting non-trivial substructures posed the main obstacle to the investigation
of their big Ramsey degrees. This is addressed in the present paper.

This article is concerned with the question of big Ramsey degrees for the universal homogeneous countable
triangle-free graph, denoted H3. A graph G is triangle-free if for any three vertices in G, there is at least
one pair with no edge between them; in other words, no triangle embeds into G as an induced subgraph. A
graph H on countably many vertices is a universal triangle-free graph if each triangle-free graph on countably
many vertices embeds into H. Universal triangle-free graphs were first constructed by Henson in [15], and
are seen to be the Fräıssé limit of K3, the Fräıssé class of all countable triangle-free graphs. A graph H on
countably many vertices is homogeneous if whenever G is a finite subgraph of H, then every embedding of G
into H can be extended to an automorphism of H. Henson proved that every universal triangle-free graph
is homogeneous, and vice versa, and further, that any two universal homogeneous triangle-free graphs are
isomorphic.

As mentioned above, Nešetřil and Rödl proved that the Fräıssé class of finite ordered triangle-free graphs,
denoted K<3 , has the Ramsey property. It follows that the Fräıssé class of unordered finite triangle-free
graphs, denoted K3, has finite small Ramsey degrees. In contrast, whether or not every finite triangle-free
graph has a finite big Ramsey degree in H3 had been open until now. The first result on colorings of vertices
of H3 was obtained by Henson in [15] in 1971. In that paper, he proved that H3 is weakly indivisible: Given
any coloring of the vertices of H3 into two colors, either there is a copy of H3 in which all vertices have
the first color, or else a copy of each member of K3 can be found with all vertices having the second color.
From this follows a prior result of Folkman in [8], that for any finite triangle-free graph G and any number
k ≥ 2, there is a finite triangle-free graph H such that for any partition of the vertices of H into k pieces,
there is a copy of G in having all its vertices in one of the pieces of the partition. In 1986, Komjáth and
Rödl proved that H3 is indivisible; thus, the big Ramsey degree for vertex colorings is 1. It then became of
interest whether this result would extend to colorings of copies of a fixed finite triangle-free graph, rather
than just colorings of vertices.

In 1998, Sauer proved in [30] that edges have finite big Ramsey degree of 2 in H3, leaving open the
following question:

Question 1.2. Does every finite triangle-free graph have finite big Ramsey degree in H3?

This paper answers this question in the affirmative.
Ideas from Sauer’s proof in [31] that the Rado graph has finite big Ramsey degrees provided a strategy

for our proof in this paper. A rough outline of Sauer’s proof is as follows: Graphs can be coded by nodes on
trees. Given such codings, the graph coded by the nodes in the tree consisting of all finite length sequences
of 0’s and 1’s, denoted as 2<ω, is bi-embeddable with the Rado graph. Only certain subsets, called strongly
diagonal, need to be considered when handling tree codings of a given finite graph G. Any finite strongly
diagonal set can be enveloped into a strong tree, which is a tree isomorphic to 2≤k for some k. The coloring
on the copies of G can be extended to color the strong tree envelopes. Applying Milliken’s Theorem for
strong trees finitely many times, one obtains an infinite strong subtree S of 2<ω in which for all diagonal
sets coding G with the same strong similarity type have the same color. To finish, take a strongly diagonal
D subset of S which codes the Rado graph, so that all codings of G in D must be strongly diagonal. Since
there are only finitely many similarity types of strongly diagonal sets coding G, this yields the finite big
Ramsey degrees for the Rado graph. See Section 2 for more details.

This outline seemed to the author the most likely to succeed if indeed the universal triangle-free graph
were to have finite big Ramsey degrees. However, there were difficulties involved in each step of trying to
adapt Sauer’s proof to the setting of H3, largely because H3 omits a substructure, namely triangles. First,
unlike the bi-embeddability between the Rado graph and the graph coded by the nodes in 2<ω, there is
no bi-embeddability relationship between H3 and some triangle-free graph coded by some tree with a very
regular structure. To handle this, rather than letting certain nodes in a tree code vertices at the very end
of the whole proof scheme as Sauer does in [31], we introduce a new notion of strong triangle-free tree in
which we distinguish certain nodes in the tree (called coding nodes) to code the vertices of a given graph,
and in which the branching is maximal subject to the constraint of these distinguished nodes not coding any
triangles. We further develop a flexible construction method for creating strong triangle-free trees in which
the distinguished nodes code H3. These are found in Section 3.
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Next, we wanted an analogue of Milliken’s Theorem for strong triangle-free trees. While we were able to
prove such a theorem for any configuration extending some fixed stem, the result simply does not hold for
colorings of stems, as can be seen by an example of a bad coloring defined using interference between splitting
nodes and coding nodes on the same level (Example 3.18). The means around this this was to introduce
the new notion of strong coding tree, which is a skew tree that stretches a strong triangle-free tree while
preserving all important aspects of its coding structure. Strong coding trees are defined and constructed in
Section 4. There, the fundamentals of the collection of strong coding trees are charted, including sufficient
conditions guaranteeing when a finite subtree A of a strong coding tree T may be end-extended into T to
form another strong coding tree.

Having formulated the correct kind of trees to code H3, the next task is to prove an analogue of Milliken’s
Theorem for strong coding trees. This is accomplished in Sections 5 and 6. First, we prove analogues of
the Halpern-Läuchli Theorem (Theorem 2.2) for strong coding trees. There are two cases, depending on
whether the level sets being colored contain a splitting node or a coding node. In Case (a) of Theorem
5.2, we obtain the direct analogue of the Halpern-Läuchli Theorem when the level set being colored has a
splitting node. A similar result is proved in Case (b) of Theorem 5.2 for level sets containing a coding node,
but some restrictions apply, and these are taken care of in Section 6. The proof of Theorem 5.2 Section 5 uses
the set-theoretic method of forcing, using some forcing posets created specifically for strong coding trees.
However, one never moves into a generic extension; rather the forcing mechanism is used to do an unbounded
search for a finite object. Once found, it is used to build the next finite level of the tree homogeneous for a
given coloring. Thus, the result is a ZFC proof. This builds on ideas from Harrington’s forcing proof of the
Halpern-Läuchli Theorem.

In Section 6, after an initial lemma obtaining end-homogeneity, we achieve the analogue of the Halpern-
Läuchli Theorem for Case (b) in Lemma 6.8. The proof introduces a third forcing which homogenizes over the
possibly different end-homogeneous colorings, but again achieves a ZFC result. Then, using much induction
and fusion, we obtain the first of our two Milliken-style theorems.

Theorem 6.3. Let T be a strong coding tree and let A be a finite subtree of T satisfying the Strong Parallel
1’s Criterion. Then for any coloring of all strictly similar copies of A in T into finitely many colors, there
is a strong coding tree S ≤ T such that all strictly similar copies of A in S have the same color.

The Strong Parallel 1’s Criterion is made clear in Definition 6.1. Initial segments of strong coding trees
automatically satisfy the Strong Parallel 1’s Criterion. Essentially, it is a strong condition which guarantees
that the finite subtree can be extended to a tree coding H3.

Developing the correct notion of strong subtree envelope for the setting of triangle-free graphs presented a
further obstacle. The idea of extending a subset X of a strong coding tree T to an envelope which is a finite
strong triangle-free tree and applying Theorem 6.3 (which would be the direct analogue of Sauer’s method)
simply does not work, as it can lead to an infinite regression of adding coding nodes in order to make an
envelope of that form. That is, there is no upper bound on the number of similarity types of finite strong
triangle-free subtrees of T which are minimal containing copies of X in T . To overcome this, in Sections 7
and 8 we develop the notions of incremental new parallel 1’s and strict similarity type for finite diagonal sets
of coding nodes as well as a new notion of envelope. Given any finite triangle-free graph G, there are only
finitely many strict similarity types of diagonal trees coding G. Letting c be any coloring of all copies of G
in H3 into finitely many colors, we transfer the coloring to the envelopes and apply the results in previous
sections to obtain a strong coding tree T ′ ≤ T in which all envelopes encompassing the same strict similarity
type have the same color. The next new idea is to thin T ′ to an incremental strong subtree S ≤ T ′ while
simultaneously choosing a set W ⊆ T ′ of witnessing coding nodes. These have the property that each finite
subset X of S is incremental, and furthermore, one can add to X coding nodes from W to form an envelop
satisfying the Strong Parallel 1’s Criterion. Then we arrive at our second Milliken-style theorem for strong
coding trees, extending the first one.

Theorem 8.9 (Ramsey Theorem for Strict Similarity Types). Let Z be a finite antichain of coding nodes in
a strong coding tree T , and let h be a coloring of all subsets of T which are strictly similar to Z into finitely
many colors. Then there is an incremental strong coding tree S ≤ T such that all subsets of S strictly similar
to Z have the same h color.
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After thinning to a strongly diagonal subset D ⊆ S still coding H3, the only sets of coding nodes in D
coding a given finite triangle-free graph G are automatically antichains which are incremental and strongly
diagonal. Applying Theorem 8.9 to the finitely many strict similarity types of incremental strongly diagonal
sets coding G, we arrive at the main theorem.

Theorem 9.2. The universal triangle-free homogeneous graph has finite big Ramsey degrees.

For each G ∈ K3, the number T (G,K3) is bounded by the number of strict similarity types of diagonal
sets of coding nodes coding G, which we denote as StrSim(G,T), T referring to any strong coding tree (see
Section 4). It is presently open to see if StrSim(G,T) is in fact the lower bound. If it is, then recent work
of Zucker would provide an interesting connection with topological dynamics. In [37], Zucker proved that if
a Fräıssé structure F has finite big Ramsey degrees and moreover, F admits a big Ramsey structure, then
any big Ramsey flow of Aut(F) is a universal completion flow, and further, any two universal completion
flows are isomorphic. His proof of existence of a big Ramsey structure a Fräıssé structure presently relies on
the existence of colorings for an increasing sequence of finite objects whose union is F exhibiting all color
classes which cannot be removed and which cohere in a natural way. In particular, the lower bounds for the
big Ramsey numbers are necessary to Zucker’s analysis. His work already applies to the rationals, the Rado
graph, lower bounds being obtained by Laflamme, Sauer, and Vuksanovic in [18] and calculated for each
class of graphs of fixed finite size by Larson in [19], finite ultrametric spaces with distances from a fixed finite
set, Qn for each n ≥ 2, S(2), and S(3). As the strict similarity types found in this paper satisfy Zucker’s
coherence condition, the precise lower bounds for the big Ramsey degrees of H3 would provide another such
example of a universal completion flow.

Acknowledgments. Much gratitude goes to Dana Bartošová for listening to and making helpful comments
on early and later stages of these results and for her continued encouragement of my work on this problem;
Jean Larson for listening to early stages of this work and her encouragement; Norbert Sauer for discussing
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Stevo Todorcevic for pointing out to me in 2012 that any proof of finite Ramsey degrees for H3 would
likely involve a new type of Halpern-Läuchli Theorem; and to the organizers and participants of the Ramsey
Theory Doccourse at Charles University, Prague, 2016, for their encouragement. Most of all, I am grateful
for and much indebted to Richard Laver for providing for me in 2011 the main points of Harrington’s forcing
proof of the Halpern-Läuchli Theorem, from which I could reconstruct the proof, setting the stage for the
possibility of accomplishing this work. His spirit lives on.

2. Background: Trees coding graphs and the Halpern-Läuchli and Milliken Theorems

This section provides background and context for the developments in this paper. It contains the well-
known method of using trees to code graphs as well as the Halpern-Läuchli and Milliken Theorems, and
discusses their applications to previously known results on big Ramsey degrees for homogeneous structures.

2.1. Trees coding graphs. In [6], Erdős, Hajnal and Pósa gave the vertices in a graph a natural lexico-
graphic order and used it to solve problems regarding strong embeddings of graphs. The set of vertices of
a graph ordered by this lexicographic order can be viewed as nodes in the binary tree of finite sequences of
0’s and 1’s with the usual tree ordering. This view was made explicit in [30] and is described below.

The following notation is standard in mathematical logic and shall be used throughout. The set of all
natural numbers {0, 1, 2, . . . } is denoted by ω. Each natural number k ∈ ω is equated with the set of all
natural numbers strictly less than k. Thus, 0 denotes the emptyset, 1 = {0}, 2 = {0, 1}, etc. For each
natural number k, 2k denotes the set of all functions from {0, . . . , k−1} into {0, 1}. A finite binary sequence
is a function s : k → 2 for some k ∈ ω. We may write s as 〈s(0), . . . , s(k − 1)〉; for each i < k, s(i) denotes
the i-th value or entry of the sequence s. We shall use 2<ω to denote the collection

⋃
k∈ω 2k of all finite

binary sequences. For s ∈ 2<ω, we let |s| denote the length of s; this is exactly the domain of s. For nodes
s, t ∈ 2<ω, we write s ⊆ t if and only if |s| ≤ |t| and for each i < |s|, s(i) = t(i). In this case, we say that s
is an initial segment of t, or that t extends s. If t extends s and |t| > |s|, then we write s ⊂ t, and we say
that s is a proper initial segment of t. For i < ω, we let s � i denote the function s restricted to domain i.
Thus, if i < |s|, then s � i is the proper initial segment of s of length i, s � i = 〈s(0), . . . , s(i− 1)〉; if i ≥ |s|,
then s � i equals s. The set 2<ω forms a tree when partially ordered by inclusion.
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Figure 1. A tree with nodes {t0, t1, t2, t3} coding the 4-cycle {v0, v1, v2, v3}

Let v, w be vertices in some graph. Two nodes s, t ∈ 2<ω are said to represent v and w, respectively, if
and only if, without loss of generality assuming that |s| < |t|, then v and w have an edge between them if
and only if t(|s|) = 1. The number t(|s|) is called the passing number of t at s. Thus, if t has passing number
1 at s, then s and t code an edge between v and w; and if t has passing number 0 at s, then s and t code a
non-edge between v and w.

Using this idea, any graph can be coded by nodes in a binary tree as follows. Let G be a graph with
N vertices, where N ≤ ω, and let 〈vn : n < N〉 be any enumeration of the vertices of G. Choose any
node t0 ∈ 2<ω to represent the vertex v0. For n > 0, given nodes t0, . . . , tn−1 in 2<ω coding the vertices
v0, . . . , vn−1, take tn to be any node in 2<ω such that |tn| > |tn−1| and for all i < n, vn and vi have an edge
between them if and only if tn(|ti|) = 1. Then the set of nodes {tn : n < N} codes the graph G. Note that
any finite graph of size k can be coded by a collection of nodes in

⋃
i<k

i2. Throughout this paper we shall
hold to the convention that the nodes in a tree used to code a graph will have different lengths. Figure 1.
shows a set of nodes {t0, t1, t2, t3} from 2<ω coding the four-cycle {v0, v1, v2, v3}.

2.2. The Halpern-Läuchli and Milliken Theorems. The theorem of Halpern and Läuchli below was
established as a technical lemma containing core combinatorial content of the proof that the Boolean Prime
Ideal Theorem (the statement that any filter can be extended to an ultrafilter) is strictly weaker than the
Axiom of Choice, assuming the Zermelo-Fraenkel axioms of set theory. (See [14].) The Halpern-Läuchli
Theorem forms the basis for a Ramsey theorem on strong trees due to Milliken, which in turn forms the
backbone of all previously found finite big Ramsey degrees, except where Ramsey’s Theorem itself suffices. An
in-depth presentation of the various versions of the Halpern-Läuchli Theorem as well as Milliken’s Theorem
can be found in [33]. An account focused solely on the theorems relevant to the present work can be found in
[3]. Here, we merely give an overview sufficient for this article, and shall restrict to subtrees of 2<ω, though
the results hold more generally for finitely branching trees.

In this paper, we use the definition of tree which is standard for Ramsey theory on trees. The meet of
two nodes s and t in 2<ω, denoted s ∧ t, is the longest member u ∈ 2<ω which is an initial segment of both
s and t. Thus, u = s ∧ t if and only if u = s � |u| = t � |u| and s � (|u| + 1) 6= t � (|u|+ 1). In particular, if
s ⊆ t then s ∧ t = s. A set of nodes A ⊆ 2<ω is closed under meets if s ∧ t is in A, for each pair s, t ∈ A.

Definition 2.1. A subset T ⊆ 2<ω is a tree if T is closed under meets and for each pair s, t ∈ T with
|s| ≤ |t|, t � |s| is also in T .

Given n < ω and a set of nodes A ⊆ 2<ω, define

(4) A(n) = {t ∈ A : |t| = n}.
A set X ⊆ A is a level set if X ⊆ A(n) for some n < ω. Note that a tree T does not have to contain all initial
segments of its members, but for each s ∈ T , the level set T (|s|) must equal {t � |s| : t ∈ T and |t| ≥ |s|}.

Let T ⊆ 2<ω be a tree and let L = {|s| : s ∈ T}. If L is infinite, then T is a strong tree if every node in
T splits in T ; that is, for each t ∈ T , there are u, v ∈ T such that u and v properly extend t, and u(|t|) = 0
and v(|t|) = 1. If L is finite, then T is a strong tree if for each node t ∈ T with |t| < max(L), t splits in T . A
finite strong tree subtree of 2<ω with k many levels is called a strong tree of height k. Note that each finite
strong subtree of 2<ω is isomorphic as a tree to some binary tree of height k. In particular, a strong tree of
height 1 is simply a node in 2<ω. See Figure 2. for an example of a strong tree of height 3.
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Figure 2. A strong subtree of 2<ω of height 3

The following is the strong tree version of the Halpern-Läuchli Theorem. It is a Ramsey theorem for
colorings of products of level sets of finitely many trees. Here, we restrict to the case of binary trees, since
that is sufficient for the exposition in this paper.

Theorem 2.2 (Halpern-Läuchli, [13]). Let Ti = 2<ω for each i < d, where d is any positive integer, and let

(5) c :
⋃
n<ω

∏
i<d

Ti(n)→ k

be a given coloring, where k is any positive integer. Then there is an infinite set of levels L ⊆ ω and infinite
strong subtrees Si ⊆ Ti, each with nodes exactly at the levels in L, such that c is monochromatic on

(6)
⋃
n∈L

∏
i<d

Si(n).

This theorem of Halpern and Läuchli was applied by Laver in [20] to prove that given k ≥ 2 and given
any coloring of the product of k many copies of the rationals Qk into finitely many colors, there are subsets
Xi of the rationals which again are dense linear orders without endpoints such that X0 × · · · × Xk−1 has
at most k! colors. Laver further proved that k! is the lower bound. Thus, the big Ramsey degree for the
simplest object (single k-length sequences) in the Fräıssé class of products of finite linear orders has been
found. The full result for all big Ramsey degrees for Age(Qk) would involve applications of the extension of
Milliken’s theorem to products of finitely many copies of 2<ω; such an extension has been proved by Vlitas
in [35].

Harrington produced an interesting method of proof of the Halpern-Läuchli Theorem which uses the
set-theoretic technique of forcing, but which takes place entirely in the standard axioms of set theory, and
most of mathematics, ZFC. No new external model is actually built, but rather, finite bits of information,
guaranteed by the existence of a generic filter for the forcing, are used to build the subtrees satisfying the
Halpern-Läuchli Theorem. This proof is said to provide the clearest intuition into the theorem (see [33]).
Harrington’s proof was never published, though the ideas were well-known in certain circles. A version
close to his original proof appears in [3], where a proof was reconstructed based on an outline provided to
the author by Laver in 2011. This proof formed the starting point for our proofs in Sections 5 and 6 of
Halpern-Läuchli style theorems for strong coding trees.

Harrington’s proof for d many trees uses the forcing which adds κ many Cohen subsets of the product of
level sets of d many copies of 2<ω, where κ satisfies a certain partition relation, depending on d. For any set
X and cardinal µ, [X]µ denotes the collection of all subsets of X of cardinality µ.

Definition 2.3. Given cardinals r, σ, κ, λ,

(7) λ→ (κ)rσ

means that for each coloring of [λ]r into σ many colors, there is a subset X of λ such that |X| = κ and all
members of [X]r have the same color.
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The following ZFC result guarantees cardinals large enough to have the Ramsey property for colorings
into infinitely many colors.

Theorem 2.4 (Erdős-Rado, [7]). For r < ω and µ an infinite cardinal,

ir(µ)+ → (µ+)r+1
µ .

For d many trees, letting κ = i2d−1(ℵ0)+ suffices for Harrington’s proof. A modified version of Harring-
ton’s proof appears in [34], where the assumption on κ is weaker, only id−1(ℵ0)+, but the construction is
more complex. This proof informed the approach in [4] to reduce the large cardinal assumption for obtaining
the consistency of the Halpern-Läuchli Theorem at a measurable cardinal. Building on this and ideas from
[32] and [5], Zhang proved the consistency of Laver’s result for the κ-rationals, for κ measurable, in [36].

The Halpern-Läuchli Theorem forms the essence of the next Theorem; the proof follows by induction on
k, applying Theorem 2.2 to k many infinite strong trees trees.

Theorem 2.5 (Milliken, [21]). Let k ≥ 1 be given and let all strong subtrees of 2<ω of height k be colored
by finitely many colors. Then there is an infinite strong subtree T of 2<ω such that all strong subtrees of T
of height k have the same color.

In the Introduction, an outline of Sauer’s proof that the Rado graph has finite big Ramsey degrees was
presented. Knowledge of his proof is not a pre-requisite for reading this paper, but the reader with knowledge
of that paper will have better context for and understanding of the present article. A more detailed outline
of the work in [31] appears in Section 3 of [3], which surveys some recent work regarding Halpern-Läuchli
and Milliken Theorems and variants. Chapter 6 of [33] provides a solid foundation for understanding how
Milliken’s theorem is used to attain big Ramsey degrees for both Devlin’s result on the rationals and Sauer’s
result on the Rado graph. Of course, we recommend foremost Sauer’s original article [31].

We point out that Milliken’s Theorem has been shown to consistently hold at a measurable cardinal
by Shelah in [32], using ideas from Harrington’s proof. An enriched version was proved by Džamonja,
Larson, and Mitchell in [5] and applied to obtain the consistency of finite big Ramsey degrees for colorings
of finite subsets of the κ-rationals, where κ is a measurable cardinal. They obtained the consistency of
finite big Ramsey degrees for colorings of finite subgraphs of the κ-Rado graph for κ measurable in [5]. The
uncountable height of the tree 2<κ coding the κ-rationals and the κ-Rado graph renders the notion of strong
similarity type more complex than for the countable cases.

There is another theorem stronger than Theorem 2.5, also due to Milliken in [22], which shows that the
collection of all infinite strong subtrees of 2<ω forms a topological Ramsey space, meaning that it satisfies an
infinite-dimensional Ramsey theorem for Baire sets when equipped with its version of the Ellentuck topology
(see [33]). Though not outrightly used, this fact informed some of our intuition when approaching the present
work.

3. Strong triangle-free trees coding H3

In the previous section, it was shown how nodes in binary trees may be used to code graphs, and strong
trees and Milliken’s Theorem were presented. In this section, we introduce strong triangle-free trees, which
seem to be the correct analogue of Milliken’s strong trees suitable for coding triangle-free graphs.

Sauer’s proof in [31] that the Rado graph has finite big Ramsey degrees uses the fact that the Rado graph
is bi-embeddable with the graph coded by the collection of all nodes in 2<ω, where nodes with the same
length code vertices with no edges between them. Colorings on the Rado graph are transfered to the graph
represented by the nodes in 2<ω, Milliken’s Theorem for strong trees is applied, and then the homogeneity
is transfered back to the Rado graph. In the case of the universal triangle-free graph, there is no known bi-
embeddability between H3 and some triangle-free graph coded by nodes in a tree with some kind of uniform
structure. Indeed, this may be fundamentally impossible precisely because the absence of triangles disrupts
any uniformity of a coding structure. Thus, instead of looking for a uniform sort of structure which codes
some triangle-free graph bi-embeddable with H3 and trying to prove a Milliken-style theorem for them, we
define a new kind of tree in which certain nodes are distinguished to code the vertices of a given triangle-free
graph. Moreover, nodes in the tree branch as much as possible, subject to the constraint that at each level
of the tree, no node is extendible to another distinguished node which would code a triangle with previous
distinguished nodes. The precise formulation of strong triangle-free tree appears in Definition 3.9.
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Some conventions and notation are now set up. Given a triangle-free graph G, finite or infinite, let
〈vn : n < N〉 be any enumeration of the vertices of G, where N ≤ ω is the number of vertices in G. We may
construct a tree T with certain nodes 〈cn : n < N〉 in T coding the graph G as follows. Let c0 be any node
in 2<ω and declare c0 to code the vertex v0. For n > 0, given nodes c0, . . . , cn−1 in 2<ω coding the vertices
v0, . . . , vn−1, let cn be any node in 2<ω such that the length of cn, denoted |cn|, is strictly greater than the
length of cn−1 and for all i < n, cn(|ci|) = 1 if and only if vn and vi have an edge between them. The set of
nodes {cn : n < N} codes the graph G.

Definition 3.1 (Tree with coding nodes). A tree with coding nodes is a structure (T,N ;⊆, <, c) in the
language of L = {⊆, <, c}, where ⊆ and < are binary relation symbols and c is a unary function symbol,
satisfying the following: T is a subset of 2<ω satisfying that (T,⊆) is a tree (recall Definition 2.1), N ≤ ω
and < is the usual linear order on N , and c : N → T is an injective function such that m < n < N implies
|c(m)| < |c(n)|. We use cn to denote c(n) and call this the n-th coding node in T .

Convention 3.2. The length of cn shall be denoted by ln. When necessary to avoid confusion between
more than one tree, the n-th coding node of a tree T will be denoted as cTn , and its length as lTn = |cTn |.

Definition 3.3. A graph G with vertices enumerated as 〈vn : n < N〉 is represented by a tree T with coding
nodes 〈cn : n < N〉 if and only if for each pair i < n < N , vn E vi ←→ cn(li) = 1. We will often simply say
that T codes G.

The next step is to determine which tree configurations code triangles, for those are the configurations
that must be omitted from any tree coding a triangle-free graph. Notice that if v0, v1, v2 are the vertices of
some triangle and c0, c1, c2 are coding nodes coding the vertices v0, v1, v2 and the edge relationships between
them, where |c0| < |c1| < |c2|, then it must be the case that c1(|c0|) = c2(|c0|) = c2(|c1|) = 1. Moreover,
notice that this is the only way a triangle can be coded by nodes in a tree.

Now we present a criterion which, when satisfied, guarantees that any node t in the tree may be extended
to a coding node without coding a triangle with any coding nodes of length less than |t|.

Definition 3.4 (Triangle-Free Criterion). Let T ⊆ 2<ω be a tree with coding nodes 〈cn : n < N〉, where
N ≤ ω. T satisfies the Triangle-Free Criterion (TFC) if the following holds: For each t ∈ T , if ln < |t| and
t(li) = cn(li) = 1 for some i < n, then t(ln) = 0.

In words, a tree T with coding nodes 〈cn : n < N〉 satisfies the TFC if for each n < N , whenever a node
u in T has the same length as coding node cn, and u and cn both have passing number 1 at the level of a
coding node ci for some i < n, then u_1 must not be in T . In particular, the TFC implies that if cn has
passing number 1 at ci for any i < n, then cn cannot split; that is, cn

_1 must not be in T .

Remark 3.5. The point of the TFC is as follows: Whenever a finite tree T satisfies the TFC, then any
maximal node of T may be extended to a new coding node without coding a triangle with the coding nodes
in T .

The next proposition provides a characterization of tree representations of triangle-free graphs.

Proposition 3.6 (Triangle-Free Tree Representation). Let T ⊆ 2<ω be a tree with coding nodes 〈cn : n < N〉
coding a countable graph G with vertices 〈vn : n < N〉, where N ≤ ω. Assume that the coding nodes in T
are dense in T , meaning that for each t ∈ T , there is some coding node cn ∈ T such that t ⊆ cn. Then the
following are equivalent:

(1) G is triangle-free.
(2) T satisfies the Triangle-Free Criterion.

Proof. Note that if N is finite, then the coding nodes in T being dense in T implies that every maximal node
in T is a coding node; in this case, the maximal nodes in T have different lengths.

Suppose (2) fails. Then there are i < j < N and t ∈ T with length greater than lj such that t(li) =
cj(li) = 1 and t(lj) = 1. Since every node in T extends to a coding node, there is a k > j such that ck ⊇ t.
Then ck has passing number 1 at both ci and cj . Thus, the coding nodes ci, cj , ck code that the vertices
{vi, vj , vk} have edges between each pair, implying G contains a triangle. Therefore, (1) fails.

10



Conversely, suppose that (1) fails. Then G contains a triangle, so there are i < j < k < N such that the
vertices vi, vj , vk have edges between each pair. Since the coding nodes ci, cj , ck code these edges, it is the
case that cj(li) = ck(li) = ck(lj) = 1. Hence, the nodes ci, cj , ck witness the failure of the TFC. �

Definition 3.7 (Parallel 1’s). For two nodes s, t ∈ 2<ω, we say that s and t have parallel 1’s if there is some
l < min(|s|, |t|) such that s(l) = t(l) = 1.

Definition 3.8. Let T be a tree with coding nodes 〈cn : n < N〉 such that, above the stem of T , splitting
in T occurs only at the levels of coding nodes. Then T satisfies the Splitting Criterion if for each n < N and
each non-maximal t in T with |t| = |cn|, t splits in T if and only if t and cn have no parallel 1’s.

Notice that whenever a tree T with coding nodes satisfies the Splitting Criterion, each coding node which
is not solely a sequence of 0’s will not split in T . Thus, the Splitting Criterion produces maximal splitting
subject to ensuring that no nodes can be extended to code a triangle, while simultaneously reducing the
number of similarity types of trees under consideration later for the big Ramsey degrees, if we require each
coding node to have at least one passing number of 1.

Next, strong triangle-free trees are defined. These trees provide the intuition and the main structural
properties of their skewed variant defined in Section 4.

Definition 3.9 (Strong triangle-free tree). A strong triangle-free tree is a tree with coding nodes, (T,N ;⊆
, <, c) such that for each n < N , the length of the n-th coding node cn is ln = n+ 1 and

(1) If N = ω, then T has no maximal nodes. If N < ω, then all maximal nodes of T have the same
length, which is lN−1.

(2) stem(T ) is the empty sequence 〈〉.
(3) c0 = 〈1〉, and for each 0 < n < N , cn(ln−1) = 1.
(4) For each n < N , the sequence of length ln consisting of all 0’s, denoted 0ln , is a node in T .
(5) T satisfies the Splitting Criterion.

T is a strong triangle-free tree densely coding H3 if T is an infinite strong triangle-free tree and the set of
coding nodes is dense in T .

Strong triangle-free trees can be defined more generally than we choose to present here, for instance, by
relaxing conditions (2) and (3), leaving off the restriction that ln = n+ 1, and letting c0 be any node. The
notion of strong subtree of a given strong triangle-free tree can also be made precise, and the collection
of such trees end up forming a space somewhat similar to the Milliken space of strong trees. However, as
Milliken-style theorems are impossible to prove for strong triangle-free trees, as will be shown in Example
3.18, we restrict here to a simpler presentation with the aim of building the reader’s understanding of the
essential structure of strong triangle-free trees, as the strong coding trees defined in the next section are
skewed and slightly relaxed versions of trees in Definition 3.9.

We now set up to present a method for constructing strong triangle-free trees densely coding H3. Let K3

denote the Fräıssé class of all triangle-free countable graphs. Given a graph H and a subset V0 of the vertices
of H, the notation H|V0 denotes the induced subgraph of H on the vertices in V0. In [15], Henson proved
that a countable graph H is universal for K3 if and only if H satisfies the following property.

(A3) (i) H does not admit any triangles,
(ii) If V0, V1 are disjoint finite sets of vertices of H and H|V0 does not admit an edge, then there is

another vertex which is connected in H to every member of V0 and to no member of V1.

Henson used this property to construct a universal triangle-free graph H3 in [15], as well as universal
graphs for each Fräıssé class of countable graphs omitting k-cliques, as the analogues of the Rado graph for
countable k-clique free graphs. The following property (A3)′ is a reformulation of Henson’s property (A3).

(A3)′ (i) H does not admit any triangles.
(ii) Let 〈vn : n < ω〉 enumerate the vertices of H, and let 〈Fi : i < ω〉 be any enumeration of the

finite subsets of ω such that for each i < ω, max(Fi) < i and each finite set appears infinitely
many times in the enumeration. Then there is a strictly increasing sequence 〈ni : i < ω〉 such
that for each i < ω, if H|{vm : m ∈ Fi} has no edges, then for all m < i, vni E vm ←→ m ∈ Fi.

It is straightforward to check the following fact.
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Fact 3.10. Let H be a countably infinite graph. Then H is universal for K3 if and only if (A3)′ holds.

The following tree re-formulation of property (A3)′ will be used to build trees with coding nodes which
code H3. Let T ⊆ 2<ω be a tree with coding nodes 〈cn : n < ω〉. We say that T satisfies property (A3)tree

if the following holds:

(A3)tree (i) T satisfies the Triangle-Free Criterion,
(ii) Let 〈Fi : i < ω〉 be any enumeration of finite subsets of ω such that for each i < ω, max(Fi) < i,

and each finite subset of ω appears as Fi for infinitely many indices i. For each i < ω, if for all
pairs j < k in Fi it is the case that ck(lj) = 0 , then there is some n ≥ i such that for all m < i,
cn(lm) = 1 if and only if m ∈ Fi.

Fact 3.11. A tree T with coding nodes 〈cn : n < ω〉 codes H3 if and only if T satisfies (A3)tree.

Remark 3.12. Any strong triangle-free tree in which the coding nodes are dense automatically satisfies
(A3)tree, and hence codes H3.

The next lemma shows that any finite strong triangle-free tree is able to be extended to a tree satisfying
(A3)tree.

Lemma 3.13. Let T be a finite strong triangle-free tree with coding nodes 〈cn : n < N〉, where N < ω.
Given any F ⊆ N − 1 for which the set {cn : n ∈ F} codes no edges, there is a maximal node t ∈ T such
that for all n < N − 1,

(8) t(ln) = 1 ←→ n ∈ F.

Proof. The proof is by induction on N over all strong triangle-free trees with N coding nodes. For N ≤ 1,
the lemma trivially holds but is not very instructive, so we shall start with the case N = 2. Let T be a strong
triangle-free tree with coding nodes {c0, c1}. By (2) of Definition 3.9, the stem of T is the empty sequence,
so both 〈0〉 and 〈1〉 are in T . By (3) of Definition 3.9, c0 = 〈1〉, and c1(l0) = 1. By the Splitting Criterion,
c0 does not split in T but 〈0〉 does, so 〈0, 0〉, 〈0, 1〉, and 〈1, 0〉 are in T while 〈1, 1〉 is not in T . Note that
c1 = 〈0, 1〉, since it must be that l1 = 2 and c1(l0) = 1, and 〈1, 1〉 is not in T . The only non-empty F ⊆ 1
is F = {0}. The coding node c1 satisfies that c1(ln) = 1 if and only if n ∈ {0}. For F = ∅, both the nodes
t = 〈0, 0〉 and t = 〈1, 0〉 satisfy that for all n < 1, t(ln) = 1 if and only if n ∈ F .

Now assume that the lemma holds for all N ′ < N , where N ≥ 3. Let T be a strong triangle-free tree
with N coding nodes. Let F be a subset of N − 1 such that {cn : n ∈ F} codes no edges. By the induction
hypothesis, there is a node t in T of length lN−2 such that for all n < N −2, t(ln) = 1 if and only if n ∈ F . If
N − 2 6∈ F , then as t_0 is guaranteed to be in T by the Splitting Criterion, the node t′ = t_0 in T satisfies
that for all n < N − 1, t′(ln) = 1 if and only if n ∈ F . Now suppose N − 2 ∈ F . We claim that t_1 is in
T . By the Splitting Criterion, if t_1 is not in T , then it must be the case that t and cN−2 have a parallel
1. So there is some i < N − 2 such that t(li) = cN−2(li) = 1. As t codes edges only with those vertices
with indexes n < N − 2 which are in F \ {N − 2}, it follows that i ∈ F . But then {ci, cN−2} codes an edge,
contradicting the assumption on F . Therefore, t and cN−2 do not have any parallel 1’s, and hence t_1 is in
T . Letting t′ = t_1, we see that for all n < N − 1, t(ln) = 1 if and only if n ∈ F . �

We now present a method for constructing strong triangle-free trees densely coding H3. Here and through-
out the paper, 0n denotes the sequence of length n consisting of all 0’s.

Theorem 3.14 (Strong Triangle-Free Tree S Densely Coding H3). Let 〈Fi : i < ω〉 be any sequence enu-
merating the finite subsets of ω so that each finite set appears infinitely often. Assume that for each i < ω,
Fi ⊆ i− 1 and F3i = F3i+2 = ∅. Then there is a strong triangle-free tree S which satisfies property (A3)tree

and densely codes H3. Moreover, this property is satisfied specifically by the coding node c4i+j meeting
requirement F3i+j, for each i < ω and j ≤ 2.

Proof. Let 〈Fi : i < ω〉 satisfy the hypotheses. Enumerate the nodes in 2<ω as 〈ui : i < ω〉 in such a
manner that i < k implies |ui| ≤ |uk|. Then u0 = ∅, |u1| = 1, and for all i ≥ 2, |ui| < i. We will build a
strong triangle-free tree S ⊆ 2<ω with coding nodes cn ∈ S∩ 2n+1 densely coding H3 satisfying the following
properties:

(i) c0 = 〈1〉, and for each n < ω, ln := |cn| = n+ 1 and cn+1(ln) = 1.
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(ii) For n = 4i + j, where j ≤ 2, cn satisfies requirement F3i+j , meaning that if {ck : k ∈ F3i+j} codes
no edges, then for all k < n− 1, cn(lk) = 1 if and only if k ∈ F3i+j .

(iii) For n = 4i + 3, if ui is in S ∩ 2≤n, then cn is a coding node extending ui. If ui is not in S, then
cn = 0n_1.

As in Lemma 3.13, the first two coding nodes of S are completely determined by the definition of
strong triangle-free tree. Thus, c0 = 〈1〉, c1 = 〈0, 1〉, and the tree S up to height 2 consists of the nodes
{∅, 〈0〉, 〈1〉, 〈0, 0〉, 〈0, 1〉, 〈1, 0〉}. Denote this tree as S2. Since F0 = F1 = ∅, c0 and c1 trivially satisfy require-
ments F0 and F1, respectively. It is simple to check that S2 is a strong triangle-free tree, and that (i) - (iii)
are satisfied.

For the general construction step, suppose n ≥ 2, Sn ⊆ 2≤n has been constructed, and coding nodes
〈ci : i < n〉 have been chosen so that Sn is a strong triangle-free tree satisfying (i) - (iii). Extend each
maximal node in Sn to length n+ 1 according to the Splitting Criterion. Thus, for each s ∈ Sn ∩ 2n, s_0 is
in Sn+1, and s_1 is in Sn+1 if and only if s has no parallel 1’s with cn−1. Now we choose cn so that (i) -
(iii) hold. There are three cases.

Case 1. Either n = 4i and i ≥ 1, or n = 4i + 2 and i < ω. Let n′ denote 3i if n = 4i, and let n′ denote
3i+ 2 if n = 4i+ 2. Then Fn′ = ∅, so let cn = 0n_1.

Case 2. n = 4i+ 1 and 1 ≤ i < ω. If for all pairs of integers k < m in F3i+1 it is the case that cm(lk) = 0,
then take cn to be a maximal node in Sn+1 such that for all k < n− 1, cn(lk) = 1 if and only if k ∈ F3i+1,
and cn(ln−1) = 1. Otherwise, let cn = 0n_1.

Case 3. n = 4i + 3 and i < ω. Recall that |ui| ≤ i, so |ui| ≤ n − 3. If ui is in Si, then take cn to be
the maximal node in Sn+1 which is ui extended by all 0’s until its last entry, which is 1. Precisely, letting
q = n− |ui|, set cn = ui

_0q_1. If ui is not in Si, let cn = 0n_1.

(i) - (iii) hold automatically by the choices of cn in Cases 1 - 3. What is left is to check is that such nodes
in Cases 1 - 3 actually exist in Sn+1. The node 0n_1 is in Sn+1, as it has no parallel 1’s with cn−1. Thus,
in Case 1 and the second halves of Cases 2 and 3, the node we declared to be cn is indeed in Sn+1.

In Case 2 where n = 4i + 1 with i ≥ 1, suppose that F3i+1 6= ∅ and for all pairs k < m of integers in
F3i+1, cm(lk) = 0. Since max(F3i+1) ≤ 3i−1 ≤ n−3 and since by the induction hypothesis, Sn−1 is a strong
triangle-free tree, Lemma 3.13 implies that there is a node t ∈ Sn−1 such that for each k < n− 1, s(lk) = 1
if and only if k ∈ F3i+1. Note that t_0 and cn−1 have no parallel 1’s, since cn−1 = 0n−1

_
1. Thus, by the

Splitting Criterion, t_0_1 is in Sn+1, and this node satisfies our choice of cn.
In Case 3 when n = 4i + 3, if ui ∈ Si, then by the Splitting Criterion, also ui

_0q is in Sn, where
q = n − |ui|. Since n − 1 = 4i + 2, cn−1 = 0n−1

_
1; so ui

_0q has no parallel 1’s with cn−1. Thus, by the
Splitting Criterion, ui

_0q_1 is in Sn+1.
Let S =

⋃
n<ω Sn. By the construction, S is an infinite strong triangle-free tree with coding nodes

〈cn : n < ω〉. (ii) implies that S satisfies (A3)tree and hence codes H3. By (iii), the coding nodes are dense
in S. �

Example 3.15 (A Strong Triangle-Free Tree). Presented here is a concrete example of the first six steps of
constructing a strong triangle-free tree densely coding H3. In the construction of Theorem 3.14, F0 = F1 =
F2 = ∅. The coding nodes c0 = 〈1〉 and c1 = 〈0, 1〉 are determined by the definition of strong triange-free
tree. The coding node c2 we choose to be 〈0, 0, 1〉. (It could also have been chosen to be 〈1, 0, 1〉.) Since u0
is the empty sequence, c3 can be any sequence which has last entry 1; in this example we let c3 = 〈1, 0, 0, 1〉.
F3 = ∅, so c4 = 〈0, 0, 0, 0, 1〉. Suppose F4 = {0, 2}. Then we may take c5 = 〈0, 1, 0, 1, 0, 1〉 to code edges
between the vertex v5 and the vertices v0 and v2; we also make v5 have an edge with v4. Notice that having
chosen the coding node cn, each maximal node s ∈ Sn+1 splits in Sn+2 if and only if s(i) + cn(i) ≤ 1 for all
i ≤ n. See Figure 3. The graph on the left with vertices {v0, . . . , v5} is being coded by the coding nodes
{c0, . . . , c5}. The tree and the graph are intended to continue growing upwards to the infinite tree S coding
the graph H3.

Remark 3.16. We have set up the definition of strong triangle-free tree so that no coding node in a strong
triangle-free tree splits. The purpose of not allowing coding nodes to split is to simplify later work by
reducing the number of different isomorphism types of trees coding a given finite triangle-free graph. The
purposes of the density of the coding nodes and the Splitting Criterion are to saturate the trees with as many
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Figure 3. A strong triangle-free tree S densely coding H3

extensions as possible coding vertices without coding any triangles, so as to allow for thinning to subtrees
which still can code H3, setting the stage for later Ramsey-theoretic results.

Remark 3.17. Given a strong triangle-free tree T densely coding H3, the collection of all strong triangle-free
subtrees S of T densely coding H3 forms an interesting space of trees. The author has proved Halpern-
Läuchli-style theorems for such trees, provided that the stem is fixed. This was the author’s first approach
toward the main theorem of this paper, and these proofs formed the strategy for the proofs in later sections.
Oddly enough, though, having stems splitting at the same levels as coding nodes presents an obstacle to fully
developing Ramsey theory on strong triangle-free trees. One may create a bad coloring using interference
between stems and coding nodes as seen below. Such a bad coloring on coding nodes prevents the transition
from cone-homogeneity to homogeneity on a strong triangle-free subtree with dense coding nodes.

Example 3.18 (A bad coloring). Given a strong triangle-free tree S with coding nodes 〈cn : n < ω〉 dense
in S, let si = 0i, for each i < ω. Note that each si splits in S and that |cn| = |sn+1|, for each n < ω. Color
all coding nodes cn extending s0

_1, which is exactly 〈1〉, blue. Let k be given and suppose for each i ≤ k,
we have colored all coding nodes extending si

_1. The coding node ck extends si
_1 for some i ≤ k, so it has

already been assigned a color. If ck is blue, color every coding node in S extending sk+1
_1 red; if ck is red,

color every coding node in S extending sk+1
_1 blue. This produces a red-blue coloring of the coding nodes

such that any subtree S of S with coding nodes dense in S and satisfying the Splitting Criterion (which
would be the natural definition of infinite strong triangle-free subtree) has coding nodes of both colors: For
given a coding node c of S, the node 0|c| is a splitting node in S, and all coding nodes in S extending 0|c|

_
1

have color different from the color of c.

Since this example precludes a satisfactory Ramsey theory of strong triangle-free trees coding H3, instead
of presenting those Ramsey-theoretic results on strong triangle-free trees which were obtained, we immedi-
ately move on to the skew version of strong triangle-free trees. Their full Ramsey theory will be developed
in the rest of the article.

4. Strong coding trees

This section introduces the main tool for our investigation of the big Ramsey degrees for the universal
triangle-free graph, namely strong coding trees. Essentially, strong coding trees are simply stretched versions
of strong triangle-free trees, so that all the coding structure is preserved while removing any entanglements
between coding nodes and splitting nodes, as seen in Example 3.18, which could prevent Ramsey theorems.
The collection of all subtrees of a strong coding tree T which are isomorphic to T , partially ordered by a
relation defined later in this section, will be seen, by the end of Section 6, to form a space of trees coding
H3 with many similarities to the Milliken space of strong trees [21].
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4.1. Definitions and notation. The following terminology and notation will be used throughout. Recall
that by a tree, we mean exactly a subset T ⊆ 2<ω which is closed under meets and is a union of level sets;
that is, s, t ∈ T and |t| ≥ |s| imply that t � |s| is also a member of T . Further, recall Definition 3.1 of a tree
with coding nodes. Let T ⊆ 2<ω be a tree with coding nodes 〈cTn : n < N〉, where N ≤ ω, and let lTn denote

|cTn |. T̂ denotes the collection of all initial segments of nodes in T ; thus, T̂ = {t � n : t ∈ T and n ≤ |t|}. A

node s ∈ T is called a splitting node if both s_0 and s_1 are in T̂ ; equivalently, s is a splitting node in T if
there are nodes s0, s1 ∈ T such that s0 ⊇ s_0 and s1 ⊇ s_1. Given t in a tree T , the level of T of length |t|
is the set of all s ∈ T such that |s| = |t|. By our definition of tree, this is exactly the set of s � |t| such that
s ∈ T and |s| ≥ |t|. T is skew if each level of T has exactly one of either a coding node or a splitting node.
A skew tree T is strongly skew if additionally for each splitting node s ∈ T , every t ∈ T such that |t| > |s|
and t 6⊃ s also satisfies t(|s|) = 0; that is, the passing number of any node passing by, but not extending,
a splitting node is 0. The set of levels of a skew tree T ⊆ 2<ω, denoted LT , is the set of those l < ω such
that T has either a splitting or a coding node of length l. Let 〈dTm : m < M〉 enumerate the collection of all
coding and splitting nodes of T in increasing order of length. The nodes dTm will be called the critical nodes
of T . Note that N ≤M , and M = ω if and only if N = ω. For each m < M , the m-th level of T is

(9) LevT (m) = {s ∈ T̂ : |s| = |dTm|}.

Then for any strongly skew tree T ,

(10) T =
⋃

m<M

LevT (m).

Let mn denote the integer such that cTn ∈ LevT (mn). Then dTmn = cTn , and the critical node dTm is a splitting
node if and only if m 6= mn for any n. For each 0 < n < N , the n-th interval of T is

⋃
{LevT (m) : mn−1 <

m ≤ mn}. The 0-th interval of T is defined to be
⋃
m≤m0

LevT (m). Thus, the 0-th interval of T is the set of

those nodes in T with lengths in [0, lT0 ], and for 0 < n < N , the n-th interval of T is the set of those nodes
in T with lengths in (lTn−1, l

T
n ].

The next definition provides notation for the set of exactly those nodes just above the (n − 1)-st coding
node which will split in the n-th interval of T . Define

(11) Spl(T, 0) = {t ∈ T̂ : |t| = | stem(T )|+ 1 and ∃m < m0 such that dTm ⊇ t}.

For n ≥ 1, define

(12) Spl(T, n) = {t ∈ T̂ : |t| = ln−1 + 1 and ∃m ∈ (mn−1,mn) such that dTm ⊇ t}.

Thus, Spl(T, n) is the set of nodes in T̂ of length just one above the length of cn−1 (or the stem of T if n = 0)
which extend to a splitting node in the n-th interval of T . The lengths of the nodes in Spl(T, n) were chosen
to so that they provide information about passing numbers at cTn−1. For t ∈ Spl(T, n), let splT (t) denote the
minimal extension of t which splits in T .

Given a node s in T for which there is an i < |s| such that s � i is a splitting node in T , the splitting
predecessor of t in T , denoted splitpredT (s), is the proper initial segment u ⊂ s of maximum length such

that both u_0 and u_1 are in T̂ . Thus, splitpredT (s) is the longest splitting node in T which is a proper
initial segment of s. When the tree T is clear from the context, the subscripts and superscripts of T will be
dropped.

4.2. Definition and construction of strong coding trees. Now we present a new tool for representing
the universal triangle-free graph, namely strong coding trees. The following Parallel 1’s Criterion is a central
concept, ensuring that a finite subtree of a strong coding tree T can be extended inside T so that the criterion
(A3)tree can be met.

Definition 4.1 (Parallel 1’s Criterion). Let T ⊆ 2<ω be a strongly skew tree with coding nodes 〈cn : n < N〉.
We say that T satisfies the Parallel 1’s Criterion if the following hold: Given any set of two or more nodes
{ti : i < ĩ} in T and some l such that ti(l) = 1 for all i < ĩ,

(1) There is a coding node cn in T such that for all i < ĩ, ln < |ti| and ti(ln) = 1; we say that cn
witnesses the parallel 1’s of {ti : i < ĩ}.
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(2) Letting l′ be least such that ti(l
′) = 1 for all i < ĩ, and letting n be least such that cn witnesses the

parallel 1’s of the set of nodes {ti : i < ĩ}, then T has no splitting nodes and no coding nodes of
lengths strictly between l′ and ln.

We say that a set of nodes {ti : i < ĩ} has a new set of parallel 1’s at l if ti(l) = 1 for all i < ĩ, and l is
least such that this occurs. Thus, the Parallel 1’s Criterion says that any new set of parallel 1’s must occur
at a level l which is above the last splitting node in T in the interval (ln−1, ln] containing l, and that cn must
witness this set of parallel 1’s.

Definition 4.2 (Splitting Criterion for Skew Trees). A strongly skew tree T with coding nodes 〈cn : n < N〉
satisfies the Splitting Criterion for Skew Trees if the following hold: For each 1 ≤ n < N and each s ∈ T̂ of

length ln−1 + 1, s is in Spl(T, n) if and only if s and cn � (ln−1 + 1) have no parallel 1’s. For each s ∈ T̂ of
length | stem(T )|+ 1, s is in Spl(T, 0) if and only if s = stem(T )

_
0.

Notice that any tree with coding nodes satisfying the Splitting Criterion for Skew Trees also satisfies the
Triangle-Free Criterion (Definition 3.4), and hence will not code any triangles.

Now we arrive at the main structural concept for coding copies of H3. This extends the idea of Milliken’s
strong trees - branching as much as possible whenever one split occurs - to skew trees with the additional
property that they can code omissions of triangles.

Definition 4.3 (Strong coding tree). A tree T ⊆ 2<ω with coding nodes 〈cn : n < ω〉 is a strong coding tree
if T is strongly skew, for each node t ∈ T , the node 0|t| is also in T , and the following hold:

(1) The coding nodes of T are dense in T .
(2) For each n ≥ 1, cn(ln−1) = 1.
(3) T satisfies the Parallel 1’s Criterion.
(4) T satisfies the Splitting Criterion for Skew Trees.
(5) c0 extends stem(T )

_
1 and does not split.

(6) Given n < ω, s ∈ Spl(T, n), and i < 2, there is exactly one extension si ⊇ spl(s)_i of length ln in

T , and its unique immediate extension in T̂ is si
_i.

(7) For each n < ω, each node t in T̂ of length ln−1+1 which is not in Spl(T, n) has exactly one extension

of length ln in T , say t∗, and its unique immediate extension in T̂ is t∗
_0. Here, l−1 denotes the

length of stem(T ).

An example of a strong coding tree is presented in Figure 4. One should notice that upon “zipping up”
the splits occurring in the intervals between coding nodes in T to the next coding node level, one recovers
S. The existence of strong coding trees will be proved in Theorem 4.6.

Recall that 〈dm : m < ω〉 enumerates the set of all critical nodes (coding nodes and splitting nodes) in T
in order of strictly increasing length.

Definition 4.4 (Finite strong coding tree). Given a strong coding tree T , by an initial segment or initial
subtree of T we mean the first m levels of T , for some m < ω. We shall use the notation

(13) rm(T ) =
⋃
k<m

LevT (k).

A tree with coding nodes is a finite strong coding tree if and only if it is equal to some rm+1(T ) where dm is
a coding node or else m = 0.

Thus, finite strong coding trees are exactly the finite trees with coding nodes 〈cn : n < N〉, where N < ω,
which have all maximal nodes of the length of its longest coding node and satisfy (2) - (7) of Definition 4.3
for all n < N .

The next lemma extends the ideas of Lemma 3.13 to the setting of finite strong coding trees.

Lemma 4.5. Let A be any finite strong coding tree with coding nodes 〈cn : n < N〉, where N < ω. Let
A+ denote the nodes of length lN−1 + 1 extending the maximal nodes in A as determined by (6) and (7) in
Definition 4.3. Then given any F ⊆ N such that {cn : n ∈ F} codes no edges, there is a t ∈ A+ such that
for all n < N ,

(14) t(ln) = 1 ←→ n ∈ F.
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Figure 4. A strong coding tree T

Proof. The proof is by induction on N over all finite strong strong coding trees with N coding nodes. For
N = 0, A = ∅, the lemma vacuously holds. For N = 1, it follows from the definition of finite strong coding
tree that A has critical nodes d0 = stem(A), d1 which is a splitting node extending d0

_0, and d2 = c0 which
extends d0

_1. Thus, A+ has three nodes, t0 ⊃ d0
_0 with passing number 0 at c0; t1 ⊃ d0

_1 with passing
number 1 at c0; and t2 = c0

_0 which of course has passing number 0 at c0. Both of the nodes t0 and t2
satisfy equation (14) if F = ∅, and t1 satisfies (14) if F = {0}.

Now suppose that N ≥ 2 and the lemma holds for N −1. Let A be a finite strong coding tree with coding
nodes 〈cn : n < N〉. Let F be a subset of N such that {cn : n ∈ F} codes no edges, and let m be the
index such that dm−1 = cN−2. By the induction hypothesis, there is a node u in (rm(A))+ such that for all
n < N − 1, u(ln) = 1 if and only if n ∈ F . If N − 1 6∈ F , by (6) and (7) of the definition of strong coding
tree there is an extension t ⊃ u in A+ with passing number 0 at cN−1, and this t satisfies (14) for F .

If N − 1 ∈ F , it suffices to show that u ∈ Spl(A,N − 1), for then there will be a t ⊃ u in A+ with passing
number 1 at cN−1, and this t will satisfy (14). By the Splitting Criterion for Skew Trees, if u 6∈ Spl(A,N−1),
then u and cN−1 � (lN−2+1) must have a parallel 1. Then by the Parallel 1’s Criterion, there is some i ≤ N−2
such that u(li) = cN−1(li) = 1. Since u codes edges only with those vertices with indexes less than N − 1
in F , it follows that i must be in F . But then {ci, cN−1} is a subset of F coding an edge, contradicting the
assumption on F . Therefore, u is in Spl(A,N − 1). �

We now present a flexible method for constructing a strong coding tree T. This should be thought of as a
stretched and skewed version of the strong triangle-free tree S which was constructed in Theorem 3.14. The
passing numbers at the coding nodes in T code edges and non-edges exactly as the passing numbers of the
coding nodes in S. In particular, given the same enumeration 〈Fi : i < ω〉 of the finite subsets of ω, H3 is
coded in the same order by both S and T.

The strong coding tree T which we construct will be regular: For each n, nodes in Spl(T, n) extend to
splitting nodes in the n-th interval of T from lexicographically least to largest. Regularity is not necessary
for achieving the main theorems of this article. However, as any strong coding tree contains a subtree which
is a regular strong coding tree, it does no harm to only work with regular trees.

Theorem 4.6. Let 〈Fi : i < ω〉 be any sequence enumerating the finite subsets of ω so that each finite set
appears cofinally often. Assume further that for each i < ω, Fi ⊆ i− 1 and F3i = F3i+2 = ∅. Then there is
a strong coding tree T which densely codes H3, where for each i < ω and j ≤ 2, the coding node c4i+j meets
requirement F3i+j.
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Proof. Let 〈Fi : i < ω〉 satisfy the hypotheses, and let 〈ui : i < ω〉 be an enumeration of all the nodes in 2<ω

in such a way that each |ui| ≤ i. We construct a strong coding tree T ⊆ 2<ω with coding nodes 〈cn : n < ω〉
and lengths ln = |cn| so that for each n < ω, rmn+1(T) :=

⋃
{LevT(i) : i ≤ mn} is a finite strong coding

tree and LevT(mn + 1) satisfies (6) and (7) of the definition of strong coding tree, where mn is the index
such that the mn-th critical node dmn is equal to the n-th coding node cn, and the following properties are
satisfied:

(i) For n = 4i+ j, j ≤ 2, cn meets requirement F3i+j .
(ii) For n = 4i + 3, if ui is in rmn−3+2(T), then cn is a coding node extending ui. Otherwise, cn =

0ln−1−1_〈1, 1〉_0qn where qn = ln − (ln−1 + 1).

To begin, define LevT(0) = {〈〉}. Then the minimum length splitting node in T is 〈〉, and we label it d0. Let
LevT(1) = {〈0〉, 〈1〉}. To satisfy (5) of Definition 4.3, c0 is going to extend 〈1〉, so in order to satisfy (4), it must
be the case that Spl(T, 0) = {〈0〉}. Take the splitting node d1 to be 〈0〉. Let LevT(2) = {〈0, 0〉, 〈0, 1〉, 〈1, 0〉},
and define c0 = 〈1, 0〉. Then l0 = 2, d2 = c0, and

(15) rm0+1(T) =
⋃
{LevT(i) : i ≤ 2}

is a finite strong coding tree satisfying (i) and (ii). The next level of T must satisfy (6) and (7). Extend
〈0, 0〉 to 〈0, 0, 0〉, extend 〈0, 1〉 to 〈0, 1, 1〉, and extend 〈1, 0〉 to 〈1, 0, 0〉, and let these compose LevT(3).

For the sake of clarity, the next few levels of T up to the level of c1 will be constructed concretely. To
satisfy (2), the next coding node c1 must extend 〈0, 1, 1〉, since this is the only node in LevT(3) which has
passing number 1 at c0. The knowledge that c1 will extend 〈0, 1, 1〉 along with the Splitting Criterion for
Skew Trees determine that Spl(T, 1) = {〈0, 0, 0〉, 〈1, 0, 0〉}, since these are the nodes in LevT(3) which have
no parallel 1’s with 〈0, 1, 1〉. As we are building T to be regular, 〈1, 0, 0〉 is first in Spl(T, 1) to be extended to
a splitting node. Let d3 = 〈1, 0, 0〉, and let LevT(4) = {〈0, 0, 0, 0〉, 〈0, 1, 1, 0〉, 〈1, 0, 0, 0〉, 〈1, 0, 0, 1〉}, so that T4

is strongly skew. Next, let d4 = 〈0, 0, 0, 0〉 as this node should split since it is the only extension of 〈0, 0, 0〉
in LevT(4). Let

(16) LevT(5) = {〈0, 0, 0, 0, 0〉, 〈0, 0, 0, 0, 1〉, 〈0, 1, 1, 0, 0〉, 〈1, 0, 0, 0, 0〉, 〈1, 0, 0, 1, 0〉}.
Let c1 = 〈0, 1, 1, 0, 0〉, as this is the only extension of 〈0, 1, 1〉 in LevT(5). Thus, d5 = c1, l1 = 5,
splT(〈1, 0, 0〉) = 〈1, 0, 0〉 and splT(〈0, 0, 0〉) = 〈0, 0, 0, 0〉. Moreover, r6(T) is a regular, finite strong cod-
ing tree satisfying requirements (i) - (ii). The next level of T is determined by (6) and (7), so let

(17) LevT(6) = {〈0, 0, 0, 0, 0, 0〉, 〈0, 0, 0, 0, 1, 1〉, 〈0, 1, 1, 0, 0, 0〉, 〈1, 0, 0, 0, 0, 0〉, 〈1, 0, 0, 1, 0, 1〉}.
This constructs the tree r7(T), which is T up to the level of l1+1 = 6. Notice that the second lexicographically
least node in LevT(l1 + 1) is 〈0, 0, 0, 0, 1, 1〉 = 0(l1−1)

_〈1, 1〉.
Suppose rmn−1 + 2(T) has been constructed so that rmn−1+1(T) is a finite strong coding tree satisfying

(i) and (ii) and such that LevT(mn−1 + 1) satisfies (6) and (7) of Definition 4.3, where mn−1 is the index
such that dmn−1

= cn−1. As part of the induction hypothesis, suppose also that the second lexicographically

least node in LevT(mn−1 + 1) is 0(mn−1−1)_〈1, 1〉, this being true in the base case of rm1+2(T). Enumerate
the members of LevT(mn−1 + 1) in decreasing lexicographical order as 〈sk : k < K〉. At this stage, we need
to know which node sk will be extended to the next coding node cn as this determines the set Spl(T, n). We
will show how to choose k∗ in the three cases below, so that extending sk∗ to cn will meet requirements (i)
and (ii). Once k∗ is chosen, Spl(T, n) is the set {sk : k ∈ Ksp}, where Ksp is the set of those k < K such
that for all i < n, sk(li) + sk∗(li) ≤ 1, that is, sk and sk∗ have no parallel 1’s at or below ln−1. Then let
cn = sk∗n

_0|Ksp|, and extend all nodes in {sk : k < K} according to (6) and (7) in the definition of strong
coding tree. We point out that ln will equal ln−1 + |Ksp|+ 1.

There are three cases to consider regarding which k < K should be k∗.
Case 1. n = 4i or n = 4i + 2 for some i < ω. Let n′ denote 3i if n = 4i and 3i + 2 if n = 4i + 2. In

this case, Fn′ = ∅. Let k∗ = K − 2. Since sK−1 is the lexicographic least member of LevT(mn−1 + 1), sK−1
must be 0ln−1+1. Hence, sK−2 being next lexicographic largest implies that sK−2 = 0(ln−1−1)_〈1, 1〉. Let
k∗ = K − 2. Then any extension of sk∗ to a coding node will have passing number 1 at cn−1 and passing
number 0 at ci for all i < n− 1.

Case 2. n = 4i+ 1 for some 1 ≤ i < ω. If there is a pair k < m of integers in F3i+1 such that cm(lk) = 1,
then again take k∗ to be K − 2. Otherwise, cm(lk) = 0 for all pairs k < m in F3i+1. Note that i ≥ 1 implies
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that max(F3i+1) ≤ 3i − 1 ≤ n − 3. Since by the induction hypothesis rmn−2+1(T) is a finite strong coding
tree, Lemma 4.5 implies there is some t ∈ LevT(mn−3 + 2) such that t(lj) = 1 if and only if j ∈ F3i+1. Let
t′ be the node in 2<ω of length ln−2 + 1 which extends t by all 0’s. By our construction, this node is in
rmn−2+2(T). Since, by Case 1, cn−1 is the node of length ln−1 extending 0ln−2−1_〈1, 1〉 by all 0’s, one sees
that t′ � (ln−2 + 1) and cn−1 � (ln−2 + 1) have no parallel 1’s. Thus, t′ � (ln−2 + 1) is in Spl(T, n − 1). Let
k∗ be the index in K such that sk∗ is the rightmost extension of t′ in LevT(mn−1 + 1).

Case 3. n = 4i+ 3 for some i < ω. If ui 6∈ rmn−3+2(T), then let k∗ = K − 2. Otherwise, ui ∈ rmn−3+2(T).
Let u′ be the leftmost extension of ui in rmn−2+2(T) of length ln−2 + 1. In particular, u′(ln−2 − 1) =
u′(ln−2) = 0. As in Case 2, cn−1 is the node of length ln−1 such that for all l < ln−1, cn−1(l) = 1 if and only
if l ∈ {ln−2 − 1, ln−2}. Thus, u′ and cn−1 � (ln−2 + 1) have no parallel 1’s, so by the induction hypothesis,
u′ ∈ Spl(T, n − 1). Hence, there is an extension u′′ ⊇ u′ in rmn−1+2(T) such that u′′(ln−1) = 1. Let k∗ be
the index of the node u′′.

To finish the construction of T up to level ln+1, let ln = ln−1 + |Ksp|+1. For each k 6∈ Ksp, extend sk via
all 0’s to length ln + 1. Note in each of the three cases, k∗ is not in Ksp, since sk∗ has passing number 1 at
cn−1. Thus, cn is the extension of sk∗ by all 0’s to length ln, and its immediate extension, or passing number
by itself, is 0. Enumerate Ksp as 〈ki : i < |Ksp|〉 so that ski >lex ski+1

for each i. Let spl(ski) = ski
_0i; in

particular, spl(sk0) = sk0 . For each i < |Ksp|, letting pi = |Ksp| − i, ski_0|Ksp| and spl(ski)
_

1_0pi−2
_

1
are the two extensions of ski in LevT(ln + 1). This constructs LevT(ln + 1). Notice that for each j < 2, the
t ∈ LevT(ln + 1) extending spl(ski)

_j has passing number t(ln) = j.
Let T =

⋃
i<ω LevT(i). Then T is a strong coding tree because each initial segment rmn+1(T), n < ω, is

a finite strong coding tree, and the coding nodes are dense in T. �

Fact 4.7. Any strong coding tree is a perfect tree.

Proof. Let t be any node in T , and and let j be minimal such that lj ≥ |t|. Extend t leftmost in T to the
node of length lj , and label this t′. Let s = 0lj . By density of coding nodes in T , there is a coding node ck
in T extending s, with k ≥ j + 2. Extending t′ leftmost in T to length lk−1 + 1 produces a node t′′ in T̂
which has no parallel 1’s with ck � (lk−1 + 1). Thus, t′′ ∈ Spl(T, k), so t′′ extends to a splitting node in T
before reaching the level of ck. �

In particular, it follows from the definition of strong coding tree that in any strong coding tree T , for any
n < ω, the node 0ln−1 will split in T before the level ln.

4.3. The space (T (T ),≤, r) of strong coding trees. The space of subtrees of a given strong coding
tree, equipped with a strong partial ordering, will form the fundamental structure allowing for the Ramsey
theorems in latter sections. It turns out that not every subtree of a given strong coding tree T can be
extended within T to form another strong coding tree. The notion of valid subtree provides conditions when
a finite subtree can be extended in any desired manner within T . Some lemmas guaranteeing that finite
valid subtrees of a given strong coding tree T can be extended to any desired configuration within T are
presented at the end of this subsection. These lemmas will be very useful in subsequent sections. Those
familiar with topological Ramsey spaces will notice the influence of [33] in our chosen style of presentation,
the idea being that the space of strong coding trees has a similar character to the topological Ramsey space
of Milliken’s infinite strong trees, though background in [33] is not necessary for understanding this article.

To begin, we define a strong notion of isomorphism between meet-closed sets by augmenting Sauer’s
notion of strong similarity type from [31] to fit the present setting. Given a subset S ⊆ 2<ω, recall that the
meet closure of S, denoted S∧, is the set of all meets of pairs of nodes in S. In this definition s and t may
be equal, so S∧ contains S. We say that S is meet-closed if S = S∧. Note that each tree is meet-closed, but
there are meet-closed sets which are not trees, as Definition 2.1 of tree applies throughout this paper.

Definition 4.8 ([31]). S ⊆ 2<ω is an antichain if s ⊆ t implies s = t, for all s, t ∈ S. A set S ⊆ 2<ω is
transversal if |s| = |t| implies s = t for all s, t ∈ S. A set D ⊆ 2<ω is diagonal if D is an antichain with
D∧ being transversal. A diagonal set D is strongly diagonal if additionally for any s, t, u ∈ D with s 6= t, if
|s ∧ t| < |u| and s ∧ t 6⊂ u, then u(|s ∧ t|) = 0.

It follows that the meet closure of any antichain of coding nodes in a strong coding tree is strongly
diagonal. In fact, strong coding trees were designed with this property in mind.
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The following augments Sauer’s Definition 3.1 in [31] to the setting of trees with coding nodes. The
lexicographic order on 2<ω between two nodes s, t ∈ 2<ω, with neither extending the other, is defined by
s <lex t if and only if s ⊇ (s ∧ t)_0 and t ⊇ (s ∧ t)_1. It is important to note that in a given strong coding

tree T , each node s at the level of a coding node cn in T has exactly one immediate extension in T̂ . This is

the unique node s+ of length ln+1 in T̂ such that s+ ⊃ s. This fact is used in (7) of the following definition.

Definition 4.9. Let S, T ⊆ 2<ω be meet-closed subsets of a fixed strong coding tree T. The function
f : S → T is a strong similarity of S to T if for all nodes s, t, u, v ∈ S, the following hold:

(1) f is a bijection.
(2) f preserves lexicographic order: s <lex t if and only if f(s) <lex f(t).
(3) f preserves initial segments: s ∧ t ⊆ u ∧ v if and only if f(s) ∧ f(t) ⊆ f(u) ∧ f(v).
(4) f preserves meets: f(s ∧ t) = f(s) ∧ f(t).
(5) f preserves relative lengths: |s ∧ t| < |u ∧ v| if and only if |f(s) ∧ f(t)| < |f(u) ∧ f(v)|.
(6) f preserves coding nodes: f maps the set of coding nodes in S onto the set of coding nodes in T .
(7) f preserves passing numbers at coding nodes: If c is a coding node in S and u is a node in S with
|u| ≥ |c|, then (f(u))+(|f(c)|) = u+(|c|); in words, the passing number of the immediate successor of
f(u) at f(c) equals the passing number of the immediate successor of u at c.

In all cases above, it may be that s = t and u = v so that (3) implies s ⊆ u if and only if f(s) ⊆ f(u),
etc. It follows from (4) that s ∈ S is a splitting node in S if and only if f(s) is a splitting node in T . We

say that S and T are strongly similar if there is a strong similarity of S to T , and in this case write S
s∼ T .

If T ′ ⊆ T and f is a strong similarity of S to T ′, then f is a strong similarity embedding of S into T , and
T ′ is a strong similarity copy of S in T . For A ⊆ T , let Sims

T (A) denote the set of all subsets of T which
are strongly similar to A. The notion of strong similarity is relevant for all meet-closed subsets of a strong
coding tree, including subsets which form trees. Note that if A is a meet-closed set which is not a tree and
S = {u � |v| : u, v ∈ A and |u| ≥ |v|} is its induced tree, technically A and S are not strongly similar. This
distinction will present no difficulties.

Not only are strong coding trees perfect, but the ones constructed in the manner of Theorem 4.6, and
hence any tree with the same strong similarity type, also have the following useful property.

Fact 4.10. Let T be constructed in the manner of Theorem 4.6, and let T be a strong coding tree which is
strongly similar to T . Then for each even integer n < ω, each node in T of length ln splits in T before the
level of cn+2.

Proof. Given a node t in T at the level of cn, if t does not already split before the level of cn+1, then its only
extension to length ln+1 + 1 has passing number 0 at cn+1; call this extension t′. Now since n + 2 is even,
the coding node cn+2 has passing number 0 at all ci, i < n+ 1, and passing number 1 at cn+1. Thus, t′ and
cn+2 � (ln+1 + 1) have no parallel 1’s, so t′ splits before reaching the level of cn+2. �

Depending on how a finite subtree A of a strong coding tree T sits inside T , it may be impossible
to extend A inside of T to another strong coding tree. As a simple example, the set of nodes A =
{〈〉, 〈0, 0, 0, 0〉, 〈1, 0, 0, 1〉} in T is strongly similar to r2(T). However A cannot be extended in T to a strong
coding tree strongly similar to T with 〈0, 0, 0, 0〉 being a splitting node. The reasons are as follows. Any
such extension A′ in T must have nodes extending 〈0, 0, 0, 0, 0, 0〉, 〈0, 0, 0, 0, 1, 1〉, and 〈1, 0, 0, 1, 0, 1〉}. The
nodes 〈0, 0, 0, 0, 1, 1〉 and 〈1, 0, 0, 1, 0, 1〉 have parallel 1’s, so the next coding node must witness them. In
order to be strongly similar to r3(T), 〈0, 0, 0, 0, 1, 1〉 must be extended to the next coding node in A′, and
by the Triangle-Free Criterion, any such node is immediately succeeded by a 0, so it cannot witness the new
parallel 1’s, thus failing to satisfy the Parallel 1’s Criterion.

Another potential problem is the following. Let T be a strong coding tree and take m such that dTm is a
splitting node, dTm+2 = cTn is a coding node, and |dTm−2| > ln−1, where n ≥ 3. So, dTm is a splitting node with
at least two splitting nodes preceding it in T and at least one splitting node proceeding it before the next
coding node in T . It follows by the structure of strong coding trees that there are at least two maximal nodes
in rm+1(T ) which have no parallel 1’s but which are pre-determined to passing cTn with passing number 1, as

their only extensions of length ln+1 in T̂ both have passing number 1 at cTn . It follows that any strong coding
subtree S of T with the same initial segment as T up to level m, i.e. rm+1(S) = rm+1(T ), is necessarily going
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to have rm+2(S) = rm+2(T ); for if the splitting node dSm+1 is not equal to dTm+1, then the pre-determined

new parallel 1’s appear in rm+2(S) before the splitting node dSm+1, implying S violates the Parallel 1’s
Criterion. Thus, if rm+2(S) is a finite strong coding tree end-extending rm+1(T ) into T and strongly similar
to rm+2(T ), then rm+2(S) must actually equal rm+2(T ). Clearly this is not what we want.

Definition 4.11. Let X = {xi : i < ĩ} be a level set of two or more nodes in T̂ , and let l be their length.
We say that X has no pre-determined new sets of parallel 1’s in T if either X contains a coding node, or
else for any ln > l, there are extensions yi ⊇ xi of length ln such that the following holds: For each I ⊆ ĩ
of size at least two, if there is an l′ < ln such that yi(l

′) = 1 for all i ∈ I, then there is an l′′ < l such that
yi(l
′′) = 1 for all i ∈ I.

It in order to determine whether a level set of nodes X = {xi : i < ĩ} of length l, not containing a coding

node, has pre-determined new sets of parallel 1’s in T , it suffices to extend the nodes in X leftmost in T̂ to
nodes yi ⊇ xi of length ln + 1, where cn is the minimal coding node in T of length greater than l. If there is
an l′ < l such that {i < ĩ : xi(l

′) = 1} contains the set {i < ĩ : yi(ln) = 1}, then X has no pre-determined

new sets of parallel 1’s. Note that any level set in T̂ of length ln + 1 for some n < ω is valid in T .

Definition 4.12. A subtree A, finite or infinite, of a strong coding tree T is valid in T if each level set in
A has no pre-determined new sets of parallel 1’s in T .

The main point is that valid subtrees are safe to work with: They can always be extended within the
ambient strong coding tree to any desired strong similarity type. This will be seen clearly in the lemmas at
the end of the section. Note that all finite strong coding trees are valid, as their maximal level contains a
coding node.

We now come to the definition of the space of strong coding subtrees of a fixed strong coding tree. The
partial ordering ≤ is defined on the collection of all strong coding trees as follows: For strong coding trees
S and T ,

(18) S ≤ T ←→ S is a valid subtree of T and S
s∼ T.

Definition 4.13 (The space (T (T ),≤, r)). Let T be any strong coding tree. Define T (T ) to be the collection
of all strong coding trees S such that S ≤ T . As previously defined, for m < ω, rm(S) denotes

⋃
i<m LevS(m),

the initial subtree of S containing the first m critical nodes of S. The restriction map r is formally a map
from ω × T (T ) which on input (m,S) produces rm(S). Let Am(T ) denote {rm(S) : S ∈ T (T )}, and let
A(T ) =

⋃
m<ω Am(T ), the collection of all finite approximations to members of T (T ).

For A ∈ Am(T ) and S ∈ T (T ) with A valid in S, define

(19) [A,S] = {U ≤ S : rm(U) = A},
and define

(20) rm+1[A,S] = {B ∈ Am+1 : rm(B) = A and B is valid in S}.

Techniques for building valid subtrees of a given strong coding tree are now developed. The next lemma
provides a means for extending a particular maximal node s in a finite subtree A of a strong coding tree T
to a particular extension t in T , and extending the rest of the maximal nodes in A to the length of t, without
introducing new sets of parallel 1’s. Let {si : i < ĩ} be some level set of nodes in a strong coding tree T .
We say that a level set of extensions {ti : i < ĩ}, where each ti ⊇ si, adds no new sets of parallel 1’s over
{si : i < ĩ} if whenever l < |t0| and the set Il := {i < ĩ : ti(l) = 1} has cardinality at least 2, then there is
an l′ < |s0| such that {i < ĩ : si(l

′) = 0} = Il.

Lemma 4.14. Suppose T is a strong coding tree and {si : i < ĩ} is a set of two or more nodes in T̂ of

length lk + 1. Let n∗ > k, let l∗ denote ln∗ , and let t0 be any extension of s0 in T̂ of length l∗ + 1. For each

0 < i < ĩ, let ti denote the leftmost extension of si in T̂ of length l∗ + 1. Then the set {ti : i < ĩ} adds no
new sets of parallel 1’s over {si : i < ĩ}.

Proof. Assume the hypotheses, and suppose that there is some l < l∗ such that the set Il = {i < ĩ : ti(l) = 1}
has more than one member. Then by the Parallel 1’s Criterion, there is an n ≤ n∗ such that ti(ln) = 1
for all i < ĩ. Since for each 0 < i < ĩ, ti is the leftmost extension of si, by (6) and (7) in the definition of
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strong coding tree, the passing number of ti at lj is 0, for all k < j ≤ n∗. It follows that any n such that cn
witnesses the parallel 1’s in {ti : i ∈ Il} must be less than or equal to k. �

In fact, any sets of parallel 1’s from the set {ti : i < ĩ} constructed in the preceding lemma occur at a
level below l.

Given a set of nodes S in a strong coding tree, the tree induced by S is the set of nodes {s � |v| : s ∈
S, v ∈ S∧}. For a finite tree A, we shall use the notation max(A) in a slightly non-standard way.

Notation 4.15. Given a finite tree A, max(A) denotes the set of terminal nodes in A which have the
maximal length of any node in A. Thus,

(21) max(A) = {t ∈ A : t = lA},
where lA = max{|s| : s ∈ A}. Note in particular that max(A) is a level set.

The following lemma is immediate from finitely many applications of Lemma 4.14, using the fact that
maximal nodes of valid subtrees can be extended leftmost to any length without adding any new sets of
parallel 1’s.

Lemma 4.16. Let A be a finite valid subtree of any strong coding tree T and let l be the length of the nodes
in max(A). Let Spl(u) be any nonempty level subset of max(A), and let Z be any subset of max(A) \ Spl(u).
Then given any enumeration {zi : i < ĩ} of Spl(u) and l′ ≥ l, there is an l∗ > l′ and extensions s0i , s

1
i ⊃ zi

for all i < ĩ, and sz ⊃ z for all z ∈ Z, each of length l∗, such that, letting

(22) X = {sji : s ∈ Spl(u), j ∈ {0, 1}} ∪ {sz : z ∈ Z},
and B be the tree induced by A ∪X, the following hold:

(1) The splitting in B above A occurs in the order of the enumeration of Spl(u). Thus, for i < i′ < ĩ,
|s0i ∧ s1i | < |s0i′ ∧ s1i′ |.

(2) B has no new sets of parallel 1’s over A.

Convention 4.17. When working within a fixed strong coding tree T , the passing numbers at coding nodes
cTn are completely determined by T . Thus, for a finite subset A of T such that lA equals lTn for some n < ω,
then saying that A satisfies the Parallel 1’s Criterion implies that the extension A ∪ {s+ : s ∈ max(A)}
satisfies the Parallel 1’s Criterion.

Lemma 4.18 shows that given a valid subtree of a strong coding tree T , any of its maximal nodes can
be extended to a coding node cTk in T while the rest of the maximal nodes can be extended to length lTk
so that their passing numbers are anything desired, subject only to the Triangle-Free Criterion. Recall that
any node u in T at the level of a coding node cTk has a unique immediate extension u+ of length lTk + 1 in

T̂ ; so there is no ambiguity to consider u+(lTk ) to be the passing number of u at ck, even though technically
u is not defined on input lTk .

Lemma 4.18 (Passing Number Choice Extension Lemma). Let T be a strong coding tree and A be any
finite valid subtree of T . Let lA denote the length of the members of max(A) and let A+ denote the set of

all members of T̂ of length lA + 1 which extend some member of max(A). List the nodes of A+ as si, i < ĩ.
Fix any d < ĩ. For each i 6= d, if si and sd have no parallel 1’s, fix any εi ∈ {0, 1}; if si and sd have parallel
1’s, let εi = 0. In particular, εd = 0.

Then for each j < ω, there is a coding node ck with k ≥ j extending sd and extensions ui ⊇ si, i ∈ ĩ\{d},
of length lk such that the passing number of ui at ck is εi for each i ∈ ĩ \ {d}. Furthermore, the nodes ui
can be chosen so that any new parallel 1’s among {ui : i < ĩ} which were not witnessed in A are witnessed
by ck, and their first instances take place in the k-th interval of T . In particular, if A ∪ {si : i < ĩ} satisfies
the Parallel 1’s Criterion, then A ∪ {ui : i < t̃} also satisfies the Parallel 1’s Criterion, where ud = ck.

Proof. Assume the hypotheses of the lemma. Let j′ be such that the nodes {si : i < ĩ} are in the j′-th
interval of T . For each i < ĩ, let ti be the leftmost extension of si of length lj′ + 1. Since A is a valid subtree

of T , no new sets of parallel 1’s are acquired by {ti : i < ĩ}. Let j < ω be given and take k ≥ max(j, j′ + 1)
minimal such that ck ⊇ td, and let ud = ck. Such a k exists since the coding nodes are dense in T . For
each i 6= d, extend ti via its leftmost extension to the level of lk−1 + 1, and label it t′i. By Lemma 4.14, for
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i 6= d, no new sets of parallel 1’s are acquired by {t′i : i ∈ ĩ \ {d}} ∪ {ud � (lk−1 + 1)}. For each i 6= d for

which εi = 0, let ui be the leftmost extension of t′i of length lk + 1. For i < ĩ such that εi = 1, let ui be the

rightmost extension of t′i to length lk + 1. Note that for each i < ĩ, the passing number of of ui at ck is εi.

For any I ⊆ ĩ of size at least two, if there is some l such that ui(l) = 1 for all i ∈ I, and the least l
for which this holds is greater than lA, then it must be that ui(lk) = 1 for each i ∈ I, since no new sets of
parallel 1’s are acquired among {ui : i < ĩ} below lk−1 + 1. Thus, the set {ui : i < ĩ} satisfies the lemma.
If A satisfies the Parallel 1’s Criterion, then it is clear that A ∪ {ui : i < ĩ} also satisfies the Parallel 1’s
Criterion, since all the new parallel 1’s are witnessed by the coding node ud = ck. �

The final lemma of this section combines the previous two, to show that any finite valid subtree of a
strong coding tree can be extended to another valid subtree with any prescribed strong similarity type.

Lemma 4.19. Let A be a finite valid subtree of any strong coding tree T , and let lA be the length of the
nodes in max(A). Fix any member u ∈ max(A)+. Let Spl(u) be any set of nodes s ∈ max(A)+ which have
no parallel 1’s with u, and let Z denote max(A)+ \ (Spl(u) ∪ {u}). Let l ≥ lA be given. Then there is an
l∗ > l and extensions u∗ ⊃ u, s0∗, s

1
∗ ⊃ s for all s ∈ Spl(u), and s∗ ⊃ s for all s ∈ Z, each of length l∗, such

that, letting

(23) X = {u∗} ∪ {si∗ : s ∈ Spl(u), i ∈ {0, 1}} ∪ {s∗ : s ∈ Z},
and B be the tree induced by A ∪X, the following hold:

(1) u∗ is a coding node.
(2) For each s ∈ Spl(t) and i ∈ {0, 1}, the passing number of si∗ at u∗ is i.
(3) For each s ∈ Z, the passing number of s∗ at u∗ is 0.
(4) Splitting among the extensions of the s ∈ Spl(u) occurs in reverse lexicographic order: For s and t

in Spl(u), |s0∗ ∧ s1∗| < |t0∗ ∧ t1∗| if and only if s∗ >lex t∗.
(5) There are no new sets of parallel 1’s among the nodes in X until they pass the level of the longest

splitting node in B below u∗.

In particular, if A satisfies the Parallel 1’s Criterion, then so does B.

Proof. Since A is valid in T , apply Lemma 4.16 to extend max(A) to have splitting nodes in the desired
order without adding any new sets of parallel 1’s. Then apply Lemma 4.18 to extend to a level with a coding
node and passing numbers as prescribed. �

It follows from Lemma 4.19 that whenever A is a finite strong coding tree which is valid in some strong
coding tree T and strongly similar to rm(T ), then rm+1[A, T ] is infinite. In particular, A can be extended
to a strong coding tree S such that S ≤ T .

Remark 4.20. It is straightforward to check that the space (T (T ),≤, r) of strong coding trees satisfies Axioms
A.1, A.2, and A.3(1) of Todorcevic’s axioms in Chapter 5 of [33] guaranteeing a topological Ramsey space.
On the other hand, A.3(2) does not hold, and A.4, the pigeonhole principle, holds in a modified form where
the finite subtree being extended is a valid subtree of the strong coding tree, as will follow from Theorem
6.3. It remains open what sort of infinitary Ramsey theory in the vein of [22] holds in (T (T ),≤, r), in terms
of its Ellentuck topology.

5. Halpern-Lauchli-style Theorems for strong coding trees

The Ramsey theory content for strong coding trees begins in this section. The ultimate goal is to obtain a
Ramsey theorem for colorings of strictly similar (Definition 8.3) copies of any given finite antichain of coding
nodes, as these are the structures which will code finite triangle-free graphs. This is accomplished in Theorem
8.9. As a mid-point theorems, we will prove Milliken-style theorems (Theorems ?? and 6.3) for finite trees
satisfying some strong versions of the Parallel 1’s Criterion. Just as the Halpern-Läuchli Theorem forms the
core content of Milliken’s Theorem in the setting of strong trees, so too in the setting of strong coding trees,
Halpern-Läuchli-style theorems are proved first and then applied to obtain Milliken-style theorems in later
sections.

The main and only theorem of this section is Theorem 5.2. This general theorem encompasses colorings
of two different types of level set extensions of a fixed finite tree: The level set either contains a splitting
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node (Case (a)) or a coding node (Case (b)). In Case (a), we obtain a direct analogue of the Halpern-
Läuchli Theorem. In Case (b), we obtain a weaker version of the Halpern-Läuchli Theorem, which is later
strengthened to the direct analogue in Lemma 6.8.

The structure of the proof follows the basic outline of Harrington’s proof of the Halpern-Läuchli Theorem,
as outlined to the author by Laver. The reader wishing to read that proof as a warm-up is referred to Section
2 of [3]. In the setting of strong coding trees, new considerations arise, and new forcings have to be established
to achieve the result. The main reasons that new forcings are needed are firstly, that there are two types
of nodes, coding and splitting nodes, and secondly, that the extensions achieving homogeneity must be
extendible to a strong coding tree valid inside the ambient tree. This second property necessitates that the
extensions be valid and satisfy the Parallel 1’s Criterion, and is responsible for the strong definition of the
partial ordering on the forcing. The former is responsible for there being Cases (a) and (b). The forcings will
consist of conditions which are finite functions with images which are certain level sets of a given tree strong
coding tree T , but the partial ordering will be stronger than the partial ordering of subtree as branches
added will have some dependence between them, so these are not simply Cohen forcings.

Remark 5.1. Although the proof uses the set-theoretic technique of forcing, the whole construction takes
place in the original model of ZFC, not in some generic extension. The forcing should be thought of as
conducting an unbounded search for a finite object, namely the finite set of nodes of a prescribed form where
homogeneity is attained. Thus, the result and its proof hold using only the standard axioms of mathematics.

The following terminology and notation will be used throughout. Let T be a strong coding tree. Given
finite subtrees U, V of T , we write U v V to mean that there is some k such that U =

⋃
m<k LevU (m) =⋃

m<k LevV (m), and we say that V extends U , or that U is an initial subtree of V . We write U @ V if U
is a proper initial subtree of V . Recall from Definition 4.13 that S ≤ T means that S is a valid subtree of
T which is strongly similar to T , and hence also a strong coding tree. Given a finite strong coding tree B,

[B, T ] denotes the set of all S ≤ T such that S extends B. A set X ⊆ T̂ is a level set if all nodes in X
have the same length. For level sets X,Y we shall also say that Y extends X if X and Y have the same
number of nodes and each node in X is extended by a unique node in Y . For level sets Y = {yi : i ≤ d} and
X = {xi : i ≤ d} with yi ⊇ xi for each i ≤ d, we say that Y has no new sets of parallel 1’s over X if for each
I ⊆ d+ 1 for which there is an l such that yi(l) = 1 for each i ∈ I, then there is an l′ such that xi(l

′) = 1 for

each i ∈ I. For any tree U ⊆ T̂ and any l < ω , let U � l denote the set of s ∈ Û such that |s| = l. A set of

two or more nodes {xi : i ∈ I} in T̂ is said to have first parallel 1’s at level l if l is least such that xi(l) = 1
for all i ∈ I.

For each s ∈ T̂ , if i ∈ {0, 1} and s_i is in T̂ , then we say that s_i is an immediate extension of s in
T . Thus, splitting nodes in T have two immediate extensions in T , and non-splitting nodes, including every
node at the level of a coding node, have exactly one immediate extension in T . For a non-splitting node s
in T , we let s+ denote the immediate extension of s in T . Given a finite subtree A of T , let lA denote the
maximum of the lengths of members of A, and let max(A) denote the set of all nodes in A with length lA.

Let A+ denote the set of immediate extensions in T̂ of the members of max(A):

(24) A+ = {s_i : s ∈ max(A), i ∈ {0, 1}, and s_i ∈ T̂}.

Note that A+ is a level set of nodes of length lA + 1.
We now provide the set-up for the two cases before stating the theorem.

The Set-up for Theorem 5.2. Let T be a fixed strong coding tree, and let T ≤ T be given. Let A be
a finite valid subtree of T satisfying the Parallel 1’s Criterion. It is fine for A to have terminal nodes at
different levels, indeed, we need to allow this for the intended applications later. Without loss of generality
and to simplify the presentation of the proof, assume that 0lA is in A. Let Ae be a subset of A+ containing
0lA+1 and of size at least two. Let C be a finite valid subtree of T containing A such that C satisfies the
Parallel 1’s Criterion and the collection of all nodes in C not in A, denoted C \A, forms a level set extending
Ae. Assume moreover that 0lC is the node in C extending 0lA+1, where lC is the length of the nodes in
C \A. The two cases are the following:

Case (a). C \A contains a splitting node.
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In Case (a), define ExtT (A,C) to be the collection of all level sets X ⊆ T extending Ae such that

A∪X s∼ C and A∪X is valid in T . We point out that A∪X being valid in T is equivalent to X having no
pre-determined new parallel 1’s. It will turn out to be necessary to require this of X, and the extensions for
which the coloring is relevant will have this property anyway.

Case (b). C \A contains a coding node.

In Case (b), define ExtT (A,C) to be the collection of all level sets X ⊆ T extending Ae such that

A ∪X s∼ C. Since X contains a coding node, A ∪X is automatically valid in T . Recalling (7) of Definition

4.9, A∪X s∼ C implies that, letting f : A∪X → C be the strong similarity map, for each x ∈ X the passing
number of x+ at the coding node in X equals the passing number of (f(x))+ at the coding node in C \ A.
Given any X ∈ ExtT (A,C), let ExtT (A,C;X) denote the set of Y ∈ ExtT (A,C) such that Y extends X.

In both cases, A ∪X s∼ C implies that A ∪X satisfies the Parallel 1’s Criterion.

Theorem 5.2. Let T ≤ T be any strong coding tree and let B be a finite strong coding tree valid in T . Let
A @ C be finite valid subtrees of T such that both A and C satisfy the Parallel 1’s Criterion, A is a subtree
of B, C \ A is a level set of size at least two, and 0lC ∈ C. Further, assume that the nodes in C \ A extend
nodes in max(A) ∩max(B). Let Ae denote the set of nodes in A+ which are extended to nodes in C \A.

In Case (a), given any coloring h : ExtT (A,C) → 2, there is a strong coding tree S ∈ [B, T ] such that h
is monochromatic on ExtS(A,C).

In Case (b), suppose X ∈ ExtT (A,C) and m0 are given for which there is a B′ ∈ rm0
[B, T ] with X ⊆

max(B′). Then for any coloring h : ExtT (A,C) → 2 there is a strong coding tree S ∈ [rm0−1(B′), T ] such
that h is monochromatic on ExtS(A,C;X).

Proof. Let T,A,Ae, B,C be given satisfying the hypotheses of either Case (a) or (b), and let h : ExtT (A,C)→
2 be a given coloring. Let d+ 1 equal the number of nodes in Ae. List the nodes of Ae as s0, . . . , sd, letting
sd denote the node of Ae that is extended to the critical node in C \ A: a splitting node in Case (a) and a
coding node in Case (b). For each i ≤ d, let ti denote the node in max(C) which extends si. In particular,
td denotes the splitting or coding node in max(C). Let i0 denote the integer such that si0 is the node of Ae
which is a sequence of 0’s. Then ti0 is the sequence of all 0’s in C \ A. Notice that i0 can equal d only if
we are in Case (a) and moreover the splitting node in C \ A is a sequence of 0’s. In Case (b), the following
notation will be used: For each i ≤ d, t+i denotes the member in max(C)+ extending ti. Let I0 denote the
set of all i < d such that t+i (|td|) = 0 and let I1 denote the set of all i < d such that t+i (|td|) = 1.

Let L denote the collection of all l < ω such that there is a member of ExtT (A,C) with maximal nodes
of length l. L is infinite since B is valid in T . In Case (a), L is exactly the set of all l < ω for which there
is a splitting node of length l extending sd, and in Case (b), L is exactly the set of all l < ω for which there
is a coding node of length l extending sd, as this follows from the validity of B in T and Lemma 4.18. For
each i ∈ (d+ 1) \ {i0}, let Ti = {t ∈ T : t ⊇ si}; let Ti0 = {t ∈ T : t ⊇ si0 and t ∈ 0<ω}, the collection of all
leftmost nodes in T extending si0 .

Let κ = i2d. The following forcing notion P adds κ many paths through Ti, for each i ∈ d \ {i0}, and one
path through Td. If i0 6= d, then P will add one path through Ti0 , though allowing κ many ordinals to label
this path in order to simplify notation.

Case (a). P is the set of conditions p such that p is a function of the form

p : (d× ~δp) ∪ {d} → T � lp,

where ~δp ∈ [κ]<ω and lp ∈ L, such that

(i) p(d) is the splitting node extending sd of length lp;

(ii) For each i < d, {p(i, δ) : δ ∈ ~δp} ⊆ Ti � lp; and

(iii) {p(i, δ) : (i, δ) ∈ d× ~δp} ∪ {p(d)} has no pre-determined new parallel 1’s.

Case (b). P is the set of conditions p such that p is a function of the form

p : (d× ~δp) ∪ {d} → T � lp,

where ~δp ∈ [κ]<ω and lp ∈ L, such that
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(i) p(d) is the coding node extending sd of length lp;

(ii) For each i < d, {p(i, δ) : δ ∈ ~δp} ⊆ Ti � lp.
(iii) For each δ ∈ ~δp, j ∈ {0, 1}, and i ∈ Ij , the immediate extension of p(i, δ) in T is j; that is, the

passing number of (p(i, δ))+ at p(d) is j.

In both Cases (a) and (b), the partial ordering on P is defined as follows: q ≤ p if and only if lq ≥ lp,
~δq ⊇ ~δp, and

(i) q(d) ⊇ p(d), and q(i, δ) ⊇ p(i, δ) for each (i, δ) ∈ d× ~δp;
(ii) The set {q(i, δ) : (i, δ) ∈ d × ~δp} ∪ {q(d)} has no new sets of parallel 1’s over {p(i, δ) : (i, δ) ∈

d× ~δp} ∪ {p(d)}.

Given p ∈ P, we shall use ran(p) to denote the range of p, {p(i, δ) : (i, δ) ∈ d × ~δp} ∪ {p(d)}. If p, q are
members of P, we shall use the abbreviation q has no new parallel 1’s over p to mean that ran(q) has no
new sets of parallel 1’s over ran(p).

The proof of the theorem proceeds in three parts. Part I proves that P is an atomless partial order. Part
II proves Lemma 5.3 which is the main tool for building fusion sequences while preserving homogeneity. This
is applied in Part III to build the tree S which is valid in T and such that ExtS(A,C) is homogeneous for
h in Case (a), and ExtS(A,C;X) is homogeneous for h in Case (b). For the first two parts of the proof, we
present a general proof, indicating the steps at which the two cases require different approaches. Part III
will require the cases to be handled separately.

Part I. P is an atomless partial ordering.

Claim 1. (P,≤) is a partial ordering.

Proof. The order ≤ on P is clearly reflexive and antisymmetric. Transitivity follows from the fact that the

requirement (ii) is a transitive property. If p ≥ q and q ≥ r, then ~δp ⊆ ~δq ⊆ ~δr and lp ≤ lq ≤ lr. Since r has
no new sets of parallel 1’s over q and q has no new sets of parallel 1’s over p, it follows that r has no new
sets of parallel 1’s over p. Thus, p ≥ r. �

We show that P is atomless by proving the following stronger claim.

Claim 2. For each p ∈ P and l > lp, there are q, r ∈ P with lq, lr > l such that q, r < p and q and r are
incompatible.

Proof. Let p ∈ P and l > lp be given, and let ~δr = ~δq = ~δp.
In Case (a), take q(d) and r(d) to be incomparable splitting nodes in T extending p(d) to some lengths

greater than l. Such splitting nodes exist since strong coding trees are perfect. Let lq = |q(d)| and lr = |r(d)|.
For each (i, δ) ∈ d × ~δp, let q(i, δ) be the leftmost extension (in T ) of p(i, δ) to length lq, and let r(i, δ) be
the leftmost extension of p(i, δ) to length lr. Then q and r have no pre-determined new parallel 1’s, since
ran(p) has no pre-determined new parallel 1’s and all nodes except q(d) and r(d) are leftmost extensions in
T of members of ran(p); so q and r are members of P. By Lemma 4.14, both q and r have no new parallel
1’s over p, so q, r ≤ p. Since neither of q(d) and r(d) extends the other, q and r are incompatible.

In Case (b), let s be a splitting node in T of length greater than l extending p(d). Let cTk be the least
coding node in T above s. Let s0, s1 extend s_0, s_1 leftmost in T to the level of cTk , respectively. For each

(i, δ) ∈ d × ~δp, let p′(i, δ) be the leftmost extension in T of p(i, δ) of length lTk . By Lemma 4.18, there are

q(d) ⊇ s0 and q(i, δ) ⊇ p′(i, δ), (i, δ) ∈ d× ~δp, such that

(1) q(d) is a coding node;
(2) q has no new parallel 1’s over p;
(3) For each j < 2, i ∈ Ij if and only if the immediate extension of q(i, δ) is j.

Then q ∈ P and q ≤ p. Likewise by Lemma 4.18, we may extend {p′(i, δ) : (i, δ) ∈ d × ~δp} ∪ {s1} to

{r(i, δ) : (i, δ) ∈ d × ~δp} ∪ {r(d)} to form a condition r ∈ P extending p. Since the coding nodes q(d) and
r(d) are incomparable, q and r are incompatible conditions in P. �

From now on, whenever ambiguity will not arise by doing so, we will refer to the splitting node in Case
(a) and the coding node in Case (b) simply as the critical node.
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Let ḃd be a P-name for the generic path through Td; that is, ḃd = {〈p(d), p〉 : p ∈ P}. Note that for each

p ∈ P, p forces that ḃd � lp = p(d). By Claim 2, it is dense to force a critical node in ḃd above any given

level in T , so 1P forces that the set of levels of critical nodes in ḃd is infinite. Thus, given any generic filter
G for P, ḃGd = {p(d) : p ∈ G} is a cofinal path of critical nodes in Td. Let L̇d be a P-name for the set of

lengths of critical nodes in ḃd. Note that 1P  L̇d ⊆ L. Let U̇ be a P-name for a non-principal ultrafilter
on L̇d. For each i < d and α < κ, let ḃi,α be a P-name for the α-th generic branch through Ti; that is,

ḃi,α = {〈p(i, α), p〉 : p ∈ P and α ∈ ~δp}. For i < d and for any condition p ∈ P and α ∈ ~δp, p forces that

ḃi,α � lp = p(i, α).
For ease of notation, we shall write sets {αi : i < d} in [κ]d as vectors ~α = 〈α0, . . . , αd−1〉 in strictly

increasing order. For ~α = 〈α0, . . . , αd−1〉 ∈ [κ]d, rather than writing out 〈ḃ0,α0 , . . . , ḃd−1,αd−1
, ḃd〉 each time

we wish to refer to these generic branches, we shall simply

(25) let ḃ~α denote 〈ḃ0,α0 , . . . , ḃd−1,αd−1
, ḃd〉,

since the branch ḃd being unique causes no ambiguity. For any l < ω,

(26) let ḃ~α � l denote {ḃi,αi � l : i < d} ∪ {ḃd � l}.

Using the abbreviations just defined, h is a coloring on sets of nodes of the form ḃ~α � l whenever this is
forced to be a member of ExtT (A,C).

Part II. The goal now is to prove Claims 3 and 4 and Lemma 5.3. To sum up, they secure that there
are infinite pairwise disjoint sets Ki ⊆ κ for i < d, and a set of conditions {p~α : ~α ∈

∏
i<dKi} which are

compatible, have the same images in T , and such that for some fixed ε∗ ∈ {0, 1}, for each ~α ∈
∏
i<dK

′
i, p~α

forces h(ḃ~α � l) = ε∗ for ultrafilter many l ∈ L̇d. Moreover, we will find nodes t∗i , i ≤ d, such that for each
~α ∈

∏
i<dKi, p~α(i, αi) = t∗i . Lemma 5.3 will enable fusion processes for constructing S with one color on

ExtS(A,C) in Part III. There are no differences between the arguments for Cases (a) and (b) in Part II.
For each ~α ∈ [κ]d, choose a condition p~α ∈ P such that

(1) ~α ⊆ ~δp~α .
(2) {p~α(i, αi) : i < d} ∪ {p(d)} ∈ ExtT (A,C).

(3) p~α  “There is an ε ∈ 2 such that h(ḃ~α � l) = ε for U̇ many l in L̇d.”
(4) p~α decides a value for ε, call it ε~α.
(5) h({p~α(i, αi) : i < d} ∪ {p(d)}) = ε~α.

Properties (1) - (5) can be guaranteed as follows. Recall that for i ≤ d, ti denotes the member of C \ A
extending si. For each ~α ∈ [κ]d, let

p0~α = {〈(i, δ), ti〉 : i < d, δ ∈ ~α} ∪ {〈d, td〉}.

Then p0~α is a condition in P, ~δp0
~α

= ~α, so (1) holds. Further, {p0~α(i, αi) : i < d} ∪ {p0~α(d)} is a member of

ExtT (A,C) since it is exactly C \ A. It is important to note that for any p ≤ p0~α, {p(i, αi) : i < d} ∪ {p(d)}
is also a member of ExtT (A,C), as this follows from the fact that {p(i, δ) : (i, δ) ∈ d× ~δp0

~α
} ∪ {p(d)} has no

new sets of parallel 1’s over the image of p0~α. Thus (2) holds for any p ≤ p0~α. Take an extension p1~α ≤ p0~α
which forces h(ḃ~α � l) to be the same value for U̇ many l ∈ L̇d, giving (3). For Property (4), since P is a

forcing notion, there is a p2~α ≤ p1~α deciding a value ε~α for which p2~α forces that h(ḃ~α � l) = ε~α for U̇ many l in

L̇d. By extending p2~α if necessary, we may take p3~α ≤ p2~α such that p3~α decides h(ḃ~α � l) = ε~α, for some l ∈ L̇
such that l is greater than or equal to the lengths of the nodes in p2~α, and such that lp3

~α
≥ l. Let p~α be p3~α

truncated to level l. Then p~α ≤ p2~α so it still satisfies (1) through (4). Since {p~α(i, αi) : i < d} ∪ {p~α(d)} is

what p~α forces ḃ~α � l to be, it follows that p~α forces h({p~α(i, αi) : i < d} ∪ {p~α(d)}) = ε~α, so (5) holds.
Now we prepare for an application of the Erdős-Rado Theorem (recall Theorem 2.4). We are assuming

κ = i2d, which is at least i2d−1(ℵ0)+, so that κ → (ℵ1)2dℵ0 . Given two sets of ordinals J,K we shall
write J < K if every member of J is less than every member of K. Let De = {0, 2, . . . , 2d − 2} and
Do = {1, 3, . . . , 2d − 1}, the sets of even and odd integers less than 2d, respectively. Let I denote the
collection of all functions ι : 2d → 2d such that ι � De and ι � Do are strictly increasing sequences and
{ι(0), ι(1)} < {ι(2), ι(3)} < · · · < {ι(2d− 2), ι(2d− 1)}. Thus, each ι codes two strictly increasing sequences
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ι � De and ι � Do, each of length d. For ~θ ∈ [κ]2d, ι(~θ ) determines the pair of sequences of ordinals

(θι(0), θι(2), . . . , θι(2d−2))), (θι(1), θι(3), . . . , θι(2d−1)), both of which are members of [κ]d. Denote these as ιe(~θ )

and ιo(~θ ), respectively. To ease notation, let ~δ~α denote ~δp~α , k~α denote |~δ~α|, and let l~α denote lp~α . Let

〈δ~α(j) : j < k~α〉 denote the enumeration of ~δ~α in increasing order.

Define a coloring f on [κ]2d into countably many colors as follows: Given ~θ ∈ [κ]2d and ι ∈ I, to reduce

the number of subscripts, letting ~α denote ιe(~θ ) and ~β denote ιo(~θ ), define

f(ι, ~θ ) = 〈ι, ε~α, k~α, p~α(d), 〈〈p~α(i, δ~α(j)) : j < k~α〉 : i < d〉,
〈〈i, j〉 : i < d, j < k~α, and δ~α(j) = αi〉, 〈〈j, k〉 : j < k~α, k < k~β , δ~α(j) = δ~β(k)〉〉.(27)

Let f(~θ ) be the sequence 〈f(ι, ~θ ) : ι ∈ I〉, where I is given some fixed ordering. Since the range of f is
countable, apply the Erdős-Rado Theorem to obtain a subset K ⊆ κ of cardinality ℵ1 which is homogeneous
for f . Take K ′ ⊆ K such that between each two members of K ′ there is a member of K and min(K ′) >
min(K). Take subsets Ki ⊆ K ′ such that K0 < · · · < Kd−1 and each |Ki| = ℵ0.

Claim 3. There are ε∗ ∈ 2, k∗ ∈ ω, td, and 〈ti,j : j < k∗〉, i < d, such that for all ~α ∈
∏
i<dKi and each

i < d, ε~α = ε∗, k~α = k∗, p~α(d) = td, and 〈p~α(i, δ~α(j)) : j < k~α〉 = 〈ti,j : j < k∗〉.

Proof. Let ι be the member in I which is the identity function on 2d. For any pair ~α, ~β ∈
∏
i<dKi, there are

~θ, ~θ′ ∈ [K]2d such that ~α = ιe(~θ ) and ~β = ιe(~θ
′ ). Since f(ι, ~θ ) = f(ι, ~θ′ ), it follows that ε~α = ε~β , k~α = k~β ,

p~α(d) = p~β(d), and 〈〈p~α(i, δ~α(j)) : j < k~α〉 : i < d〉 = 〈〈p~β(i, δ~β(j)) : j < k~β〉 : i < d〉. Thus, define ε∗, k∗, td,

〈〈ti,j : j < k∗〉 : i < d〉 to be ε~α, k~α, p~α(d), 〈〈p~α(i, δ~α(j)) : j < k~α〉 : i < d〉 for any ~α ∈
∏
i<dKi. �

Let l∗ denote the length of td. Then all the nodes ti,j , i < d, j < k∗, also have length l∗.

Claim 4. Given any ~α, ~β ∈
∏
i<dKi, if j, k < k∗ and δ~α(j) = δ~β(k), then j = k.

Proof. Let ~α, ~β be members of
∏
i<dKi and suppose that δ~α(j) = δ~β(k) for some j, k < k∗. For each i < d,

let ρi be the relation from among {<,=, >} such that αi ρi βi. Let ι be the member of I such that for each

~γ ∈ [K]d and each i < d, θι(2i) ρi θι(2i+1). Then there is a ~θ ∈ [K ′]2d such that ιe(~θ) = ~α and ιo(~θ) = ~β.

Since between any two members of K ′ there is a member of K, there is a ~γ ∈ [K]d such that for each i < d,
αi ρi γi and γi ρi βi, and furthermore, for each i < d− 1, {αi, βi, γi} < {αi+1, βi+1, γi+1}. Given that αi ρi γi
and γi ρi βi for each i < d, there are ~µ, ~ν ∈ [K]2d such that ιe(~µ) = ~α, ιo(~µ) = ~γ, ιe(~ν) = ~γ, and ιo(~ν) = ~β.

Since δ~α(j) = δ~β(k), the pair 〈j, k〉 is in the last sequence in f(ι, ~θ). Since f(ι, ~µ) = f(ι, ~ν) = f(ι, ~θ), also

〈j, k〉 is in the last sequence in f(ι, ~µ) and f(ι, ~ν). It follows that δ~α(j) = δ~γ(k) and δ~γ(j) = δ~β(k). Hence,

δ~γ(j) = δ~γ(k), and therefore j must equal k. �

For any ~α ∈
∏
i<dKi and any ι ∈ I, there is a ~θ ∈ [K]2d such that ~α = ιo(~θ). By homogeneity of f and

by the first sequence in the second line of equation (27), there is a strictly increasing sequence 〈ji : i < d〉
of members of k∗ such that for each ~α ∈

∏
i<dKi, δ~α(ji) = αi. For each i < d, let t∗i denote ti,ji . Then for

each i < d and each ~α ∈
∏
i<dKi,

(28) p~α(i, αi) = p~α(i, δ~α(ji)) = ti,ji = t∗i .

Let t∗d denote td.

Lemma 5.3. For any finite subset ~J ⊆
∏
i<dKi, the set of conditions {p~α : ~α ∈ ~J } is compatible. Moreover,

p ~J :=
⋃
{p~α : ~α ∈ ~J } is a member of P which is below each p~α, ~α ∈ ~J .

Proof. For any ~α, ~β ∈
∏
i<dKi, whenver j, k < k∗ and δ~α(j) = δ~β(k), then j = k, by Claim 4. It then follows

from Claim 3 that for each i < d,

(29) p~α(i, δ~α(j)) = ti,j = p~β(i, δ~β(j)) = p~β(i, δ~β(k)).

Thus, for each ~α, ~β ∈ ~J and each δ ∈ ~δ~α ∩ ~δ~β , for all i < d,

(30) p~α(i, δ) = p~β(i, δ).
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Thus, p ~J :
⋃
{p~α : ~α ∈ ~J} is a function. Let ~δ ~J =

⋃
{~δ~α : ~α ∈ ~J }. For each δ ∈ ~δ ~J and i < d, p ~J(i, δ) is

defined, and it is exactly p~α(i, δ), for any ~α ∈ ~J such that δ ∈ ~δ~α. Thus, p ~J is a member of P, and p ~J ≤ p~α
for each ~α ∈ ~J . �

We conclude this section with a general claim which will be useful in Part III.

Claim 5. If β ∈
⋃
i<dKi, ~α ∈

∏
i<dKi, and β 6∈ ~α, then β is not a member of ~δ~α.

Proof. Suppose toward a contradiction that β ∈ ~δ~α. Then there is a j < k∗ such that β = δ~α(j). Let i be

such that β ∈ Ki. Since β 6= αi = δ~α(ji), it must be that j 6= ji. However, letting ~β be any member of∏
i<dKi with βi = β, then β = δ~β(ji) = δ~α(j), so Claim 4 implies that ji = j, a contradiction. �

Part III. In this last part of the proof, we build a strong coding tree S valid in T on which the coloring h
is homogeneous. Cases (a) and (b) are now handled separately.

Part III Case (a). Recall that {si : i ≤ d} enumerates the members of Ae, which is a subset of B+. Let

s−d denote sd � lA, and let id ∈ {0, 1} be such that sd = s−d
_
id. Let m′ be the integer such that B ∈ Am′(T ).

Let σ denote the strong similarity map from B onto rm′(T), and let M = {mj : j < ω} be the strictly

increasing enumeration of those m > m′ such that the splitting node in max(rm(T)) extends σ(s−d )
_
id. We

will find Um0
∈ rm0

[B, T ] and in general, Umj+1
∈ rmj+1

[Umj , T ] so that for each j < ω, h takes color ε∗ on
ExtUmj (A,C). Then setting S =

⋃
j<ω Umj will yield S to be a member of [B, T ] for which ExtS(A,C) is

homogeneous for h, with color ε∗.
First extend each node in B+ to level l∗ as follows. Recall that for each i ≤ d, t∗i ⊇ ti, so the set

{t∗i : i ≤ d} extends Ae. For each node u in B+ \ Ae, let u∗ denote its leftmost extension in T � l∗. Then
the set

(31) U∗ = {t∗i : i ≤ d} ∪ {u∗ : u ∈ B+ \Ae}

extends each member of B+ to a unique node. Furthermore, by the choice of p0~α for each α ∈ [K]d and the
definition of the partial ordering on P, it follows that the set {t∗i : i ≤ d} has no new sets of parallel 1’s over
Ae. Since the nodes u∗ are leftmost extensions of members of B+ \ Ae and B is valid in T , it follows from
Lemma 4.14 that U∗ has no new sets of parallel 1’s over B. Furthermore, U∗ has no pre-determined new
sets of parallel 1’s, by (iii) in the definition of the partial ordering P for Case (a). Thus, B ∪ U∗ satisfies
the Parallel 1’s Criterion and is valid in T . If m0 = m′ + 1, then let Um′+1 = B ∪ U∗ and extend Um′+1 to
a member Um1−1 ∈ rm1−1[Um′+1, T ]. If m0 > m′ + 1, apply Lemma 4.19 to extend above U∗ to construct
a member Um0−1 ∈ rm0−1[B, T ]. In this case, max(rm′+1(Um0)) is not U∗, but rather max(rm′+1(Um0))
extends U∗.

Assume j < ω and we have constructed Umj−1 so that every member of ExtUmj−1
(A,C) is colored ε∗ by

h. Fix some Yj ∈ rmj [Umj−1, T ] and let Vj denote max(Yj). The nodes in Vj will not be in the tree S we
are constructing; rather, we will extend the nodes in Vj to construct Umj ∈ rmj [Umj−1, T ].

We now start to construct a condition q which will satisfy Claim 9. Let q(d) denote the splitting node in
Vj and let lq = |q(d)|. For each i < d for which si and sd do not have parallel 1’s, let Zi denote the set of
all v ∈ Ti ∩ Vj such that v and q(d) have no parallel 1’s. For each i < d for which si and sd do have parallel
1’s, let Zi = Ti ∩ Vj . For each i < d, take a set Ji ⊆ Ki of cardinality |Zi| and label the members of Zi as
{zα : α ∈ Ji}. Notice that each member of ExtT (A,C) above Vj extends some set {zαi : i < d}∪{q(d)}, where

each αi ∈ Ji. Let ~J denote the set of those 〈α0, . . . , αd−1〉 ∈
∏
i<d Ji such that the set {zαi : i < d} ∪ {q(d)}

is in ExtT (A,C). Notice that for each i < d, Ji = {αi : ~α ∈ ~J}, since each node in Zi is in some member
of ExtT (A,C): Extending all the other t∗j (j 6= i) via their leftmost extensions in T to length lq, along with

q(d), constructs a member of ExtT (A,C). By Lemma 5.3, the set {p~α : ~α ∈ ~J} is compatible. The fact that
p ~J is a condition in P will be used to make the construction of q very precise.

Let ~δq =
⋃
{~δ~α : ~α ∈ ~J}. For each i < d and α ∈ Ji, define q(i, α) = zα. Notice that for each ~α ∈ ~J and

i < d,

(32) q(i, αi) ⊇ t∗i = p~α(i, αi) = p ~J(i, αi),
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and

(33) q(d) ⊇ t∗d = p~α(d) = p ~J(d).

For each i < d and γ ∈ ~δq \ Ji, there is at least one ~α ∈ ~J and some k < k∗ such that δ~α(k) = γ. Let q(i, γ)
be the leftmost extension of p ~J(i, γ) in T of length lq. Define

(34) q = {q(d)} ∪ {〈(i, δ), q(i, δ)〉 : i < d, δ ∈ ~δq}.

Claim 6. For all ~α ∈ ~J , q ≤ p~α.

Proof. Given ~α ∈ ~J , it follows from the definition of q that ~δq ⊇ ~δ~α, q(d) ⊇ p~α(d), and for each pair

(i, γ) ∈ d×~δ~α, q(i, γ) ⊇ p~α(i, γ). So it only remains to show that q has no new sets of parallel 1’s over p~α. It

follows from Claim 5 that ~δ~α ∩
⋃
i<dKi = ~α. Hence, for each i < d and γ ∈ ~δ~α \ {αi}, q(i, γ) is the leftmost

extension of p~α(i, γ). Since ~α is in ~J , {q(i, αi) : i < d} ∪ {q(d)} is in ExtT (A,C) by definition of ~J . This
implies that {q(i, αi) : i < d} ∪ {q(d)} has no new parallel 1’s over A, as this set union A must be strongly
similar to C which satisfies the Parallel 1’s Criterion, and since the critical node in C \A is a splitting node,

C \A has no new parallel 1’s over A. It follows that {q(i, δ) : (i, δ) ∈ d× δ ∈ ~δ~α}∪{q(d)} has no new parallel

1’s over {p~α(i, δ) : (i, δ) ∈ d× δ ∈ ~δ~α} ∪ {p~α(d)}. Therefore, q ≤ p~α. �

Remark 5.4. Notice that we did not prove that q ≤ p ~J . That will be blatantly false for all large enough j,
as the union of the sets Zi, i < d, composed from Vj will have many new sets of parallel 1’s over p ~J . This is
one fundamental difference between the forcings being used for this theorem and the forcings adding κ many
Cohen reals used in Harrington’s proof of the Halpern-Läuchli Theorem.

To construct Umj , take an r ≤ q in P which decides some lj in L̇d for which h(ḃ~α � lj) = ε∗, for all

~α ∈ ~J . This is possible since for all ~α ∈ ~J , p~α forces h(ḃ~α � l) = ε∗ for U̇ many l ∈ L̇d. Without loss
of generality, we may assume that the nodes in the image of r have length lj . Notice that since r forces

ḃ~α � lj = {r(i, αi) : i < d} ∪ {r(d)} for each ~α ∈ ~J , and since the coloring h is defined in the ground model,

it is simply true in the ground model that h({r(i, αi) : i < d} ∪ {r(d)}) = ε∗ for each ~α ∈ ~J . Extend the
splitting node q(d) in Vj to r(d). For each i < d and αi ∈ Ji, extend q(i, αi) to r(i, αi). Let V −j denote

Vj \ ({q(i, αi) : i < d, αi ∈ Ji} ∪ {q(d)}). For each node v in V −j , let v∗ be the leftmost extension of v in
T � lj . Let

(35) Umj = Umj−1 ∪ {r(d)} ∪ {r(i, αi) : i < d, αi ∈ Ji} ∪ {v∗ : v ∈ V −j }.
Claim 7. Umj ∈ rmj [Umj−1, T ] and every X ∈ ExtUmj (A,C) with max(X) ⊆ max(Umj ) satisfies h(X) = ε∗.

Proof. Recall that Umj−1 @ Yj are both valid in T . Since r ≤ q, it follows that {r(i, δ) : (i, δ) ∈ d×~δq}∪{r(d)}
has no new sets of parallel 1’s over {q(i, δ) : (i, δ) ∈ d × ~δq} ∪ {q(d)}, which is a subset of Vj . All other
nodes in max(Umj ) are leftmost extensions of nodes in Vj . Thus, max(Umj ) extends Vj and has no new sets

of parallel 1’s over Vj , so Umj
s∼ rmj (T). Further, max(Umj ) has no pre-determined new parallel 1’s since

r ∈ P. It follows that Umj ∈ rmj [Umj−1, T ].
For each X ∈ ExtUmj (A,C) with X ⊆ max(Umj ), the truncation A ∪ {x � lq : x ∈ X} is a member

of ExtYj (A,C). Thus, there corresponds a sequence ~α ∈ ~J such that {x � lq : x ∈ X} = {q(i, αi) : i <
d} ∪ {q(d)}. Then X = {r(i, αi) : i < d} ∪ {r(d)}, which has h-color ε∗. �

Let S =
⋃
j<ω Umj . For each X ∈ ExtS(A,C), there corresponds a j < ω such that X ∈ ExtUmj (A,C)

and X ⊆ max(Umj ). By Claim 10, h(X) = ε∗. Thus, S ∈ [B, T ] and satisfies the theorem. This concludes
the proof of the theorem for Case (a).

Part III Case (b). Let X ∈ ExtT (A,C) and m0 be given such that there is a B′ ∈ rm0
[B, T ] with X ⊆

max(B′). Let Um0−1 denote rm0−1(B′). We will build an S ∈ [Um0−1, T ] such that every member of
ExtS(A,C;X) has the same h-color. Let nB′ be the index such that cTnB′ is the coding node in max(B′).

Label the members of X as xi, i ≤ d, so that each xi ⊇ si. For Case (b), back in Part II, when choosing the
p~α, ~α ∈ [κ]d, first define

(36) p0~α = {〈(i, δ), xi〉 : i < d, δ ∈ ~α} ∪ {〈d, xd〉},
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so that each node t∗i will extend xi, for i ≤ d. Then choose pk~α, 1 ≤ k ≤ 3, as before, with the additional
requirement that p~α(d) = cTn for some n ≥ nB′ + 3. Everything else in Part II remains the same.

We will build Um0 ∈ rm0 [Um0−1, T ] so that its maximal members extend max(B′), and hence each member
of X is extended uniquely in max(Um0

). Let V0 denote max(B′). Let V l0 and V r0 denote those members v
of V0 such that the immediate extension of v is 0 or 1, respectively. For each v ∈ V r0 \X, v has no parallel
1’s with xd, so the Passing Number Choice Lemma 4.18 guarantees that there is a member v∗ extending v
to length l∗ := |t∗d| ≥ lTn+3 such that v∗ has immediate successor 1 in T . For each v ∈ V l0 \X, take v∗ to be
the leftmost extension of v of length l∗. Let

(37) V ∗ = {t∗i : i ≤ d} ∪ {v∗ : v ∈ V0 \X}.

Claim 8. Um0−1 ∪ V ∗ is a member of rm0
[Um0−1, T ].

Proof. By the construction, V ∗ extends V0, and for each z ∈ V ∗, the passing number of z at t∗d is equal to the

passing number of z � lB′ at cTn . Thus, it will follow that Um0−1 ∪ V ∗
s∼ B′ once we prove that Um0−1 ∪ V ∗

satisfies the Parallel 1’s Criterion.
Let Y be any subset of V ∗ for which there is an l such that y(l) = 1 for all y ∈ Y . Since for each ~α ∈ [K]d,

p~α ≤ p0~α, it follows that {t∗i : i ≤ d} has no new sets of parallel 1’s over X. It follows that if Y ⊆ {t∗i : i ≤ d},
then the parallel 1’s of Y are either witnessed in Um0−1 or else are witnessed by the coding node in X, and
hence by t∗d. In particular, the parallel 1’s of Y are witnessed in Um0−1 ∪ V ∗.

If Y contains v∗ for some v ∈ V l0 \X, then there must be an l′ < |xd| where this set of parallel 1’s is first
witnessed, as v∗ is the leftmost extension of v in T � l∗ and therefore any coding node of T where v∗ has
passing number 1 must have length less than |xd|. Since Um0−1 satisfies the Parallel 1’s Criterion, the set of
parallel 1’s in Y is witnessed by a coding node in Um0−1.

Now suppose that Y ⊆ {v∗ : v ∈ V r0 \X} ∪ {t∗i : i ≤ d}. If Y ∩ {t∗i : i ≤ d} is contained in {t∗i : i ∈ I1},
then t∗d witnesses the parallel 1’s in Y . Otherwise, there is some t∗i ∈ Y with i ∈ I0. Note that t∗i has
immediate extension 0 at t∗d, and so in the interval in T with t∗d, t

∗
i takes the leftmost path; also t∗i (|xd|) = 0.

By the construction in the proof of Lemma 4.18, all v∗ for v ∈ V r0 extend v leftmost until the interval of T
containing the coding node t∗d. Hence, any parallel 1’s between such v∗ and t∗i must occur at a level below
|xd|. Thus, the parallel 1’s in Y must first appear in Um0−1, and hence be witnessed by some coding node
in Um0−1.

Therefore, Um0−1 ∪ V ∗ satisfies the Parallel 1’s Criterion, and hence Um0−1 ∪ V ∗ ∈ rm0 [Um0−1, T ]. �

Define Um0
= Um0−1 ∪ V ∗. Let M = {mj : j < ω} enumerate the set of m ≥ m0 such that the coding

node cTm ⊇ cTm0
. By strong similarity of T with T, for any S ∈ [Um0 , T ], the coding node cSm will extend t∗d

if and only if m ∈ M . Take any Um1−1 ∈ rm1−1[Um0 , T ]. Notice that {t∗i : i ≤ d} is the only member of
ExtUm1−1

(A,C;X), and it has h-color ε∗.

Assume now that 1 ≤ j < ω and we have constructed Umj−1 so that every member of ExtUmj−1
(A,C;X)

is colored ε∗ by h. Fix some Yj ∈ rmj [Umj−1, T ]. Let Vj denote max(Yj). The nodes in Vj will not be in
the tree S we are constructing; rather, we will construct Umj ∈ rmj [Umj−1, T ] so that max(Umj ) extends
Vj . Let q(d) denote the coding node in Vj and let lq = |q(d)|. Recall that for k ∈ {0, 1}, Ik denotes the set
of i < d for which t∗i has passing number k at t∗d. For each k ∈ {0, 1} and each i ∈ Ik, let Zi be the set of
nodes z in Ti ∩ Vj such that z has passing number k at q(d).

We now construct a condition q similarly, but not exactly, as in Case (a). For each i < d, let Ji be a

subset of Ki with the same size as Zi. For each i < d, label the nodes in Zi as {zα : α ∈ Ji}. Let ~J denote
the set of those 〈α0, . . . , αd−1〉 ∈

∏
i<d Ji such that the set {zαi : i < d} ∪ {q(d)} is in ExtT (A,C). Notice

that for each i < d and ~α ∈ ~J , zαi ⊇ t∗i = p~α(i, αi), and q(d) ⊇ t∗d = p~α(d). Furthermore, for each i < d

and δ ∈ Ji, there is an ~α ∈ ~J such that αi = δ. Let ~δq =
⋃
{~δ~α : ~α ∈ ~J }. For each pair (i, γ) ∈ d× ~δq with

γ ∈ Ji, define q(i, γ) = zγ . For each pair (i, γ) ∈ d × ~δq with γ ∈ ~δq \ Ji, there is at least one ~α ∈ ~J and

some k < k∗ such that δ~α(k) = γ. By Lemma 5.3, p~β(i, γ) = p~α(i, γ) = t∗i,k, for any ~β ∈ ~J for which γ ∈ ~δ~β .

For i ∈ I0, let q(i, γ) be the leftmost extension of t∗i,k in T to length lq. This will have passing number 0 at

q(d), and any parallel 1’s between this node and any other nodes in Vj must be witnessed at or below t∗d.
For i ∈ I1, let q(i, γ) be the extension of t∗i,k as in Lemma 4.18: extend t∗i,k leftmost in T until the interval of

T containing q(d); in that interval, extend to the next splitting node and take the right branch of length lq.
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Let this node be q(i, γ). This has passing number 1 at q(d), and any parallel 1’s between q(i, γ) and another
node must be either witnessed by q(d) or else at or below t∗d. Define

(38) q = {q(d)} ∪ {〈(i, δ), q(i, δ)〉 : i < d, δ ∈ ~δq}.
By the construction, q is a member of P.

Claim 9. For each ~α ∈ ~J , q ≤ p~α.

Proof. Let n denote the index such that cTn = q(d). It suffices to show that for each ~α ∈ ~J , q has no new

sets of parallel 1’s over p~α, since by construction, we have that q(i, δ) ⊇ p~α(i, δ) for all (i, δ) ∈ d× ~δ~α.

Let ~α ∈ ~J be given, and let Y be any subset of {q(i, δ) : (i, δ) ∈ d × ~δ~α} of size at least 2 for which for
some l, y(l) = 1 for all y ∈ Y . If Y ⊆ {q(i, αi) : i < d}∪{q(d)}, then Y has no new parallel 1’s over X, since

~α ∈ ~J implies that {q(i, αi) : i < d}∪ {q(d)} is in ExtT (A,C;X). Since {p(i, αi) : i < d}∪ {p(d)} extends X
and Y consists of extensions of members of {p(i, αi) : i < d} ∪ {p(d)}, it follows that Y has no new parallel
1’s over {p(i, αi) : i < d} ∪ {p(d)}.

Now suppose Y contains some q(i, δ), where δ ∈ ~δ~α \ {αi}. Recall that by Claim 5, ~δ~α ∩ (
⋃
i<dKi) = ~α;

so in particular, δ 6∈
⋃
i<d Ji. By construction of q, if i ∈ I0, then q(i, δ) has no new parallel 1’s above l∗

with any other q(j, γ), (j, γ) ∈ d × ~δ~α. If i ∈ I1, it follows from the construction of q that any parallel 1’s
q(i, δ) has with another member of ran(q) below lTn−1 is witnessed below l∗. Further, any parallel 1’s q(i, δ)

has in the interval (lTn−1, l
T
n ] are witnessed by the coding node q(d). Thus, any new sets of parallel 1’s in

Y occurring above length l∗ must be witnessed by q(d). Therefore, q has no new parallel 1’s over p~α, and
hence, q ≤ p~α. �

To construct Umj , we will extend each node in Vj uniquely in such a manner so that these extensions
along with Umj−1 form a member of rmj [Umj−1, T ]. It suffices to find some V ∗ extending Vj such that the
coding node in V ∗ extends the coding node in Vj , the passing number of each v∗ in V ∗ extending some v in
Vj is the same as the passing number of v in Vj , and no new sets of parallel 1’s occur in V ∗ over Vj . Then
Umj−1 ∪ V ∗ will be strongly similar to rmj (T) and hence a member of rmj [Umj−1, T ].

Take an r ≤ q in P which decides some lj in L̇d such that h(ḃ~α � lj) = ε∗ for all ~α ∈ ~J , and such that
there are at least two coding nodes in T of lengths between lq and lr. Without loss of generality, we may
assume that the nodes in the image of r have length lj . Extend the coding node q(d) in Vj to r(d). For each
i < d and δ ∈ Ji, extend q(i, δ) to r(i, δ). Let V lj and V rj denote the set of those v ∈ Vj with passing number
0 and 1, respectively, at q(d). Extend these nodes according to the construction of Lemma 4.18 as follows:
For each node v in V lj \ ({q(i, δ) : i < d, δ ∈ Ji} ∪ {q(d)}), let v∗ be the leftmost extension of v in T � lj . For

each node v in V rj \ ({q(i, δ) : i < d, δ ∈ Ji} ∪ {q(d)}), extend v leftmost to v′ of length lTn(r)−1, and then let

v∗ be the right extension of splitpredT (v′) to length lr, where n(r) is the index such that cTn(r) = r(d). Then

each member of V lj has passing number 0 at r(d) and each member of V rj has passing number 1 at r(d). Let

V −j denote Vj \ ({q(i, δ) : i < d, δ ∈ Ji} ∪ {q(d)}), and define

(39) V ∗ = {r(d)} ∪ {r(i, αi) : i < d, αi ∈ Ji} ∪ {v∗ : v ∈ V −j }
and

(40) Umj = Umj−1 ∪ V ∗.

Claim 10. Umj is a member of rmj [Umj−1, T ], and h(Y ) = ε∗ for each Y ∈ ExtUmj (A,C;X).

Proof. By the construction of V ∗, for each v ∈ Vj , its extension v∗ in V ∗ has the same passing number at
r(d) as v does at q(d). Since r ≤ q, all parallel 1’s in {r(i, δ) : i < d, δ ∈ Ji} ∪ {r(d)} are already witnessed
in Vj . Each v in V lj \ ({q(i, δ) : i < d, δ ∈ Ji} ∪ {q(d)}) has extension v∗ which has no new parallel 1’s with
any other member of V ∗ above lq. Any set Y ⊆ V rj ∪ {q(i, δ) : i < d, δ ∈ Ji} ∪ {q(d)} cannot have new
parallel 1’s in the interval (l∗, ln(r)−1], since for each v ∈ V rj \ ({q(i, δ) : i < d, δ ∈ Ji} ∪ {q(d)}), v∗ � ln(r)−1
is the leftmost extension of v in T of length ln(r)−1. In the interval (l∗, ln(r)−1], Lemma 4.14 implies the only
new sets of of parallel 1’s in Y must be witnessed by r(d).

Thus, any sets of parallel 1’s among V ∗ are already witnessed in Vj . Therefore, Umj−1 ∪ V ∗ satisfies the
Parallel 1’s Criterion and is strongly similar to Yj , and hence is in rmj [Umj−1, T ].
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Now suppose Z ⊆ V ∗ is a member of ExtUmj (A,C;X). Then Z � lq is in ExtT (A,C;X), so Z extends

{q(i, αi) : i < d} ∪ {q(d)} for some ~α ∈ ~J . Thus, Z = {r(i, αi) : i < d} ∪ {r(d)} for that ~α, and r forces that
h(Z) = ε∗. Since h and Z are finite, they are in the ground model, so h(Z) simply equals ε∗. �

To finish the proof of the theorem for Case (b), Define S =
⋃
j<ω Umj . Then S ∈ [B′, T ], and for each

Z ∈ ExtS(A,C;X), there is a j < ω such that Z ∈ ExtUmj (A,C) and each member of max(Umj ) extending

X has h-color ε∗.
This concludes the proof of the theorem. �

6. Ramsey Theorem for finite trees satisfying the Strict Parallel 1’s Criterion

Our first Ramsey theorem for colorings of finite subtrees of a strong coding tree appears in this section.
Theorem 6.3, proves that for any finite coloring of the copies of a given finite tree satisfying the Strict Parallel
1’s Criterion (Definition 6.1) in a strong coding tree T , there is a strong coding tree S ≤ T in which all
strictly similar (Definition 6.2) copies have the same color.

Let A be a subtree of a strong coding tree T . Given l < ω, define

(41) Al,1 = {t � (l + 1) : t ∈ A, |t| ≥ l + 1, and t(l) = 1}.
We say that l is a minimal level of a new set of parallel 1’s in A if the set Al,1 has at least two distinct
members, and for each l′ < l, the set {s ∈ Al,1 : s(l′) = 1} has cardinality strictly smaller than |Al,1|.
Definition 6.1 (Strict Parallel 1’s Criterion). A subtree A of a strong coding tree satisfies the Strict Parallel
1’s Criterion if A satisfies the Parallel 1’s Criterion and additionally, the following hold: For each l which is
the minimal length of a set of new parallel 1’s in A,

(1) The critical node in A with minimal length greater than or equal to l is a coding node in A, say c;
(2) There are no terminal nodes in A in the interval [l, |c|) (c can be terminal in A);
(3) Al,1 = {t � (l + 1) : t ∈ A|c|,1}.

Thus a tree A satisfies the Strict Parallel 1’s Criterion if it satisfies the Parallel 1’s Criterion and moreover,
each new set of parallel 1’s in A is witnessed by a coding node in A before any other new set of parallel 1’s,
critical node, or terminal node in A appears.

Definition 6.2 (Strictly Similar). Given A,B subtrees of a strong coding tree, we say that A and B are
strictly similar if A and B are strongly similar and both satisfy the Strict Parallel 1’s Criterion.

Theorem 6.3. Let T be a strong coding tree and let A be a finite subtree of T satisfying the Strict Parallel
1’s Criterion. Then for any coloring of all strictly similar copies of A in T into finitely many colors, there
is a strong coding subtree S ≤ T such that all strictly similar copies of A in S have the same color.

Theorem 6.3 will be proved via four lemmas and then doing an induction argument. Recall that Case (b)
of Theorem 5.2 only showed that, when C \ A contains a coding node and X ∈ ExtT (A,C), there is some
S ≤ T which is homogeneous for all members of ExtS(A,C;X). This is weaker than the direct analogue of
the statement proved for Case (a) in Theorem 5.2, and this disparity is addressed by the following. Lemma
6.7 will build a fusion sequence to obtain an S ≤ T which is end-homogeneous on ExtS(A,C), using Case
(b) of Theorem 5.2. Lemma 6.8 will use a new forcing and many arguments from the proof of Theorem 5.2
obtain an analogue of Case (a) when C \A contains a coding node. The only difference is that this analogue

holds for ExtSPS (A,C), rather than ExtS(A,C), which is why Theorem 6.3 requires the Strict Parallel 1’s

Criterion. The last two lemmas involve fusion to construct subtrees which have one color on ExtSPS (A′, C),
for each A′ strictly similar to A, for the two cases: C \ A contains a coding node, and C \ A contains a
splitting node. The theorem then follows by induction and an application of Ramsey’s Theorem.

The following basic assumption, similar to Case (b) of Theorem 5.2, will be used in much of this section.

Assumption 6.4. Let A ⊆ C be fixed non-empty finite subtrees of a strong coding tree T such that A and
C satisfy the Strict Parallel 1’s Criterion. Let Ae be a subset of A+, and assume that Ae and C \A are level
sets, and that C \ A extends Ae, contains a coding node, and contains the sequence 0lC . Let d + 1 = |Ae|
and list the nodes of Ae as 〈si : i ≤ d〉, and the nodes of C \A as 〈ti : i ≤ d〉 so that each ti extends si and td
is the coding node in C \A. For k ∈ {0, 1}, let Ik denote the set of i ≤ d such that the immediate extension
of ti in T is k. Since C \A contains a coding node, the immediate successors of the ti are well-defined in T .
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As usual, when we talk about the parallel 1’s of C \ A, we are taking into account the passing numbers
of the members of (C \A)+ at the coding node td. Recall that values of the immediate successors of the ti,
i ≤ d, are considered when determining whether or not a level set Y is in ExtT (A,C), this being defined as
in Case (b) of the previous section. We hold to the convention that for Y ∈ ExtT (A,C), the nodes in Y are
labeled yi, i ≤ d, where yi ⊇ si for each i. In particular, yd is the coding node in Y . Define

(42) ExtSPT (A,C) = {Y ∈ ExtT (A,C) : A ∪ Y satisfies the Strict Parallel 1′s Criterion}.
Recall the definition of splitpredT (x) from Subsection 4.1. We point out that if the parallel 1’s in C \ A
are already witnessed in A, then ExtSPT (A,C) is equal to ExtT (A,C). If there are parallel 1’s in C \ A not

witnessed in A, then Y ∈ ExtSPT (A,C) if and only if Y ∈ ExtT (A,C) and additionally for the minimal l
such that {i < d : yi(l) = 1} = I1, A ∪ {splitpredT (yi � l) : i ∈ I1} ∪ {yi � l : i ∈ I0} satisfies the Parallel 1’s
Criterion. Now we define the notion of minimal pre-extension of A to a copy of C. This will be used in the
next lemma to obtain a strong form of end-homogeneity for the case when max(C) has a coding node.

Definition 6.5 (Minimal pre-extension of A to a copy of C). Let X = {xi : i ≤ d} be any level set extending
Ae such that xi ⊇ si for each i ≤ d and such that the length l of the nodes in X is the length of some coding
node in T . We say that X is a minimal pre-extension in T of A to a copy of C if

(i) {i ≤ d : x+i (l) = 1} = I1, where x+i denotes the immediate extension of xi in T̂ ; and
(ii) A ∪ {splitpredT (xi) : i ∈ I1} ∪ {xi : i ∈ I0} satisfies the Parallel 1’s Criterion.

We will simply call such an X a minimal pre-extension when T , A, and C are clear. Minimal pre-extensions
are exactly the level sets in T which can be extended to a member of ExtSPT (A,C). For X any minimal
pre-extension, define ExtT (A,C;X) to be the set of all Y ∈ ExtT (A,C) such that Y extends X. Then

(43) ExtSPT (A,C) =
⋃
{ExtT (A,C;X) : X is a minimal pre−extension},

Definition 6.6. A coloring on ExtSPT (A,C) is end-homogeneous if for each minimal pre-extension X of A
to a copy of C, every member of ExtT (A,C;X) has the same color.

Lemma 6.7 (End-homogeneity). Assume 6.4, and let k be minimal such that max(A) ⊆ rk(T ). Then for
any coloring h of ExtT (A,C) into two colors, there is a T ′ ∈ [rk(T ), T ] such that h is end-homogeneous on

ExtSPT ′ (A,C).

Proof. Let (ni)i<ω enumerate those integers greater than k such that there is a minimal pre-extension of A
to a copy of C from among the maximal nodes in rni(T ). Each of these rni(T ) contains a coding node in its
maximal level, though there may be minimal pre-extensions contained in max(rni(T )) not containing that
coding node.

Let T−1 denote T . Suppose that j < ω and Tj−1 are given so that the coloring h is homogeneous on
ExtTj−1

(A,C;X) for each minimal pre-extensionX in rnj−1(Tj−1). Let Uj−1 denote rnj−1(Tj−1). Enumerate
the collection of all minimal pre-extensions of A to C from among max(rnj (Tj−1)) as X0, . . . , Xq. We
will do an inductive argument over p ≤ q to obtain a Tj ∈ [Uj−1, Tj−1] such that max(rnj (Tj)) extends
max(rnj (Tj−1)) and ExtTj (A,C;Z) is homogeneous for each minimal pre-extension Z in max(rnj (Tj−1)).

Suppose p ≤ q and for all i < p, there are strong coding trees Si such that S0 ∈ [Uj−1, Tj−1], and for all
i′ < i < p, Si ∈ [Uj−1, Si′ ] and h is homogeneous on ExtSi(A,C;Xi). Let l denote the length of the nodes
in max(rnj (Tj−1)). Note that Xp is contained in rnj (Sp−1) � l, though l does not have to be the length of
any node in Sp−1. The point is that the set of nodes Yp in max(rnj (Sp−1)) extending Xp is again a minimal
pre-extension. Extend the nodes in Yp to some Zp ∈ ExtSp−1(A,C;Yp), and let l′ denote the length of the
nodes in Zp. Note that Zp has no new sets of parallel 1’s over A ∪ Yp. Let Wp consist of the nodes in Zp
along with the leftmost extensions of the nodes in max(rnj (Sp−1)) \ Yp to the length l′ in Sp−1.

Let S′p−1 be a strong coding tree in [Uj−1, Sp−1] such that max(rnj (S
′
p−1)) extends Wp. Such an S′p−1

exists by Lemma 4.19, since Wp has exactly the same set of new parallel 1’s over rnj−1
(Sp−1) as does

max(rnj (Sp−1)). Apply Case (b) of Theorem 5.2 to obtain a strong coding tree Sp ∈ [Uj−1, S
′
p−1] such

that the coloring on ExtSp(A,C;Zp) is homogeneous. At the end of this process, let Tj = Sq. Note that
for each minimal pre-extension Z ⊆ max(rnj (Tj)), there is a unique p ≤ q such that Z extends Xp, since
each node in max(rnj (Tj)) is a unique extension of one node in max(rnj (Tj−1)), and hence ExtTj (A,C;Z)
is homogeneous.
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Having chosen each Tj as above, let T ′ =
⋃
j<ω rnj (Tj). Then T ′ is a strong coding tree which is in

[rk(T ), T ], and for each minimal pre-extension Z in T ′, ExtT ′(A,C;Z) is homogeneous for h. Therefore, h

is end-homogeneous on ExtSPT ′ (A,C). �

The next lemma provides a means for uniformizing the end-homogeneity from the previous lemma to
obtain one color for all members of ExtSPS (A,C). This will yield almost the full analogue of Case (a) of
Theorem 5.2 for Case (b), when the level sets being colored contain a coding node, the difference being the
restriction to strictly similar extensions rather than just strongly similar extensions. The arguments are
often similar to those of Case (a) of Theorem 5.2, but sufficiently different to warrant a proof.

Lemma 6.8. Assume 6.4, and suppose that B is a finite strong coding tree valid in T and A is a subtree
of B such that max(A) ⊆ max(B). Suppose that h is end-homogeneous on ExtSPT (A,C). Then there is an

S ∈ [B, T ] such that h is homogeneous on ExtSPS (A,C).

Proof. Given any U ∈ [B, T ], let MPEU (A,C) denote the set of all minimal pre-extensions of A to a copy of
C in U . Without loss of generality, we may assume that the nodes in C \A occur in an interval of T strictly
above the interval of T containing B. This presents no obstacle to the application, as the goal is to find
some S ∈ [B, T ] for which h takes the same value on every extension in ExtU (A,C) extending some member
of MPES(A,C), and we can take the first level of S above B to be in the interval of T strictly above B since
B is valid in T .

Enumerate the nodes of Ae as {si : i ≤ d}, letting i0 be the index such that si0 is a sequence of all 0’s. In
the notation of Assumption 6.4, i0 is a member of I0. Each member Y of MPET (A,C) will be enumerated
as {yi : i ≤ d} so that yi ⊇ si for each i ≤ d. Given Y ∈ MPET (A,C), define the notation

(44) splitpredT (Y ) = {yi : i ∈ I0} ∪ {splitpredT (yi) : i ∈ I1}.
Since C satisfies the Strict Parallel 1’s Criterion, C \A is in MPET (A,C). Let C− denote splitpredT (C \A).
Since we are assuming that C \ A is contained in an interval of T above the interval containing max(A),
each node of C− extends one node of Ae. For any U ∈ [B, T ], define X ∈ ExtU (A,C−) if and only if
X = splitpredU (Y ) for some Y ∈ MPEU (A,C). Equivalently, X ∈ ExtU (A,C−) if and only if the following
three conditions hold:

(1) X extends Ae; label the nodes in X as {xi : i ≤ d} so that xi ⊇ si.
(2) There is a coding node c in U such that |c| = |xi0 |; for each i ∈ I0, the passing number of xi at c is

0; and for each i ∈ I1, xi = splitpredU (yi) for some yi ⊇ si in U of length |c| such that the passing
number of yi at c is 1.

(3) The set A ∪X satisfies the Parallel 1’s Criterion.

Thus, X is a member of ExtU (A,C−) if and only if {xi : i ∈ I0} along with the rightmost paths extending
{xi : i ∈ I1} to length |xi0 | forms a minimal pre-extension of A to a copy of C in U . Note that condition (3)
implies that X has no new sets of parallel 1’s over A, since X contains no coding node.

By assumption, the coloring h on ExtSPT (A,C) is end-homogeneous. Thus, it induces a coloring on
MPET (A,C), by giving Y ∈ MPET (A,C) the h-color that all members of ExtT (A,C;Y ) have. This further
induces a coloring h′ on ExtT (A,C−), since a set of nodes X in T is in ExtT (A,C−) if and only if X =
splitpredT (Y ) for some Y ∈ MPET (A,C). Define h′(splitpredT (Y )) to be the color of h on ExtT (A,C;Y ).

Let L denote the collection of all l < ω such that there is a member of ExtT (A,C−) with maximal nodes
of length l. For each i ∈ (d + 1) \ {i0}, let Ti = {t ∈ T : t ⊇ si}. Let Ti0 = {t ∈ T ∩ 0<ω : t ⊇ si0}, the
collection of all leftmost nodes in T extending si0 . Let κ = i2d+2. The following forcing notion Q will add
κ many paths through each Ti, i ∈ (d + 1) \ {i0} and one path through Ti0 . The present case is handled
similarly to Case (a) of Theorem 5.2, so much of the current proof refers back to the proof of Theorem 5.2.

We now define a new forcing. Let Q be the set of conditions p such that p is a function of the form

p : (d+ 1)× ~δp → T,

where ~δp ∈ [κ]<ω, lp ∈ L, and there is some some coding node cTn(p) in T such that lTn(p) = lp, and

(i) For each (i, δ) ∈ (d+ 1)× ~δp, p(i, δ) ∈ Ti and lTn(p)−1 < |p(i, δ)| ≤ lp; and

(ii) (α) If i ∈ I1, then p(i, δ) = splitpredT (y) for some y ∈ Ti � lp which has immediate extension 1 in
T .
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(β) If i ∈ I0, then p(i, δ) ∈ Ti � lp and has immediate extension 0 in T .

It follows from the definition that for p ∈ Q, the range of p, ran(p) := {p(i, δ) : (i, δ) ∈ (d + 1) × ~δp}, has
no pre-determined new sets of parallel 1’s. Furthermore, all nodes in ran(p) are contained in the n(p)-th
interval of T . We point out that ran(p) may or may not contain a coding node. If it does, then that coding
node must appear as p(i, δ) for some i ∈ I0.

The partial ordering on Q is defined as follows: q ≤ p if and only if lq ≥ lp, ~δq ⊇ ~δp,
(i) q(i, δ) ⊇ p(i, δ) for each (i, δ) ∈ (d+ 1)× ~δp; and

(ii) {q(i, δ) : (i, δ) ∈ (d+ 1)× ~δp} has no new sets of parallel 1’s over ran(p).

It is routine to show that Claims 1 and 2 in the proof of Theorem 5.2 also hold for (Q,≤). That is, (Q,≤)
is an atomless partial order, and any condition in Q can be extended by two incompatible conditions of
length greater than any given l < ω.

Let U̇ be a Q-name for a non-principal ultrafilter on L. For each i ≤ d and α < κ, let ḃi,α be a Q-

name for the α-th generic branch through Ti; that is, ḃi,α = {〈p(i, α), p〉 : p ∈ Q and α ∈ ~δp}. For any

condition p ∈ Q, for (i, α) ∈ I0 × ~δp, p forces that ḃi,α � lp = p(i, α). For (i, α) ∈ I1 × ~δp, p forces that

splitpredT (ḃi,α � lp) = p(i, α). For ~α = 〈α0, . . . , αd〉 ∈ [κ]d+1,

(45) let ḃ~α denote 〈ḃ0,α0 , . . . , ḃd,αd〉.

For l ∈ L, we shall use the abbreviation

(46) ḃ~α � l to denote splitpredT (ḃ~α � l),

which is exactly {ḃi,αi � l : i ∈ I0} ∪ {splitpredT (ḃi,αi � l) : i ∈ I1}.
Similarly to Part II of the proof of Theorem 5.2, we will find infinite pairwise disjoint sets Ki ⊆ κ, i ≤ d,

such that K0 < K1 < . . .Kd, and conditions p~α, ~α ∈
∏
i≤dKi, such that these conditions are pairwise

compatible, have the same images in T , and force the same color ε∗ for h′(ḃ~α � l) for U̇ many levels l in L.
Moreover, the nodes {t∗i : i ≤ d} obtained from the application of the Erdős-Rado Theorem for this setting
will extend {si : i ≤ d} and form a member of ExtT (A,C−). The arguments are mostly similar to those in
Part II of Theorem 5.2, so we only fill in the details for arguments which are necessarily different.

Part II. For each ~α ∈ [κ]d+1, choose a condition p~α ∈ Q such that

(1) ~α ⊆ ~δp~α .
(2) {p~α(i, αi) : i ≤ d} ∈ ExtT (A,C−).

(3) p~α  “There is an ε ∈ 2 such that h(ḃ~α � l) = ε for U̇ many l in L̇d.”
(4) p~α decides a value for ε, call it ε~α.
(5) h({p~α(i, αi) : i ≤ d}) = ε~α.

Properties (1) - (5) can be guaranteed as follows. For each i ≤ d, let ti denote the member of C− which
extends si. For each ~α ∈ [κ]d+1, let

p0~α = {〈(i, δ), ti〉 : i ≤ d, δ ∈ ~α}.

Then p0~α is a condition in P and ~δp0
~α

= ~α, so (1) holds. Further, ran(p0~α) is a member of ExtT (A,C−) since

it is exactly C−. Note that for any p ≤ p0~α, {p(i, αi) : i ≤ d} is also a member of ExtT (A,C−), so (2) holds

for any p ≤ p0~α. Take an extension p1~α ≤ p0~α which forces h′(ḃ~α � l) to be the same value for U̇ many l ∈ L̇d,
and then take p2~α ≤ p1~α deciding a value ε~α for which p2~α forces that h′(ḃ~α � l) = ε~α for U̇ many l in L̇d. This

satisfies (3) and (4). Take p~α ≤ p2~α which decides h′(ḃ~α � lp~α) = ε~α. Then p~α satisfies (1) through (5), since
p~α forces h′({p~α(i, αi) : i ≤ d}) = ε~α.

We are assuming κ = i2d+2. Let De = {0, 2, . . . , 2d} and Do = {1, 3, . . . , 2d+1}, the sets of even and odd
integers less than 2d+ 2, respectively. Let I denote the collection of all functions ι : (2d+ 2)→ (2d+ 2) such
that ι � De and ι � Do are strictly increasing sequences and {ι(0), ι(1)} < {ι(2), ι(3)} < · · · < {ι(2d), ι(2d+

1)}. For ~θ ∈ [κ]2d+2, ι(~θ ) determines the pair of sequences of ordinals (θι(0), θι(2), . . . , θι(2d))), (θι(1), θι(3), . . . , θι(2d+1)),

both of which are members of [κ]d+1. Denote these as ιe(~θ ) and ιo(~θ ), respectively. Let ~δ~α denote ~δp~α , k~α
denote |~δ~α|, and let l~α denote lp~α . Let 〈δ~α(j) : j < k~α〉 denote the enumeration of ~δ~α in increasing order.
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Define a coloring f on [κ]2d+2 into countably many colors as follows: Given ~θ ∈ [κ]2d+2 and ι ∈ I, to reduce

the number of subscripts, letting ~α denote ιe(~θ ) and ~β denote ιo(~θ ), define

f(ι, ~θ ) = 〈ι, ε~α, k~α, 〈〈p~α(i, δ~α(j)) : j < k~α〉 : i ≤ d〉,
〈〈i, j〉 : i ≤ d, j < k~α, and δ~α(j) = αi〉, 〈〈j, k〉 : j < k~α, k < k~β , δ~α(j) = δ~β(k)〉〉.(47)

Let f(~θ ) be the sequence 〈f(ι, ~θ ) : ι ∈ I〉, where I is given some fixed ordering. By the Erdős-Rado Theorem,
there is a subset K ⊆ κ of cardinality ℵ1 which is homogeneous for f . Take K ′ ⊆ K such that between each
two members of K ′ there is a member of K and min(K ′) > min(K). Then take subsets Ki ⊆ K ′ such that
K0 < · · · < Kd and each |Ki| = ℵ0. The following three claims and lemma are direct analogues of Claims 3,
4, and 5, and Lemma 5.3. Their proofs follow by simply making the correct notational substitutions, and so
are omitted.

Claim 11. There are ε∗ ∈ 2, k∗ ∈ ω, and 〈ti,j : j < k∗〉, i ≤ d, such that for all ~α ∈
∏
i≤dKi and each

i ≤ d, ε~α = ε∗, k~α = k∗, and 〈p~α(i, δ~α(j)) : j < k~α〉 = 〈ti,j : j < k∗〉.

Let l∗ = |ti0 |. Then for each i ∈ I0, the nodes ti,j , j < k∗, have length l∗; and for each i ∈ I1, the nodes
ti,j , j < k∗, have length in the interval (lTn−1, l

T
n ), where n is the index of the coding node in T of length l∗.

Claim 12. Given any ~α, ~β ∈
∏
i≤dKi, if j, k < k∗ and δ~α(j) = δ~β(k), then j = k.

For any ~α ∈
∏
i≤dKi and any ι ∈ I, there is a ~θ ∈ [K]2d+2 such that ~α = ιo(~θ). By homogeneity of

f , there is a strictly increasing sequence 〈ji : i ≤ d〉 of members of k∗ such that for each ~α ∈
∏
i≤dKi,

δ~α(ji) = αi. For each i ≤ d, let t∗i denote ti,ji . Then for each i ≤ d and each ~α ∈
∏
i≤dKi,

(48) p~α(i, αi) = p~α(i, δ~α(ji)) = ti,ji = t∗i .

Lemma 6.9. For any finite subset ~J ⊆
∏
i≤dKi, the set of conditions {p~α : ~α ∈ ~J } is compatible. Moreover,

p ~J :=
⋃
{p~α : ~α ∈ ~J } is a member of P which is below each p~α, ~α ∈ ~J .

Claim 13. If β ∈
⋃
i≤dKi, ~α ∈

∏
i≤dKi, and β 6∈ ~α, then β is not a member of ~δ~α.

Part III. Let (nj)j<ω denote the set of indices for which there is an X ∈ MPET (A,C) with X = max(V )
for some V of rnj [B, T ]. For i ∈ I0, let u∗i = t∗i . For i ∈ I1, let u∗i be the leftmost extension of t∗i in T � l∗.
Note that {u∗i : i ≤ d} has no new sets of parallel 1’s over Ae. Extend each node u in max(B) \ Ae to its
leftmost extension in T � l∗ and label that extension u∗. Let

(49) U∗ = {u∗i : i ≤ d} ∪ {u∗ : u ∈ max(rk(T )) \Ae}.
Thus, U∗ extends max(B), all sets of parallel 1’s in U∗ are already witnessed in B since B is valid in T , and
U∗ has no new pre-determined parallel 1’s.

Suppose that j < ω and for all i < j, there have been chosen Si ∈ rni [B, T ] such that h′ is constant of
value ε∗ on ExtSi(A,C

−), and for i < i′ < j, Si @ Si′ . Let kB be the integer such that B = rkB (B), and let
e be the index such that lTe−1 is greater than the length of the maximal nodes in B. For j = 0, take V0 to
be any member of rn0

[B, T ] such that the nodes in max(rkB+1(V0)) extend the nodes in U∗ and have length
greater than lTe . This is possible by Lemma 4.19. For j ≥ 1, take Vj ∈ rnj [B, T ] such that Vj A Sj−1. Let
X denote max(Vj). Then the nodes in splitpredT (X) extend the nodes in U∗, and moreover, extend the
nodes in max(Sj−1) if j ≥ 1. By the definition of nj , the set of nodes X contains a coding node. For each
i ∈ I0, let Yi denote the set of all t ∈ Ti ∩X which have immediate extension 0 in T . For each i ∈ I1, let
Yi denote the set of all splitting nodes in Ti ∩ splitpredT (X). For each i ≤ d, let Ji be a subset of Ki of

size |Yi|, and enumerate the members of Yi as q(i, δ), δ ∈ Ji. Let ~J denote the set of ~α ∈
∏
i≤d Ji such that

the set {q(i, αi) : i ≤ d} has no new sets of parallel 1’s over A. Thus, the set of {q(i, αi) : i ≤ d}, ~α ∈ ~J , is
exactly the collection of sets of nodes in splitpredT (X) which are members of ExtT (A,C−). Moreover, for

each ~α ∈ ~J and all i ≤ d,

(50) q(i, αi) ⊇ t∗i = p~α(i, αi).

To complete the construction of the desired q ∈ Q for which q ≤ p~α for all ~α ∈ ~J , let ~δq =
⋃
{~δ~α : ~α ∈ ~J}.

For each pair (i, γ) with γ ∈ ~δq \ Ji, there is at least one ~α ∈ ~J and some j < k∗ such that γ = δ~α(j). As
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in Case (a) of Theorem 5.2, for any other ~β ∈ ~J for which γ ∈ ~δ~β , it follows that p~β(i, γ) = p~α(i, γ) = t∗i,j

and δ~β(j) = γ. If i ∈ I0, let q(i, γ) be the leftmost extension of t∗i,j in T � lVjnj . If i ∈ I1, let q(i, γ) be the

leftmost extension of t∗i,j to a splitting node in T in the interval (l
Vj
nj−1, l

Vj
nj ]. Such a splitting node must exist

because of the construction of U∗. Precisely, let cX denote the coding node in X. Note that cX � lB must
have no parallel 1’s with any si′ , i

′ ∈ I1, since X contains a member of MPET (A,C). If cX does not extend
t∗i′ for any i′ ≤ d, then cX � l∗ is the leftmost extension in T of cX � lB , which implies that cX � l∗ has no
parallel 1’s with t∗i,j . Thus, q(i, γ), being the leftmost extension of t∗i,j , has no parallel 1’s with cX . If cX

extends some t∗i′,j′ , then cX � lB = si′ . For cX to be a node in a member of MPET (A,C), cX � lB must not

have parallel 1’s with any si, i ∈ I1. In particular, i′ must be in I0, and t∗i,j has no parallel 1’s with t∗i′,j′ ,
because si and si′ have no parallel 1’s and by the definition of the partial ordering on Q, since t∗i,j and t∗i′,j′

are in ran(p~α) for any ~α ∈ [K ′]d+1, and p~α ≤ p0~α. Thus, the leftmost extension q(i, γ) of t∗i,j has no parallel

1’s with cX . Therefore, q(i, γ) is well-defined. Define

(51) q =
⋃
i≤d

{〈(i, α), q(i, α)〉 : α ∈ ~δq}.

By a proof similar to that of Claim 9, it follows that q ≤ p~α, for each ~α ∈ ~J .
Take an r ≤ q in P which decides some lj in L which is strictly greater than the length of the next coding

node above the coding node cX in X, and such that for all ~α ∈ ~J , h′(ḃ~α � lj) = ε∗. Without loss of generality,
we may assume that the maximal nodes in r have length lj . If cX = q(i′, α′) for some i′ ∈ I0 and α′ ∈ Ji′ ,
then let cr denote r(i′, α′); otherwise, let cr denote the leftmost extension of cX in T of length lj . Let Z0

denote those nodes in splitpredT (X) \Y0 which have length equal to cX ; in particular, Z0 is the set of nodes
in X which are not splitting nodes in splitpredT (X) and are also not in Y0. For each z ∈ Z0, let sz denote the
leftmost extension of z in T to length lj . Let Z1 denote the set of all splitting nodes in splitpredT (X) \ Y1.
For each z ∈ Z1, let sz denote the splitting predecessor in T of the leftmost extension of z in T to length lj .
This splitting predecessor exists in T for the following reason: If z is a splitting node in splitpredT (X), then
z has no parallel 1’s with cX , and so the leftmost extension of z to any length has no parallel 1’s with any
extension of cX . In particular, the set {sz : z ∈ Z0 ∪ Z1} has no new sets of parallel 1’s over splitpredT (X).

Let

(52) Z− = {q(i, α) : i ≤ d, α ∈ Ji} ∪ {sz : z ∈ Z0 ∪ Z1}.
Let Z∗ denote the extensions in T of all members of Z− to length lj . Let j− denote the index such that the

maximal coding node in Vj below cX is c
Vj
nj−

. Note that Z∗ has no new sets of parallel 1’s over splitpredT (X);

furthermore, the tree induced by rnj− (Vj)∪Z∗ is strongly similar to Vj , except possibly for the coding node

being in the wrong place. Using Lemma 4.19, extend the nodes in Z∗ to obtain some Sj ∈ rnj [rnj− (Vj), T ]

where max(Sj) extends Z∗. Then every member of ExtSj (A,C
−) has the same h′ color ε∗, by the choice of

r, since each minimal pre-extension in MPESj (A,C) extends some member of ExtSj (A,C−) which extends
members in ran(r) and so have h′-color ε∗.

Let S =
⋃
j<ω Sj . Then S is a strong coding tree in [B, T ]. Let Y ∈ ExtSPS (A,C). Then there is

some X ∈ MPES(A,C) such that Y extends X. Since splitpredS(X) is in ExtSj (A,C
−) for some j < ω,

splitpredS(X) has h′ color ε∗. Thus, Y has h-color ε∗. �

Recall that given a tree A, Sims
T (A) denote the set of all subtrees A′ of T which are strongly similar to A.

Lemma 6.10. Assume 6.4. Then there is a strong coding subtree S ≤ T such that for each A′ ∈ Sims
S(A),

h is homogeneous on ExtSPS (A′, C).

Proof. Let (ki)i<ω be the sequence of integers such that rki(T ) contains a strictly similar copy of A which
is valid in rki(T ) and such that max(A) ⊆ max(rki(T )). Let k−1 = 0, T−1 = T , and U−1 = r0(T ).

Suppose i < ω, and Ui−1
s∼ rki−1

(T ) and Ti−1 are given satisfying that for each A′ ∈ Sims
Ui−1

(A) valid

in Ui−1 with max(A) ⊆ max(Ui−1), h is homogeneous on ExtSPUi−1
(A′, C). Let Ui be in rki [Ui−1, Ti−1].

Enumerate the set of all A′ ∈ Sims
Ui(A) which are valid in Ui and have max(A′) ⊆ max(Ui) as 〈A0, . . . , An〉.

Apply Lemma 6.7 to obtain R0 ∈ [Ui, Ti−1] which is end-homogeneous for ExtSPR0
(A0, C). Then apply Lemma
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6.8 to obtain R′0 ∈ [Ui, R0] such that ExtSPR′0 (A0, C) is homogeneous for h. Given R′j for j < n, apply Lemma

6.7 to obtain a Rj+1 ∈ [Ui, R
′
j ] which is end-homogeneous for ExtSPRj+1

(Aj+1, C). Then apply Lemma 6.8 to

obtain R′j+1 ∈ [Ui, Rj+1] such that ExtSPR′j+1
(Aj+1, C) is homogeneous for c. Let Ti = R′n.

Let U =
⋃
i<ω Ui. Then U ≤ T and h has the same color on ExtSPU (A,C) for each A′ ∈ Sims

U (A) which is
valid in U . Finally, take S ≤ U . Then for each k < ω, rk(S) is valid in U , so in particular, each A′ ∈ Sims

S(A)

is valid in U . Hence, h is homogeneous on ExtSPS (A′, C). �

A similar lemma holds for the setting of Case (a) in Theorem 5.2. Since the critical node is a splitting
node in this case, we do not need to restrict to Strict Parallel 1’s Criterion copies of A in T .

Lemma 6.11. Let T be a strong coding tree and let A,C, h be as in Case (a) of Theorem 5.2. Then there
is a strong coding tree S ≤ T such that for each A′ ∈ Sims

S(A), ExtS(A′, C) is homogeneous for h.

Proof. Similarly to the fusion argument in proof of Lemma 6.10 but applying Case (a) of Theorem 5.2 in
place of Lemmas 6.7 and 6.8, one builds a strong coding tree S ≤ T such that for each copy A′ of A in S,
ExtS(A′, C) is homogeneous for h. �

Proof of Theorem 6.3. The proof is by induction on the number of critical nodes. Suppose first that A
consists of a single node. Then such a node must be a splitting node in 0<ω∩T , so Sims

T (A) is the infinite set
of all splitting nodes in 0<ω ∩ T . Let h be any finite coloring on Sims

T (A). By Ramsey’s Theorem, infinitely
many members of Sims

T (A) must have the same h color, so there is a subtree S ≤ T for which all its nodes
in S ∩ 0<ω have the same h color. Such an S ≤ T exists by the definition of strong coding tree, since T is
strongly skew, perfect, and the coding nodes are dense in T .

Now assume that n ≥ 1 and the theorem holds for each finite tree B with n or less critical nodes such that
B satisfies the Strict Parallel 1’s Criterion and max(B) contains a node which is a sequence of all 0’s. Let C
be a finite tree with n + 1 critical nodes containing a maximal node in 0<ω, and suppose h maps Sims

T (C)
into finitely many colors. Let d denote the maximal critical node in C and let B = {t ∈ C : |t| < |d|}. Apply
Lemma 6.10 or 6.11, depending on whether d is a coding or splitting node, to obtain T ′ ≤ T so that for
each V ∈ Sims

T ′(B), the set ExtSPT ′ (V,C) is homogeneous for h. Define g on Sims
T ′(B) by letting g(V ) be the

value of h on V ∪X for any X ∈ ExtSPT ′ (V,C). By the induction hypothesis, there is an S ≤ T ′ such that g

is homogeneous on SimSP
S (B). It follows that h is homogeneous on SimSP

S (C).
To finish, let A be any tree satisfying the Strict Parallel 1’s Criterion where max(A) does not contain a

member of 0<ω, and let g be a finite coloring of Sims
T (A). Let lA denote the longest length of nodes in A,

and let C be the tree induced by A ∪ {0lA}. Then there is a one-to-one correspondence between members
of Sims

T (A) and Sims
T (C); say ϕ : Sims

T (A) → Sims
T (C) by definining ϕ(A′) to be the member of Sims

T (C)
which is the tree induced by adding the node 0lA′ to A′. For C ′ ∈ Sims

T (C), define h(C ′) = g(ϕ−1(C ′)).
Take S ≤ T homogeneous for h. Then S is homogeneous for g on Sims

S(A). �

7. Incremental strong coding trees

This section develops the notion of incremental new sets of parallel 1’s, and the related concepts of
Incremental Parallel 1’s Criterion, incremental strong coding subtrees, and sets of witnessing coding nodes.
The main lemma, Lemma 7.5, will be instrumental in attaining the Ramsey theorem in the next section.
This will be a Ramsey theorem for finite colorings of strictly similar copies of any given finite subtree of a
strong coding tree. The work in this section sets the stage for the removal of the requirement of any form of
Parallel 1’s Criterion on the finite tree whose copies are being colored.

Definition 7.1 (Incremental parallel 1’s). Let Z be a finite subtree of a strong coding tree T , and let
〈lj : j < j̃〉 list in increasing order the minimal lengths of new parallel 1’s in Z. We say that Z has

incremental new sets of parallel 1’s, or simply incremental parallel 1’s, if the following holds. For each j < j̃
for which

(53) Zlj ,1 := {z � (lj+1) : z ∈ Z, |z| > lj , and z(lj) = 1}
has size at least three, letting m denote the length of the longest critical node in Z below lj , for each proper
subset Y ( Zlj ,1 of cardinality at least two, there is a j′ < j such that lj′ > m, Ylj′ ,1 := {y � (lj′ + 1) : y ∈ Y
and y(lj′) = 1} has the same size as Y , and Ylj′ ,1 = Zlj′ ,1.
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We shall say that an infinite tree S has incremental new parallel 1’s if for each l < ω, the initial subtree
S � l of S has incremental new parallel 1’s.

Definition 7.2 (Incremental Parallel 1’s Criterion). Let Z be a subtree of a strong coding tree T . We say
that Z satisfies the Incremental Parallel 1’s Criterion if Z has incremental new parallel 1’s and satisfies the
Parallel 1’s Criterion.

Thus, to satisfy the Incremental Parallel 1’s Criterion, a tree must have a coding node witnessing each of
its new sets of parallel 1’s, and these are occuring incrementally. Note that any strong coding tree does not
satisfy the Incremental Parallel 1’s Criterion. In the next section, we will be interested in extending finite
trees A to trees E which satisfy the Incremental Parallel 1’s Criterion, for such E automatically satisfy the
Strict Parallel 1’s Criterion, so the Ramsey theorems from the previous section can be applied.

The next definition of an incremental strong coding tree will be vital to finding bounds for the big Ramsey
degrees in H3.

Definition 7.3 (Incremental Strong Coding Tree). A strong coding tree T is called incremental if it satisfies
the following. Let n be any integer for which there are at least three distinct nodes in T � (|cTn |+ 1) which
have passing number 1 at cTn , and list the set of those nodes as 〈ti : i < ĩ〉. Let m denote the length of the
maximal splitting node in T below cTn . Let P denote the collection of all proper subsets P ⊆ ĩ of size at

least two, and let k̃ = |P|. Then there is an ordering 〈Pk : k < k̃〉 of P and a strictly increasing sequence

〈pk : k < k̃〉 such that

(i) m < p0 and pk̃−1 < |cTn |;
(ii) k < k′ < k̃ implies Pk 6⊇ Pk′ ; and

(iii) For each k < k̃, pk is minimal such that {i < ĩ : ti(pk) = 1} = Pk.

The main lemma of this section shows that given a strong coding tree T , there is an incremental strong
coding subtree S ≤ T and moreover, a set W ⊆ T of coding nodes disjoint from S such that each new set of
parallel 1’s in S is witnessed by a coding node in W . This set-up is what will allow for the definition and
use of envelopes in the next section, as it will ensure that subtrees from S can be enhanced with witnessing
coding nodes from W so that their union satisfies the Strict Parallel 1’s Criterion. This will allow application
of Theorem 6.3 to obtain upper bounds on the finite big Ramsey degrees in the universal triangle-free graph.

Definition 7.4 (Incrementally witnessed parallel 1’s). Let S ≤ T be an incremental strong coding tree. We
say that the sets of parallel 1’s in S are incrementally witnessed in T if the following hold. For each n < ω,
given P, 〈Pk : k < k̃〉, and 〈pk : k < k̃〉 satisfying Definition 7.3, there is a coding node wn,k in T satisfying

(1) |dSmn−1| < |w
∧
n,0| < p0 ≤ |wn,0| < |w∧n,1| < p1 ≤ |wn,1| < · · · < |w∧n,k̃−1| < pk̃−1 ≤ |wn,k̃−1| < |cSn |.

(2) wn,k witnesses the parallel 1’s in Spk,1; that is, for all z ∈ S � (pk + 1), z(|wk|) = 1 if and only if
z(pk) = 1.

The main lemma of this section shows that given a strong coding tree T , there is an incremental strong
coding subtree S ≤ T and moreover, a set W ⊆ T of coding nodes disjoint from S such that each new set of
parallel 1’s in S is witnessed by a coding node in W . This set-up is what will allow for the definition and
use of envelopes in the next section, as it will ensure that subtrees from S can be enhanced with witnessing
coding nodes from W so that their union satisfies the Strict Parallel 1’s Criterion. This will allow application
of Theorem 6.3 to obtain upper bounds on the finite big Ramsey degrees in the universal triangle-free graph.

Lemma 7.5. Let T be a strong coding tree. Then there is an incremental strong coding tree S ≤ T and a
set of coding nodes W ⊆ T such that each new set of parallel 1’s in S is incrementally witnessed in T by a
coding node in W .

Proof. Let 〈dTm : m < ω〉 denote the critical nodes in T in order of increasing length. Let 〈mn : n < ω〉
denote the indices such that dTmn = cTn , so the mn-th critical node in T is the n-th coding node in T . Let
S0 be a valid subtree of T which is strongly similar to rm0+1(T ). Since rm0+1(T ) has only one node with
passing number 1 at cT0 , there is nothing to do; vacuously S0 has incremental new sets of parallel 1’s and
these are vacuously witnessed in T .

Suppose now that n ≥ 1 and we have chosen Sn−1
s∼ rkn−1+1(T ) valid in T so that Sn−1 is incremental

and has its new sets of parallel 1’s incrementally witnessed in T . Take some S′n−1 ∈ rkn [Sn−1, T ], so S′n−1 is
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valid in T . There is a one-to-one correspondence between the nodes in max(rkn+1(T )) and max(rkn(T ))+,
and hence also between max(rkn+1(T )) and max(S′n−1)+. Let ϕ : max(rkn+1(T )) → max(S′n−1)+ be the

lexicographic order preserving bijection. Let 〈ti : i < ĩ〉 be the lexicographically increasing enumeration of
those nodes in max(rkn+1(T )) which have passing number 1 at cTn . Let si = ϕ(ti). Then {si : i < ĩ} is the
set of nodes which must extend to have passing number 1 at the next coding node in S, cSn . If ĩ ≤ 2, there
is nothing to do; extend to some Sn ∈ rkn+1[S′n−1, T ].

Otherwise, ĩ ≥ 3. List all subsets of ĩ of size at least two as 〈Pk : k < k̃〉 in any manner so long as the

following is satisfied: For each k < k′ < k̃, Pk 6⊇ Pk′ . Let X0 denote max(S′n−1)+. Given k < k̃ and Xk,
let w∧n,k be some splitting node in T in 0<ω with length above the lengths in Xk. Extend all nodes in Xk

leftmost in T to length |w∧n,k|+ 1, and let Yk denote the level set of these extensions. Apply Lemma 4.19 to

extend the nodes in Yk ∪ {w∧n,k
_

1} to a level set Zk in T such that the following hold:

(1) The extension of w∧n,k
_

1 is a coding node, label it wn,k;

(2) Enumerating Zk \ {wn,k} as {zi : i < ĩ} so that for each zi ⊇ si, then for each i < ĩ, the immediate
extension of zi in T is 1 if and only if i ∈ Pk.

(3) The only possible set of new parallel 1’s in Zk over S′n−1 ∪Xk is {zi : i ∈ Pk}.
If k < k̃− 1, let Xk+1 = Zk and continue the procedure. Upon obtaining Zk̃−1, apply Lemma 4.19 to obtain
an Sn ∈ rmn+1[S′n−1, T ] such that max(Sn) extends Zk̃−1.

To finish, let S =
⋃
n<ω Sn. Then S ≤ T , S is incremental, and the sets of parallel 1’s in S are strongly

incrementally witnessed in T . Let W = {wn,k : n < ω, k < k̃n}, where k̃n is the number of subsets of Sln,1
of size at least two. �

8. Ramsey theorem for strict similarity types

The strongest Ramsey theorem proved so far is Theorem 6.3, a Milliken-style theorem for colorings of
finite trees satisfying the Strict Parallel 1’s Criterion. In this section we obtain a general Ramsey theorem
for all strictly similar copies (Definition 8.3) of any finite tree for which the maximal nodes are exactly the
coding nodes forming an antichain. This involves a new notion of envelope for strongly diagonal subsets
of strong coding trees, the main property being that any envelope satisfies the Strict Parallel 1’s Criterion.
Then applying Theorem 6.3, Lemma 7.5, and envelopes, we obtain Theorem 8.9, the main Ramsey theorem
for strong coding trees in this paper.

Recall from Definition 4.8 that a strongly diagonal subset of 2<ω is an antichain Z such that its meet
closure forms a transversal with the property that for any splitting node s ∈ Z∧, all nodes in Z∧ of length
greater than |s|, except for those nodes extending s, have passing number 0 at s. It is a byproduct of the
definition of strong coding trees that any subset of a strong coding tree forming an antichain is in fact
strongly diagonal. Henceforth, we shall use the term antichain of coding nodes, or simply antichain, to refer
to strongly diagonal sets of coding nodes in a strong coding tree. If Z is an antichain, then by the tree
induced by Z we mean the set

(54) {z � |u| : z ∈ Z and u ∈ Z∧}.

We say that an antichain satisfies the Parallel 1’s Criterion (Strict Parallel 1’s Criterion) if and only if the
tree it induces satisfies the Parallel 1’s Criterion (Strict Parallel 1’s Criterion).

Let Z be an antichain of coding nodes. Enumerate the nodes in Z in order of increasing length as
〈zi : i < ĩ〉. For each l < |zĩ−1|, let

(55) IZl = {i < ĩ : |zi| > l and zi(l) = 1},

and define

(56) Zl,1 = {zi � (l + 1) : i ∈ IZl }.

Thus, Zl,1 is the collection of all zi � (l + 1) which have passing number 1 at level l. Given l such that
|Zl,1| ≥ 2, we say that the set of parallel 1’s at level l is witnessed by the coding node zj in Z if zi(|zj |) = 1
for each i ∈ IZl , and either |zj | ≤ l or else both |zj | > l and Z has no splitting nodes and no coding nodes
of length in [l, |zj |]. A level l is the minimal level of a new set of parallel 1’s in Z if |IZl | ≥ 2 and whenever
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l′ < l and IZl′ ⊆ IZl , then |IZl′ | < |IZl |. It follows that if there are two or more members of Z extending some
0l
_

1, then l is the minimal level of a new set of parallel 1’s, namely of IZl .

Definition 8.1. Given Z an antichain of coding nodes, if l is the minimal level of a new set of parallel 1’s
in Z, the admissible interval for IZl is the interval [l, l∗], where l∗ > l is maximal satisfying the following:

(1) Z∧ has no splitting node and no coding node of length in (l, l∗).
(2) Each l′ ∈ (l, l∗] is not the minimal level of a new set of parallel 1’s in Z.

If l is the minimal level of a new set of parallel 1’s in Z, we say that the set of parallel 1’s indexed by IZl
is minimally witnessed in Z if, letting k < ĩ be minimal such that |zk| ≥ l, |zk| is in the admissible interval
[l, l∗] and zk witnesses the parallel 1’s in IZl ; that is, {i < ĩ : zi(|zk|) = 1} = IZl . Note that zk is in the
interval [l, l∗] if and only if either |zk| = l or |zk| = l∗. Otherwise, we say that IZl is not minimally witnessed
in Z.

The following fact is immediate from the previous definition.

Fact 8.2. If all new sets of parallel 1’s are minimally witnessed in an antichain Z, then the tree induced by
Z satisfies the Strict Parallel 1’s Criterion.

Definition 8.3 (Strict similarity type). Given Z a finite antichain of coding nodes in some strong coding
tree T , list the minimal levels of new sets of parallel 1’s in Z which are not minimally witnessed in Z in
increasing order as 〈lj : j < j̃〉. Enumerate all nodes in Z∧ as 〈uZm : m < m̃〉 in order of increasing length.

Thus, each uZm is either a splitting node in Z∧ or else a coding node zi for some i < ĩ. The sequence

(57) 〈〈lj : j < j̃〉, 〈IZlj : j < j̃〉, 〈|uZm| : m < m̃〉〉

is the strict similarity sequence of Z.
Let Y be another finite antichain in T , and let

(58) 〈〈pj : j < k̃〉, 〈IYpj : j < k̃〉, 〈|uYm| : m < ñ〉〉

be its strict similarity sequence. We say that Y and Z have the same strict similarity type or are strictly

similar, written Y
ss∼ Z, if

(1) Y ∧ and Z∧ are strongly similar;

(2) j̃ = k̃ and m̃ = ñ;
(3) For each j < j̃, IYnj = IZlj ; and

(4) The function ϕ : {pj : j < j̃} ∪ {|uYm| : m < m̃} → {lj : j < j̃} ∪ {|uZm| : m < m̃}, defined by
ϕ(pj) = lj and ϕ(uYm) = uZm, is an order preserving bijection between these two linearly ordered sets
of natural numbers.

Define

(59) Simss
T (Z) = {Y ⊆ T : Y

ss∼ Z}.

Note that for two antichains Y
ss∼ Z, the map f : Y → Z by f(yi) = zi for each i < ĩ induces a strong

similarity map from Y ∧ onto Z∧ by defining f(yi ∧ yj) = zi ∧ zj for each pair i, j < ĩ. Then f(uYm) = uZm for
each m < m̃. Further, by (3) and (4) of Definition 8.3, this map preserves the order in which minimal sets
of parallel 1’s appear, relative to all other minimal sets of parallel 1’s and the nodes in Y ∧ and Z∧.

The definition of strictly similar in Definition 8.3 extends Definition 6.2 to finite sets which do not
necessarily satisfy the Parallel 1’s Criterion. When Z is an antichain such that its induced tree satisfies
the Incremental Parallel 1’s Criterion, then Definitions 6.2 and 8.3 coincide, and further, for such Z, these
coincide with the notion of strongly similar.

Fact 8.4. Let T be a strong coding tree, and A and B be subsets of T . Suppose A satisfies the Incremental

Parallel 1’s Criterion. Then B
s∼ A if and only if B

ss∼ A.

The following notion of envelope is defined in terms of structure without regard to an ambient strong
coding tree. In any given strong coding tree T , there will certainly be finite subtrees of T which have no
envelope in T . This poses no problem to our intended application, as by the work done in the previous
section, inside a given strong coding tree T , there will be an incremental strong coding tree S along with a
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set of witnessing coding nodes W ⊆ T so that each finite antichain in S has an envelope consisting of nodes
from W . Thus, envelopes of antichains in S will exist in T .

Definition 8.5 (Envelopes). Let Z be a finite antichain of coding nodes and let 〈〈lj : j < j̃〉, 〈Ilj : j <

j̃〉, 〈|um| : m < m̃〉〉 be the strict similarity sequence of Z. A finite set E(Z) is an envelope of Z if E(Z) =
Z ∪W is an antichain of coding nodes, where W = {wj : j < j̃}, such that the following hold: For each

j < j̃,

(1) wj is in the admissible interval of lj ; that is, lj ≤ |wj | ≤ l∗j ;
(2) I|wj | = Ilj ;
(3) wj has no parallel 1’s with any member of Z ∪ (W \ {wj}); and
(4) l∗j−1 < |w∧j | < lj and there is no member of (Z ∪W )∧ with length in (|w∧j |, |wj |).

The set W is called the set of witnessing coding nodes, since they minimally witness all parallel 1’s in Z
not minimally witnessed by any coding node in Z. The next fact follows immediately from the definitions.

Fact 8.6. Let S be any strongly incremental strong coding tree and Z be any antichain in S. Then any enve-
lope E of Z satisfies the Incremental Parallel 1’s Criterion, and hence also the Strict Parallel 1’s Criterion.

Lemma 8.7. Let Y and Z be strictly similar antichains. Then any envelope of Y is strictly similar to any
envelope of Z; in particular, any two envelopes of Y are strictly similar.

Proof. Let Y = {yi : i < ĩ} and Z = {zi : i < ĩ} be the enumerations of Y and Z, respectively, in order of
increasing length. Let

(60) 〈〈pj : j < j̃〉, 〈IYpj : j < j̃〉, 〈|uYm| : m < m̃〉〉

and

(61) 〈〈lj : j < j̃〉, 〈IZlj : j < j̃〉, 〈|uZm| : m < m̃〉〉

be their strict similarity sequences, respectively. Let E = Y ∪ V and F = Z ∪W be any envelopes of Y
and Z, respectively. Enumerate the nodes in V and W in order of increasing length as {vj : j < j̃} and

{wj : j < j̃}, respectively. Note that |E| = |F | = ĩ + j̃, since exactly j̃ many coding nodes are added to

make envelopes of Y and Z. Let k̃ = ĩ+ j̃, and let {ek : k < k̃} and {fk : k < k̃} be the enumerations of E

and F in order of increasing length, respectively. For each j < j̃, let kj be the index in k̃ such that ekj = vj
and fkj = wj . For k < k̃, let E(k) denote the tree induced by E restricted to those nodes of length less than
or equal to |ek|; precisely, E(k) = {e � |t| : e, t ∈ E∧ and |t| ≤ min(|e|, |ek|)}. Likewise for F .

If j̃ = 0, then E = Y and F = Z, so E
s∼ F follows from E

ss∼ F . Suppose now that j̃ ≥ 1. It must be the
case that p0 > |uY0 |, since uY0 is the stem of the tree induced by Y , and Y does not have any sets of parallel
1’s below its stem. Likewise, l0 > |uZ0 |. Let m0 be the least integer below m̃ such that |uYm0

| > p0. Then the

admissible interval [p0, p
∗
0] is contained in the interval (|uYm0−1|, |u

Y
m0
|), and moreover,

(62) |uYm0−1| < |v
∧
0 | < p0 ≤ |v0| ≤ p∗0,

by the definition of envelope. Since Y
ss∼ Z, it follows that the admissible interval [l0, l

∗
0] is contained in

(|uZm0−1|, |u
Z
m0
|) and

(63) |uZm0−1| < |w
∧
0 | < l0 ≤ |w0| ≤ l∗0.

Thus, E(k0 − 1) is exactly the tree induced by Y restricted below |uZm0−1|, which is strongly similar to the

tree induced by Z restricted below |uZm0−1|, this being exactly F (k0 − 1).

Now suppose that j < j̃ and E(kj−1)
s∼ F (kj−1). Let mj be the least integer below m̃ such that |uYmj | >

pj . Then the only nodes in E∧ in the interval (|uYmj−1|, |u
Y
mj |) are v∧j and vj . Likewise, the only nodes in F∧

in the interval (|uZmj−1|, |u
Z
mj |) are w∧j and wj . Extend the strong similarity map g : E(kj − 1)→ F (kj − 1)

to the map g∗ : E(kj)→ F (kj) as follows: Define g∗ = g on E(kj − 1), g∗(v∧j ) = w∧j , and g∗(vj) = (wj). If
the sequence of 0’s of length |vj | is in E, then define g∗ of that node to be the sequence of 0’s of length |wj |.
For each node s in E(kj) of length |vj | besides vj itself, s extends a unique maximal node s− in E(kj − 1);
define g∗(s) to be the unique node in F (kj) of length |wj | extending g(s−). Note that each node t in E(kj)
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of length |v∧j |, besides v∧j itself, is equal to s � |v∧j | for some unique s as above; define g∗(t) to be g∗(s) � |w∧j |.
As the only new set of parallel 1’s in Y in this interval is IYj , which is equal to IZj , and as

(64) max(l∗j−1, |uYmj−1|) < |v
∧
j | < pj ≤ |vj | ≤ p∗j ,

and similarly for wj , and vj , wj witness the parallel 1’s indexed by IYj , I
Z
j , respectively, it follows that g∗ is

a strong similarity map from E(kj) to F (kj).

If j < j̃ − 1, noting that the only nodes in the tree induced by E with length in the interval (|vj |, |v∧j+1|)
are in the tree induced by Y , and likewise, all nodes in the tree induced by F in the interval (|wj |, |w∧j+1|) are
in the tree induced by Z, it follows that E(kj+1 − 1) is strongly similar to F (kj+1 − 1). Then the induction
continues.

To finish, when j = j̃−1, all nodes in the tree induced by E in the interval (|vj̃−1|, |yĩ−1|] are in fact nodes

in Y ∧. Likewise, all nodes in the tree induced by F in the interval (|wj̃−1|, |zĩ−1|] are in Z∧. Further, all sets

of parallel 1’s in E and F in these intervals are already witnessed at or below |vj̃−1| and |wj̃−1|, respectively.

Thus, the strict similarity between Y and Z induces an extension of the strong similarity between E(kj̃−1)

and E(kj̃−1) to a strong similarity between E∧ and F∧. �

Lemma 8.8. Let S be a strongly incremental strong coding tree, a subtree of T . Let Z be a finite antichain
of coding nodes in S, and let E be any envelope of Z in T . Enumerate the nodes in Z and E in order

of increasing length as 〈zi : i < ĩ〉 and 〈ek : k < k̃〉, respectively. Then whenever F
s∼ E, the subset

F � Z := {fki : i < ĩ} of F is strictly similar to Z, where 〈fk : k < k̃〉 enumerates the nodes in F in order
of increasing length and for each i < ĩ, ki is the index such that eki = zi.

Proof. Recall that F
s∼ E implies F

ss∼ E and that E and hence F satisfy the Incremental Parallel 1’s
Criterion, since E is an envelope of a diagonal subset of an incremental strong coding tree. Let ιZ,F : Z → F

be the injective map defined via ιZ,F (zi) = fki , for each i < ĩ, and let F � Z denote {fki : i < ĩ}, the image
of ιZ,F . Then F � Z is a subset of F which we claim is strictly similar to Z.

Since F and E satisfy the Incremental Parallel 1’s Criterion, the strong similarity map g : E → F satisfies
that for each j < k̃, the sets of new parallel 1’s at level of the j-th coding node are equal:

(65) {k < k̃ : ek(|ej |) = 1} = {k < k̃ : g(ek)(|g(ej)|) = 1} = {k < k̃ : fk(|fj |) = 1}.

Since ιZ,F is the restriction of g to Z, ιZ,F also takes each new set of parallel 1’s in Z to the corresponding
set of new parallel 1’s in F � Z, with the same set of indices. Thus, ιZ,F witnesses that F � Z is strictly
similar to Z. �

Theorem 8.9 (Ramsey Theorem for Strict Similarity Types). Let Z be a finite antichain of coding nodes
in a strong coding tree T , and let h color of all subsets of T which are strictly similar to Z into finitely many
colors. Then there is an incremental strong coding tree S ≤ T such that all subsets of S strictly similar to
Z have the same h color.

Proof. First, note that there is an envelope E of a copy of Z in T : By Lemma 7.5, there is a strongly
incremental strong coding tree U ≤ T and a set of coding nodes V ⊆ T such that each Y ⊆ U which is
strictly similar to Z has an envelope in T by adding nodes from V . Since U is strongly similar to T , there
is subset Y of U which is strictly similar to Z. Let E be any envelope of Y in T , using witnessing coding
nodes from V .

By Lemma 8.7, all envelopes of copies of Z are strictly similar. Define a coloring h∗ on Simss
T (E) as follows:

For each F ∈ Simss
T (E), define h∗(F ) = h(F � Z), where F � Z is the subset of F provided by Lemma 8.8.

The set F � Z is strictly similar to Z, so the coloring h∗ is well-defined. Since envelopes satisfy the Strict
Parallel 1’s Criterion, Theorem 6.3 yields a strong coding tree T ′ ≤ T such that Simss

T ′(E) is homogeneous
for h∗. Lemma 7.5 implies there is an incremental strong coding tree S ≤ T ′ and a set of coding nodes
W ⊆ T ′ such that each Y ⊆ S which is strictly similar to Z has an envelope F in T ′. Thus, h(Y ) = h∗(F ).
Therefore, h takes only one color on the set of all Y ⊆ S which are strictly similar to Z. �

Remark 8.10. If Z is not incremental, then S will have no strictly similar copies of Z, since every antichain in
S is strongly incremental. Thus, non-incremental antichains will not contribute to the big Ramsey degrees.
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Remark 8.11. The definition of envelope can be extended to handle any finite subset of a strong coding
tree, where maximal nodes can be any nodes in a strong coding tree rather than just coding nodes. This is
accomplished using the same definition of strict similarity type, accounting for all minimal new sets of parallel
1’s, and then letting envelopes consist of adding new coding nodes as before to witness these sets of parallel
1’s in their admissible intervals. Then Theorem 8.9 extends to a Ramsey theorem for strict similarity types
of any finite subset of a strong coding tree. However, as the main result of this paper only needs Theorem
8.9, in order to avoid unnecessary length, we do not present the full generality here.

9. The universal triangle-free graph has finite big Ramsey degrees

The main theorem of this paper, Theorem 9.2, will now be proved: The universal triangle-free homo-
geneous graph H3 has finite big Ramsey degrees. This result will follow from Theorem 8.9, which is the
Ramsey Theorem for Strict Similarity Types, along with Lemma 9.1, which shows that any strong coding
tree contains an infinite strongly diagonal set of coding nodes which code the universal triangle-free graph.

Recall from the discussion in the previous section that in a strong coding tree, a set of coding nodes is
strongly diagonal if and only if it is an antichain. Given an antichain D of coding nodes from a strong coding
tree, its meet closure, D∧ has at most one node of any given length. Let LD denote the set of all lengths of
nodes t ∈ D∧ such that t is not the splitting predecessor of any coding node in D. Define

(66) D∗ =
⋃
{t � l : t ∈ D∧ \D and l ∈ LD}.

Then (D∗,⊆) is a tree.
For a strong coding tree T , let (T,⊆) be the reduct of (T, ω;⊆, <, c). Then (T,⊆) is simply the tree

structure of T , disregarding the difference between coding nodes and non-coding nodes. We say that two
trees (T,⊆) and (S,⊆) are strongly similar trees if they satisfy Definition 3.1 in [31]. This is the the same as
the modification of Definition 4.9 leaving out (6) and changing (7) to apply to passing numbers of all nodes
in the trees. When we say that two finite trees are strongly similar trees, we will be implying that when
extending the two trees to include the immediate extensions of their maximal nodes, the two extensions
are still strongly similar. Thus, strong similarity of finite trees implies passing numbers of their immediate
extensions are preserved.

Lemma 9.1. Let T ≤ T be a strong coding tree. Then there is an infinite antichain of coding nodes D ⊆ T
which code H3 in exactly the same way that T does: cDn (lDi ) = cTn(lTi ), for all i < n < ω. Moreover, (D∗,⊆)
and (T,⊆) are strongly similar trees.

Proof. To simplify the indexing of the construction, we will construct a subtree D ⊆ T such that D the set
of coding nodes in D form an antichain satisfying the lemma. Then, since T is strongly similar to T, letting
ϕ : T→ T be the strong similarity map between T and T , the image of ϕ on the coding nodes of D will yield
an antichain of coding nodes D ⊆ T satisfying the lemma.

We will construct D so that for each n, the node of length lDn + 1 which is going to be extended to the
next coding node cDn+1 will split at a level lower than any of the other nodes of length lDn+1 split in D. Above
that, the splitting will be regular in the interval until the next coding node. Recall that for each i < ω, T has
either a coding node or a splitting node of length i. To avoid some superscripts, let ln = |cTn| and kn = |cDn|.
Let jn be the index such that cDn = cTjn , so that kn equals ljn . The set of nodes in D \ {cDn} of length kn shall
be indexed as {dt : t ∈ T � ln}.

Define d〈〉 = 〈〉 and let LevD(0) = {d〈〉}. As the node 〈〉 splits in T, so the node d〈〉 will split in D.
Extend 〈1〉 to a splitting node in T and label this extension v〈1〉. Let a〈0〉 be the leftmost node in T of length
|v〈1〉| + 1, let a〈1〉 = v〈1〉

_0, and u〈1〉 = v〈1〉
_1. Extend a〈0〉 to the shortest splitting node containing it in

T ∩ 0<ω; label this d〈0〉. Let d〈1〉 be the leftmost extension of a〈1〉 in T of length |d〈0〉|, and let u′〈1〉 be the

leftmost extension of u〈1〉 in T of length |d〈0〉|. Apply Lemma 4.19 to extend d〈0〉
_0, d〈0〉

_1, d〈1〉
_0, and

u′〈1〉
_

0 to nodes d〈0,0〉, d〈0,1〉, d〈1,0〉, and cD0 , respectively, so that the tree induced by these nodes satisfy the

Parallel 1’s Criterion, cD0 is a coding node, and the immediate extension of d〈i0,i1〉 in T is i1, for all 〈i0, i1〉 in

LevT(2). Let k0 = |cD0 |, and notice that we have constructed D � (≤ k0) satisfying the lemma.
For the induction step, suppose n ≥ 1 and we have constructed D � (≤ kn−1) satisfying the lemma. Then

by the induction hypothesis, there is a strong similarity map of the trees ϕ : T � (≤ ln−1)→ D∗ � (≤ kn−1),
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d〈〉

v〈1〉

u〈1〉

d〈0〉 d〈1〉 u′〈1〉

d〈0,0〉 d〈0,1〉 d〈1,0〉
cD0

v〈0,1〉
u〈0,1〉u〈0,1〉

d〈1,0,0〉

d〈1,0,0,1〉d〈1,0,0,0〉d〈0,0,0,0〉

d〈0,0,0,0,0〉
cD1

d〈0,0,0〉 d〈0,1,1〉

d〈0,1,1,0〉

d〈0,0,0,0,1〉
d〈1,0,0,1,0〉

d〈0,1,1,0,0〉 d〈1,0,0,1,0〉

Figure 5. The construction of D

where for each t ∈ T � ln−1, dt = ϕ(t). Let s denote the node in T � ln−1 which extends to the coding node
cTn. Let vs be a splitting node in T extending ds. Let us = vs

_1 and extend all nodes dt, t ∈ (T � ln−1)\{s},
leftmost to length |us| and label these d′t. Extend vs

_0 leftmost to length |us| and label it d′s. Let X = {d′t :
t ∈ T � ln−1} ∪ {us} and let Spl(us) be the set of all nodes in X which have no parallel 1’s with us. Apply
Lemma 4.19 to obtain a coding node cDn extending us and nodes dw, w ∈ T � ln, so that, letting kn = |cDn|
and

(67) D � kn = {dm : m ∈ T � ln} ∪ {cDn},

the following hold. D � (≤ kn) satisfies the Parallel 1’s Criterion, and D∗ � (≤ kn) is strongly similar as a
tree to T � (≤ ln). Thus, the coding nodes in D � (≤ kn) code exactly the same graph as the coding nodes
in T � (≤ ln).

Let D =
⋃
n<ω D � (≤ kn). Then the set of coding nodes in D forms an antichain of maximal nodes in D.

Further, the tree generated by the the meet closure of the set {cDn : n < ω} is exactly D, and D∗ and T are
strongly similar as trees. By the construction, for each pair i < n < ω, cDn(ki) = cTn(li); hence they code H3

in the same order.
To finish, let ψ be the strong similarity map from T to S. Letting D be the ψ-image of {cDn : n < ω}, we

obtain an antichain of coding nodes in S such that D∗ and D∗ are strongly similar trees, and hence D∗ is
strongly similar as a tree to T. Thus, the antichain of coding nodes D codes H3 and satisfies the lemma. �

The filled-in nodes in the graphic form the tree D∗. The coding nodes are exactly the maximal nodes of
D and form an antichain. Notice that the collection of nodes {dt : t ∈ T � (≤ 2)}, which are exactly the
filled-in nodes in the figure, forms a tree strongly similar to T � 2. The bent lines indicate that the next
node was chosen either to be least such that it was a critical node or according to Lemma 4.19.

Main Theorem 9.2. The universal triangle-free graph has finite big Ramsey degrees.

Proof. Let G be a finite triangle-free graph, and let f be a coloring of all the copies of G in H3 into finitely
many colors. By Theorem 4.6, there is a strong coding tree T in which the coding nodes code H3. Let
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A denote the set of all antichains of coding nodes of T which code a copy of G. For each Y ∈ A, let
h(Y ) = f(G′), where G′ is the copy of G coded by the coding nodes in Y . Then h is a finite coloring on A.

Let n(G) be the number of different strict similarity types of incremental strongly diagonal subsets of T
coding G, and let {Zi : i < n(G)} be a set of one representative from each of these different strict similarity
types. Successively apply Theorem 8.9 to obtain incremental strong coding trees T ≥ T0 ≥ · · · ≥ Tn(G)−1 so
that for each i < n(G), h is takes only one color on Sims

Ti(Zi). Let S = Tn(G)−1.
By Lemma 9.1 there is a strongly diagonal subtree D ⊆ S which also codes H3. Then every set of coding

nodes in D coding G is automatically strongly diagonal and incremental. Therefore, every copy of G in the
copy of H3 coded by the coding nodes in D is coded by an incremental strongly diagonal set. Thus, the
number of strict similarity types of incremental strongly diagonal subsets of T coding G provides an upper
bound for the big Ramsey degree of G in H3. �

10. Concluding Remarks

The number of strict similarity types of antichains of coding nodes in a strong coding tree which code a
given finite graph G is bounded by the number of subtrees of the binary tree of height 2(|G|+ 1), times the
number of ways to choose incremental sets of new parallel 1’s between any successive levels of the tree. We
leave it as an open problem to determine this recursive function precisely.

Although we have not yet proved the lower bounds to obtain the precise big Ramsey degrees T (G,K3)
for finite triangle-free graphs inside the universal triangle-free graph, we conjecture that they will be equal
to the number of strict similarity types of strongly incremental antichains coding G. We further conjecture
that once found, the lower bounds will satisfy the conditions needed for Zucker’s work in [37] to apply. If so,
then H3 would admit a big Ramsey structure and any big Ramsey flow will be a universal completion flow,
and any two universal completion flows will be universal. We refer the interested reader to Theorem 1.6 in
[37] and surrounding comments.

The author is currently working to extend the techniques developed here to prove that for each k > 3, the
universal k-clique-free homogeneous graph Hk has finite big Ramsey degrees. Preliminary analyses indicate
that the methodology created in this paper is robust enough to apply, with modifications, to a large class of
Fräıssé limits of Fräıssé classes of relational structures omitting some irreducible substructure.
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13. J. D. Halpern and H Läuchli, A partition theorem, Transactions of the American Mathematical Society 124 (1966), 360–367.
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