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Abstract. We consider Schrödinger operators on the real line with limit-

periodic potentials and show that, generically, the spectrum is a Cantor set
of zero Lebesgue measure and all spectral measures are purely singular con-

tinuous. Moreover, we show that for a dense set of limit-periodic potentials,

the spectrum of the associated Schrödinger operator has Hausdorff dimension
zero. In both results one can introduce a coupling constant λ ∈ (0,∞), and the

respective statement then holds simultaneously for all values of the coupling

constant.

MSC2010 Subject Class: 34L40

1. Introduction

We will study spectral characteristics of self-adjoint operators of the form

HV φ = −φ′′ + V φ

in L2(R), where V : R → R is a bounded, continuous function, known as the
potential. Our results concern the class of (uniformly) limit-periodic potentials,
that is, potentials V which are uniform limits of continuous periodic functions on
R. Let LP = LP(R) denote the set of uniformly limit-periodic functions R → R.
Equipped with the L∞ norm, this is a complete metric space of functions. It is well
known that the spectrum of HV has a tendency to be a Cantor set whenever V is
limit-periodic; compare; for example, [6, 14, 17, 18, 20]. Here we show the following
result:

Theorem 1.1. There is a residual subset C ⊆ LP such that σ(HλV ) is a perfect
set of zero Lebesgue measure, and HλV has purely singular continuous spectrum for
all V ∈ C and all λ > 0.

We will first address the question of zero-measure Cantor spectrum. By the
Baire Category Theorem, it suffices to prove the following theorem to demonstrate
generic persistence of zero-measure spectrum at arbitrary coupling.

Theorem 1.2. For R > 0, δ > 0, and Λ > 1, let UR,δ,Λ denote the set of V ∈ LP
with Leb(σ(HλV ) ∩ [−R,R]) < δ for all Λ−1 ≤ λ ≤ Λ. Then, for all R, δ > 0, and
Λ > 1, UR,δ,Λ is a dense, open subset of LP.
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Moreover, if we control things more carefully, we can even get spectra of global
Hausdorff dimension zero (though this set will only be dense).

Theorem 1.3. There is a dense set H ⊆ LP such that σ(HλV ) has Hausdorff
dimension zero and such that HλV has purely singular continuous spectrum for all
V ∈ H and all λ > 0.

Though the foregoing result is a continuum analog of a known result for dis-
crete Schrödinger operators, it is rather striking in this setting since, heuristically
speaking, the small coupling and high energy regimes both tend to conspire to
“thicken” the spectrum, but this construction beats both: one gets spectrum of
global Hausdorff dimension zero for small coupling.

Our proofs work by adapting a construction of Avila [1] involving discrete
Schrödinger operators with limit-periodic potentials to the setting of continuum
Schrödinger operators.

It is interesting to ask whether one can produce quasi-periodic continuum poten-
tials which exhibit zero-measure Cantor spectrum. Of course, there are examples
(such as the critical Almost-Mathieu operator) in the discrete setting, but one
should keep in mind that the high energy region in the continuum case is anal-
ogous to the weak coupling regime in the discrete case. Thus, when looking for
evidence for the desired phenomenon in the discrete setting, one really needs to
look for quasi-periodic potentials that give rise to zero-measure Cantor spectrum
for all non-zero values of the coupling constant. No such examples are presently
known. Indeed the only known almost periodic examples of this kind in the discrete
case are the ones discussed in [1] and hence we were naturally compelled to work
out the continuum analog of that work.

We also note that an even easier question is still open in the discrete case. Is
it true that, for fixed irrational frequency α, the set of f ∈ C(T,R), for which the
discrete Schrödinger operator with potential n 7→ f(nα) has zero-measure Cantor
spectrum, is dense, or even residual? This question motivated the work [5], where
only the following weaker result was shown: for fixed irrational frequency α, the
set of f ∈ C(T,R), for which the density of states measure is singular, is residual.

To give additional motivation for the results above, let us put them in context. It
was shown by Fillman and Lukic [14] that for an explicit dense set of limit-periodic
continuum Schrödinger operators, the spectrum is homogeneous in the sense of
Carleson, and hence in particular of positive Lebesgue measure. Theorem 1.1 is
a companion result, which says that the generic behavior is different. Another
perspective on these results is provided by Deift’s question about solutions to the
KdV equation with almost periodic initial condition; see [11, Problem 1]. Egorova
answered the conjecture in the affirmative for a class of reflectionless limit-periodic
potentials with homogeneous spectrum [12] (the same class that is considered in
[14]). Additionally, there has been some recent progress on this question in the
case of small quasi-periodic initial data [8, 10]. In particular, the works [8, 12]
suggest that homogeneity of the spectrum, along with reflectionlessness of the initial
condition, may indeed be important to one’s ability to show almost periodicity in
time for the solution in question, as conjectured by Deift. Indeed, the initial data
covered by the works [10, 12] obey these conditions. Thus, in order to explore the
limitations of the approach to Deift’s question suggested in these recent papers, it
is natural to ask if and “how often” the necessary conditions are satisfied. The
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examples provided by Theorem 1.1, and especially those provided by Theorem 1.3,
are particularly bad from this perspective. Indeed, whenever the spectrum of a
continuum Schrödinger operator is this small, we are currently very far from a
suitable description of the associated isospectral torus, which gives rise to the phase
space for the associated KdV evolution, and this prevents us from proving existence,
uniqueness, and almost periodicity of the solution of the KdV equation with such
initial data. In other words, Theorems 1.1 and 1.3 may be viewed as particular
challenges to overcome in order to answer Deift’s question in full generality.

Let us add some comments on the results established here and interesting ques-
tions for further study. As pointed out above, our results hold uniformly in the
coupling constant. This phenomenon has shown up repeatedly in the limit-periodic
theory. Indeed, not a single limit-periodic potential V is known such that the spec-
tral type of the Schrödinger operator with potential λV changes as λ is varied in
the set R\{0}. Thus, no phase transitions may be observed. Similarly, the spectral
type is always pure and hence there are also no phase transitions as the energy
varies in the spectrum. Finally, no change in spectral type may be observed as one
varies the element of the hull. In the quasi-periodic theory one can observe chang-
ing spectral type in each of these three scenarios. It would therefore be of obvious
interest to exhibit limit-periodic examples for which phase transitions occur, or to
show that this can never happen.

Another difference between the limit-periodic theory and the quasi-periodic the-
ory we wish to point out is that there is no obvious way to distinguish between
regularity classes of sampling functions in the limit-periodic case, whereas this dis-
tinction is very important in the quasi-periodic case. Indeed, in the quasi-periodic
case there is a very deep understanding of the case of highly regular sampling func-
tions (such as trigonometric polynomials, analytic functions, and Gevrey functions).
It is here where one can observe a variety of phase transitions, and in particular the
occurrence of absolutely continuous spectrum and pure point spectrum. In fact,
recent work by many authors, culminating in Avila’s global theory [3, 4], has ex-
plained these phenomena in great detail in the analytic one-frequency case. On the
other hand, the generic behavior for sampling functions that are merely continuous
is very similar to the generic behavior in the limit-periodic case; singular continuous
spectra dominate in this regime. Of course, the differences between limit-periodic
potentials and quasi-periodic potentials have their roots in the topological structure
of their respective hulls; specifically, the hull of a quasi-periodic potential will be
isomorphic to a finite-dimensional torus, while the hull of a limit-periodic poten-
tial will be isomorphic to a solenoid (i.e. an inverse limit of circles, which is also
sometimes called an odometer). A possible way to discuss suitable analogues of
regularity issues in the limit-periodic case could be devised in terms of the speed of
approximation by periodic potentials, relative to the periods of the approximants,
and hence it would be interesting to extend the work of Pastur and Tkachenko to
more general classes [19, 20]; see also [9, 17].

The structure of the paper is as follows. In Section 2, we collect some relevant
background which will help in the proofs of Theorems 1.1, 1.2, and 1.3. In Section 3,
we describe a construction which enables one to produce periodic Schrödinger op-
erators whose spectra are suitably thin for specific ranges of energies and couplings
(Lemma 3.1). Section 4 uses this construction to prove Theorems 1.1 and 1.2, and
Section 5 contains the proof of Theorem 1.3.
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2. Preparatory Work

Here, we collect a few technical lemmas which will be used to prove the main
theorems. Let us recall the definitions of some of the relevant tools. First, we
describe the transfer matrices, which are used to propagate solutions of the time-
independent Schrödinger equation. Given a potential V ∈ C(R), E ∈ C, and
s, t ∈ R, the associated transfer matrices AE(s, t) = AVE(s, t) are uniquely defined
by (

y′(s)
y(s)

)
= AE(s, t)

(
y′(t)
y(t)

)
whenever y is a solution of the time-independent Schrödinger equation

(2.1) −y′′ + V y = Ey.

The Lyapunov exponent, which tracks the exponential growth of solutions to (2.1),
is given by

L(E) = L(E, V ) = lim
x→∞

1

x
log ‖AVE(x, 0)‖

whenever this limit exists. It is not hard to see that if V is continuous and T -
periodic, then L(E, V ) exists and satisfies

(2.2) L(E, V ) =
1

T
log ρ(AVE(T, 0)),

where ρ(A) denotes the spectral radius of the matrix A, i.e., the maximal modulus
of an eigenvalue of A. Notice that (2.2) immediately implies that L is a continuous
function of E whenever V is periodic. The transfer matrix over a full period which
appears on the right hand side of (2.2) is called the monodromy matrix of the
corresponding periodic potential. There is more than one possible choice for the
monodromy matrix here; clearly, any transfer matrix over a full period will yield
the same result in (2.2), since all such matrices are conjugate to one another.

2.1. The IDS for Periodic Operators. If V is T -periodic, denote the associated
monodromy matrices by ΦE(s) = ΦVE(s) = ΦVE(s;T ) := AE(s + T, s), ΦE :=
ΦE(0) = AE(T, 0), and denote the discriminant by D(E) := tr(ΦE). Recall that
SL(2,R) acts on the upper half-plane C+ = {z ∈ C : Im(z) > 0} via Möbius
transformations, i.e.,

A · z =
az + b

cz + d
, where A =

(
a b
c d

)
∈ SL(2,R).

One can easily check that A ∈ SL(2,R) is elliptic (i.e., tr(A) ∈ (−2, 2)) if and only if
the Möbius action of A on C+ has a unique fixed point. It turns out that there is a
remarkable relationship between the integrated density of states, which is given by
the average of a certain spectral measure over one period (see [7, Equation (10)] and
its discussion there), and the Möbius action of the elliptic monodromy matrices.
The following formula is [2, Equation (17)]:

(2.3)
dk

dE
(E0) =

1

2πT

∫ T

0

dt

Im(zE0
(t))
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for E0 with D(E0) ∈ (−2, 2), where k denotes the IDS, and zE0
(t) denotes the

unique element of C+ which is fixed by the Möbius action of ΦE0(t). We can use
the relation (2.3) to find a relationship between the (derivative of the) integrated
density of states and norms of transfer matrices.

For each E such that D(E) ∈ (−2, 2) and each t ∈ R, there exists a conjugacy
ME(t) = MV

E (t) = MV
E (t;T ) ∈ SL(2,R) such that

ME(t)ΦE(t)ME(t)−1 ∈ SO(2,R).

Of course, ME(t) is not unique, since one may post-compose it with a rotation,
but this is the only ambiguity. More specifically, if Φ ∈ SL(2,R) is elliptic and
AΦA−1, BΦB−1 ∈ SO(2,R), then one can check that the Möbius action of AB−1

on C+ fixes i, which implies that A = OB for some O ∈ SO(2,R) (since SO(2,R)
is the stabilizer of i with respect to the action of SL(2,R) on C+).

Lemma 2.1. For all Q,R > 0, there is a constant C0 = C0(Q,R) with the following
property. Suppose V is T -periodic with T ≥ 1 and ‖V ‖∞ ≤ Q. Denote the associ-
ated discriminant by D and the integrated density of states by k. If D(E0) ∈ (−2, 2)
and |E0| ≤ R, then

(2.4)
dk

dE
(E0) ≥ C0

T

∫ T

0

‖ME0
(t)‖2 dt.

In the course of the proof, we will use the following solution estimates from [23,
Lemma 3.1]

Lemma 2.2. For all Q,R > 0, there is a constant C1 = C1(Q,R) > 0 such that if
u satisfies −u′′ + V u = Eu with |E| ≤ R and ‖V ‖∞ ≤ Q, then

|u′(x)|2 ≤ C1

∫ x+1

x−1

|u(t)|2 dt

for all x ∈ R.

Proof of Lemma 2.1. Since ME(t) is unique modulo left-multiplication by an ele-
ment of SO(2,R), its Hilbert–Schmidt norm is independent of the choice of conju-
gacy. Since

ME(t) = Im(zE(t))−1/2

(
1 −Re(zE(t))
0 Im(zE(t))

)
clearly furnishes an example of a matrix which conjugates ΦE(t) to a rotation, we
may explicitly compute the Hilbert–Schmidt norm of ME(t) via

(2.5) ‖ME(t)‖22 =
1 + |zE(t)|2

Im(zE(t))
.

With θ chosen such that 2 cos θ = D(E), there are solutions ψ± of Hψ = Eψ such
that ψ±(x+ T ) = e±iθψ±(x) for all x ∈ R (indeed, we may take ψ− = ψ+). Then,
the fixed points of the Möbius action of ΦE(t) are precisely ψ′±(t)/ψ±(t). We choose
ψ ∈ {ψ+, ψ−} so that Im(ψ′(t)/ψ(t)) > 0, and hence zE(t) = ψ′(t)/ψ(t).

Applying Lemma 2.2, Fubini’s theorem, and the hypothesis T ≥ 1, we observe:∫ T

0

|ψ′(t)|2 dt ≤ C1

∫ T

0

∫ t+1

t−1

|ψ(s)|2 ds dt

≤ C1

∫ 2T

−T

∫ s+1

s−1

|ψ(s)|2 dt ds
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= 2C1

∫ 2T

−T
|ψ(s)|2 ds.

Consequently, if we denote the Wronskian of ψ and ψ by W = W (ψ,ψ) := ψ′ψ −
ψψ′, we obtain∫ T

0

dt

Im(zE(t))
=

1

3

∫ 2T

−T

dt

Im(zE(t))

=
1

3

∫ 2T

−T

2i

W
|ψ(t)|2 dt

≥ 1

6C1 + 3

∫ T

0

2i

W

(
|ψ(t)|2 + |ψ′(t)|2

)
dt

= C0

∫ T

0

1 + |zE(t)|2

Im(zE(t))
dt,

where C0 := 1
6C1+3 . Using (2.5), this yields the conclusion of the lemma with the

Hilbert-Schmidt norm on the right hand side of (2.4). For all matrices A, one has
‖A‖ ≤ ‖A‖2 by the Cauchy-Schwarz inequality, so the lemma is proved. �

2.2. Band-counting in Finite Energy Windows. We will also need the follow-
ing elementary estimate on the number of bands that one may observe in a finite
energy window.

Lemma 2.3. If V ∈ C(R) is T -periodic, then [−R,R] intersects at most

T

π

√
R+ ‖V ‖∞ + 1

bands of σ(HV ) for each R > 0.

Proof. Regard the free operator H0 = −∆ as a T -periodic operator. Listed in
ascending order, the periodic and antiperiodic eigenvalues of H0 on L2([0, T ]) are

En =
n2π2

T 2
, n ≥ 0.

Let Q = ‖V ‖∞, and choose n ∈ Z0 maximal with En ≤ R + Q. By standard
eigenvalue perturbation theory, at most n+1 bands of σ(HV ) touch [−R,R]. Since
En ≤ R+Q, we have

n ≤ T

π

√
R+Q,

which proves the lemma. �

3. The Measure of the Spectrum in Finite Energy Windows

We may combine the ingredients of Section 2 to construct periodic operators
whose spectra are exponentially small (relative to the period) in finite energy regions
for compact ranges of coupling constants which are bounded away from zero.

Lemma 3.1. Suppose V is a T -periodic potential, ε > 0, and Λ, R > 1. There

exists N0 ∈ Z+ such that for all N ∈ Z+ with N ≥ N0, there exists a T̃ := NT -

periodic potential Ṽ = ṼN such that ‖V − Ṽ ‖∞ < ε, and

Leb(σ(HλṼ ) ∩ [−R,R]) ≤ e−T̃
1/2

for all λ ∈ [Λ−1,Λ].
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Proof. The construction works by first perturbing V to produce a family of poten-
tials which are very close to V , and whose resolvent sets cover [−R,R]. Thus, for
every E ∈ [−R,R], one of these new potentials will have L(E) > 0. We then form
a new potential by concatenating these finite families over long blocks and suitably
connecting them. Positive exponents over sub-blocks enable us to produce growth
of transfer matrices, and we then parlay growth of transfer matrices into upper
bounds on band lengths via Lemma 2.1. The details follow.

Denote I = [Λ−1,Λ]. First, choose N ′ > 1/T large enough that the maximal
distance between N ′-break points of λV contained in [−R,R] is less than ε/9 for
all λ ∈ I, where an N ′-break point of λV is a (possibly degenerate) band edge of
σ(HλV ), viewed as a T ′ := N ′T -periodic operator.

By [21] and compactness, there are finitely many potentials V ′1 , V
′
2 , . . . , V

′
m ∈

Bε/(9Λ)(V ) which are T ′-periodic and such that for every λ ∈ I, there is a 1 ≤ j ≤ m
such that λV ′j has all gaps open. More specifically, for each λ0 > 0, there is a
potential q within ε/(9Λ) of V which is T ′-periodic and such that λ0q has all gaps
open; since gaps will remain open for λq with λ in a suitably small neighborhood of
λ0, we may pass to finitely many perturbations by using compactness of I. Given
1 ≤ j ≤ m and λ ∈ I, we have ‖λV ′j − λV ‖∞ < ε/9 and the distance between
N ′-break points of λV is less than ε/9; thus,

Leb(J ∩ [−R,R]) < ε/3

for all bands J of σ(HλV ′j
).

Claim 3.2. There is a finite set F = {W1, . . . ,W`} ⊆ Bε(V ) of T ′-periodic poten-
tials such that

(3.1) [−R,R] ∩
⋂̀
j=1

σ(HλWj
) = ∅

for all λ ∈ I.

Proof of Claim. Given λ0 ∈ I, choose j so that σ(Hλ0V ′j
) has all spectral gaps open,

and let γ0 denote the minimal length of a gap of σ(Hλ0V ′j
) which intersects [−R,R].

Now, put

γ = min
(ε

3
,
γ0

2Λ

)
, k =

⌈
ε

3γ

⌉
,

and define new potentials U−k, . . . Uk by Ui = V ′j + iγ. Then, it is easy to see
that each Ui is in Bε(V ) and that the resolvent sets of Hλ0U−k

, . . . ,Hλ0,Uk
cover

[−R,R]. Thus, (3.1) holds for this family and λ = λ0. Since this will also hold for
the same finite family and for λ within a neighborhood of λ0, the claim follows by
compactness of I. �

By Claim 3.2 and (2.2), we have

(3.2) min
|E|≤R

min
λ∈I

max
1≤j≤`

L(E, λWj)
def
= η > 0,

by continuity of the Lyapunov exponent in the periodic setting. Now, suppose

that N is sufficiently large. To construct the desired potential, choose Ñ ∈ Z+

maximal with `N ′(Ñ + 2) ≤ N , define T̃ = NT , and generate a new T̃ -periodic

potential Ṽ = ṼN by concatenating each Wj a total of Ñ + 1 times, and forming
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continuous connections which are uniformly close to V . More specifically, denote

sj = j(Ñ + 2)T ′ for each integer 0 ≤ j ≤ `, and define Ṽ on [0, NT ] by

Ṽ (x) =


Wj(x) x ∈ [sj−1, sj − T ′]
ϕj(x) x ∈ [sj − T ′, sj ], 1 ≤ j ≤ `− 1

ϕ`(x) x ∈ [s` − T ′, NT ]

When 1 ≤ j ≤ `− 1, ϕj is chosen to be a continuous function on [sj − T ′, sj ] with

ϕj(sj − T ′) = Wj(T
′), ϕj(sj) = Wj+1(0), sup

x∈[sj−T ′,sj ]

|ϕj(x)− V (x)| < ε.

Similarly, ϕ` is continuous with ϕ`(s` − T ′) = W`(T
′), ϕ`(NT ) = W1(0), and

‖ϕ` − V ‖∞ < ε.

Now, suppose E ∈ [−R,R] and λ ∈ I are such that D̃λ(E) ∈ (−2, 2), where

D̃λ denotes the discriminant of HλṼ . By (3.2), there is j ∈ {1, . . . , `} such that
L(E, λWj) ≥ η. But then the associated transfer matrices over subintervals of

[sj−1, sj − T ′] of length ÑT are exponentially large. More specifically, we have

‖AλṼE (sj + t− 2T ′, sj−1 + t)‖ ≥ ρ(A
λWj

E (t+ T ′, t)Ñ )

= ρ(A
λWj

E (t+ T ′, t))Ñ

= eÑT
′L(E,λWj)

≥ eT̃ η/(2`).

(3.3)

for all t ∈ [0, T ′]; we have used (2.2). Notice that the last step requires N sufficiently

large to get Ñ ≥ 1
2 (Ñ + 3). We can see that the estimate above implies lower

bounds on the norms of the matrices which conjugate the monodromy matrices

into rotations. More specifically, with Φ = ΦλṼE (sj−1 + t; T̃ ), we have XΦX−1 ∈
SO(2,R) for

X = MλṼ
E (sj−1 + t; T̃ ),

X = MλṼ
E (sj + t− 2T ′; T̃ )AλṼE (sj + t− 2T ′, sj−1 + t),

by periodicity of Ṽ and definition of ME ; more specifically, T̃ -periodicity of Ṽ allows

one to conclude that AλṼE (sj+t−2T ′, sj−1 +t) conjugates Φ to ΦλṼE (sj+t−2T ′; T̃ ),
since

AλṼE (sj + t− 2T ′, sj−1 + t) = AλṼE (sj + t− 2T ′ + T̃ , sj−1 + t+ T̃ ),

and ΦλṼE (sj + t − 2T ′; T̃ ) is then conjugated to a rotation by MλṼ
E (sj + t −

2T ′; T̃ ). Since conjugacies of elliptic matrices to rotations are unique modulo left-
multiplication by elements of SO(2,R), we have

(3.4) MλṼ
E (sj + t− 2T ′; T̃ )AλṼE (sj + t− 2T ′, sj−1 + t) = OMλṼ

E (sj−1 + t; T̃ )

for some rotation O = O(E, λ, t) ∈ SO(2,R). Using the lower bound on the norm

of AλṼE (sj + t− 2T ′, sj−1 + t), (3.4) implies

(3.5) max(‖MλṼ
E (sj + t− 2T ′; T̃ )‖, ‖MλṼ

E (sj−1 + t; T̃ )‖) ≥ eT̃ η/(4`)

for all t ∈ [0, T ′]. Notice that this uses ‖M−1‖ = ‖M‖ for M ∈ SL(2,R) (which
follows from the singular value decomposition). A bit more precisely, if one has
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A = M−1
1 OM2 with Mj ∈ SL(2,R) and O ∈ SO(2), then one cannot simultaneously

have ‖M1‖, ‖M2‖ < ‖A‖1/2.
These estimates are uniform in λ ∈ I and E ∈ [−R,R]∩σ(HλṼ ). Consequently,

for any band J ⊆ σ(HλṼ ), we have

(3.6) Leb(J ∩ [−R,R]) ≤ Ce−T̃ η/(4`)

by Lemma 2.1, where C denotes a constant which depends only on R and Q :=

Λ(‖V ‖∞ + ε). We have also used that dk(J) = 1/T̃ for any band J of σ(HλṼ ),
where dk denotes the associated IDS. Since all potentials in question are uniformly
bounded (by Λ(‖V0‖∞ + ε)) and R ≥ 1, Lemma 2.3 implies that the number of
bands of σ(HλṼ ) which touch [−R,R] is bounded above by

1

π
T̃
√
R+ Λ(‖V ‖∞ + ε) =

1

π
T̃
√
R+Q.

Thus, by (3.6),

(3.7) Leb(σ(HλṼ ) ∩ [−R,R]) ≤ CT̃e−ηT̃/(4`).

Since T̃ = NT and C only depends on R and Q, we may choose Ñ sufficiently
large (hence N sufficiently large) and make the right hand side of (3.7) smaller

than e−T̃
1/2

. Since ‖V − Ṽ ‖∞ < ε, the lemma is proved. �

Remark. Let us comment briefly on the relationship between the proof of
Lemma 3.1 and the arguments in [1]. The primary difference between our ar-
guments and those of [1] is that we do not attempt to push positive Lyapunov
exponents through to the limit. We use growth of transfer matrices purely as a
means to control the size of the spectrum (via Lemma 2.1). Consequently, for our
purposes, it suffices to consider “local” growth behavior of the transfer matrices of

Ṽ ; more specifically, we only need to produce growth within subblocks of commut-
ing matrices, where one has a simple relationship between the spectral radius and
the norm (cf. (3.3)).

If one wishes to obtain a global understanding of transfer matrix growth and

control the Lyapunov exponent of Ṽ , then one must deal with concatenated blocks
of noncommuting matrices, and the simple Lyapunov behavior exploited in (3.3)
may break down. In this situation, one must produce analogs of [1, Claim 3.6] and
[1, Claim 3.7] to produce the necessary global growth of transfer matrices.

4. Singular Continuous Spectrum of Zero Lebesgue Measure

Proof of Theorem 1.2. Let R, δ, and Λ be given. We first show that UR,δ,Λ is
dense in LP. To that end, let V ∈ LP be T -periodic, and let ε > 0. Choose N

large enough that e−
√
NT < δ and Lemma 3.1 applies, and then let ṼN be the

potential given by the conclusion of the lemma with the same choices of ε, Λ, and

R. Evidently, ṼN ∈ UR,δ,Λ ∩ Bε(V ), so we are done (since periodic potentials are
dense in LP).

It remains to be seen that UR,δ,Λ is open in LP. Suppose V ∈ UR,δ,Λ. By
compactness of I := [Λ−1,Λ], it suffices to show that, for every λ ∈ I, there exist
τ = τ(λ) > 0 and r = r(λ) > 0 such that

Leb(σ(Hλ′V ′) ∩ [−R,R]) < δ
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whenever λ′ ∈ I and V ′ ∈ LP satisfy |λ − λ′| < τ and ‖V − V ′‖∞ < r. To see
why such τ and r exist, fix λ ∈ I, and choose a cover of σ(HλV )∩ [−R,R] by open
intervals I1, . . . , In such that

∑n
j=1 |Ij | < δ (which we may do by compactness of

σ(HλV ) ∩ [−R,R]). Choose ε > 0 small enough that

Bε(σ(HλV ) ∩ [−R,R]) ⊆
n⋃
j=1

Ij , and

n∑
j=1

|Ij |+ 2ε < δ,

where Bε(S) denotes the ε-neighborhood of the set S. Now, take

τ = τ(λ) =
ε

2‖V ‖∞
, r = r(λ) =

ε

2Λ
,

and suppose |λ− λ′| < τ and ‖V − V ′‖∞ < r; since ‖λV − λ′V ′‖∞ < ε, we have

σ(Hλ′V ′) ⊆ Bε(σ(HλV ))

by the usual L∞ eigenvalue perturbation theory. Consequently,

Leb(σ(Hλ′V ′) ∩ [−R,R]) ≤
n∑
j=1

|Ij |+ 2ε < δ.

Note that the second term originates because new spectrum might “creep in” at
the edges of the interval [−R,R]. Thus, we have proved that τ(λ) and r(λ) satisfy
the desired properties. �

We can use the foregoing theorem and Baire category to produce generic singular
continuous spectrum supported on a set of zero Lebesuge measure. One still needs
to exclude eigenvalues on a generic set, but this is easy to do using Gordon methods;
we provide the details for the reader’s convenience.

Proof of Theorem 1.1. By Theorem 1.2, UR,δ,Λ is a dense open subset of LP for
all R,Λ, δ. Now, take a trio of sequences Rn,Λn → ∞ and δn → 0; by the Baire
Category Theorem,

Z =

∞⋂
n=1

URn,δn,Λn

is a dense Gδ in LP such that Leb(σ(HλV )) = 0 for all V ∈ Z and all λ > 0.
Next, let G ⊆ LP denote the set of Gordon potentials in LP. More specifically,

V ∈ G if and only if V ∈ LP and there exist Tk →∞ such that

lim
k→∞

CTk max
|x|≤Tk

|V (x)− V (x+ Tk)| = 0

for all C > 0. It is easy to see that G is dense in LP (as it contains all periodic
potentials). Moreover, one can check that G is a Gδ. A bit more concretely, for
n,m ∈ Z+, denote

On,m =

{
V ∈ LP : ∃T ∈ (n− 1, n+ 1) with max

|x|≤T
|V (x)− V (x+ T )| < m−T

}
.

It is straightforward to check that On,m is open in LP and that

G =
⋂
N≥1

⋃
n≥N

⋃
m≥N

On,m.

Since σpp(HλV ) = ∅ for every V ∈ G and every λ > 0 [15], we obtain the desired
result with C = G ∩ Z. �
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5. Zero Hausdorff Dimension

Here, we will prove Theorem 1.3. For the convenience of the reader, and to
establish notation, let us briefly recall how Hausdorff measures and dimension are
defined; for further details, [13] supplies an inspired reference.

Given a set S ⊆ R and δ > 0, a δ-cover of S is a countable collection of intervals
{Ij} such that S ⊆

⋃
j Ij and Leb(Ij) < δ for each j. Then, for each α ≥ 0, one

defines the α-dimensional Hausdorff measure of S by

hα(S) = lim
δ↓0

inf
δ-covers

∑
j

Leb(Ij)
α.

For each S ⊆ R, there is a unique α0 ∈ [0, 1] such that

hα(S) =

{
∞ 0 ≤ α < α0

0 α0 < α

We denote α0 = dimH(S) and refer to this as the Hausdorff dimension of the set
S.

Proof of Theorem 1.3. Let V0 ∈ LP be T0-periodic, and suppose ε0 > 0. We will
construct a sequence (Vn)∞n=1 consisting of periodic potentials so that V∞ = limn Vn
satisfies ‖V0 − V∞‖∞ < ε0 and

hα(σ(HλV∞)) = 0

for all λ > 0 and all α > 0; evidently, this suffices to show that σ(HλV∞) has
Hausdorff dimension zero for all λ > 0. Throughout the proof, Hn,λ = −∆ + λVn
and Σn,λ = σ(Hn,λ) for 1 ≤ n ≤ ∞, λ > 0.

Denote Λn = rn = 2n (in general, one may take any pair of sequences tending
to ∞ not too quickly). Take ε1 = ε0/2. By Lemma 3.1, we may construct a
T1-periodic V1 with T1 > 1, ‖V0 − V1‖∞ < ε1, and for which

δ1 := max
Λ−1

1 ≤λ≤Λ1

Leb(Σ1,λ ∩ [−r1, r1]) < e−T
1/2
1 .

Having constructed Vn−1, δn−1, and εn−1, let

(5.1) εn = min

(
εn−1

2
,

1

2
n−Tn−1 ,

δn−1

4Λn−1

)
.

By Lemma 3.1, we may construct a Tn := NnTn−1-periodic potential Vn with
‖Vn − Vn−1‖ < εn such that

(5.2) δn := max
Λ−1

n ≤λ≤Λn

Leb(Σn,λ ∩ [−rn, rn]) < e−T
1/2
n .

Clearly, V∞ = limn→∞ Vn exists and is limit-periodic. From the first condition in
(5.1), we deduce

‖V0 − V∞‖ <
∞∑
j=1

εj ≤
∞∑
j=1

2−jε0 = ε0,

so V∞ ∈ Bε0(V0). Similarly, using the first and second conditions in (5.1), we
observe that

‖Vn − V∞‖∞ < n−Tn
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for each n ≥ 2. From this, it is easy to see that λV∞ is a Gordon potential for
every λ > 0. In particular, HλV∞ has purely continuous spectrum for all λ > 0.
Thus, it remains to show that the spectrum has Hausdorff dimension zero. The key
observation in this direction is that (5.1) yields

(5.3) ‖λVn − λV∞‖ ≤ Λn

∞∑
j=n+1

εj <

∞∑
k=2

2−kδn = δn/2

for all n ∈ Z+ and all Λ−1
n ≤ λ ≤ Λn.

Claim 5.1. For all j ∈ Z+, and all λ > 0, dimH(Σ∞,λ ∩ [−rj , rj ]) = 0.

Proof of Claim. Let j ∈ Z+, δ > 0, λ > 0, and α > 0 be given. Choose n ≥ j
for which 2δn < δ and λ ∈ [Λ−1

n ,Λn]. Then, by (5.3), the δn/2-neighborhood
of Σn,λ ∩ [−rn, rn] together with the intervals [−rn,−rn + 2δn] and [rn − 2δn, rn]
comprises a δ-cover of Σ∞,λ ∩ [−rj , rj ]; denote this cover by In. By (5.2) and
Lemma 2.3, we have∑

I∈In

|I|α ≤
(

1

π
Tn
√

Λn(‖V0‖∞ + ε) + rn + 3

)
2αe−αT

1/2
n

Sending δ ↓ 0 (and hence n→∞), we have hα(Σ∞,λ ∩ [−rj , rj ]) = 0, which proves
the claim. �

With Claim 5.1 in hand, we have hα(Σ∞,λ) = 0 immediately. Since this holds
for all α > 0 and all λ > 0, the theorem follows. �
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