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Abstract

For a partial order P having infinite antichains by a(P) we denote the
minimal cardinality of an infinite maximal antichain in P and investigate how
does this cardinal invariant of posets behave in finite products. In particular
we show that min{a(P), p(sqP)} ≤ a(Pn) ≤ a(P), for all n ∈ N, where
p(sqP) is the minimal size of a centered family without a lower bound in
the separative quotient of the poset P, or p(sqP) = ∞, if there is no such
family. So we have a(P × P) = a(P) whenever p(sqP) ≥ a(P) and we
show that, in addition, this equality holds for all infinite Boolean algebras
of size ≤ ω1 (without zero), all reversed trees, all atomic posets and, in
particular, for all posets of the form ⟨C,⊂⟩, where C is a family of nonempty
closed sets in a compact T1-space containing all singletons. As a by-product
we obtain the following combinatorial statement: If X is an infinite set and
{Ai × Bi : i ∈ I} an infinite partition of the square X2, then at least one of
the families {Ai : i ∈ I} and {Bi : i ∈ I} contains an infinite partition of X .
2010 Mathematics Subject Classification: 06A06, 06E10, 03E05.
Key words and phrases: partial order, direct product, maximal antichain,
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1 Introduction

For a partial order P having infinite antichains, the cardinal invariant a(P) is defined
as the minimal size of an infinite maximal antichain in P and can be regarded as
a generalization of the invariant of the continuum a := a((P (ω)/Fin)+) (the
almost-disjointness number). More about the other “small cardinals” mentioned
here, p (the pseudointersection number), t (the tower number), h (the distributivity
number) and b (the unbounding number) can be found in [1, 2].

Is there a partial order P such that a(P × P) < a(P)? Unfortunately, although
the author spent lot of time on this topic, a reader interested in this question will
not find an answer in the present paper which, in fact, shows that the equality

a(P× P) = a(P) (1)

holds over a large class of partial orders.
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While, by a theorem of Kurepa [6], the square of a reversed Suslin tree has
uncountable antichains and, hence, it is consistent that the cellularity of a product
is larger than the cellularity of its factors, the inequality a(P×P) ≤ a(P) holds for
each poset P having infinite antichains (if A is a maximal antichain in P, then A×A
is a maximal antichain in P× P). In fact, we even do not know is it consistent that
the inequality is strong for some poset. Concerning the last question we note that,
as far as we know, it is not clear what is going on with the poset (P (ω)/Fin)+.
Namely, in [10] Spinas defined the small cardinals aλ := a(((P (ω)/Fin)+)λ), for
λ ≤ ω, proved that b ≤ aω ≤ . . . ≤ a2 ≤ a1 = a and showed the consistency of
b < an, for all n ∈ N. It is known (see [1, 2, 7]) that ω1 ≤ p = t ≤ h ≤ b ≤ a ≤ c,
thus in models of b = a we have aλ = a, for all λ ≤ ω, and, in particular, this holds
under CH or MA (implying that p = c). As far as we know it is not known whether
the inequality a2 < a is consistent with ZFC. We remark that the consistency of
h2 < h is proved by Shelah and Spinas (see [8] and [9]).

The equality (1) holds over several important classes of posets. For example,
if B is an infinite complete Boolean algebra, then, clearly, a(B+) = ω and, hence,
a((B+)n) = a(B+), for all n ∈ N. The same holds for each infinite Boolean
algebra B of size ≤ ω1 (see Corollary 4.2). In Section 3 we show that, in particular,
a(P×P) ≥ min{a(P), p(sqP)}, which implies that the equality (1) holds for each
poset P satisfying p(sqP) ≥ a(P). Some consequences are given in Section 4; for
example, the equality (1) holds if P = ⟨C,⊂⟩, where C is a collection of nonempty
closed sets in a compact T1 space containing all singletons. In Sections 5 and 6 we
show that the equality (1) holds for all reversed trees and all atomic posets.

2 Preliminaries

If P = ⟨P,≤⟩ is a partial order, then two elements p and q of P are called com-
patible iff there is r ∈ P such that r ≤ p and r ≤ q; otherwise p and q are called
incompatible and we write p ⊥ q. A set D ⊂ P is called dense in P iff for each
p ∈ P there is q ∈ D satisfying q ≤ p. A set is dense in a Boolean algebra B iff it
is dense in the poset B+ = ⟨B \ {0B},≤B⟩.

Separative quotient A partial order P = ⟨P,≤⟩ is called separative iff for each
p, q ∈ P satisfying p ̸≤ q there is r ∈ P such that r ≤ p and r ⊥ q. The
separative modification of P is the pre-order smP = ⟨P,≤∗⟩, where p ≤∗ q iff
∀r ≤ p ∃s ≤ r s ≤ q. The separative quotient of P is the separative partial order
sqP = ⟨P/=∗,E⟩, where p =∗ q ⇔ p ≤∗ q ∧ q ≤∗ p and [p] E [q] ⇔ p ≤∗ q.
A proof of the following well known facts can be found in [4].
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Fact 2.1 If P = ⟨P,≤⟩ is a non-separative partial order, then the corresponding
quotient mapping h : P→ sqP, given by h(p) = [p], is an epimorphism such that
for all p, q ∈ P we have

p ⊥P q ⇔ h(p) ⊥sqP h(q). (2)

The poset sqP is, up to isomorphism, the unique separative partial ordering P′
such that there is an epimorphism h : P→ P′ satisfying (2).

A poset P is separative iff sqP ∼= P iff P is isomorphic to a dense set of some
Boolean algebra, iff P is isomorphic to a dense set of some (unique up to isomor-
phism) complete Boolean algebra (the Boolean completion of P, denoted by roP).

Atomic and atomless posets If P = ⟨P,≤⟩ is a partial order, an element p of P
is an atom iff there are no q, r ≤ p such that q ⊥ r. If At(P) denotes the set of all
atoms of P, then P is called: atomless iff At(P) = ∅, atomic iff At(P) is a dense
subset of P.

Fact 2.2 Let P = ⟨P,≤⟩ be a partial order and p ∈ P . Then
(a) If p ∈ At(P), then p ↓⊂ [p] ∩At(P);
(b) p ∈ At(P) iff [p] ∈ At(sqP);
(c) P is atomless iff sqP is atomless;
(d) P is atomic iff sqP is atomic;
(e) P is separative and atomic with κ atoms iff P is isomorphic to a suborder

of P (κ)+ containing all singletons;

Proof. (a) Let q ≤ p ∈ At(P). Then q ≤∗ p and for each r ≤ p there is s ≤ q, r,
which means that p ≤∗ q. So p =∗ q, that is q ∈ [p]. It is clear that q ∈ At(P).

(b) If p is not an atom in P, then there are q, r ≤ p such that q ⊥ r and, by Fact
2.1, [q], [r] E [p] and [q] ⊥sqP [r]; thus [p] is not an atom in sqP. Conversely, if
[p] is not an atom in sqP, then there are [q], [r] E [p] such that [q] ⊥sqP [r]. Since
q, r ≤∗ p there are s, t ∈ P such that

s ≤ q, p and t ≤ r, p (3)

and, hence, s, t ≤ p. Suppose that s ̸⊥P t. Then, by (2), [s] ̸⊥sqP [t] and by (3) we
have [s] E [q] and [t] E [r], which is impossible because [q] ⊥sqP [r]. Thus s ⊥P t
and p is not an atom of P. Clearly, (c) follows from (b).

(d) If P is atomic, [p] ∈ sqP and a ∈ At(P), where a ≤ p, then [a] E [p] and,
by (b), [a] ∈ At(sqP). Thus the set At(sqP) is a dense in sqP.

If sqP is atomic, p ∈ P and [a] ∈ At(sqP), where [a] E [p], then a ≤∗ p
and, hence, there is b ≤ a, p. Since by (b) we have a ∈ At(P), by (a) we obtain
b ∈ At(P). Thus the set At(P) is a dense in P.
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(e) Let At(P) = {aα : α ∈ κ} be an enumeration. Since the set At(P) is dense
in P, the function f : P → P (κ) defined by f(p) = {α ∈ κ : aα ≤ p} maps P
into P (κ)+ and, clearly, p ≤ q implies f(p) ⊂ f(q). If ¬p ≤ q, then, since P is
separative, there is r ≤ p such that r ⊥ q and there is α ∈ κ, such that aα ≤ r,
which implies ¬aα ≤ q. So, α ∈ f(p) \ f(q) and, hence, ¬f(p) ⊂ f(q). Thus, for
each p, q ∈ P we have p ≤ q iff f(p) ⊂ f(q), that is f is an embedding of P into
P (κ)+ and, clearly, f(aα) = {α}, for each α ∈ κ.

If P is a suborder of P (κ)+ and [κ]1 ⊂ P , then P is dense in P (κ) and, by
Fact 2.1, P is separative. Clearly, At(P) = [κ]1 is dense in P so P is atomic. 2

Centered families If P = ⟨P,≤⟩ is a partial order, a family C ⊂ P is called
centered iff each finite nonempty subset K ⊂ C has a lower bound in P . A
centered family C ⊂ P is called a maximal centered family iff for each centered
family C ′ ⊂ P satisfying C ⊂ C ′ we have C ′ = C. An easy application of Zorn’s
lemma shows that each centered family is contained in some maximal centered
family.

If a poset P contains a centered family without a lower bound we define

p(P) := min{|C| : C ⊂ P is a centered family without a lower bound}

and, since each finite centered family has a lower bound, we have p(P) ≥ ω and,
hence, |P | ≥ ω. Otherwise, we define p(P) = ∞.

Fact 2.3 Let P = ⟨P,≤⟩ be a partial order. Then
(a) If the poset P is not atomic, then p(P) < ∞ and p(sqP) < ∞;
(b) A finite set K ⊂ P has a lower bound in P iff K has a lower bound in smP

iff h[K] has a lower bound in sqP;
(c) p(P) ≤ p(sqP).

Proof. (a) If the poset P is not atomic, then there is p ∈ P such that

∀q ≤ p ∃r, s ≤ q r ⊥ s. (4)

Let C be a maximal centered family in P such that p ∈ C. Suppose that C has a
lower bound q. Then q ≤ p and, by (4), there are r, s ≤ q such that r ⊥ s, which
implies r < q and, hence, r ̸∈ C. If K ∈ [C]<ω, then r ≤ {r}∪K, thus C∪{r} is
a centered family larger than C, which is impossible. So C is a centered family in
P without a lower bound, which implies that p(P) < ∞. By Fact 2.2(d) the poset
sqP is not atomic as well and, by the previous consideration, p(sqP) < ∞.

(b) We show that for K = {a1, . . . , an} ⊂ P the following three conditions
are equivalent: (i) ∃c ∈ P c ≤ {ai : i ≤ n}, (ii) ∃d ∈ P d ≤∗ {ai : i ≤ n}
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and (iii) ∃[d] ∈ P/=∗ [d] E {[ai] : i ≤ n}. Since x ≤ y implies x ≤∗ y, which
implies [x] E [y] we have (i) ⇒ (ii) ⇒ (iii). The implication (iii) ⇒ (ii) is true
since the relation E is well-defined. For a proof of (ii) ⇒ (i) we assume that d ∈ P
and

∀i ≤ n ∀c ≤ d ∃e ≤ c e ≤ ai. (5)

By recursion we define c0, . . . , cn ∈ P such that c0 = d and ci ≤ ci−1, ai, for i >
0. Suppose that the sequence c0, . . . , ci−1 satisfies the conditions. By (5), for i and
c = ci−1 there is ci ≤ ci−1, ai, and the recursion works. So cn ≤ cn−1 ≤ . . . ≤ c1
and for each i > 0 we have ci ≤ ai, which implies that cn ≤ ai for all i > 0.

(c) Suppose that κ := p(sqP) < p(P) and that {[aα] : α < κ} is a centered
family without a lower bound in the poset sqP. By (b), {aα : α < κ} is a centered
family in P and, since κ < p(P), it has a lower bound in P, say a. So, for each
α < κ we have a ≤ aα and, hence, [a] E [aα], which is impossible. 2

Antichains If P = ⟨P,≤⟩ is a partial order, a set A ⊂ P is called an antichain in
P iff a ⊥ b, for different a, b ∈ A. By Zorn’s lemma each antichain is contained in
a maximal one. Let A(P) := {|A| : A is a maximal antichain in P} and cc(P) :=
min{κ : each antichain in P is of size < κ}. By a theorem of Tarski, cc(P) is a
finite or an uncountable regular cardinal (see [5], p. 245).

If P contains infinite antichains, let us define a(P) := min(A(P) \ ω), that is

a(P) := min{|A| : A ⊂ P is an infinite maximal antichain in P}.

Fact 2.4 Let P = ⟨P,≤⟩ be a partial order and A a nonempty subset of P . Then
(a) The following conditions are equivalent: (i) A is a (maximal) antichain

in P, (ii) A is a (maximal) antichain in smP, (iii) {[a] : a ∈ A} is a (maximal)
antichain in sqP and a ̸=∗ b, for different a, b ∈ A;

(b) A(P) = A(sqP). Thus cc(P) = cc(sqP) and, if P contains infinite an-
tichains, a(P) = a(sqP);

(c) If P does not contain infinite antichains, then P is atomic;
(d) The following conditions are equivalent: (i) P does not contain infinite

antichains, (ii) | sqP| < ω. Then p(sqP) = ∞.

Proof. (a) The equivalence (i) ⇔ (ii) is true since by Fact 2.3(b) for a, b ∈ P we
have:

a ⊥P b ⇔ a ⊥smP b ⇔ [a] ⊥sqP [b]. (6)

(ii) ⇒ (iii). If A is an antichain in smP, then, by (6), for different a, b ∈ A we
have [a] ⊥sqP [b] and, hence, {[a] : a ∈ A} is an antichain in sqP. In addition,
a =∗ b would imply a ≤∗ a, b and hence a ̸⊥smP b, which is not true. Thus
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a ̸=∗ b. If, in addition, A is a maximal antichain in smP, and [p] ∈ P/=∗, then,
by the maximality of A there is a ∈ A such that a ̸⊥smP p, which by (6) implies
[a] ̸⊥sqP [p] and, hence, {[a] : a ∈ A} is a maximal antichain in sqP.

(iii) ⇒ (i). If (iii) holds, then for different a, b ∈ A we have [a] ̸= [b] and, since
{[a] : a ∈ A} is an antichain in sqP we have [a] ⊥sqP [b], which, by (6) implies
a ⊥P b. So, A is an antichain in P. If, in addition, {[a] : a ∈ A} is a maximal
antichain in sqP, then for p ∈ P we have [p] ∈ P/ =∗ and, by the maximality,
there is a ∈ A such that [a] ̸⊥sqP [p], which by (6) implies a ̸⊥P p. Thus A is a
maximal antichain in P.

(b) By (a), if κ ∈ A(P) and A is a maximal antichain in P, where |A| = κ, then
{[a] : a ∈ A} is a maximal antichain in sqP of size κ and, hence, κ ∈ A(sqP).
Conversely, if κ ∈ A(sqP) and A is a maximal antichain in sqP, where |A| = κ,
then the set A ⊂ P obtained by picking exactly one element from each element of
A is a maximal antichain in P of size κ, thus κ ∈ A(P).

(c) If P is not atomic, then there is p ∈ P such that p ↓ ∩At(P) = ∅. Since
p ̸∈ At(P), there are q0, r0 ≤ p such that q0 ⊥ r0. Since r0 ̸∈ At(P), there are
q1, r1 ≤ r0 such that q1 ⊥ r1 etc. Now {qn : n ∈ ω} is an infinite antichain in P.

(d) If cc(P) < ω, then by (c) the poset P is atomic and by Fact 2.2(d), the poset
sqP is atomic and, clearly separative. So, by Fact 2.2(e) if |At(sqP)| = κ, then
sqP is isomorphic to a suborder of P (κ)+ containing all singletons, which implies
that κ ∈ A(sqP). By (b) we have κ ∈ A(P) and, since cc(P) < ω we have κ < ω.
So | sqP| ≤ |P (κ)+| < ω. Conversely, if | sqP| < ω, then each antichain in sqP,
and, by (b), in P is finite. Also, since each finite centered family has a lower bound,
we have p(sqP) = ∞. 2

Example 2.5 By Fact 2.3(c) we have p(P) ≤ p(sqP) ≤ ∞ and here we give
simple examples showing that everything is possible.

p(P) = p(sqP) = ∞ holds, if P is the ordinal ω. A topological characteriza-
tion of separative posets satisfying p(P) = ∞ is given in Theorem 4.3.

p(P) < p(sqP) = ∞ holds, if P is the reversed ordinal ω, in notation ω∗.
p(P) = p(sqP) < ∞ holds, if P is the reversed binary tree, ⟨<ω2,⊃⟩.
p(P) < p(sqP) < ∞ holds, if P = ⟨P (ω)\Fin,⊂⟩ = ⟨[ω]ω,⊂⟩. This poset is

atomless, non-separative and the Fréchet filter witnesses that p(P) = ω. Also we
have sqP = (P (ω)/Fin)+ and the cardinal p(sqP) = p (the pseudointersection
number) is uncountable.

The classes of posets which are relevant for this paper and some of their simple
representatives are described in Figure 1.
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P (ω)+ + 1 ⟨[ω]ω,⊂⟩
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Atomic

Posets

cc(P) < ω

Figure 1: Relevant classes of posets

Direct products Direct product of partial orders Pi = ⟨Pi,≤i⟩, i ∈ I , is the
poset ⟨

∏
i∈I Pi,≤⟩, where ⟨pi : i ∈ I⟩ ≤ ⟨qi : i ∈ I⟩ iff pi ≤i qi, for all i ∈ I .

Fact 2.6 If Pi, i ∈ I , and P are partial orderings, then
(a) sq

(∏
i∈I Pi

)
∼=

∏
i∈I sqPi

(b) p
(∏

i∈I Pi
)
= min

{
p(Pi) : i ∈ I

}
;

(c) p(Pκ) = p(P) and p(sq(Pκ)) = p(sq(P)), for each cardinal κ.

If, in addition, at least one of the partial orders Pi has infinite antichains then

(d) a
(∏

i∈I Pi
)
≤ min

{∏
i∈I κi : ⟨κi : i ∈ I⟩ ∈

(∏
i∈I A(Pi)

)
\ Iω

}
;

(e) a
(∏

i∈I sqPi
)
= a

(∏
i∈I Pi

)
.

Proof. (b) Suppose that κ := p(
∏

i∈I Pi) < min{p(Pi) : i ∈ I}. Then κ < ∞
and, hence, in

∏
i∈I Pi there is a κ-sized centered family without a lower bound,

say C = {pα : α ∈ κ}. Then, for i ∈ I , Ci = {pα(i) : α ∈ κ} is a centered family
in Pi and, by the assumption, it has a lower bound, say qi. But then ⟨qi : i ∈ I⟩ is
a lower bound for C in

∏
i∈I Pi, which is impossible.

Suppose that κ := min{p(Pi) : i ∈ I} < p(
∏

i∈I Pi). Then κ < ∞ and
κ = p(Pi0), for some i0 ∈ I , so, in Pi0 there is a κ-sized centered family without
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a lower bound, say C. Now, for a fixed p ∈
∏

i∈I\{i0} Pi, the set C × {p} is a
centered family in

∏
i∈I Pi which does not have a lower bound, which implies that

p(
∏

i∈I Pi) ≤ κ and we obtain a contradiction.
(c) By (b) we have p(Pκ) = p(P). By (a) and (b) we have p(sq(Pκ)) =

p(sq(P)κ) = p(sq(P)).
(d) Let

∏
i∈I κ

′
i be the right hand side of the inequality in (d) and, for i ∈ I , let

Ai be a maximal antichain in Pi such that |Ai| = κ′i. It is easy to see that
∏

i∈I Ai

is a maximal antichain in
∏

i∈I Pi. Thus a(
∏

i∈I Pi) ≤ |
∏

i∈I Ai| =
∏

i∈I κ
′
i.

(e) By (a) and Fact 2.4(b) we have a(
∏

i∈I sq(Pi)) = a(sq(
∏

i∈I Pi)) =
a(
∏

i∈I Pi) 2

Remark 2.7 We make some comments concerning Fact 2.6(d).
The assumption that at least one of the posets Pi has infinite antichains is nec-

essary since, otherwise, the product
∏

i≤n Pi would not contain infinite antichains.
(By Ramsey’s theorem, if P × Q contains infinite antichains, then P or Q has that
property. An induction shows that the same holds for all finite products).

If P and Q are partial orders having infinite antichains, then a(P × Q) ≤
max{a(P), a(Q)} and if, in addition, P and Q do not have finite maximal an-
tichains, this bound is, in general, the best possible. Namely, if Aκ denotes the
antichain of size κ, then a(Aω × Aω1) = ω1 = max{a(Aω), a(Aω1)}.

If each of the posets Pi, i ≤ n, contains both a finite maximal antichain and an
infinite antichain, then, by Fact 2.6(d), a(

∏
i≤n Pi) ≤ min{a(Pi) : i ≤ n}.

3 Finite products: bounds on a(
∏

i≤n Pi)

In this section we prove the following statement giving bounds on a(
∏

i≤n Pi).

Theorem 3.1 If Pi, i ∈ {1, . . . , n}, are partial orders having infinite antichains,
then

ω ≤ min({a(Pi) : i ≤ n} ∪ {p(sqPi) : i ≤ n})
≤ a(

∏
i≤n Pi)

≤ min{
∏

i≤n κi : ⟨κi : i ≤ n⟩ ∈ (
∏

i≤nA(Pi)) \ nω}
≤ max{a(Pi) : i ≤ n}

A proof of Theorem 3.1 is given at the end of the section. First we recall some
definitions and facts and prove some auxiliary statements, which will be used in
the rest of the paper. For sets K,H ⊂ ω we will write K < H iff k < h, for each
k ∈ K and h ∈ H . K ⊑ H will denote that K ⊂ H and H ∩ [0,max(K)] = K.
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We remind the reader that a family of finite sets F = {Ki : i ∈ I} is called a
∆-system iff there is a finite (possibly empty) set R (the root) such that R ⊂ Ki,
for all i ∈ I , and Ki1 ∩Ki2 = R, for different i1, i2 ∈ I . For uncountable families
of finite sets we have the following statement (∆-System Lemma, see [5], p. 49):

Theorem 3.2 (Šanin) Each uncountable family of finite sets contains an uncount-
able ∆-system.

Fact 3.3 (Folklore) If {Ki : i ∈ ω} ⊂ [ω]<ω, where Ki ̸= Kj , for different
i, j ∈ ω, then there is M ∈ [ω]ω satisfying (a) or (b), where

(a) There is R ∈ [ω]<ω such that R  Ki, for all i ∈ M , and

∀i, j ∈ M (i < j ⇒ R < (Ki \R) < (Kj \R)), (7)

(b) There is X ∈ [ω]ω such that

∀K ⊑ X ∃n ∈ ω ∀i ∈ M \ n K ⊑ Ki. (8)

Proof. In the Cantor space, 2ω, the corresponding sequence of characteristic func-
tions, ⟨χKi : i ∈ ω⟩, has a subsequence ⟨χKi : i ∈ I⟩ converging to some f ∈ 2ω.

If f = χR, for some R ∈ [ω]<ω, and m0 := maxR+ 1, then, since the sets of
the form Bm := {g ∈ 2ω : g � m = χR � m}, m ≥ m0, form a neighborhood base
at the point χR, for each m ≥ m0 there is km ∈ ω such that for each i ∈ I \ km
we have χKi ∈ Bm, that is Ki ∩ [0,m) = R. In addition, since the sets Ki, i ∈ I ,
are different and P (m) is a finite set, there is lm ∈ ω such that Ki ∩ [m,∞) ̸= ∅,
for all i ∈ I \ lm. So, for i ≥ max{km, lm} both conditions are satisfied and, thus,

∀m ≥ m0 ∃n ∈ ω ∀i ∈ I \ n
(
Ki ∩ [0,m) = R ∧ Ki ∩ [m,∞) ̸= ∅

)
. (9)

By recursion we define a sequence ⟨ij : j ∈ ω⟩ in I and a sequence ⟨mj : j ∈ ω⟩
in ω, such that m0 := maxR+ 1 and that for all j, j′ ∈ ω we have:

(i) Kij ∩ [0,mj) = R and Kij ∩ [mj ,∞) ̸= ∅,
(ii) If j < j′, then ij < ij′ , mj < mj′ and R < (Kij \R) < (Kij′ \R).

First, by (9) we take i0 such that Ki0 ∩ [0,m0) = R and Ki0 ∩ [m0,∞) ̸= ∅.
If j′ > 0 and if ⟨ij : j < j′⟩ and ⟨mj : j < j′⟩ are sequences satisfying (i) and

(ii), then we define mj′ := maxKij′−1
+ 1. Then, by (ii),

∪
j<j′ Kij ⊂ [0,mj′),

by (i) we have mj < mj′ , for all j < j′, and using (9) we pick ij′ > ij′−1 such
that Kij′ ∩ [0,mj′) = R and Kij′ ∩ [mj′ ,∞) ̸= ∅. The recursion works.

By (i) and (ii), M := {ij : j ∈ ω} is a set satisfying (a).
If f = χX , where X ∈ [ω]ω, then the sets BK := {g ∈ 2ω : g � [0,maxK] =

χX � [0,maxK]}, K ⊑ X , form form a neighborhood base at the point χX of
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2ω. So, for each K ⊑ X there is n ∈ ω such that for each i ∈ I \ n we have
χKi ∈ BK , that is χKi � [0,maxK] = χX � [0,maxK]}, which means that
Ki ∩ [0,maxK] = K, that is K ⊑ Ki. So defining M := I we obtain (b). 2

Lemma 3.4 (Maximal centered subsequences) If Q = ⟨Q,≤⟩ is a partial order, κ
a cardinal, ⟨qα : α < κ⟩ ∈ κQ and

S :=
{
S ∈ P (κ)\{∅} : {qα : α ∈ S} is centered in Q

}
, (10)

then ⟨S,⊂⟩ is a downwards closed suborder of the poset ⟨P (κ) \ {∅},⊂⟩ contain-
ing all singletons {α}, α ∈ κ, and each S0 ∈ S is contained in some maximal
element of the poset ⟨S,⊂⟩.

Proof. Let SS0 := {S ∈ S : S0 ⊂ S}, let L be a nonempty chain in the poset
Π := ⟨SS0 ,⊂⟩ and S′ =

∪
S∈L S. Then S0 ⊂ S′ ⊂ κ. If K ∈ [S′]<ω \ {∅}, then

for each α ∈ K there is Sα ∈ L such that α ∈ Sα, and, since L is a chain, there
is α0 ∈ K such that K ⊂ Sα0 . Since Sα0 ∈ S there is c ∈ Q such that c ≤ qα,
for all α ∈ K, thus S′ ∈ S and, consequently, S′ ∈ SS0 and S′ is an upper bound
for L. By Zorn’s lemma there is a maximal element of SS0 , say S∗. If S ∈ S and
S∗ ⊂ S, then S0 ⊂ S, which implies S ∈ SS0 and, by the maximality of S∗ we
obtain S = S∗. Thus S∗ is a maximal element of S containing S0. 2

Lemma 3.5 (Infinite centered subsequences left or right) If P and Q are partial
orders and A = {⟨pα, qα⟩ : α < κ} a maximal antichain in P×Q, where κ ≥ ω,
then (A) or (B) holds, where

(A) There is an infinite set S ⊂ κ such that {pα : α ∈ S} is centered in P,
(B) There is an infinite set S ⊂ κ such that {qα : α ∈ S} is centered in Q.

Proof. Suppose that (B) is not true. Then the set S, defined by (10), is a family
of finite nonempty subsets of κ and, by Lemma 3.4, the family Smax of maximal
elements of the order ⟨S,⊂⟩ is a covering of κ, which implies that |Smax| = κ.
Let Smax = {Ki : i < κ} be an enumeration. By the maximality of Ki’s we have

∀i < κ ∃c ∈ Q c ≤ {qα : α ∈ Ki}, (11)

∀i < κ ∀β ∈ κ \Ki ¬∃c ∈ Q c ≤ {qβ} ∪ {qα : α ∈ Ki}, (12)

∀{i, j} ∈ [κ]2 (Ki \Kj ̸= ∅ ∧ Kj \Ki ̸= ∅). (13)

Suppose that there is i ∈ κ such that {pα : α ∈ Ki} is not a maximal antichain in P.
Then there is ⟨a, c⟩ ∈ P ×Q such that a ⊥ {pα : α ∈ Ki} and c ≤ {qα : α ∈ Ki}
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and, by the maximality of A, there is β ∈ κ such that pβ ̸⊥ a, which implies
β ̸∈ Ki, and that qβ ̸⊥ c; thus, there is c′ ≤ {qβ} ∪ {qα : α ∈ Ki} which is
impossible by (12). Thus

∀i ∈ κ ({pα : α ∈ Ki} is a maximal antichain in P). (14)

We show that there are an infinite set M ⊂ κ and a finite set R ⊂ κ such that

∀i ∈ M R  Ki, (15)

∀{i, j} ∈ [M ]2 (Ki \R) ∩ (Kj \R) = ∅. (16)

If κ > ω, then by Theorem 3.2 there is a ∆-system {Ki : i ∈ M} ⊂ Smax with a
root R, where |M | > ω. So, by (13), conditions (15) and (16) are satisfied.

If κ = ω, then Smax = {Ki : i < ω} ⊂ [ω]<ω. By (13), the assumptions
of Fact 3.3 are satisfied. Suppose that there are sets M,X ∈ [ω]ω satisfying (8).
Then for K ∈ [X]<ω, then there is K ′ ⊑ X such that K ⊂ K ′ and, by (8), there
is i ∈ M such that K ′ ⊑ Ki. So, since {qn : n ∈ Ki} is a centered set in Q and
K ⊂ Ki, {qn : n ∈ K} is centered too. Thus X is an infinite set satisfying (B),
which contradicts our assumption. So, by Fact 3.3, there are sets M ∈ [ω]ω and
R ∈ [ω]<ω satisfying (15) and such that for all i, j ∈ M satisfying i < j we have
R < (Ki \R) < (Kj \R), which implies (16).

By recursion, for k ∈ ω we define ik ∈ M , αk ∈ κ and ck ∈ P such that for
all k, l ∈ ω we have:

(i) k ̸= l ⇒ ik ̸= il,
(ii) αk ∈ Kik \R,
(iii) ck ≤ pα0 , . . . , pαk

,
(iv) ck ⊥ {pα : α ∈ R}.

Let i0 ∈ M . By (15) there is α0 ∈ Ki0 \R and by (14) c0 := pα0 ⊥ {pα : α ∈ R}.
Suppose that the sequence ⟨⟨ij , αj , cj⟩ : j ≤ k⟩ satisfies (i)-(iv). We choose

ik+1 ∈ M \ {ij : j ≤ k}. By (14) {pα : α ∈ Kik+1
\ R} ∪ {pα : α ∈ R} is a

maximal antichain in P and by (iv) there are αk+1 ∈ Kik+1
\R and ck+1 ∈ P such

that ck+1 ≤ ck, pαk+1
, which by (iii) and (iv) implies ck+1 ≤ pα0 , . . . , pαk

, pαk+1

and ck+1 ⊥ {pα : α ∈ R}. So, the sequence ⟨⟨ij , αj , cj⟩ : j ≤ k + 1⟩ satisfies
conditions (i)-(iv) and the recursion works.

Now S := {αk : k ∈ ω} ⊂ κ, by (i), (ii) and (16) we have |S| = ω and by
(iii), condition (A) of the lemma is satisfied. 2

Proof of Theorem 3.1. The first inequality is evident and the third and the fourth
follow from Fact 2.6(d). In order to prove the second inequality for n = 2 suppose
that, on the contrary, there are posets P and Q having infinite antichains and such
that

κ := a(P×Q) < min{a(P), a(Q), p(sqP), p(sqQ)} (17)
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and that A = {⟨pα, qα⟩ : α ∈ κ} is a κ-sized maximal antichain in the poset P×Q,
that is,

∀{α, β} ∈ [κ]2
(
pα ⊥ pβ ∨ qα ⊥ qβ

)
, (18)

∀p ∈ P ∀q ∈ Q ∃α ∈ κ
(
p ̸⊥ pα ∧ q ̸⊥ qα

)
. (19)

W.l.o.g. we suppose that S0 ⊂ κ is an infinite set satisfying condition (B) of
Lemma 3.5. By Lemma 3.4, the poset ⟨S,⊂⟩ contains a maximal element S such
that S0 ⊂ S. Thus we have

∀K ∈ [S]<ω\{∅} ∃c ∈ Q c ≤ {qα : α ∈ K}, (20)

∀β ∈ κ \ S ∃K ∈ [S]<ω\{∅} ¬∃c ∈ Q c ≤ {qβ} ∪ {qα : α ∈ K}. (21)

By (20) and since x ≤ y implies x ≤∗ y, B := {[qα] : α ∈ S} is a centered family
in the separative quotient sqQ; so, since by (17) we have |S| ≤ κ < p(sqQ), the
family B has a lower bound in sqQ. In other words there is q ∈ Q such that

∀α ∈ S q ≤∗ qα. (22)

By (20), for different α, β ∈ S we have qα ̸⊥ qβ and, by (18), pα ⊥ pβ; thus
{pα : α ∈ S} is an infinite antichain in P of size ≤ κ. So, by (17), there is p ∈ P
such that

∀α ∈ S p ⊥ pα. (23)

By the maximality of A there is β ∈ κ such that ⟨pβ, qβ⟩ ̸⊥ ⟨p, q⟩. Consequently
p ̸⊥ pβ , which by (23) implies β ∈ κ \ S so, by (21) there is K ∈ [S]<ω\{∅} such
that

¬∃c ∈ Q c ≤ {qβ} ∪ {qα : α ∈ K}. (24)

Now, by (22), q ≤∗ {qα : α ∈ K} and, since ⟨pβ, qβ⟩ ̸⊥ ⟨p, q⟩, there is q′ ∈ Q
such that q′ ≤ qβ, q, which implies that q′ ≤∗ {qβ} ∪ {qα : α ∈ K}. By Fact
2.3(b) there is c ∈ Q such that c ≤ {qβ} ∪ {qα : α ∈ K}, which contradicts (24).

So the second inequality is true for n = 2 and now we assume that it is true
for n and that Pi, i ≤ n+ 1 are partial orders with infinite antichains. By Fact 2.6
(a) and (b) we have p(sq(

∏n
i=1 Pi)) = p(

∏n
i=1 sqPi) = min{p(sqPi) : i ≤ n} ≥

min({a(Pi) : i ≤ n} ∪ {p(sqPi) : i ≤ n}), which, together with the induction
hypothesis, implies

a(
∏n+1

i=1 Pi)
= a((

∏n
i=1 Pi)× Pn+1)

≥ min{a(
∏n

i=1 Pi), a(Pn+1), p(sq
∏n

i=1 Pi), p(sqPn+1)}
≥ min{min({a(Pi) : i ≤ n} ∪ {p(sqPi) : i ≤ n}), a(Pn+1), p(sqPn+1)}
= min({a(Pi) : i ≤ n+ 1} ∪ {p(sqPi) : i ≤ n+ 1})
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and the second inequality is true for n+ 1. 2

4 Finite powers

In the rest of the paper for a partial order P we consider the cardinal invariants
a(Pn), for n ∈ N. The following simple examples show that the relevant invariants
a(P) and p(sqP) are, in general, unrelated: if P is a disjoint union of ω1-many
copies of the reversed tree <ω2, then a(P) = ω1 > ω = p(sqP); if P is a disjoint
union of ω copies of the reversed tree <ω12, then a(P) = ω < ω1 = p(sqP).

Theorem 4.1 If P is a partial order having infinite antichains, then
(a) min{a(P), p(sqP)} ≤ a(Pn) ≤ a(P), for all n ∈ N;
(b) If p(sqP) ≥ a(P), then a(Pn) = a(P), for all n ∈ N;
(c) If p(sqP) < a(P), then p(sqP) ≤ a(Pn) ≤ a(P), for all n ∈ N. If, in

addition, P contains a finite maximal antichain, then for all n ∈ N we have

p(sqP) ≤ a(Pn+1) ≤ a(Pn) ≤ a(P).

(d) If K be a class of posets such that sqP ∈ K, for each P ∈ K, then the
following conditions are equivalent:

(i) a(P× P) = a(P), for each P ∈ K having infinite antichains;
(ii) a(P× P) = a(P), for each separative P ∈ K having infinite antichains.

Proof. Statement (a) follows from Theorem 3.1 and statement (b) follows from (a).
(c) Suppose that P contains a maximal antichain of size k ∈ ω. Then, by

Theorem 3.1, a(Pn+1) = a(Pn × P) ≤ a(Pn)k = a(Pn).
(d) Suppose that (ii) is true and that P ∈ K, where cc(P) > ω. Then sqP ∈ K,

by Fact2.4(b) we have cc(sqP) > ω and, by (ii), a(sqP × sqP) = a(sqP). By
Fact 2.6(e) we have a(sqP×sqP) = a(P×P) and, by Fact 2.4(b), a(sqP) = a(P).
Thus a(P× P) = a(P). 2

Corrolary 4.2 The equality a((B+)n) = a(B+) holds for each infinite Boolean
algebra B of size ≤ ω1 and each n ∈ N.

Proof. If p(B+) = ω1, we apply Theorem 4.1(b); if p(B+) = ω, then it is easy to
construct a countable maximal antichain in B+ so a(B+) = ω = a((B+)n). 2

By Theorem 4.1(b) the equality a(Pn) = a(P) holds for all n ∈ N, if, in partic-
ular, P is a poset satisfying p(sqP) = ∞. The following theorem is a topological
characterization of separative posets with that property.
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Theorem 4.3 If P is a separative poset then p(P) = ∞ iff P ∼= ⟨C,⊂⟩, for a col-
lection C of nonempty closed sets in a compact T1 space containing all singletons.

Proof. Let p(P) = ∞. By Fact 2.3(a) the poset P is atomic, and, by Fact 2.2(e),
we can assume that P = ⟨D,⊂⟩, where [X]1 ⊂ D ⊂ P (X) \ {∅} and X = At(P).
If X is a finite set, then the discrete topology on X works. Otherwise, if P :=
{X \D : D ∈ D} and x, y ∈ X , where x ̸= y, then X \ {x}, X \ {y} ∈ P and,
hence

∪
P = X , which means that P is a subbase for some topology O on X and

D ⊂ F \{∅}, where F is the corresponding family of closed sets. Since the family
D contains all singletons the space ⟨X,O⟩ is a T1-space. If X =

∪
i∈I X \Di is

an open cover of X (by the sets from the subbase P) then
∩

i∈I Di = ∅ and, hence,
{Di : i ∈ I} is not a centered family in P, which means that there is a finite set
K ⊂ I such that

∩
i∈K Di = ∅. Thus X =

∪
i∈K X \ Di is a finite subcover of

the initial cover and, by the Alexander theorem (see [3], p. 221), the space ⟨X,O⟩
is compact.

Let ⟨X,O⟩ be a compact T1 space, F the corresponding family of closed sets
and [X]1 ⊂ C ⊂ F \{∅}. If C′ ⊂ C is a centered family in the poset ⟨C,⊂⟩, then C′

is a family of closed sets with the finite intersection property and, by compactness,
there is x ∈

∩
C′. Thus {x} is a lower bound for C′ in the poset ⟨C,⊂⟩. 2

Corrolary 4.4 If ⟨X,O⟩ is an infinite compact T1-space, F the corresponding
family of closed sets, [X]1 ⊂ C ⊂ F \ {∅} and P = ⟨C,⊂⟩, then a(Pn) = a(P),
for all n ∈ N.

Example 4.5 Let P = ⟨C,⊂⟩ be the poset defined in Corollary 4.4.
If the space ⟨X,O⟩ is a continuum (a connected compact Hausdorff space),

then, by the Sierpiński theorem (see [3], p. 358), the set X can not be partitioned
into ω-many closed sets and, hence, a(Pn) = a(P) > ω, for all n ∈ N.

If the space ⟨X,O⟩ is the Cantor cube, 2ω, and C = F \ {∅}, then we have
a(Pn) = a(P) = ω, for all n ∈ N, because the basic clopen sets B0, B10, B110, . . .
and the singleton {⟨1, 1, 1, . . .⟩} form a partition if 2ω.

5 Reversed trees

In this section T = ⟨T,≤⟩ will be a reversed tree, which means that for each t ∈ T
the set (t,∞) := {s ∈ T : t < s} is either empty, or a reversed well order. The
following theorem is the main statement of this section.

Theorem 5.1 For each reversed tree T containing infinite antichains we have

a(T × T ) = a(T ).
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A proof of the theorem will be given at the end of the section. We start with some
conventions and facts which will be used in the proof. First, if T = ⟨T,≤⟩ is a
reversed tree and α an ordinal, by Lα we will denote the α-th level of T and by
Min(T ) the set of all minimal elements of T .

Fact 5.2 If T = ⟨T,≤⟩ is a reversed tree, then for all x, y, z ∈ T we have
(a) x ̸⊥ y ⇔ x ̸∥ y ⇔ x ≤ y ∨ y ≤ x

(b) x ̸⊥ y ∧ y ≤ z ⇒ x ̸⊥ z;
(c) x < y ⇒ ∃p ∈ T (x ≤ p < y ∧ (p, y) = ∅).

If S is a nonempty subset of T , then
(d) ⟨S,≤� S2⟩ is a reversed tree,
(e) Each element of S is contained in some maximal element of S.

Fact 5.3 A reversed tree T = ⟨T,≤⟩ is separative iff each t ∈ T \Min(T ) has at
least two immediate predecessors.

Proof. (⇒) Let T be separative and t ∈ T \ Min(T ). By Fact 5.2(c) t has an
immediate predecessor, say p < t. Since t ̸≤ p there is r ≤ t such that r ⊥ p
and, clearly, r < t. By Fact 5.2(c) there is q ∈ T such that r ≤ q < t and q is an
immediate predecessor of t. Now, since r ⊥ p we have p ̸= q.

(⇐) Suppose that each t ∈ T\Min(T ) has at least two immediate predecessors.
If t ̸≤ s then, clearly t ̸= s. If t ⊥ s, we are done. Otherwise we have t > s and, by
Fact 5.2(c), there is q ∈ T such that s ≤ q < t and q is an immediate predecessor
of t. By the assumption t has one more immediate predecessor, say q′ < t and,
clearly, q′ ⊥ s. 2

Fact 5.4 Let T = ⟨T,≤⟩ be a reversed tree. Then
(a) p ≤∗ q ⇔ p ≤ q ∨ (q < p ∧ (−∞, p] \ (−∞, q] ⊂ (q,∞));
(b) p =∗ q ⇔ p = q ∨ (q < p ∧ (−∞, p] \ (−∞, q] ⊂ (q,∞))

∨ (p < q ∧ (−∞, q] \ (−∞, p] ⊂ (p,∞));
(c) p ≤ q ⇒ p ≤∗ q ⇒ p ̸⊥ q;
(d) Each equivalence class C ∈ T/ =∗ has a maximum;
(e) sq T ∼= ⟨T1,≤� T1⟩, where T1 = {max(C) : C ∈ T/ =∗}. Thus sq T is a

separative reversed tree.

Proof. (a) In a reversed tree we have p ≤∗ q iff each r ≤ p is comparable with q.
So, if p ≤∗ q and p ̸≤ q then q < p and, if r ≤ p and r ̸≤ q we have r > q.

Let q < p, (−∞, p] \ (−∞, q] ⊂ (q,∞)) and r ≤ p. Then either r ≤ q, or, by
the assumption, r > q; so r is comparable with q. Thus p ≤∗ q.

The statements (b) and (c) follow from (a).
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(d) Suppose that p and q are different maximal elements of C. Then p =∗ q
and, by (b), p < q or q < p, which is impossible, by the maximality of p and q.

(e) Clearly sq T = ⟨T/ =∗,E⟩, where C1 E C2 iff p ≤∗ q, for some p ∈ C1

and q ∈ C2. It is evident that the mapping f : T/ =∗→ T1, defined by f(C) =
max(C), for all C ∈ T/ =∗, is a bijection. For a proof that f is an isomorphism,
we take C1, C2 ∈ T/ =∗, define p := max(C1) and q := max(C2) = q, notice
that C1 E C2 iff p ≤∗ q and show that p ≤∗ q ⇔ p ≤ q. The implication “⇐”
follows from (c). On the other hand, if p ≤∗ q, then, by (c) again, p ≤ q (and we
are done) or q < p. If q < p then q ≤∗ p and, hence, p =∗ q, which means that
C1 = C2 and p = q. So p ≤ q again. 2

Proposition 5.5 For each infinite separative reversed tree T we have

a(T × T ) = a(T ).

Proof. The separativity of T implies that T has infinite antichains.
If a(T ) = ω and A is a maximal antichain in T of size ω, then A × A is a

maximal antichain in T × T of the same size and, hence, a(T × T ) = ω.
So, in the sequel we assume that a(T ) = λ > ω. Since the set of maximal

elements of T , L0, is a maximal antichain in T , we have |L0| < ω or |L0| = λ.
If |L0| = λ, say L0 = {rξ : ξ < λ}, suppose that A = {⟨aα, bα⟩ : α < µ} is

a maximal antichain in T × T , where µ < λ. Then for each ξ < λ there is α < µ
such that ⟨aα, bα⟩ ̸⊥ ⟨rξ, rξ⟩. Thus there are α < µ and different ξ, ξ′ < λ such
that ⟨aα, bα⟩ ̸⊥ ⟨rξ, rξ⟩, ⟨rξ′ , rξ′⟩, which implies that aα is compatible with rξ and
rξ′ , which is impossible. So a(T × T ) = λ = a(T ).

In the sequel we consider the remaining case when T is an infinite separative
reversed tree satisfying L0 = {r1, . . . , rk}, where k ∈ N, and a(T ) = λ > ω. Let
T<ω =

∪
n∈ω Ln, Sλ = {t ∈ T : t has λ immediate predecessors} and

K = {x ∈ T<ω : (x,∞) ∩ Sλ = ∅}.

Claim 5.6 (a) K is an upwards closed subtree of T and L0 ⊂ K.
(b) Each centered subset C of K has a lower bound in T . In addition, if C is

an infinite centered subset of K, it has λ-many lower bounds belonging to Lω.
(c) If x ̸∈ K, then
- either there is y ∈ K ∩ Sλ such that x ≤ u, where u is one of λ-many

immediate predecessors of y,
- or the set {yn : n ∈ ω}, where (x,∞] ∩ Ln = {yn}, for n ∈ ω, is a branch

in K and x ≤ u, where u is one of λ-many lower bounds of {yn : n ∈ ω} in Lω.
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Proof. (b) If C is a centered subset of K, then C is a chain. So, if |C| < ω, then
min(C) is a lower bound of C.

If C is an infinite chain, then w.l.o.g. we assume that it is a maximal centered
subset of K. So, since K is an upwards closed subset of T , there is j0 ≤ k such that
C = {yn : n ∈ ω}, where rj0 = y0 > y1 > y2 > . . . and yn+1 is an immediate
predecessor of yn (in T ), thus yn ∈ Ln, for all n ∈ ω. For n ∈ ω we have
yn > yn+1 ∈ K and, hence, the set An ⊂ Ln+1 of all immediate predecessors
of yn different from yn+1 is non-empty (since T is separative) and of size < λ
(because yn ̸∈ Sλ).

Suppose that some of the sets An is infinite and let n0 be the minimal such n.
Then the set

A′ = {rj : j ̸= j0} ∪
∪

n≤n0
An ∪ {yn0+1}

is of size < λ and we show that it is a maximal antichain in T . If x ∈ T , then
there is j ≤ k such that x ≤ rj and, if j ̸= j0, then x is compatible with rj . If
x ≤ rj0 = y0, then, if x ≤ yn0+1, we are done. Otherwise, let n1 be the minimal
n ≤ n0 +1 such that x ̸≤ yn. Then n1 ≥ 1, x ≤ yn1−1 and x ̸= yn1 and, hence, x
is comparable with some element of An1−1. So, |An| < ω, for all n ∈ ω.

Let Aω be the set of lower bounds of C belonging to Lω. We show that the set

A′′ = {rj : j ̸= j0} ∪
∪

n∈ω An ∪Aω

is a maximal antichain in T . If x ∈ T , then there is j ≤ k such that x ≤ rj and,
if j ̸= j0, then x is compatible with rj . If x ≤ rj0 = y0, then we have two cases.
First, if x ≤ yn, for all n ∈ ω, then x is of height ≥ ω and, hence, x ≤ z, for
some z ∈ Lω. Now, since [x,∞) is a linearly ordered subset of T , z is comparable
with yn and, hence, z < yn, for all n ∈ ω, which implies that z ∈ Aω; so x is
compatible with an element of Aω ⊂ A′′. Otherwise, let n0 be the minimal element
n of ω such that x ̸≤ yn. Then n0 ≥ 1, x ≤ yn0−1 and x ̸= yn0 and, hence, x
is comparable with some element of An0−1. Thus A′′ is a maximal antichain in T
and, since 1 ≤ |An| < ω, for all n ∈ ω, we have |Aω| = λ.

(c) Let x ∈ T \ K. If x < y for some y ∈ K ∩ Sλ we are done. Otherwise
we have x ̸∈ T<ω, because x ∈ T<ω would imply that the set (x,∞) ∩ Sλ is
non-empty and, hence, its element of the minimal height would be an element of
K ∩ Sλ above x. Let (x,∞] ∩ Ln = {yn}, for n ∈ ω, and suppose that yn ̸∈ K,
for some n ∈ ω. Then (yn,∞) ∩ Sλ ̸= ∅ and if k0 is the minimal k < n such that
yk ∈ Sλ, then yk ∈ K ∩ Sλ and x < yk, which is impossible. Thus {yn : n ∈ ω}
is a branch in K, by (b) it has λ-many lower bounds belonging to Lω and, clearly,
x is less than or equal to some of them. 2

Towards a contradiction let us suppose that A = {⟨aα, bα⟩ : α < µ} is a
maximal antichain in T × T , where ω ≤ µ < λ.
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Claim 5.7 aα, bα ∈ K, for all α < µ.

Proof. Suppose that aα′ ̸∈ K, for some α′ < µ. Then, by Claim 5.6(c) we have
the following two cases.

1. For some y ∈ K ∩ Sλ, where {uξ : ξ < λ} is the set of immediate
predecessors of y, there is ξ < λ such that aα′ ≤ uξ. By the maximality of A, for
each ξ < λ there is αξ < µ such that ⟨aαξ

, bαξ
⟩ is compatible with ⟨uξ, bα′⟩ and,

hence, there are α < µ and different ξ, ξ′ < λ such that ⟨aα, bα⟩ is compatible
with ⟨uξ, bα′⟩ and ⟨uξ′ , bα′⟩. But this means that aα is compatible with uξ and
uξ′ , which implies that aα ≥ y and, hence, aα > aα′ . Consequently, α ̸= α′,
aα ̸⊥ aα′ and bα ̸⊥ bα′ and, hence, ⟨aα, bα⟩ is compatible with ⟨aα′ , bα′⟩, which is
impossible, since A is an antichain.

2. The set {yn : n ∈ ω}, where (aα′ ,∞]∩Ln = {yn}, for n ∈ ω, is a branch in
K, {uξ : ξ < λ} is the set of its lower bounds in Lω and aα′ ≤ uξ, for some ξ < λ.
As in the first case we obtain α < µ and different ξ, ξ′ < λ such that ⟨aα, bα⟩ is
compatible with ⟨uξ, bα′⟩ and ⟨uξ′ , bα′⟩, which implies that aα > uξ, uξ′ . Since
(uξ,∞) = {yn : n ∈ ω} we have aα > aα′ and obtain a contradiction as above.

Thus aα ∈ K, for all α < µ and, similarly, bα ∈ K, for all α < µ. 2

W.l.o.g. we suppose that S0 ⊂ µ is an infinite set satisfying condition (B) of
Lemma 3.5. By Lemma 3.4, the poset ⟨S,⊂⟩ contains a maximal element S such
that S0 ⊂ S. Since T is a reversed tree, this means that S is a maximal subset of µ
such that {bα : α ∈ S} is a chain in T . Thus by Claim 5.7 and the maximality of
S we have

{bα : α ∈ S} is a chain in K, (25)

∀β ∈ µ \ S ∃α ∈ S bβ ⊥ bα. (26)

By (25) and Claim 5.6(b), there is b ∈ T such that

∀α ∈ S b ≤ bα. (27)

By (25), for different α, α′ ∈ S we have bα ̸⊥ bα′ and, since A is an antichain,
aα ⊥ aα′ . Thus {aα : α ∈ S} is an antichain in T of size ≤ µ < λ and, since
a(T ) = λ, there is a ∈ T such that

∀α ∈ S a ⊥ aα. (28)

By the maximality of A there is β < µ such that ⟨aβ, bβ⟩ ̸⊥ ⟨a, b⟩. Consequently
a ̸⊥ aβ , which by (28) implies β ∈ µ \ S and, by (26), there is α ∈ S such that
bβ ⊥ bα. But bβ ̸⊥ b and, by (27), b ≤ bα, which, by Fact 5.2(b) implies bβ ̸⊥ bα
and we have a contradiction. 2

Proof of Theorem 5.1. By Fact 5.4(e) the class of trees is closed under separative
quotients; so the statement follows from Theorem 4.1(d) and Proposition 5.5. 2
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6 Atomic posets

Theorem 6.1 For each atomic poset P containing infinite antichains we have

a(P× P) = a(P).

Proof. By Fact 2.2(d), the separative quotient of an atomic poset is separative, so,
by Theorem 4.1(d), w.l.o.g. we suppose that P is an separative atomic poset having
infinite antichains and that |At(P)| = µ. In addition, by Fact 2.2(e) we can assume
that P = ⟨P,⊂⟩, where

[µ]1 ⊂ P ⊂ P (µ)+. (29)

Since cc(P) > ω we have µ ≥ ω.
If a(P) = ω, then, by Theorem 4.1(a), a(P× P) = ω, and the proof is over.
If a(P) = λ > ω, then, since [µ]1 is a maximal antichain in P we have λ ≤ µ.

Suppose that a(P × P) = κ < λ and that A = {⟨pα, qα⟩ : α ∈ κ} is a maximal
antichain in P. According to Lemma 3.5 w.l.o.g. we assume that there is an infinite
set S0 ⊂ κ such that {qα : α ∈ S0} is a centered family in P and by Lemma 3.4
there is a maximal element S of the poset ⟨S,⊂⟩ such that S0 ⊂ S, which by (29)
implies

∀K ∈ [S]<ω \ {∅}
∩

α∈K qα ̸= ∅, (30)

∀β ∈ κ \ S ∃K ∈ [S]<ω \ {∅} qβ ∩
∩

α∈K qα = ∅. (31)

Since {qα : α ∈ S} is a centered family in P, the set {pα : α ∈ S} is an infinite
antichain in P and, since |S| ≤ κ < λ = a(P), it is not maximal, which by (29)
means that there is ξ ∈ µ \

∪
α∈S pα. Now K := {α ∈ κ : ξ ∈ pα} ⊂ κ \ S and

we show that |K| < ω and that

B := {qα : α ∈ K}

is a finite partition of µ. First, if ζ ∈ µ, then by (29) we have ⟨{ξ}, {ζ}⟩ ∈ P2

and, by the maximality of A, there is α ∈ κ such that ⟨{ξ}, {ζ}⟩ ̸⊥ ⟨pα, qα⟩ and,
hence, ξ ∈ pα, which implies α ∈ K, and ζ ∈ qα. So, µ =

∪
α∈K qα. Second,

if α1, α2 ∈ K and α1 ̸= α2, then ξ ∈ pα1 ∩ pα2 and, since A is an antichain,
qα1 ∩ qα2 = ∅ so B is a partition of µ, which by (29) implies that B is a maximal
antichain in P. Since |B| ≤ κ < λ = a(P) we have |B| < ω.

By (30) the family {qα : α ∈ S} ⊂ P (µ) has the finite intersection property
and, hence, there is an ultrafilter U on µ such that {qα : α ∈ S} ⊂ U . Since B
is a finite partition of µ there is β ∈ K such that qβ ∈ U . But β ∈ κ \ S and, by
(31), there is a nonempty finite set K1 ⊂ S such that qβ ∩

∩
α∈K1

qα = ∅, which
is impossible. 2

A slight variation of the proof of Theorem 6.1 gives a proof of the following
statement which is of purely combinatorial nature and, perhaps, of wider interest.
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Theorem 6.2 If X is an infinite set and {Ai × Bi : i ∈ I} an infinite partition of
the square X ×X , (where Ai, Bi ⊂ X , for i ∈ I), then at least one of the families
{Ai : i ∈ I} and {Bi : i ∈ I} contains an infinite partition of the set X .
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