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Abstract

Varieties of the Fan Theorem have recently been developed in reverse
constructive mathematics, corresponding to different continuity princi-
ples. They form a natural implicational hierarchy. Earlier work showed
all of these implications to be strict. Here we re-prove one of the strictness
results, using very different arguments. The technique used is a mixture
of realizability, forcing in the guise of Heyting-valued models, and Kripke
models.
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1 Introduction

The Fan Theorem states that, in 2<ω, every bar (i.e. set of nodes which contains
a member of every (infinite) path) is uniform (i.e. contains an entire level of
2<ω). It has in recent years become an important principle in foundational
studies of constructivism. In particular, various weakenings of it have been
shown to be equivalent to some principles involving continuity and compactness
[2,4,6]. These weakenings all involve strengthening the hypothesis, by restricting
which bars they apply to. The strictest version, FAN∆ or Decidable Fan, is to
say that the bar B in question is decidable: every node is either in B or not.
Another natural version, FANΠ0

1
or Π0

1 Fan, is to consider Π0
1 bars: there is

a decidable set C ⊆ 2<ω × N such that σ ∈ B iff, for all n ∈ N, (σ, n) ∈ C.
Nestled in between these two is FANc or c-Fan, which is based on the notion of
a c-bar, which is a particular kind of Π0

1 bar: for some decidable set C ⊆ 2<ω,
σ ∈ B iff every extension of σ is in C. It is easy to see that the implications

FANfull =⇒ FANΠ0
1

=⇒ FANc =⇒ FAN∆.

all hold over a weak base theory. What about the reverse implications? (We
always include the implication of FAN∆ from basic set theory when discussing
the converses of the conditionals above.)
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There had been several proofs that some of the converses did not hold [1,3,5].
These were piecemeal, in that each applied to only one converse, or even just a
weak form of the converse, and used totally different techniques, so that there
was no uniform view of the matter. This situation changed with [7], which
provided a family of Kripke models showing the non-reversal of all the implica-
tions. It was asked there whether those models were in some sense the right, or
canonical, models for this purpose; implicit was the question whether the other
common modeling techniques, realizability and Heyting-valued models, could
provide the same separations.

Here we do not answer those questions. We merely bring the discussion
along, by providing a different kind of model. It should be pointed out early on
that, at this point, the only separation provided is that FAN∆ does not imply
FANc, although we see no reason the arguments could not be extended to the
other versions of Fan.

There are several ways that the model here differs from those of [7]. In the
earlier paper, a tree with no simple paths was built over a model of classical
ZFC via forcing, and the non-implications were shown by hiding that tree better
or worse in various models of IZF. In particular, we showed there that FAN∆

does not imply FANc by including that tree as the complement of a c-bar in a
gentle enough way that no new decidable bars were introduced. Here, we start
with a model of ¬FAN∆, and extend it by including paths that miss decidable
(former) bars. If this is done to all decidable bars, FAN∆ can be made to
hold. If this is done gently enough, counter-examples to FANc will remain as
counter-examples.

The other difference is in the techniques used. It is a Kripke model within
a Heyting-valued extension of a realizability model. This is not the first time
that some of these techniques have been combined (see [8] for references and
discussion). This is the first time we are aware of that all three have been
combined. Perhaps that in and of itself makes this work to be of some interest.

This draft is being prepared for the Isaac Newton Institute’s pre-print series,
as a result of their fall 2015 program in the Higher Infinite. The author warmly
thanks them for their support and hospitality during this program, when this
work was started. In an effort to have it available in a timely fashion, this
write-up is in some parts only a sketch. Of course it is incumbent upon us to
complete this in the near future. The hope is that it’s already far enough along
to be convincing, or, failing that, at least far enough along to be plausible.

Thanks are due to Andrew Swan, a conversation with whom led to this work.
Thanks also go to Francois Dorais and Noah Schweber for their input on Math
Overflow about Francois’s example of a c-bar which is not decidable.

2 FAN∆ does not imply FANc

For the moment, we will work simply under IZF.
Suppose B is a counter-example to FAN∆: B is a decidable bar, but is

not uniform. It is safe to assume that B is closed upwards. Let T be the
complement of B. So T is a decidable, infinite tree with no infinite branch. We
will generically shoot a branch through T .

Define a formal topology on T as follows. A basic open set Oσ given by a
node σ ∈ T is the set of all nodes in T compatible with σ, that is, all initial
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segments and extensions, when it is infinite (otherwise σ does not determine an
open set, or, arguably, the bottom or empty set). An open set O is a union
of finitely many basic open sets. Note that this means it is decidable whether
σ ∈ O. A witness that O is open, that is, a finite set Σ such that O =

⋃
σ∈ΣOσ,

is called a base for O; note that bases are not unique. A collection of open sets
U covers O if it is not the case that there is no finite length n such that, for all
σ ∈ T of length n, either σ 6∈ O or, for some initial segment τ of σ and for some
OU ∈ U , we have Oτ ⊆ O and Oτ ⊆ OU . In symbols, U covers O iff

¬¬∃n ∀σ ∈ T | σ |= n→ (σ 6∈ O ∨ ∃τ ⊆ σ ∃OU ∈ U Oτ ⊆ (O ∩OU )).

For any such n, we say that U covers O by length n. Note that if U covers O
by n then U covers O by any k ≥ n.

Proposition 1. This constitutes a formal topology.

Proof. We will have need of the fact from propositional logic that if (
∧
i φi)→

¬ψ then (
∧
i ¬¬φi)→ ¬ψ. To see this, from the first assertion, take the contra-

positive twice, eliminating the double negation in front of ¬ψ. Then note that
¬¬(

∧
i φi) is equivalent with

∧
i(¬¬φi).

1. Suppose O ∈ U ; we need to show U covers O. Let Σ be a base for O. Let
n be the length of the longest sequence in Σ. Then for all σ of length n, either
there is an initial segment τ of σ in Σ, or there’s not. In the latter case, σ 6∈ O.
In the former, OU can be chosen to be O itself.

2. Suppose O1 ⊆ O0 and U covers O0. We need to show U covers O1. We
can assume that we have bases Σ0 and Σ1 for O0 and O1 respectively such that
no σ0 ∈ Σ0 extends any σ1 ∈ Σ1. Assuming that U covers O0 by some length n,
we will find a k such that U covers O1 by k, which suffices, by taking the double
contrapositive. Let m be the length of the longest σ ∈ Σ1. Let k be the larger
of m and n. Consider any σ of length k. If σ 6∈ O1, then we are done. Else
consider the initial segment ρ of σ which is in Σ1. Also consider σ � n ∈ O1;
recalling that O1 ⊆ O0, we conclude that σ � n ∈ O0. By the choice of n, let
τ ⊆ σ � n and OU ∈ U be such that Oτ ⊆ (O0 ∩ OU ). If ρ is an initial segment
of τ , then Oτ ⊆ O1 and the same τ and OU suffice. Else τ is an initial segment
of ρ, and Oρ is a subset of both Oτ and O1, so use Oρ and OU .

3. Suppose that U covers O, and that every OU ∈ U is covered by V. We
need to show that V covers O.

Being very careful with the logic here, work under the assumption that
every OU ∈ U is covered by V. In showing that U covering O implies that V
covers O, we can assume that U covers O by some fixed length n, by taking the
contrapositive twice. We also take n to be at least as big as any string in some
base Σ for O. For each of the finitely many σ’s of length n that are in O let τσ
and OUσ be as given by the definition of covering. Each such OUσ is covered
by V, which means there is not not an nσ as in the definition of covering. By
the remarks at the beginning of this proof, in showing that V covers O, we may
assume that for each such σ there is such an nσ.

By the remark before this proposition, by increasing n and the nσ’s as nec-
essary, we can take them all to be equal. We will show V covers O by n. Let ρ
be of length n. If ρ ∈ O, then for some τ ⊆ σ and OU ∈ U , Oτ ⊆ (O ∩OU ). In
particular, σ ∈ OU . Since V covers OU by n, there is a ρ ⊆ σ and OV ∈ V with
Oρ ⊆ (OU ∩ OV). Letting ν be the longer of ρ and τ , Oν ⊆ (O ∩ OV), which
suffices.
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4. Suppose O is covered by both U and V. We need to show that O is
covered by {O′ | ∃OU O′ ⊆ OU and ∃OV O′ ⊆ OV}.

We can assume that both U and V cover O by n. Let σ ∈ O have length
n. Let τ and OU be as given by U covering O, and ρ and OV be as given by V
covering O. Let ν be the longer of ρ and τ . Then ν and Oν are as desired.

The reason for this formal topology is so that we can take the Heyting-value
model MT over it.

We do not know whether the next theorem is true in general (meaning prov-
able in IZF). So for the moment, we work in the recursive realizability model.
That is, the model MT is taken as being built within it.

Theorem 2. Working within the recursive realizability model, in MT , the
generic G is (identifiable with) an infinite branch through T .

Proof. We can identify the generic G with {〈Oσ, τ〉 | τ ⊆ σ,Oσ a basic open
set}. We want to show that O∅ 
 “for all k there is a unique σ of length k with
σ ∈ G.” Fix a k. It is easy to see that if Oσ is a basic open set with σ of length
k then Oσ 
 “σ is the unique member of G of length k.” Let U be {Oσ | σ has
length k and Oσ is a basic open set}. It suffices to show that U covers O∅.

Because of the double negation in the definition of covering, when showing
that U covers O∅ it is not necessary to get the n as a computable function of k;
rather, any realizer will do. So it’s just a matter of finding an n in the ground
model V such that the rest (of the definition of covering) is easily seen to be
forced. Toward this end, let n be large enough so that, whenever T beneath σ
of length k is finite, T contains no descendants of σ of length n. In other words,
go through level k of T , take all those nodes whose subtrees will eventually die,
there are only finitely many such, and then go out far enough that all of them
have died already. Now given a node τ of T of length n, τ � k and Oτ�k are the
desired witnesses.

So now we have seen how to kill any particular counter-example to FAN∆.
How can we handle all possible counter-examples, to come up with a model of
FAN∆?

The idea is to iterate. More particularly, to allow for any finite iteration of
such forcings.

Toward this end, working in the recursive realizability model, let P be the
partial order consisting of all finite sequences µ = 〈T0, ..., Tn〉 of decidable,
infinite trees with no infinite branches (with the natural order). To each such
sequence we associate a base model. To the empty sequence, associate the
recursive realizability model. For µ = 〈T0, ..., Tn〉, the associated base model
Mµ is the formal topological model (as described above) for Tn built over the
base model for 〈T0, ..., Tn−1〉. We will need the extension of the previous theorem
to these base models.

Theorem 3. Working within any of these base models, in MT the generic G
is (identifiable with) an infinite branch through T .

We would like to consider the induced Kripke modelM. At any node µ ∈ P,
we build the set T µα of terms of rank at most α, inductively on Mµ-ordinals α.
In fact, for all ν ≥ µ, the base model Mν extends Mµ, so α is also an ordinal
of Mν , and we can (and do) work with a stronger inductive hypothesis: for

4



all β < α and all ν ≥ µ, at node ν, T νβ is defined. We also assume we have

a Kripke transition function from T µβ to T νβ , for which we polymorphically use

the notation f . Given, T µβ , let ℘(T µβ ) consist of all functions g with domain

P≥µ such that:

• g(ν) ⊆ T νβ ;

• if s ∈ g(ν) and ξ > ν then f(s) ∈ g(ξ); and

• g � P≥ν ∈Mν .

Then T µα =
⋃
β<α ℘(T µβ ). The transition function f just restricts the domain.

Theorem 4. M |= IZF.

Proof. Deferred to the full version of this paper.

Theorem 5. M |= FAN∆.

Proof. If B is a decidable bar in the ground (realizability) model, thenM |= “B
is not a bar,” because every node has an extension which has an infinite path
avoiding B. It remains to show that no essentially new bars are introduced
along the way.

Theorem 6. M |= ¬FANc.

Proof. Consider the following c-fan, due to Francois Dorais. Recall that a c-
fan is based on a decidable set of C, which can be taken to be a computable
assignment of “in” and “out” to all the nodes. A node is in the bar if it and all
of its successors are assigned “in”, and out of the bar, or in the tree, if one of
its successors is “out”. Let K be some complete c.e. set, with enumeration Ks

(K at stage s). Let C be such that all nodes on level n are labeled “in” except
for the unique node consistent with Kn (i.e. convert Kn into a characteristic
function). It is easy to see that the characteristic function of K is the unique
branch missing the induced c-set B, which is a bar in the realizability model,
because K’s characteristic function is not an infinite branch there. It can be
shown that B remains a bar inM, because generically K is not added by forcing
to the model.
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