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Abstract. We consider functions ω on the unit circle T with a finite number of
logarithmic singularities. We study the approximation of ω by rational functions
and find an asymptotic formula for the distance in the BMO-norm between ω
and the set of rational functions of degree n as n→∞. Our approach relies on
the Adamyan-Arov-Krein theorem and on the study of the asymptotic behaviour
of singular values of Hankel operators.

1. Introduction

1.1. Overview. The rate of convergence of both rational and polynomial approx-
imations to a given function ϕ is determined by the smoothness of ϕ. Of course
in general the rational approximations converge much faster than the polynomial
ones.

Let us briefly describe the fundamental results of approximation theory rele-
vant to this paper; see [22] for more information. We denote by Pn the set of all
polynomials in x ∈ R of degree ≤ n. Similarly, Tn is the set of all trigonometric
polynomials of degree ≤ n defined on the unit circle T. According to the classical
Jackson-Bernstein theorem (see, e.g., the book [5]), the distance between ϕ and
Tn in the L∞-norm satisfies the estimate

distL∞(T){ϕ, Tn} = O(n−α), α > 0, n→∞,
if and only if ϕ belongs to the Hölder-Zygmund class Λα (the definitions of relevant
function classes are collected in the Appendix).

Further, for the function ϕ(x) = |x|α defined on some interval of the real line,
for example on [−1, 1], S. N. Bernstein [2, 3] proved the existence of the limit

lim
n→∞

nα distL∞(−1,1){|x|α,Pn} = b(α) (1.1)

where b(α) 6= 0 if α 6= 2, 4, . . .. The number b(α) is known as the Bernstein
constant.

Next, consider the problem of rational approximation. The degree of a rational
function p/q (p, q are polynomials with no non-constant common divisors) is de-
fined as max{deg p, deg q}. We denote by Rn the set of all rational functions of
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degree ≤ n in the complex plane. D. Newman proved in [14] that for the function
ϕ(x) = |x| on the interval [−1, 1], the distance between ϕ and Rn in the L∞ norm
satisfies the estimates

e−c1
√
n ≤ distL∞(−1,1){ϕ,Rn} ≤ e−c2

√
n

with some positive constants c1, c2. This result was extended by A. A. Gonchar in
[8, 9] to the functions ϕ(x) = |x|α; he established the same estimate for all α > 0,
α 6= 2, 4, . . .. More recently, H. Stahl [22] proved a remarkable result: he showed
that for such functions one has the asymptotic relation

lim
n→∞

eπ
√
αn distL∞(−1,1){|x|α,Rn} = 41+α/2|sin 1

2
πα|, α > 0; (1.2)

see [22] for the history of the problem.
In this paper, we discuss the rational approximation of functions with logarith-

mic singularities of the type (− ln|x|)−α near x = 0. More precisely, let us fix α > 0
and consider the function

ϕ+(x) =

{
(− lnx)−α x ∈ (0, 1/2]

0 x ∈ [−1/2, 0]

on the interval [−1/2, 1/2]. Clearly, ϕ+ does not satisfy the Hölder continuity
condition (with any exponent) and so, according to the Jackson-Bernstein theorem,
distL∞{ϕ+,Pn} goes to zero slower than any power of n−1. On the other hand,
A. A. Gonchar in [9] proved the two-sided estimates

cn−α ≤ distL∞(−1/2,1/2){ϕ+,Rn} ≤ C(lnn/n)α (1.3)

with some positive constants c and C.
Our aim is to obtain an asymptotic relation for the function ϕ+(x) (and for

more general functions with similar singularities) in the spirit of (1.2) but with nα

instead of the exponential eπ
√
αn. We obtain such a relation, but for the BMO-norm

instead of the L∞-norm. In fact, in harmonic analysis the space BMO (functions
with bounded mean oscillation) often plays the role of a proper substitute for
L∞; this space is only slightly larger than L∞ and L∞ ⊂ BMO ⊂ Lp for any
p <∞. Further, this space is particularly well adapted to treating functions with
logarithmic singularities and allows us to study unbounded functions. Indeed, along
with ϕ+ we consider the function

ϕ0(x) = (− ln|x|)1−α, x ∈ [−1/2, 1/2],

which a priori looks more singular than ϕ+ because of the extra factor ln|x|.
For 0 < α < 1, this function is unbounded, but it is in the VMO class (functions
with vanishing mean oscillation). Just as for ϕ+, we show that nα distBMO{ϕ0,Rn}
attains a finite positive limit as n → ∞ which we compute explicitly. Comparing
these facts with the classical Bernstein result (1.1), we see that, for functions with
logarithmic singularities, rational approximations play the same role as polynomial
approximations play for functions with power singularities.
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It will be convenient for us to work with functions defined on the unit circle
T of the complex plane, instead of on an interval of the real line. So, to be more
precise, below we consider the analogues of ϕ+ and ϕ0 on the unit circle.

Our approach relies on a combination of the fundamental Adamyan-Arov-Krein
(AAK) theorem [1] and of our previous results [19, 20] on the asymptotic behaviour
of singular values of Hankel operators of a certain class. The AAK theorem relates
the rational approximation of a function ϕ (defined on T) in the BMO-norm to
the singular values of the Hankel operator with the symbol ϕ. This explains why
we work with the BMO-norm rather than with the L∞-norm.

Using the AAK theorem, V. V. Peller [16] has obtained the following analogue of
the Jackson-Bernstein theorem for the rational approximations in the BMO norm.
He proved that

distBMO(T){ϕ,Rn} = O(n−α), α > 0, n→∞, (1.4)

if and only if ϕ belongs to a certain Besov-Lorentz class, denoted by Bα
1/α,∞ in [16].

We reproduce the definition of this class in the Appendix. Of course, the specific
functions ϕ with logarithmic singularities that we consider in this paper belong to
this class.

1.2. BMO and VMO. We denote by T the unit circle in the complex plane,
equipped with the normalized Lebesgue measure dm(µ) = (2πiµ)−1dµ, µ ∈ T, and
set Lp ≡ Lp(T). For f ∈ L1, let

f̂(j) =

∫
T
f(µ)µ−jdm(µ), j ∈ Z,

be the Fourier coefficients of f . For 1 ≤ p ≤ ∞, the Hardy classes Hp
+ and Hp

− are
defined in a standard way as

Hp
+ = {f ∈ Lp(T) : f̂(j) = 0 ∀j < 0}, Hp

− = {f ∈ Lp(T) : f̂(j) = 0 ∀j ≥ 0}.

We denote by P+ : L2 → H2
+ and P− : L2 → H2

− the orthogonal projections onto
H2

+ and H2
−. There is a lack of complete symmetry between H2

+ and H2
− because the

constant functions belong to H2
+ but not to H2

−. This results in a slight asymmetry
in some of the formulas below.

The class BMO(T) =: BMO can be described in many equivalent ways, with
equivalent choices for the norm; see, e.g., [11]. Since we are interested in the asym-
potics of the distance in the BMO-norm, the precise choice of the norm will be
important for us.

Let us start by fixing the BMO-norm for functions analytic outside the unit
disk. A function f ∈ H2

− belongs to BMO if and only if f − g ∈ L∞ for some
g ∈ H2

+; then we set

‖f‖BMO = inf{‖f − g‖L∞ : g ∈ H2
+}, f ∈ H2

−. (1.5)
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Remark. Let H1
+(0) = {f ∈ H1

+ : f̂(0) = 0}. As is well known (see, e.g. [11,
Section VII.A.1]), the norm (1.5) coincides with the norm of f in the dual space
H1

+(0)∗.

Next, for an arbitrary f ∈ L2 we set

‖f‖BMO = max{‖P−f‖BMO, ‖P−f̄‖BMO, |f̂(0)|}, (1.6)

if the right hand side is finite. Here ‖P−f‖BMO, ‖P−f̄‖BMO are defined by (1.5).
Clearly, the norm (1.6) is invariant with respect to the complex conjugation,

‖f‖BMO = ‖f‖BMO.

With this definition, we have

‖P+f‖BMO = max{‖P−f̄‖BMO, |f̂(0)|}, (1.7)

‖f‖BMO = max{‖P+f‖BMO, ‖P−f‖BMO}. (1.8)

Finally, we recall that the subclass VMO ⊂ BMO is the closure of all continuous
functions in the BMO-norm.

Let us comment on our choice of the norm in BMO. Definition (1.5) is absolutely
crucial for our approach, as it ensures the connection of rational approximations
with Hankel operators via the AAK theorem. On the other hand, the details of

the definition (1.6) are less important: the term |f̂(0)| is inessential and the other
two quantities in the right-hand side can be combined in various ways. Our choice
(1.6) is motivated by the fact that it simplifies the expressions for some coefficients
appearing in the asymptotic formulas below. We could have chosen, for example,
the following alternative definition of the BMO norm:

‖f‖∗BMO = ‖P−f‖BMO + ‖P−f̄‖BMO + |f̂(0)|;
this would only change the constant in the right-hand side of some asymptotic
formulas, such as (1.15) below.

1.3. Rational approximation. We denote by Rn the set of all rational functions
of degree ≤ n in the complex plane without poles on T and set

R±n = Rn ∩H2
± = P±(Rn).

Notice that R+
0 = {const}, while R−0 = {0}.

For ω ∈ BMO and n ≥ 0, we define

ρn(ω) = distBMO{ω,Rn} := min{‖ω − r‖BMO : r ∈ Rn},
ρ+n (ω) = distBMO{P+ω,Rn} = distBMO{P+ω,R+

n },
ρ−n (ω) = distBMO{P−ω,Rn} = distBMO{P−ω,R−n }.

(1.9)

There are some simple identities relating the quantities ρn, ρ+n , ρ−n , see Lemma 2.7
below. It is clear that ω ∈ VMO (resp. P±ω ∈ VMO) if and only if ρn(ω) → 0
(resp. ρ±n (ω)→ 0) as n→∞.
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From our choice of the BMO-norm it follows that ρ−n (ω) can be alternatively
written as

ρ−n (ω) = distL∞{ω,R−n +H2
+}. (1.10)

The problem of approximation by functions of the class R−n + H2
+ in L∞-norm is

known as the Nehari-Takagi problem. Of course, a similar statement is true for
ρ+n (ω) (see Lemma 2.1 below):

ρ+n (ω) = distL∞{ω,R+
n +H2

−}. (1.11)

1.4. Outline of results. To give the flavour of our main result, first we consider
the following model functions:

ω0(e
iθ) = |log|θ||1−αχ0(θ), θ ∈ [−π, π), (1.12)

ω±(eiθ) = |log|θ||−αχ0(θ)1±(θ), θ ∈ [−π, π). (1.13)

Here α > 0 is a fixed parameter, 1± is the characteristic function of the semi-
axis R±, and χ0 is a smooth even cutoff function, whose role is to remove the
“undesired” singularity of the functions (1.12) and (1.13) at |θ| = 1. More precisely,
χ0 ∈ C∞0 (R) is a function which vanishes identically for |θ| > c with some c < 1
and such that χ0(θ) = 1 in some neighborhood of zero.

The following statement is a particular case of Theorem 3.5 below. We set

κ(α) = 2−απ1−2αB( 1
2α
, 1
2
)α (1.14)

where B(·, ·) is the Beta function.

Theorem 1.1. Let α > 0 and let

ω(µ) = v0ω0(µ) + v+ω+(µ) + v−ω−(µ),

where v0, v+, v− are arbitrary complex numbers. Put

b± = 1
2
(1− α)v0 ± 1

2πi
(v+ − v−).

Then

lim
n→∞

nαρ±n (ω) = κ(α)|b±|,

lim
n→∞

nαρn(ω) = κ(α)
(
|b+|1/α + |b−|1/α

)α
. (1.15)

Remark 1.2. 1. Similarly to Stahl’s formula (1.2), the asymptotic coefficient
κ(α) in Theorem 1.1 is quite explicit. In contrast to this, it is not known whether
the Bernstein constant b(α) in (1.1) can be expressed in terms of standard tran-
scendentals; see, e.g. [12] for more on this issue.

2. For 0 < α < 1, the function ω0 is not in L∞, although ω0 ∈ VMO.
3. For α = 1, the function ω0 = χ0 ∈ C∞. This agrees with the fact that in this

case ω0 makes no contribution to b±.
4. For α = 0, the functions ω0 and ω± are in BMO but not in VMO. Thus, in this

case ρn(ω) (and ρ±n (ω)) do not tend to zero as n → ∞. This shows that one
cannot go beyond α > 0 in Theorem 1.1.
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5. Consider the case v0 = 0; then the asymptotic coefficients b± vanish precisely
when v+ = v−, i.e. when ω(eiθ) is an even function of θ. This partially explains
the fact that although the even function ω0 is more singular than ω+ and ω−,
the rational approximations of these functions have the same power rate of
convergence.

6. Comparing Theorem 1.1 with Peller’s result (1.4), we see that the functions ω0

and ω± belong to the Besov-Lorentz class Bα
1/α,∞, but do not belong to the class

Bβ
1/β,∞ for any β > α. This yields explicit (and sharp!) examples of functions

in these Besov-Lorentz classes.
7. The analogue of Theorem 1.1 for L∞-distances remains an open problem.

For functions ω ∈ BMO∩H2
± , the distances ρ±n (ω) = ρn(ω) do not depend

on the choice of the norm (1.6) — see relations (1.10) and (1.11). Therefore for
functions analytic for |z| < 1 (or for |z| > 1), Theorem 1.1 is stated in a quite
intrinsic form. Consider, for example, the function

ω(z) = (− log(1− z) + c)1−α, α > 0, (1.16)

where a number c is chosen in such a way that log(1−z) 6= c for all z with |z| ≤ 1.
Then ω(z) is analytic in the unit disk D and is singular only at the point z = 1 on
the unit circle.

The following statement is a particular case of Theorem 3.8 below.

Theorem 1.3. Let the function ω(z) be defined by formula (1.16). Then there
exists

lim
n→∞

nαρ+n (ω) = |1− α|κ(α).

Two sided estimates by c n−α of ρ+n (ω) for the function (1.16) (and for more
general functions of this type) are known. They were obtained by A. A. Pekarskĭı
in [17] (see Example 2.2). Later (see [18], relation (31)) Pekarskĭı also proved the
upper bound in the L∞-norm, distL∞{ω,R+

n } = O(n−α).
We emphasize that our main results, Theorems 3.3 and 3.8 below, allow for an

arbitrary finite number of logarithmic singularities of ω on the unit circle.

1.5. Some ideas of the approach. We start by recalling some concepts related
to Hankel operators; for the details, see, e.g., the books [15, 16]. For ω ∈ L2, the
Hankel operator K(ω) : H2

+ → H2
− is defined by the formula

K(ω)f = P−(ωf). (1.17)

In this context, ω is called the symbol of K(ω). The definition (1.17) makes sense,
for example, on all polynomials f . It is evident that K(ω) depends only on the
part P−ω of ω, i.e. K(ω) = K(P−ω). Nehari’s theorem ensures that K(ω) is a
bounded operator if and only if P−ω ∈ BMO, and Hartman’s theorem says that
K(ω) is compact if and only if P−ω ∈ VMO; see Proposition 2.4 below.
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Another equivalent point of view on Hankel operators appears when one con-
siders the matrix representation of K(ω) with respect to the standard bases in
H2
±. Consider the bases {µj}∞j=0 in H2

+ and {µ−1−k}∞k=0 in H2
−. Then the matrix

representation of K(ω) with respect to this pair of bases is

(K(ω)µj, µ−1−k)L2 = ω̂(−1− j − k), j, k ≥ 0.

It will be convenient to have a separate piece of notation for such infinite matrices,
considered as operators on the sequence space `2 := `2(Z+). Given a sequence
{h(j)}∞j=0 of complex numbers, we define the Hankel operator Γ(h) on `2 by

(Γ(h)u)(j) =
∞∑
k=0

h(j + k)u(k). (1.18)

Now suppose ω ∈ L2 and P−ω ∈ VMO; take h(j) = ω̂(−1− j) for all j ≥ 0. Then
the operators K(ω) and Γ(h) have the same matrix representation with respect
to some pairs of orthonormal bases, and hence Γ(h) = U∗−K(ω)U+ for appropriate
unitary mappings U± : `2 → H2

±. It follows that these operators have the same
sequence of singular values (see Section 2.1):

sn(K(ω)) = sn(Γ(h)), ∀n ≥ 0, if h(j) = ω̂(−1− j), ∀j ≥ 0.

The proof of our main result relies on the following two ingredients:

• The Adamyan-Arov-Krein (AAK) theorem. One of the alternative ways to
state this theorem is to say that

sn(K(ω)) = ρ−n (ω), n ≥ 0,

if P−ω ∈ VMO. We give some background related to this formula in Sec-
tion 2.
• Our results of [19, 20], which give an asymptotic formula for the singular

values of a class of Hankel operators Γ(h). Those are the operators corre-
sponding to the sequences h of the form

h(j) = j−1(log j)−α + error term, j →∞, (1.19)

and, more generally,

h(j) =
L∑
`=1

b`j
−1(log j)−αζ−j` + error term, j →∞, (1.20)

where b1, . . . , bL ∈ C and ζ1, . . . , ζL ∈ T. Sequences of the type (1.19) are
required in the proof of Theorems 1.1 and 1.3, while sequences of the type
(1.20) are required in the proof of the more general Theorems 3.5 and 3.8,
which pertain to the functions ω with several (= L) singularities on the
unit circle.
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Our construction depends on the interplay between two representations of Han-
kel operators: as K(ω) : H2

+ → H2
− and as Γ(h) : `2 → `2. From the technical

point of view, we only have to relate the class of Hankel operators K(ω), where
the symbol ω has finitely many (= L) logarithmic singularities on T, to the class
of Hankel operators Γ(h), where h is of the form (1.20). This requires a rather
careful analysis of the Fourier coefficients of such functions ω. We show that every
singularity of ω generates one of the terms in the right-hand side of (1.20). This
result is stated as Theorem 3.2.

1.6. The structure of the paper. In Section 2 we recall some background in-
formation related to the theory of Hankel operators and to the AAK theorem.
In Section 3 we state our main results, Theorems 3.5 and 3.8, which are exten-
sions of Theorems 1.1 and 1.3. In the same Section, we deduce our main results
from the technical Theorem 3.2, which describes the asymptotic behaviour of the
Fourier coefficients of functions with logarithmic singularities on T. The proof of
Theorem 3.2 is given in Section 4.

2. Background information

2.1. Schatten classes. Here we briefly recall some background facts on Schatten
classes; for a detailed presentation, see, e.g. the book [4]. Let B be the algebra of
bounded operators on a Hilbert spaceH, and let ‖·‖ be the operator norm. Singular
values of a compact operator A ∈ B are defined by the relation sn(A) = λn(|A|),
where {λn(|A|)}∞n=0 is the non-increasing sequence of eigenvalues of the compact

non-negative operator |A| =
√
A∗A (with multiplicities taken into account). Sin-

gular values may also be defined by the relation

sn(A) = min{‖A−B‖ : B ∈ B, rankB ≤ n}, n = 0, 1, . . . . (2.1)

For p > 0, the Schatten class Sp and the weak Schatten class Sp,∞ of compact
operators are defined by the conditions

A ∈ Sp ⇔
∞∑
n=0

sn(A)p <∞,

A ∈ Sp,∞ ⇔ sup
n≥0

(n+ 1)1/psn(A) <∞.

Of course, we have Sp ⊂ Sp,∞.

2.2. Relations between ρn(ω), ρ+n (ω), ρ−n (ω). Recall that Rn consists of all
rational functions with at most n poles, including the pole at infinity, but with
no poles on the unit circle T; the poles are counted with multiplicities taken into
account. Thus, r ∈ Rn if and only if

r(z) = p(z) +
∑
|zj |6=1

Lj∑
`=1

cj,`(z − zj)−`,
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where p is a polynomial and

deg r = deg p+ L1 + L2 + · · · ≤ n.

Hence the functions r+ = P+r ∈ R+
n and r− = P−r ∈ R−n are given by

r+(z) = p(z) +
∑
|zj |>1

Lj∑
`=1

cj,`(z − zj)−`, r−(z) =
∑
|zj |<1

Lj∑
`=1

cj,`(z − zj)−`. (2.2)

The following simple relations between the distances ρn(ω), ρ+n (ω) and ρ−n (ω) (see
(1.9)) will be useful.

Lemma 2.1. For any ω ∈ VMO and any n ≥ 0, we have the relation

ρ+n (ω) = ρ−n (ω). (2.3)

Moreover, formula (1.11) holds true.

Proof. Put H2
+(0) = {f ∈ H2

+ : f̂(0) = 0} and R+
n (0) = {r ∈ R+

n : r̂(0) = 0}. Then

H2
+(0) = H2

−, R+
n (0) = R−n and H2

+ = H2
+(0) + C, R+

n = R+
n (0) + C. Therefore,

by the definition (1.9) of ρ+n , we have

ρ+n (ω) = min{‖P+(ω − r+ − r0)‖BMO : r+ ∈ R+
n (0), r0 ∈ C}

which in view of the relation (1.7) yields

ρ+n (ω) = max
{

min{‖P−ω − r−‖BMO : r− ∈ R−n },min{|ω̂(0)− r0| : r0 ∈ C}
}
.

Choosing r0 = ω̂(0), we see that the right-hand side here equals ρ−n (ω).
Putting together relations (1.10) and (2.3) and passing to the complex conjuga-

tion, we see that

ρ+n (ω) = distL∞{ω,R−n +H2
+} = distL∞{ω,R−n +H2

+}.
Since

R−n +H2
+ = R+

n (0) +H2
+(0) + C = R+

n (0) +H2
− + C,

we obtain formula (1.11). �

Lemma 2.2. For any ω ∈ VMO and any n ≥ 0, we have the relation

ρn(ω) = min
{

max{ρ+n+
(ω), ρ−n−(ω)} : n+ + n− = n

}
. (2.4)

Proof. For r ∈ Rn, denote r± = P±r. From (2.2), it is easy to see that r+ ∈ R+
n+

and r− ∈ R−n− , where n++n− = n. Conversely, if r± ∈ R±n± , then r = r++r− ∈ Rn

with n = n+ + n−. By the identity (1.8), we have

‖ω − r‖BMO = max{‖P+ω − r+‖BMO, ‖P−ω − r−‖BMO}.
It follows that

ρn(ω) = min
{

max{‖P+ω − r+‖BMO, ‖P−ω − r−‖BMO} : r± ∈ R±n± , n+ + n− = n
}

;

the right-hand side here coincides with the right-hand side in (2.4). �
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It will be convenient to rewrite (2.4) in terms of the following counting functions:

ν(ω; s) = #{n ≥ 0 : ρn(ω) > s}, ν±(ω; s) = #{n ≥ 0 : ρ±n (ω) > s}, (2.5)

where s > 0.

Lemma 2.3. For any ω ∈ VMO and any s > 0, the relation

ν(ω; s) = ν+(ω; s) + ν−(ω; s) (2.6)

holds true.

Proof. Fix s > 0. Observe that ρn(ω) ≤ s is equivalent to ν(ω; s) ≤ n, and similarly
for ρ±n (ω). By (2.4), for any n ≥ 0, the relation ρn(ω) ≤ s is equivalent to

∃n+, n− : n+ + n− = n, ρ+n+
(ω) ≤ s and ρ−n−(ω) ≤ s.

This can be rewritten as

∃n+, n− : n+ + n− = n, ν+(ω; s) ≤ n+ and ν−(ω; s) ≤ n−,

which is equivalent to ν+(ω; s) + ν−(ω; s) ≤ n. We have proven that ν(ω; s) ≤ n
is equivalent to ν+(ω; s) + ν−(ω; s) ≤ n; thus, we get (2.6). �

2.3. Hankel operators on Hardy spaces. Here we recall several fundamental
results of the theory of Hankel operators. The first proposition below is Nehari’s
theorem [13], which we combine for convenience with the compactness result due
to P. Hartman [10].

Proposition 2.4. [16, Theorems 1.1.3 and 1.5.8] Suppose that ω ∈ L2. Then
the Hankel operator K(ω) : H2

+ → H2
− is bounded (resp. compact) if and only if

P−ω ∈ BMO (resp. P−ω ∈ VMO). Moreover,

‖K(ω)‖ = ‖P−ω‖BMO. (2.7)

In view of Proposition 2.4, the definition (1.6) of the BMO norm can be rewritten
as

‖ω‖BMO = max{‖K(ω)‖, ‖K(ω)‖, |ω̂(0)|}.
The Kronecker theorem describes all finite rank Hankel operators.

Proposition 2.5. A Hankel operator K(ω) has rank n if and only if P−ω ∈ Rn

(equivalently, if and only if P−ω ∈ R−n ).

The Adamyan-Arov-Krein theorem states that, for Hankel operators, the mini-
mum in (2.1) can be taken over Hankel operators only. We denote by K the set of
all bounded Hankel operators.

Proposition 2.6. [1, Theorem 0.1] Let K be a compact Hankel operator. Then

sn(K) = min{‖K −G‖ : G ∈ K, rankG ≤ n}, n = 0, 1, . . . .

Combining Kronecker and Adamyan-Arov-Krein theorems and taking into ac-
count relation (2.7) and Lemma 2.1, one obtains the following result (which is
essentially Theorem 0.2 in [1]).
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Proposition 2.7. Let ω ∈ VMO. Then for all n ≥ 0,

ρ+n (ω) = sn(K(ω)), ρ−n (ω) = sn(K(ω)).

Thus, the problem of rational approximation of a function ω ∈ VMO is equiva-
lent to the study of the singular values of the corresponding Hankel operator.

2.4. Schatten class properties of Hankel operators. Here we recall impor-
tant results due to V. Peller that characterise Hankel operators of Schatten classes.
Some partial results in this direction were independently obtained by S. Semmes

in [21] and by A. A. Pekarskĭı in [17]. Definitions of the Besov class B
1/p
p,p and the

Besov-Lorentz classe B
1/p
p,∞ are given in the Appendix; further relevant information

can be found in Peller’s book [16]. We will not need the three propositions below
in our construction, and they are given here only in order to put our results into
the right context.

Proposition 2.8. [16, Corollaries 6.1.2, 6.2.2 and 6.3.2] Let ω ∈ L2 and p > 0.
Then the Hankel operator K(ω) belongs to the Schatten class Sp if and only if

P−ω ∈ B1/p
p,p .

In view of Proposition 2.6, this implies the following result on rational approxi-
mation in the BMO norm.

Proposition 2.9. [16, Theorem 6.6.1] Let ω ∈ VMO and p > 0. Then the condi-
tion {

distBMO{ω,Rn}
}∞
n=0
∈ `p(Z+)

is satisfied if and only if ω ∈ B1/p
p,p .

Using real interpolation, Peller has also obtained the “weak version” of this
result (see [16, Section 6.4]).

Proposition 2.10. Let ω ∈ VMO and p > 0. Then the condition

distBMO{ω,Rn} = O(n−1/p), n→∞,

is satisfied if and only if ω ∈ B
1/p
p,∞.

2.5. Hankel operators in `2. Here we state the result of [20] on the asymptotics
of singular values of Hankel operators Γ(h). First we need some notation. For a
sequence g = {g(j)}∞j=0, we define iteratively the sequences g(m) = {g(m)(j)}∞j=0,

m = 0, 1, 2, . . . , by setting g(0)(j) = g(j) and

g(m+1)(j) = g(m)(j + 1)− g(m)(j), j ≥ 0.

Theorem 2.11. [20, Theorem 3.1] Let α > 0, let ζ1, ζ2, . . . , ζL ∈ T be distinct
numbers, and let b1, b2, . . . , bL ∈ C. Let h be a sequence of complex numbers such
that

h(j) =
L∑
`=1

(
b`j
−1(log j)−α + g`(j)

)
ζj+1
` , j ≥ 2, (2.8)
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where the error terms g`, ` = 1, . . . , L, obey the estimates

g
(m)
` (j) = o(j−1−m(log j)−α), j →∞, (2.9)

for all m = 0, 1, . . . . Then the Hankel operator Γ(h) defined by formula (1.18) is
compact in `2, and its singular values satisfy the asymptotic relation

sn(Γ(h)) = a n−α + o(n−α), a = κ(α)
( L∑
`=1

|b`|1/α
)α
, (2.10)

as n→∞, where the coefficient κ(α) is given by formula (1.14).

Remark. In fact, it suffices to require condition (2.9) for 0 ≤ m ≤ M(α), where
M(α) is an explicit finite number.

3. Main results

The structure of this section is as follows. First, we state a technical Theo-
rem 3.2, which gives the asymptotics of the Fourier coefficients for functions ω
with logarithmic singularities on the unit circle. The proof of this theorem will
be provided in the next section. Then, using this theorem, we prove Theorem 3.3,
which yields the asymptotics of the singular values for Hankel operators K(ω)
with ω as above. Finally, we state and prove our main results (Theorems 3.5 and
3.8) on rational approximation of such functions ω. They are obtained as simple
corollaries of Theorem 3.3.

3.1. Fourier coefficients of singular functions. Here we consider functions
ω(µ) which are smooth on the unit circle except at the point µ = 1, where ω(µ)
have logarithmic singularities. These singularities will be slightly more general
than those of the “model functions” ω0, ω± of Section 1 (see (1.12), (1.13)) and
will contain additional functional parameters.

As in Section 1, we fix an even function χ0 ∈ C∞(R) satisfying the condition

χ0(θ) =

{
1 for |θ| ≤ c1,

0 for |θ| ≥ c,
(3.1)

where 0 < c1 < c are sufficiently small numbers (we will be more specific below).
First let us informally discuss the structure of an admissible singularity of ω at
the point µ = 1 of the unit circle. Below the index σ takes values + and − and 1σ

denotes the characteristic function of the semi-axis Rσ. The more general version
of ω0 (see (1.12)) is the function∑

σ=±

v0,σ(θ)(− log|θ|+ u0,σ(θ))1−α1σ(θ)χ0(θ)

where v0,σ and u0,σ are arbitrary complex valued C∞ functions such that

v0,+(0) = v0,−(0) =: v0. (3.2)
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Similarly, the generalisation of the linear combination of ω+ and ω− (see (1.13)) is∑
σ=±

v1,σ(θ)(− log|θ|+ u1,σ(θ))−α1σ(θ)χ0(θ)

with some C∞ functions v1,σ and u1,σ. Below we combine these two expressions
more succinctly as a sum of four terms. More precisely, we introduce the following
assumption.

Assumption 3.1. Let α > 0, and let vj,σ(θ) and uj,σ(θ), j = 0, 1, σ = ±, be
complex valued C∞ functions of θ ∈ R such that condition (3.2) is satisfied. Then
the function ω is defined by the relation

ω(eiθ) =
∑
j=0,1

∑
σ=±

vj,σ(θ)(− log|θ|+ uj,σ(θ))1−j−α1σ(θ)χ0(θ), θ ∈ (−π, π]. (3.3)

Here c2 is chosen so small that θ = 0 is the only singularity of the functions in
the sum (3.3), that is,

− log|θ|+ uj,σ(θ) 6= 0 if θ ∈ [−c2, c2]

for j = 0, 1, σ = ±. The function zj−α for z = − log|θ|+ uj,σ(θ) in (3.3) is defined
by the principal branch, zj−α = e(j−α) log z, where we assume that

arg(− log|θ|+ uj,σ(θ))→ 0 as θ → 0

for all these functions.
For a function ω satisfying Assumption 3.1, we put

b = b(ω) = (1− α)v0
(
1
2
− 1

2πi
(u0,+(0)− u0,−(0))

)
− 1

2πi
(v1,+(0)− v1,−(0)). (3.4)

The analytic core of our construction is the following theorem.

Theorem 3.2. Under Assumption 3.1, the Fourier coefficients of ω(µ) admit the
representation

ω̂(−j) = bj−1(log j)−α + g(−j), j ≥ 2, (3.5)

where the coefficient b = b(ω) is given by formula (3.4) and the error term g(−j)
satisfies the estimates

g(m)(−j) = O
(
j−1−m(log j)−α−1

)
, j → +∞, (3.6)

for all m ≥ 0.

We emphasize that the leading terms of the asymptotics of the Fourier coeffi-
cients of these functions depend on the combination (3.4) only.

The proof of Theorem 3.2 will be given in the next section.
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3.2. Hankel operators with singular symbols. Here we state a result about
the singular value asymptotics for Hankel operators K(ω) with symbols ω having
finitely many logarithmic singularities.

Theorem 3.3. Let ζ1, ζ2, . . . , ζL ∈ T be distinct numbers, and let the functions
ω1, ω2, . . . , ωL satisfy Assumption 3.1. Define the function

ω(µ) =
L∑
`=1

ω`(µ/ζ`), µ ∈ T, (3.7)

and set

a(ω) = κ(α)
( L∑
`=1

|b(ω`)|1/α
)α
, (3.8)

where the numbers b(ω`) are given by (3.4) and κ(α) is the coefficient (1.14). Then
the Hankel operator K(ω) is compact and its singular values have the asymptotics

sn(K(ω)) = a(ω)n−α + o(n−α),

as n→∞.

Proof. Observe that for arbitrary ζ ∈ T and φ ∈ L1(T), we have

φ̂ζ(j) = φ̂(j)ζ−j if φζ(µ) = φ(µ/ζ).

Therefore it follows from (3.7) that

ω̂(−j − 1) =
L∑
`=1

ω̂`(−j − 1)ζj+1
` .

Let h(j) = ω̂(−j − 1). According to Theorem 3.2 the sequence h(j) satisfies con-
dition (2.8) as j → +∞; the corresponding asymptotic coefficients b` = b(ω`) are
defined by formula (3.4). Thus Theorem 2.11 implies the asymptotic formula (2.10)
for the singular values of the Hankel operator Γ(h). Since Γ(h) and K(ω) have the
same set of singular values, we obtain the desired result. �

It is important that the singularities of the symbol (3.7) are located at distinct
points ζ1, . . . , ζL.

Remark 3.4. Let ω be a function satisfying Assumption 3.1, but without the
condition (3.2), i.e. with v0,+(0) 6= v0,−(0); simple examples of such function are

ω±(eiθ) = |log|θ||1−α1±(θ)χ0(θ) or ω(eiθ) = |log|θ||1−α sign θχ0(θ).

Now the terms with j = 1 in (3.3) are inessential and instead of (3.4) we put

b̃(ω) = − 1
2πi

(v0,+(0)− v0,−(0)).



BEST RATIONAL APPROXIMATION 15

Let ω be given by formula (3.7) where each ω` is as above. Then the operator
K(ω) is compact for α > 1 only, and the asymptotics of its singular values is of a
different order:

sn(K(ω)) = ã n−γ + o(n−γ), γ = α− 1,

where

ã = κ(γ)
( L∑
`=1

|b(ω̃`)|1/γ
)γ
.

This fact follows from Theorem 3.3 with v0 = 0 and α replaced by α− 1.

3.3. Rational approximation. We recall that the distances ρn(ω) and ρ±n (ω) are
defined by relations (1.9). Our main result on rational approximation is

Theorem 3.5. Assume the hypothesis of Theorem 3.3 and set

a+ = a(ω), a− = a(ω), a =
(
(a+)1/α + (a−)1/α

)α
.

Then

lim
n→∞

nαρ±n (ω) = a±, (3.9)

lim
n→∞

nαρn(ω) = a. (3.10)

Proof. To prove (3.9), it suffices to put together Proposition 2.7 and Theorem 3.3.
In order to prove (3.10), we observe that (3.9) can be equivalently rewritten in
terms of the counting functions ν±(ω; s) (see (2.5)) as

lim
s→0

s1/αν±(ω; s) = (a±)1/α.

It now follows from Lemma 2.3 that

lim
s→0

s1/αν(ω; s) = (a+)1/α + (a−)1/α,

which is equivalent to (3.10). �

Remark 3.6. Theorem 3.3 automatically extends to symbols ω that include an
error term:

ω(µ) =
L∑
`=1

ω`(µ/ζ`) + ω̃(µ), µ ∈ T, (3.11)

where ω̃ is any symbol such that

sn(K(ω̃)) = o(n−α), n→∞. (3.12)

This follows by a standard application of Ky Fan’s lemma (see e.g. [7, Section
II.2.5]). Condition (3.12) is satisfied, for example, when P−ω̃ ∈ Bα

1/α,1/α. Therefore

Theorem 3.5 is also true for functions (3.11) where ω̃ ∈ Bα
1/α,1/α.
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Theorem 1.1 is a particular case of Theorem 3.5, with the following choice of
parameters: L = 1, ζ1 = 1, and

v0,±(θ) = v0, v1,±(θ) = v±, u0,±(θ) = 0, u1,±(θ) = 0.

Formula (3.8) is quite intuitive from the viewpoint of singular value asymptotics.
It means that the contributions of different singularities of the symbol ω to the
singular values counting function are independent of each other. On the other
hand, this formula does not look obvious in the approximation theory framework.

3.4. Rational approximation of analytic functions. Let us consider the case
of ω(z) analytic in the unit disc; then ρn(ω) = ρ+n (ω). Let u(z) be analytic in D,
u ∈ C∞(D); fix some ζ ∈ T and assume that

− log(ζ − z) + u(z) 6= 0, z ∈ D. (3.13)

Define
ω(z) =

(
− log(ζ − z) + u(z)

)1−α
, z ∈ D, α > 0. (3.14)

The branch of the analytic function log(ζ−z) is fixed by the condition log(ζ−z) =
log(1− r) + iϕ0 if z = rζ, r ∈ (0, 1), and ζ = eiϕ0 . We fix arg

(
− log(ζ − z) + u(z)

)
by the condition that it tends to zero as z = reiϕ0 and r → 1 − 0. Obviously the
function ω(z) is analytic in the unit disc D and is smooth up to the boundary T,
except at the point z = ζ. Let us find its asymptotic behavior as z ∈ T and z → ζ.

Lemma 3.7. Let µ = eiψ, ζ = eiψ0 and θ := ψ − ψ0. Then the function (3.14)
admits the representation

ω(µ) =
(
− log |θ|+ u±(θ)

)1−α
, ±θ > 0,

where u± are C∞-smooth functions,

u±(θ) = ±iπ/2− iθ/2− log
sin(θ/2)

θ/2
+ u(ei(ψ0+θ))− iψ0. (3.15)

In particular,
u+(0)− u−(0) = iπ. (3.16)

Proof. Observe that

log(ζ − µ) = log(eiψ0 − eiψ) = log(eiψ0(1− eiθ))
= log(1− eiθ) + iψ0 = log(2 sin |θ/2|) + i arg(1− eiθ) + iψ0

and arg(1− eiθ) = (∓π + θ)/2 for ±θ > 0. Therefore

− log(ζ − µ) + u(µ) = − log |θ|+ u±(θ)

where u±(θ) is given by (3.15). �

Below we consider sums of functions (3.14) with variable coefficients. Lemma 3.7
allows us to apply Theorem 3.5 in the special case v1,±(θ) = 0.
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Theorem 3.8. Let ζ1, ζ2, . . . , ζL ∈ T be distinct points, and let functions v`, u`,
` = 1, . . . , L, be analytic in D and v`, u` ∈ C∞(D), and assume that (3.13) is
satisfied for all u`, ζ`. Put

ω(z) =
L∑
`=1

v`(z)
(
− log(ζ` − z) + u`(z)

)1−α
, α > 0.

Then there exists the limit

lim
n→∞

nαρ+n (ω) = |1− α|κ(α)
( L∑
`=1

|v`(ζ`)|1/α
)α

where the coefficient κ(α) is given by (1.14).

Proof. It follows from Lemma 3.7 that the function ω(z) admits representation
(3.11) where every function ω`(z) satisfies Assumption 3.1 with the corresponding
functions v1,±(θ) = 0. Therefore according to relations (3.4) and (3.16) we have
b(ω`) = (1 − α)v`(ζ`). Now we can apply Theorem 3.5; the smooth error term ω̃
does not affect the asymptotics — see Remark 3.6. �

4. Fourier transforms of functions with logarithmic singularities

4.1. Statement of the result. Our goal in this section is to prove Theorem 3.2.
In fact, we prove a slightly more general statement, where Fourier coefficients are
replaced by Fourier transforms. It is convenient to introduce the function of x ∈ R,

Ω(x) =

{
ω(eix) −π < x ≤ π

0 otherwise.
(4.1)

Theorem 4.1. Under Assumption 3.1, the Fourier transform Ω̂(t) of Ω(x) is a
C∞ function on R, which can be written as

(2π)−1/2Ω̂(−t) = bt−1(log t)−α +G(−t), t > 1, (4.2)

where b = b(ω) is given by (3.4) and the error term G(t) satisfies the estimates

G(m)(−t) = O
(
t−1−m(log t)−α−1

)
, t→ +∞, (4.3)

for all m = 0, 1, . . ..

Theorem 4.1 will be proven in the rest of this section. Assuming this theorem,
we can give

Proof of Theorem 3.2. Observe that

ω̂(−j) =
1

2π

∫ ∞
−∞

Ω(x)eijxdx = (2π)−1/2Ω̂(−j).

So the asymptotics (3.5) for the Fourier coefficients ω̂(−j) with the error term

g(−j) = G(−j) follows from the asymptotics (4.2) for the Fourier transform Ω̂(−t).
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We only have to check that the estimates (4.3) for the function G and its derivatives
yield the estimates (3.6) for the sequence g. This elementary statement follows, for
example, from the explicit formula

g(m)(−j) =

∫ 1

0

dt1

∫ 1

0

dt2 · · ·
∫ 1

0

dtmG
(m)(−j + t1 + · · ·+ tm),

which can be checked by induction in m. �

Theorem 4.1 is proven below through a sequence of steps. In Lemma 4.2 we
compute the asymptotics of the Laplace transform of explicit functions with a
logarithmic singularity. In Lemma 4.3, we use a contour deformation argument to
reduce the question of asymptotics of the Fourier transform to that of the Laplace
transform. In Lemma 4.4 we show that the functions vj,σ and uj,σ in the definition
of ω (see Assumption 3.1) can be replaced by their values at zero. The proof of
Theorem 4.1 is concluded in Section 4.4.

4.2. Laplace and Fourier transforms of logarithmic functions. Let us start
with an elementary result on the asymptotic expansion of the Laplace transform.

Lemma 4.2. Let α ∈ R, m ∈ Z+ and let c ∈ (0, 1). Then∫ c

0

(
− log y

)−α
yme−ytdy = t−1−m(log t)−α

×
(
m! + αΓ′(m+ 1)(log t)−1 +O((log t)−2)

)
(4.4)

as t→ +∞ where Γ′ is the derivative of the Gamma function Γ.

Proof. First, we split the integral (4.4) into the integrals over (0, t−1/2) and over
(t−1/2, c). Due to the factor e−yt the second integral decays faster than any power
of t−1. Making the change of variables x = yt, we see that the first integral equals

t−1−m(log t)−α
∫ t1/2

0

(
1− log x

log t

)−α
xme−xdx. (4.5)

Since u = − log x
log t
≥ −1/2 for x ≤ t1/2, we can use the estimate∣∣(1 + u)−α − 1 + αu

∣∣ ≤ Cu2, u ≥ −1/2. (4.6)

Thus the integral (4.5) equals

t−1−m(log t)−α
∫ t1/2

0

(1 + α log x
log t

)xme−xdx+R(t), (4.7)

where the remainder satisfies the estimate

|R(t)| ≤ Ct−1−m(log t)−α−2
∫ ∞
0

(log x)2 xme−xdx.
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The integral in (4.7) can be extended to R+ and then calculated in terms of the
Gamma function. The arising error decays faster than any power of t−1 as t→ +∞.
This yields (4.4). �

The full asymptotic expansion of the Laplace transform (4.4) is of course well
known; see, e.g. Lemma 3 in [6], but the above proof is slightly simpler than that
in [6]. Here we need two terms, but the method allows one to easily obtain the full
expansion.

Next, we discuss the Fourier transform. Below we suppose that arg x > 0 for
x > 0. Fix some complex number a. We choose a number c > 0 so small that
− log x+ a 6= 0 for x ∈ (0, c).

Lemma 4.3. Let a ∈ C, α ∈ R and m ∈ Z+. Suppose that a C∞ function χ0

satisfies condition (3.1) with a sufficiently small c. Then∫ ∞
−∞

(− log |x|+ a)−α1±(x)χ0(x)xmeixtdx = ±im+1t−m−1(log t)−α

×
(
m! + α

(
Γ′(m+ 1) +m!(±πi/2− a)

)
(log t)−1 +O((log t)−2)

)
(4.8)

as t→ +∞.

Proof. Consider first the sign “ + ”. For x ∈ (0, c), denote

A(x, t) =

∫ x

0

(
− log z + a

)−α
zmeiztdz. (4.9)

Integrating by parts, we see that∫ ∞
0

(
− log x+ a

)−α
χ0(x)xmeixtdx = −

∫ ∞
0

A(x, t)χ′0(x)dx (4.10)

where χ′0 ∈ C∞0 (R+). Our plan is to find the asymptotics of A(x, t) as t → +∞
for x in compact subsets of (0, c) and to substitute it into (4.10). Let us choose
κ > 0 so small that − log z + a 6= 0 for z in the closed rectangle in the complex
plane with the vertices 0, iκ, iκ + c, c. Instead of (0, x), we can integrate over the
line segments (0, iκ), (iκ, iκ+ x) and (iκ+ x, x) in (4.9):

A(x, t) =

(∫ iκ

0

+

∫ iκ+x

iκ

+

∫ x

iκ+x

)
(− log z + a)−αzmeiztdz

=: A0(t) + A1(x, t) + A2(x, t).
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Let us first consider the integral over (0, iκ). Setting z = iy and using (4.6), we
see that

A0(t) = im+1

∫ κ

0

(− log y − iπ/2 + a)−αyme−ytdy

= im+1

∫ κ

0

(− log y)−α
(
1 + (iπ/2− a)α(− log y)−1 + ε(y)

)
yme−ytdy

where ε(y) = O((log y)−2) as y → 0. Thus we have reduced the question to com-
puting the asymptotics of the Laplace transform. Now it follows from formula (4.4)
that

A0(t) = im+1t−1−m(log t)−α

×
(
m! + α(Γ′(m+ 1) +m!(iπ/2− a))(log t)−1 +O((log t)−2)

)
.

Substituting this asymptotics into the integral (4.10), we get the right-hand side
of (4.8).

It remains to show that the termsA1 andA2 do not contribute to the asymptotics
of the integral (4.10). Making the change of variables z = iκ + y, we see that the
integral

A1(x, t) =

∫ iκ+x

iκ

(
− log z + a

)−α
zmeiztdz

= e−κt
∫ x

0

(
− log(iκ+ y) + a

)−α
(iκ+ y)meiytdy

decays exponentially as t → ∞. This implies that the contribution of A1(x, t) to
the integral (4.10) also decays exponentially.

Similarly, making the change of variables z = x+ iκy, we can rewrite A2 as

A2(x, t) =

∫ x

iκ+x

(
− log z + a

)−α
zmeiztdz

= −iκeitx
∫ 1

0

(
− log(x+ iκy) + a

)−α
(x+ iκy)me−κytdy.

In the right-hand side we can integrate by parts arbitrarily many times. It is

important that the integrand
(
− log(x + iκy) + a

)−α
(x + iκy)m is a C∞-smooth

function of y ∈ [0, 1]. The contribution of the point y = 1 decays exponentially
and therefore we have the asymptotic expansion

A2(x, t) = eitx
N∑
n=1

an(x)t−n +O(t−N−1), t→ +∞, ∀N > 0, (4.11)

with some functions an(x) that are smooth on the interval (0, c). Substituting
(4.11) into (4.10) and integrating by parts with respect to x, we see that the
contribution of A2(x, t) decays faster than any power of t−1 as t→∞.
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To prove (4.8) for the sign “−”, we take the relation (4.8) for the sign “+”, make
the change of the variables x 7→ −x and pass to the complex conjugation. �

For a = 0, the asymptotics of the oscillating integral (4.8) is well known (see
[24]), although our proof seems to be somewhat simpler than that in [24] even in
this case. So we have given the proof of Lemma 4.3 mainly for the completeness of
our presentation. Of course the method of proof of Lemma 4.3 yields the complete
asymptotic expansion of the integral (4.8), but we do not need it.

4.3. Replacing v(x) by v(0) and u(x) by u(0). Here our aim is to prove that
the variable parameters vj,σ and uj,σ in the definition of the function ω (see As-
sumption 3.1) can be replaced by their values at zero.

Lemma 4.4. Let α ∈ R, m ∈ Z+, σ = ±, and let functions v, u ∈ C∞. Then∫ ∞
−∞

(
v(x)(− log|x|+ u(x))−α − v(0)(− log|x|+ u(0))−α

)
1σ(x)χ0(x)xmeixtdx

= O(t−ρ), ∀ρ < m+ 2, (4.12)

as t→∞.

Proof. Let ϕ ∈ Cm+1 and ϕ(m+2) ∈ L1
loc. Integrating by parts m+ 2 times, we see

that∫ ∞
−∞

ϕ(x)1σ(x)χ0(x)eixtdx = O(t−m−2) if ϕ(0) = · · · = ϕ(m+1)(0) = 0.

(4.13)
Let us use the fact that (1 + z)−α = 1− αz +R(z) where the remainder

R ∈ C∞ and R(0) = R′(0) = 0. (4.14)

Therefore we have

(− log|x|+ u(x))−α = (− log|x|+ u(0))−α
(
1 + w(x)

)−α
= (− log|x|+ u(0))−α

(
1− αw(x) +R(w(x))

)
(4.15)

where
w(x) = (− log|x|+ u(0))−1(u(x)− u(0)). (4.16)

We substitute the expression (4.15) into the integral (4.12) and consider every
term separately.

First we consider

v(x)(− log|x|+ u(0))−αxm = (v(0) + v′(0)x+ v1(x))(− log|x|+ u(0))−αxm

where v1 ∈ C∞ and v1(0) = v′1(0) = 0. The term with v(0) is cancelled out by the
second term in the integrand in (4.12). According to Lemma 4.3, the contribution
of v′(0)x is bounded by Ct−m−2(log t)−α, and according to (4.13) the contribution
of v1(x) is bounded by Ct−m−2.
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Next, we consider the term

v(x)(− log|x|+ u(0))−α−1(u(x)− u(0))xm.

We have v(x)(u(x)−u(0))xm = v(0)u′(0)xm+1+R1(x) where R1 ∈ C∞ and R1(0) =

· · · = R
(m+1)
1 (0) = 0. As we have already seen, by Lemma 4.3 the contribution of

v(0)u′(0)xm+1 is bounded by Ct−m−2(log t)−α−1, and by (4.13) the contribution of
R1(x) is bounded by Ct−m−2.

It remains to consider the function

ϕ(x) = v(x)(− log|x|+ u(0))−αR(w(x))xm. (4.17)

Clearly, w ∈ C∞((−c, c) \ {0}) and differentiating (4.16) we see that w(k)(x) =
O(|x|1−k) as x → 0 for all k = 0, 1, . . .. Therefore differentiating the composite
function R(w(x)) and taking into account (4.14), we find that

dk

dxk
R(w(x)) = O(|x|2−k), k = 0, 1, . . . .

Finally, differentiating the product (4.17), we see that ϕ ∈ C∞((−c, c) \ {0}) and

ϕ(k)(x) = O((− log|x|)−α|x|2+m−k), k = 0, 1, . . . ,

as x→ 0. Thus we can apply relation (4.13) to the function (4.17). �

Putting together Lemmas 4.3 and 4.4, we obtain the following result.

Lemma 4.5. Let the assumptions of Lemma 4.4 be satisfied. Then, as t→ +∞,∫ ∞
−∞

v(x)(− log |x|+ u(x))−α1±(x)χ0(x)xmeixtdx = ±im+1t−m−1(log t)−α

× v(0)
(
m! + α

(
Γ′(m+ 1) +m!(±πi/2− u(0))

)
(log t)−1 +O((log t)−2)

)
. (4.18)

4.4. Proof of Theorem 4.1. Since(
d

dt

)m(
t−1(log t)−α

)
= (−1)mm!t−1−m(log t)−α

(
1 +O((log t)−1)

)
,

we need to prove that∫ ∞
−∞

Ω(x)xmeixtdx = 2πbimm!t−1−m(log t)−α
(
1 +O((log t)−1)

)
(4.19)

as t→ +∞, where the asymptotic coefficient b is given by equality (3.4).
Recall that the function Ω(x) is defined by formulas (3.3) and (4.1). So we

only have to substitute this expression for Ω(x) into the left-hand side and to use
Lemma 4.5. Thus, keeping only the leading term in the right-hand side of (4.18),
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we find that∑
σ=±

∫ ∞
−∞

v1,σ(x)(− log|x|+ u1,σ(x))−α1σ(x)χ0(x)xmeixtdx

= im+1m!(v1,+(0)− v1,−(0))t−m−1(log t)−α
(
1 + (log t)−1

)
. (4.20)

Similarly, using (4.18) with α replaced by α− 1, we obtain∑
σ=±

∫ ∞
−∞

v0,σ(x)(− log|x|+ u0,σ(x))1−α1σ(x)χ0(x)xmeixtdx = im+1t−m−1(log t)−α

×
{
v0,+(0)

(
m! log t+ (α− 1)

(
Γ′(m+ 1) +m!(πi/2− u0,+(0))

))
− v0,−(0)

(
m! log t+ (α− 1)

(
Γ′(m+ 1) +m!(−πi/2−u0,−(0))

))
+O((log t)−1)

}
.

(4.21)

Taking into account condition (3.2), we see that the right-hand side here equals

im+1m!t−m−1(log t)−αv0(α− 1)(πi− u0,+(0) + u0,−(0))
(
1 +O((log t)−1)

)
.

Thus putting together relations (4.20), (4.21), we conclude the proof of (4.19) and
hence of Theorem 4.1.

Appendix A. Besov and Besov-Lorentz spaces

Here for completeness we recall the definitions of the Besov class B
1/p
p,p and the

Besov-Lorentz class B
1/p
p,∞ on T. The parameter p > 0 is arbitrary. We refer to the

books [16] (see Section 6.4 and Appendix 2) and [23] for more details.
Let w ∈ C∞0 (R) be a function with the properties w ≥ 0, suppw = [1/2, 2] and

∞∑
n=0

w(t/2n) = 1, ∀t ≥ 1.

Let f be a distribution on L1(T) with the Fourier coefficients f̂(j), j ∈ Z. For
n ∈ Z, let us denote by fn the polynomial

fn(µ) =
∑
j∈Z

w(±j/2|n|)f̂(j)µj, µ ∈ T, ±n > 0,

and let f0(µ) = f̂(1)µ + f̂(0) + f̂(−1)µ. The Besov class B
1/p
p,p is defined by the

condition ∑
n∈Z

2|n|‖fn‖pLp <∞. (A.1)
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By definition, f ∈ B
1/p
p,∞ if and only if

sup
t>0

tp
∑
n∈Z

2|n|m({µ ∈ T : |fn(µ)| > t}) <∞

which is the “weak version” of the condition (A.1). We have

B1/p
p,p ⊂ B1/p

p,∞ ⊂ B1/q
q,q , ∀q > p.

The Hölder-Zygmund class Λα, α > 0, is defined in terms of the difference
operator

(∆τf)(µ) = f(τµ)− f(µ), τ ∈ T.
By definition, f ∈ Λα if and only if

‖(∆n
τ f)(µ)‖L∞ ≤ C|τ − 1|α

where n is an arbitrary integer such that n > α. Observe that Λα coincides with
the Hölder class Cα if α is not integer and Cα ⊂ Λα if α is an integer. We also
note that Λα ⊂ Bα

1/α,∞.
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