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Abstract. Assuming that there is a stationary set in ω2 of ordinals of countable cofinality

that does not reflect, we prove that there exists a compact space which is not Corson

compact and whose all continuous images of weight ≤ ω1 are Eberlein compacta. We also

prove that under Martin’s axiom countable functional tightness does not reflect in small

continuous images of compacta.

1. Introduction

There is a significant amount of research related to properties of structures that reflect in

substructures of smaller cardinality, see e.g. Bagaria, Magidor, Sakai [2], Koszmider [9, 10],

Fuchino and Rinot [5], Tall [18]. Reflection phenomena in topology are usually studied

following the following pattern:

Problem 1.1. Does a topological space X has a property (P) provided all its subspaces of

small cardinality have property (P)?

Tall [18] gives a survey on results and problems of this type. Recently Tkachuk [19] and

Tkachuk and Tkachenko [20] have investigated which topological properties reflect in small

continuous images which, in particular, amounts to asking the following kind of questions.

Problem 1.2. Does a topological space X has property (P) provided every continuous

image of X of weight ≤ ω1 has property (P)?

Eberlein compacta and Corson compacta are two well-studied classes of compact spaces

related to functional analysis, see the next section. Answering two questions of type 1.2

posed in [20], we show in this note that it is relatively consistent that neither Eberlein

compactness nor Corson compactness reflects in continuous images of weight ≤ ω1. In fact,

assuming that there is a stationary set S ⊆ ω2 of ordinals of countable cofinality such that

S ∩ α is stationary in no α < ω2, we construct a compact space K of weight ω2 which

simultaneously answers in the negative both the questions: K is not Corson compact while

all its images of weight at most ω1 are Eberlein compacta that can be embedded into a
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Hilbert space. In addition, our space K gives partial negative answers to problems posed

by Jardón and Tkachuk ([6], Questions 4.13-15) on the reflection of type 1.1 for Corson

compacta and related classes. The construction of the space is given in section 3 and uses

the familiar idea of a ladder system associated to the set S ⊆ ω2; see, for instance, Ciesielski

and Pol [4] where a construction of this type was used to solve a problem on the structure

of C(K) spaces.

In the final section of this note we give a partial negative answer to another problem

from [20]: we show, assuming a weak version of Martin’s axiom, that countable functional

tightness does not reflect in small continuous images of compact spaces.

We wish to thank Vladimir V. Tkachuk for a valuable suggestion linking our results to

some questions asked in [6]. We are also grateful to Witold Marciszewski for a historical

comment.

2. Preliminaries

All the spaces we consider are assumed to be Hausdorff. Given a topological space X,

w(X) denotes its topological weight, i.e. the minimal size of a base in X. Recall that a

family V of nonempty open subsets of X is a π-base if every nonempty open set in X

contains some V ∈ V .

Our examples will be constructed from some Boolean algebras. If A is a Boolean algebra

then we write ult(A) for its Stone space (of all ultrafilters on A). We write â = {x ∈
ult(A) : a ∈ x} for a ∈ A. Recall that sets â form a base for the topology on ult(A).

We shall use the following result which is a very particular case of the Mardešić factor-

ization theorem [14]. We enclose the sketch of a direct argument.

Theorem 2.1. Let A be any Boolean algebra. If L is a continuous image of ult(A) and

w(L) ≤ ω1 then there is a subalgebra B ⊆ A such that |B| ≤ ω1 and L is a continuous

image of ult(B).

Proof. Note that L has a base U of cardinality ≤ ω1 such that every U ∈ U is Fσ. Let

f : ult(A)→ L be a continuous surjection. For every U ∈ U , the set f−1(U) is of type Fσ
so it can be written as a union of countably many sets of the form â, a ∈ A.

It follows that there is B ⊆ A of size at most ω1 such that, writing π : ult(A)→ ult(B)

for the natural projection, we have f(x) = f(y) whenever x, y ∈ ult(A) and π(x) = π(y).

Hence we can write f = f ′ ◦ π, where f ′ : ult(B)→ L. It follows that f ′ is continuous and

the proof is complete. �

A compact space K is said to be Eberlein compact if it is homeomorphic to a weakly

compact subset of some Banach space; equivalently, by the classical Amir-Lindenstrauss

theorem, K is Eberlein compact if it can be embedded into

c0(κ) = {x ∈ Rκ : {α : |xα| ≥ ε} is finite for every ε > 0},
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for some κ. Here c0(κ) is equipped with the topology inherited from Rκ (this topology

agrees on bounded sets with the weak topology of the Banach space c0(κ)).

In particular, if n ∈ ω then every compact subset of

σn(κ) = {x ∈ 2κ : |{α : |xα 6= 0}| ≤ n},

is Eberlein compact. In fact it is uniform Eberlein compact in the sense that it can be

embedded as a weakly compact subspace of a Hilbert space (note that σn(κ) is a bounded

subset of l2(κ)).

A compact space K is said to be Corson compact if there is κ such that K is homeomor-

phic to a subset of the Σ−product of real lines

Σ(Rκ) = {x ∈ Rκ : |{α : xα 6= 0}| ≤ ω}.

Since c0(κ) ⊆ Σ(Rκ), the class of Corson compacta contains (properly) the class of Eberlein

compacta. Negrepontis [15] and Kalenda [7] offer extensive surveys on Eberlein and Corson

compacta and related classes. We only recall here that both uniform Eberlein compacta

and Corson compacta are stable under continuous images, see e.g. [15], 6.26 and [7], p. 2.

A family F in a Boolean algebra is said to be centred if a1 ∩ a2 ∩ . . . ak 6= 0 for every

natural number k and every ai ∈ F . We shall use the following standard fact.

Lemma 2.2. For a Boolean algebra A the following are equivalent

(i) ult(A) is Corson compact;

(ii) there is a family G ⊆ A generating A and such that every centred subfamily of G is

countable.

Proof. (i) → (ii). Since ult(A) is Corson compact and zerodimensional, ult(A) is home-

omorphic to a compact space K contained in Σ(2κ) for some κ. The algebra of clopen

subsets of K is generated by the family C = {Cα : α < κ}, where Cα = {x ∈ K : xα = 1}.
Every centred subfamily of C is countable by the definition of Σ(2κ).

(ii) → (i). Take f : ult(A) → 2G, where f(x)(G) = 1 if G ∈ x and = 0 otherwise.

Then f is continuous, and f [ult(A)] ⊆ Σ(2G) since every ultrafilter on A contains at most

countably many generators from G. Moreover, f is injective since G generates A. �

3. On Eberlein and Corson compacta

Let γ be a limit ordinal. A set F ⊆ γ is said to be closed if it is closed in the interval

topology defined on ordinals smaller that γ. Such a set F is unbounded in γ if for every

β < γ there is α ∈ F such that β < α. A set S ⊆ γ is stationary if S ∩ F 6= ∅ for every

closed and unbounded F ⊆ γ.

It is not difficult to check that the set Sω = {α < ω2 : cf(α) = ω} is stationary in ω2.

However, such a set reflects in the sense that, for instance, Sω ∩ ω1 is stationary in ω1. We

shall work assuming the following.

Axiom 3.1. There is a stationary set S ⊆ ω2 such that
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(a) cf(α) = ω for every α ∈ S;

(b) S ∩ β is not stationary in β for every β < ω2 with cf(β) = ω1.

Note that in 3.1(b) we can say that S ∩ β is not stationary in β for every limit β < ω2

because if cf(β) = ω then β is a limit of a sequence of successor ordinals.

Basic information on 3.1 can be found in Jech [13]; recall that 3.1 follows from Jensen’s

principle �ω1 ([13], Lemma 23.6) and hence it holds true in the constructible universe ([13],

Theorem 27.1). In fact one cannot deny 3.1 and prove the consistency of the the statement

every stationary set S ⊆ {α < ω2 : cf(α) = ω} reflect at some γ < ω2 without assuming

the existence of large cardinals, see Magidor [12] and [13], page 697.

Construction 3.2. Throughout this section we consider the space K = ult(A), where the

Boolean algebra A is defined as follows.

Fix a set S ⊆ ω2 as in 3.1. For every α ∈ S we pick an increasing sequence (pn(α))n<ω
of ordinals such that pn(α)→ α. Put

Aα = {pn(α) : n < ω}, and X =
⋃
α∈S

Aα.

Finally, let A be the algebra of subsets of X generated by finite subsets of X together with

the family {Aα : α ∈ S}.

We shall prove that K = ult(A) is not Corson compact because S is stationary in ω2

while the absence of stationary reflection for S implies that ult(B) is Eberlein compact for

every small subalgebra B of A.

Lemma 3.3. If A is the algebra defined in 3.2 then the space ult(A) is not Corson compact

Proof. Suppose that there is a family G ⊆ A as in Lemma 2.2(ii). Note that every A ∈ A is

either countable or co-countable in X. The family G0 = {G ∈ G : |X \G| ≤ ω} is centred so

it is at most countable. Hence, replacing every G ∈ G0 by its complement, we may assume

that every G ∈ G is countable.

Let G1 = {G ∈ G : |G| = ω}. Note that every G ∈ G1 is, modulo a finite set, a finite

union of sets Aα.

For every α ∈ S there must be Gα ∈ G1 such that |Aα ∩Gα| = ω. Indeed, otherwise Aα
would be almost disjoint from every G ∈ G1 so would not be in the algebra generated by

G. Note that the function α→ Gα is finite-to-one.

It follows that for every α ∈ S there is ϕ(α) < α such that ϕ(α) ∈ Gα. By the pressing

down lemma, there is ξ such that the set {α ∈ S : ϕ(α) = ξ} is stationary. It follows that

{G ∈ G1 : ξ ∈ G} is of cardinality ω2, and this is a contradiction. �

The second part of the argument is based on the following auxiliary result which is stated

in a slightly stronger form suitable for inductive argument.

Lemma 3.4. For every β, γ such that β < γ < ω2 there is a family

B(β, γ) = {Bα : α ∈ S ∩ (β, γ)},
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such that

(i) Bα ⊆ Aα \ β and |Aα \Bα| < ω for every α ∈ S ∩ (β, γ);

(ii) Bα ∩Bα′ = ∅ whenever α, α′ ∈ S ∩ (β, γ) and α 6= α′.

Proof. We prove the assertion by induction on γ.

For the successor step γ → γ+ 1 there is nothing to prove in case γ /∈ S. Suppose γ ∈ S
and take B(β, γ) satisfying (i) and (ii). Then Bα ∩Aγ is finite for every α < γ, α ∈ S and

therefore

{Bα \ Aγ : α ∈ (β, γ) ∩ S} ∪ {Aγ \ β},

is the required family for the interval (β, γ).

Suppose that γ is a limit ordinal. Then S ∩ γ is not stationary in γ so there is a closed

unbounded set C ⊆ γ such that C ∩ S = ∅. In other words, S ∩ γ is contained in a set

γ \ C which is open and hence is a union of disjoint subintervals.

Fix β < γ. If ξ, η ∈ C, β < ξ < η and (ξ, η) ∩ C = ∅ then we can apply the inductive

assumption to S∩(ξ, η) and get the required family B(ξ, η). The union of families obtained

in this way is clearly the family that satisfies (i) and (ii). �

Lemma 3.5. For every algebra B ⊆ A, where A is as in 3.2, if |B| ≤ ω1 then the space

ult(B) is uniform Eberlein compact.

Proof. Let γ < ω2 and let Bγ be a subalgebra of A generated by all finite sets in X and the

family {Aα : α < β}. It follows directly from Lemma 3.4 that Bγ has a generating family

G such that are no three different elements in G having nonempty intersection. Then the

space ult(Bγ) can be embedded into σ2(2
γ) (as in Lemma 2.2) so it is uniform Eberlein

compact.

Now every subalgebra A ⊆ A of size ≤ ω1 is included in Bγ for some γ < ω2. Hence

ult(B) is a continuous image of ult(Bγ) and thus it is uniform Eberlein compact as well. �

The following answers simultaneously, subject to our set-theoretic assumption , Questions

4 and 5 in [20].

Theorem 3.6. Assume 3.1. There is a scattered compact space K with the third derivative

empty such that

(i) K is not Corson compact (in fact it is not ω2−Corson compact in the sense of [7]);

(ii) If L is a continuous image of K and w(L) ≤ ω1 then L is uniform Eberlein compact.

Proof. We take K = ult(A), where A is the algebra defined above in 3.2. Since K is a

Stone space of an algebra generated by an almost disjoint family, it is clear that K(3) = ∅.
Indeed, every ultrafilter x ∈ ult(A) is either principal or there is a unique α such that

Aα ∈ X or else x ∈ K(2) is the unique ultrafilter containing all X \ Aα.

Then K is not Corson compact by Lemma 3.3. If L is a continuous images of K and

w(L) ≤ ω1 then L is uniform Eberlein compact by Theorem 2.1, Lemma 3.5 and the fact

that uniform Eberlein compacta are stable under continuous images. �
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As we mentioned in the introduction, the space K from Theorem 3.6 settles in the

negative some reflection problems of type 1.1.

Lemma 3.7. Let (P) be a property of compact space that is stable under taking closed

subspaces. If K is a compact space and all continuous images of weight ≤ ω1 have property

(P) then all closed subsets L of K of cardinality ≤ ω1 have property (P).

Proof. Take a closed subspace L ⊆ K with |L| ≤ ω1. Then there is a family F of continuous

functionsK → [0, 1] such that |F| ≤ ω1 and F distinguishes points of L. Let g : K → [0, 1]F

be the diagonal mapping, i.e. g(x)(f) = f(x) for f ∈ F . Then K̃ = g[K] ⊆ [0, 1]F so

w(K̃) ≤ |F| ≤ ω1 and hence K̃ has property (P). It follows that L̃ = g[L] ⊆ K̃ also has

property (P), and L̃ is homeomorphic to L. �

Corollary 3.8. Assume 3.1 and take the space K as in Theorem 3.6. Then K is not

Corson compact while for every Y ⊆ K, if |Y | ≤ ω1 then Y is uniform Eberlein compact.

Proof. Recall that X was defined as the union of all the sets Aα, α ∈ S. If Y ⊆ X and

|Y | ≤ ω1 then Y ⊆ X ∩ γ for some γ < ω2 and this easily implies that |Y | ≤ ω1. If

Y ⊆ K(1) then Y ⊆ Y ∪ {∞}, where ∞ is the only point in K(2).

We conclude that |Y | ≤ ω1 for every Y ⊆ K with |Y | ≤ ω1 and the assertion follows

from Lemma 3.7 �

The corollary above gives partial negative answers to problems posed by Jardón and

Tkachuk ([6], Questions 4.13-15) if we assume the continuum hypothesis together with 3.1,

so for instance if we are in the constructible universe.

4. On countable functional tightness

Definition 4.1. For a topological space X and a cardinal number κ we write τ0(X) ≤ κ

if every function f : X → R is continuous provided f|Y : Y → R is continuous for every

subspace Y ⊆ X with |Y | ≤ κ. The corresponding cardinal number τ0(X) is called the

functional tightness of the space X.

Recall that τ(X), the tightness of a space X is defined so that for every A ⊆ X and

every x ∈ A there is B ⊆ A such that |B| ≤ τ(X) and x ∈ B. The following fact can be

found in [1].

Lemma 4.2. The functional tightness τ0(X) does not exceed the density of X for every

space X. In particular, τ0(X) ≤ τ(X).

Tkachuk (see Theorem 2.11 in [19]) proved that if K is a compact space of uncountable

tightness then K has a continuous image L of uncountable tightness with w(L) = ω1.

Recall that τ0(2
κ) = ω if and only if there are no measurable cardinals ≤ κ, see Uspenskii

[21], cf. [16]. Using this theorem it is noted in [20] that if there are measurable cardinals then

the countable functional tightness does not reflect in small continuous images of compacta.
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Let λ be the Lebesgue measure on [0, 1]. Write N for the ideal of λ-null sets. Recall that

the assertion cov(N ) > ω1 means that [0, 1] cannot be covered by ω1-many sets from N .

We shall work in the measure algebra A of the Lebesgue measure on [0, 1]; the corre-

sponding measure on A is still denoted by λ. The following is an immediate consequence

of a result due to Kamburelis [8], Lemma 3.1; see also [3], Theorem 4.4.

Theorem 4.3. If cov(N ) > ω1 then every continuous image of ult(A) of π-weight ≤ ω1 is

separable.

We can now give a (partial) negative solution to Question 4.3 from [20].

Theorem 4.4. Assuming cov(N ) > ω1, there is a compact space S with τ0(S) > ω, such

that τ0(L) = ω for every continuous image L of S of weight ω1.

Our result is based on the construction described in the following lemma.

Lemma 4.5. Let (sn)n be a pairwise disjoint sequence in A+. Let

F = {a ∈ A : lim
n
λ(a ∩ sn)/λ(sn) = 1},

F = {x ∈ ult(A) : F ⊆ x}.
Then

(i) F is a non-principal filter in A;

(ii) F is a closed subset of ult(A) with empty interior;

(iii) for every countable Y ⊆ ult(A) \ F we have Y ∩ F = ∅.

Proof. Part (i) follows by standard calculations and part (ii) is a direct consequence of (i).

We shall check (iii). Let Y = {yn : n ∈ ω} ⊆ ult(A) \ F . For every n we have yn /∈ F so

there is an0 ∈ yn such that −an0 ∈ F . Then we choose a decreasing sequence (ank)k such that

(a) ank ≤ an0 , ank ∈ yn for every k

(b) limk λ(ank) = 0.

The following fact can be proved by a standard diagonalization (cf. [11]).

Claim. There is a function g : ω → ω such that writing ag :=
⋃
n∈ω a

n
g(n), we have

âg ∩ F = ∅.

Using Claim we get Y ⊆ âg and it follows that Y ∩ F = ∅. �

Proof. (of Theorem 4.4). Let S be the Stone space of the measure algebra A. Take the

set F ⊆ S from Lemma 4.5. Then condition (iii) implies that the function χF : S → R is

continuous on every countable subspace of S. But χF is clearly not continuous because the

interior of F is empty. Hence τ0(S) > 0.

Let now L be a continuous image of S such that w(L) ≤ ω1. Then L is separable by

Theorem 4.3 and τ0(L) = ω by Lemma 4.2, so the proof is complete. �

Remark 4.6. We enclose some remarks concerning Theorem 4.4
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(1) Lemma 4.4 originates in Kunen [11]; see Plebanek [17] for other applications.

(2) In fact, under MA(ω1) one can check that in the proof we actually get τ0(S) > ω1,

since under MA(ω1) one can strengthen (iii) of Lemma 4.5 to saying that Y ∩F = ∅
for every Y ⊆ S \ F with |Y | ≤ ω1.

(3) The proof of 4.4 says a bit more, that τ0(L) = ω whenever L is a continuous image

of S having a π-base of cardinality ≤ ω1.
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