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Abstract. Let κ be an uncountable cardinal with κ<κ = κ. In this pa-
per we introduce Rκ, a Cauchy-complete real closed field of cardinality
2κ. We will prove that Rκ shares many features with R which have a
key role in real analysis and computable analysis. In particular, we will
prove that the Intermediate Value Theorem holds for a non-trivial sub-
class of continuous functions over Rκ. We propose Rκ as a candidate for
extending computable analysis to generalised Baire spaces.

1 Introduction

Computable analysis is the study of the computational properties of real analysis.
We refer the reader to [21] for an introduction to computable analysis. In classical
computability theory one studies the computational properties of functions over
natural numbers and transfers these properties to arbitrary countable spaces via
coding. The same approach is taken in computable analysis. By using coding, in
fact, one can transfer topological and computational results from the Baire space
ωω to sets of cardinality 2ℵ0 . In particular, by encoding the real numbers, one
can use the Baire space to study computability in the context of real analysis.

Of particular interest in computable analysis is the study of the computa-
tional content of theorems from classical analysis. The idea is that of formalizing
the complexity of theorems by means similar to those used in computability the-
ory to classify functions over the natural numbers. In this context, the Weihrauch
theory of reducibility plays an important role. For an introduction to the theory
of Weihrauch reductions, see [4]. Weihrauch reductions can be used to classify
functions over the Baire space ωω. By using this concept it is possible to arrange
many theorems from classical real analysis in a complexity hierarchy called the
Weihrauch hierarchy. A study of the Weihrauch degrees of some of the most
important theorems from real analysis can be found in [4] and [3].

Recently, the study of the descriptive set theory of the generalised Baire
spaces κκ for cardinals κ > ω has been catching the interest of set theorists (see
[12] for an overview on the subject). This fact is also witnessed by the increasing
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number of workshops dedicated to generalised Baire spaces organized in the last
two years (AST 2014 in Amsterdam and a satellite workshop to DMV 2015 in
Hamburg). Even though generalised Baire spaces are not a new concept in set
theory, many aspects of this theory are still unknown. In particular there has
been no attempt to generalise computable analysis to spaces of cardinality 2κ.

This paper provides the foundational basis for the study of generalised com-
putable analysis, namely the generalisation of computable analysis to generalised
Baire spaces. Since in classical computable analysis and classical Weihrauch the-
ory the field of real numbers has a central role, a question arises naturally in
this context: what is the right generalisation of R in the context of generalised
computable analysis?
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In this paper we answer this question. In particular, we will introduce Rκ,
a generalisation of the real line, which provides a well behaved environment
for generalising classical results from real analysis to uncountable cardinals. We
propose Rκ as the starting point for the study of generalised computable analysis.

The problem of generalising the real line is not new in mathematics. Different
approaches have been tried for very different purposes. A good introduction to
these number systems can be found in [9]. Among the most influential contri-
butions to this field particularly important are the works of Sikorski [20] and
Klaua [15] on the real ordinal numbers and that of Conway [6] on the surreal
numbers. Sikorski’s idea was to repeat the classical Dedekind construction of the
real numbers starting from an ordinal equipped with the Hessenberg operations
(i.e., commutative operations over the ordinal numbers). Unfortunately, one can
prove that these fields do not have the density properties that, as we will see,
will have a central role in the context of real analysis. The surreal numbers were
introduced by Conway in order to generalise both the Dedekind construction
of real numbers and the Cantor construction of ordinal numbers. In his intro-
duction to surreal numbers, Conway proved that they form a (class) real closed
field. Later, Ehrlich [15] proved that every real closed field is isomorphic to a
subfield of the surreal numbers, showing that they behave like a universal (class)
model for real closed fields. It is then natural for us to use this framework in the
developing of Rκ.

As we will see, doing analysis over field extensions of R is not an easy task.
This is due to the fact that no proper ordered field extension of R is connected.
However, many of the basic theorems of real analysis are linked to the fact that
R is a connected space. To overcome this problem, instead of using standard
topological tools, we will use a different mathematical framework which, under
specific conditions over the density of Rκ, will allow us to see our field extension
of R as a linear continuum.



In this paper, we shall give necessary requirements for a space Rκ to be the
generalisation of the real numbers. Considering the Intermediate Value Theorem
(IVT) as one of the pillars of real analysis, we place particular emphasis on its
validity in the generalised case, and we develop the requirements in such a way
that they will allow us to prove it.

2 The surreal numbers

In this paper κ will refer to a fixed cardinal larger than ω. As usual in generalised
descriptive set theory, let kappa be an uncountable cardinal with κ<κ = κ. Note
in particular that this assumption implies that κ is a regular cardinal.

We will assume basic knowledge of topology, field theory and computable
analysis. A good introduction to these subjects can be found in [18], [5] and [21],
respectively.

The following definition as well as most of the results in this section, are due
to Conway [6] and have also been deeply studied by Gonshor in [14].

Definition 1 (Surreal numbers). A surreal number is a function from an
ordinal α ∈ On to {+,−}, i.e., a sequence of pluses and minuses of ordinal
length. We will denote the class of surreal numbers by No. The length of a
surreal number x ∈ No is the smallest ordinal `(x) ∈ On for which x is not
defined.

We can define a total order over No as follows:

Definition 2. Let x, y ∈ No be two surreal numbers. We say that x is smaller
than y in symbol x < y iff x(α) < y(α), where α is the smallest ordinal s.t.
x(α) 6= y(α) using the order − < 0 < + where x(α) = 0 if x is not defined at α.

According to Conway’s original idea, every surreal number is generated by
filling some cut between shorter numbers. The following theorem gives us a
connection between this intuition and the surreal numbers as we have defined
them.

Theorem 3 (Simplicity theorem). Let L and R be two sets of surreal num-
bers such that L < R. Then there is a unique surreal z, denoted by [L|R], of
minimal length such that L < {z} < R. We will call [L|R] a representation of z.

By using the Simplicity Theorem Conway defined the field operations over No
and proved that these operations satisfy the axioms of real closed fields. Later
Ehrlich proved that the class field No behaves like a universal model for the
theory of real closed fields, this means that every set-like model of the theory of
real closed fields is isomorphic to a subfield of No. In particular Conway proved
that the real numbers are a subfield of No≤ω.

The last theorem we want to mention in this section is due to van der Dries
and Ehrlich [8]:

Theorem 4 (van der Dries & Ehrlich). The set of surreal numbers No<κ is
a real closed field.



3 Super dense κ-real extensions of R

In this paper we will have a quasi-axiomatic approach. In particular, we will first
determine the properties that we need on Rκ in order to prove some basic facts
from classical analysis. Then we will show how it is possible to define Rκ as a
subfield of the surreal numbers.

Let us consider some of the basic properties that we expect from Rκ. First
of all we want Rκ to be a generalisation of R to the uncountable cardinal κ.
Therefore we require that Rκ is a proper ordered field extension of R. As we
said, we want to use Rκ to do analysis. For this reason, we expect Rκ to behave
as much as possible like R. Formally we will require that Rκ is a real closed
field extending R. Since the theory of real closed fields is complete [17, Corollary
3.3.16], this implies that Rκ has the same first order properties as R1.

REQUIREMENT R1: Rκ is a real closed field extending R.

Now, since we want to use Rκ to do computable analysis over sets of cardinality
2κ, we require that |Rκ| = 2κ.

REQUIREMENT R2: Rκ has cardinality 2κ.

Finally, since the set of rational numbers Q has a central role in the representa-
tion theory of R (the interested reader is referred to [21]), we want Rκ to have
a dense subset which can play the same role as Q.

REQUIREMENT R3: Rκ has a dense subset of cardinality κ.

In general we define:

Definition 5 (κ-real extension of R). Let K be a field satisfying R1, R2, R3.
Then we will call K a κ-real extension of R.

Now we focus on those properties that are needed to extend theorems from
classical analysis to Rκ. Many of these classical results depend on the order over
R and on its interval topology. So we will start considering interval topologies
over κ-real extensions of R and their properties. First we recall few facts from
field theory and classical analysis. It is a well known result from classical analysis
that R has no Dedekind complete ordered field extensions (see [5, Corollary
8.7.4]). Therefore Rκ will not be Dedekind complete. More generally we have:

Corollary 6. Let K be a κ-real extension of R. Then K is not Dedekind com-
plete.

As usual, given an ordered field K, one can define Cauchy sequences over K.

1 In this paper we will use gray boxes for Requirements. Requirements are properties
that the definition of Rκ will have to satisfy.



Definition 7 (Cauchy sequences). Let α be an ordinal and K+ the positive
part of K. Then a sequence (xi)i∈α of elements of K is Cauchy iff

∀ε ∈ K+∃β < α∀γ, γ′ ≥ β. |xγ′ − xγ | < ε.

The sequence is convergent if there is x ∈ G such that

∀ε ∈ K+∃β < α∀γ ≥ β. |xγ − x| < ε.

We will call x the limit of (xi)i∈α. Given a group K it is said to be Cauchy
complete iff every Cauchy sequence whose length is equal to the degree Deg(K)
of K has a limit in K.

It is a an easy exercise to see that Cauchy and Dedekind completeness coincide
on Archimedean fields, while on non-Archimedean fields Cauchy completeness is
weaker than Dedekind completeness.

Another property which is central in mathematical analysis is connectedness.
It turns out that connectedness and Dedekind completeness are equivalent prop-
erties. Therefore, it is easy to see that we will not be able to define Rκ in such
a way that its interval topology is connected.

As we said, our main purpose is that of proving basic facts from analysis over
Rκ. In particular we want to be able to prove the Intermediate Value Theorem
(IVT). It turns out that if the IVT holds on an ordered field K then K is con-
nected. This means that we cannot aim to prove the IVT over κ-real extensions
of R in all its strength.

3.1 κ-topologies

Given what we have proved in the previous section, it is hard to do analysis
over κ-real extensions of R by using standard topological tools. To overcome
this problem we will use a tool introduced by Alling called κ-topology. A similar
approach to do analysis over the surreal numbers was taken in [19].

Definition 8 (κ-topology). A κ-topology τ over a set X is a collection of
subsets of X such that:

1. ∅, X ∈ τ .
2. ∀α < κ. if {Ai}i∈α is a collection of sets in τ , then

⋃
i<αAi ∈ τ .

3. ∀A,B ∈ τ. A ∩B ∈ τ .

The elements of τ are called κ-open sets.

Intuitively, the reason why we use κ-topologies is that, as we have seen in
the previous section, interval topologies over κ-real extensions of R are too fine.
As we will see κ-topologies will be coarser than topologies and will allow us
to prove a weaker version of the Intermediate Value Theorem over particularly
well-behaved κ-real extensions of R.



Theorem 9 (Alling). Let X be a set and B be a topological base over X. Then
the set τκ defined as follows: ∅, X ∈ τκ and union of less than κ elements of B is
in τκ, is a κ-topology. We will call τκ the κ-topology generated by B. Moreover
we will call B a base for the κ-topology.

Obviously many topological definitions can be relativized to κ-topologies. In
particular we have the following:

Definition 10 (κ-continuity). Let X and Y be two sets and τ , τ ′ be two κ-
topologies respectively on X and on Y . Then f : X → Y is a κ-continuous
function iff ∀U ∈ τ ′. f−1[U ] ∈ τ .

Definition 11 (κ-connectedness). Let X be a set and τ be a κ-topology over
X. Then X is κ-connected iff ∀U, V ∈ τ. X = U∪V ∧U∩V = ∅ ⇒ U = ∅∨V = ∅.

All these definitions behave quite well with respect to their topological coun-
terparts. Indeed, many classical theorems from topology hold for κ-topologies
(see [1]). However, there are theorems from topology that are not valid on κ-
topologies. Typically for κ-topologies local properties do no transfer to global
properties (e.g. in κ-topologies openness is not implied by local openness).

Now we will introduce a κ-topological analogous of the interval topology over
an ordered set.

Definition 12 (Interval κ-topology). Let X be an ordered set and B be the
set of open intervals with end points in X ∪ {+∞,−∞}. We will call interval
κ-topology over X the κ-topology generated by B.

From now on we will consider the interval κ-topology as the standard κ-
topology over κ-real extensions of R.

As we have seen, in order to be able to prove some basic theorems from
analysis we need to work within a connected space. However, as we have already
pointed out, we can not aim for connectedness of κ-real extensions of R. The
next result is due to Alling [1] and it makes precise the connection between the
density of an ordered set and the connectedness of its interval κ-topology.

Definition 13 (Hausdorff ηκ-set). Let X be an ordered set and κ be a car-
dinal. We say that X is an ηκ-set iff given L,R ⊆ X, such that L < R and
|L|+ |R| < κ then there is x ∈ X such that L < {x} < R.

Theorem 14 (Alling). Let X be an ηκ-set endowed with the interval κ-topology
and X ′ a subset of X. Then X ′ is κ-connected iff X ′ is an interval in X.

In view of Theorem 14, it is natural to require:

REQUIREMENT R4: Rκ is an ηκ-set.

Definition 15. A field K ⊇ R is called a super dense κ-real extension of R if
it satisfies requirements R1, R2, R3, and R4.

As in classical topology κ-continuous functions preserve κ-connectedness.

Theorem 16. Let f : X → Y be a κ-continuous function. If X is κ-connected
then f(X) is κ-connected.



3.2 Analysis over super dense κ-real extensions of R

Using the results from the previous section we can modify the standard topo-
logical proof of the IVT to show that its restriction to κ-continuous functions
holds over super dense κ-real extensions of R.

Theorem 17 (IVTKκ ). Let K be a super dense κ-real extension of R, the set
[a, b] ⊂ K be a closed subinterval of K and f : [a, b] → K be a κ-continuous
function. Then for every r ∈ K such that r is in between f(a) and f(b), there is
c ∈ [a, b] such that f(c) = r.

It is a well-known fact that in every real closed field the IVT holds for poly-
nomials in one variable (see [17, Theorem 3.3.9]), therefore it is natural to ask
if polynomials over super dense κ-real extensions of R are κ-continuous.

Theorem 18. Let K be a super dense κ-real extension of R and p be a polyno-
mial in one variable with coefficients in K. Then p is κ-continuous.

4 The generalised real line Rκ

We are now ready to define Rκ. A näıve attempt to define such extension would
be that of starting from κ endowed with the surreal operations (i.e., the Hes-
senberg operations) and try to repeat the standard construction of Zκ and Qκ.
Then, we could define Rκ as the Cauchy completion of Qκ obtaining a Cauchy
complete field. Unfortunately this approach does not work. This is due to the
fact that, as Sikorski proved, the field Qκ is Cauchy complete and then Rκ = Qκ.
Recall that Qκ is a set of equivalence classes of pairs of elements in Zκ, hence it
has cardinality at most κ. Therefore Rκ violates R2 and is not a good candidate
for our purposes. This construction appeared for the first time in a paper from
Sikorski in 1948 [20] (see also [2] and [15] for a complete study of this approach).
For this reason we have to take a different approach in defining Rκ.

By Theorem 4 we know that No<κ is a real closed field. Moreover, since
κ > ω, it is easy to see that R ⊂ No<κ. In particular this means that R1 holds
for No<κ. Furthermore, it is not hard to prove that No<κ also satisfies R4. Then
we have:

Proposition 19. The field No<κ has the following properties:

1. |No<κ| = κ and Deg(No<κ) = κ.

2. Cof(No<κ) = Coi(No<κ) = κ and No<κ has weight κ.

Proposition 19 tells us that No<κ has almost all the properties that we want
from Rκ but is still too small. Moreover, it is not hard to see that No<κ is not
Cauchy complete in the sense of Definition 7 this fact is particularly problematic
in the context of computable analysis, where most of the classical representations
of R rely on the fact that R is the Cauchy completion of Q.



It is therefore natural to consider No<κ as generalised rational numbers, and
to define Rκ as the Cauchy completion of No< as in classical analysis2. Since we
are working within the surreal numbers, this can be done in a natural way.

Definition 20 (Veronese cuts). Let K be an ordered field. We call 〈L,R〉 a
cut over K iff L,R ⊆ K and L < R. Moreover we will say that 〈L,R〉 is a
Veronese cut iff it is a cut such that, L has no maximum, R has no minimum
and for each ε ∈ K+ there are ` ∈ L and r ∈ R such that r < `+ ε. We will say
that K is Veronese complete iff for each Veronese cut 〈L,R〉, there is x ∈ K
such that L < {x} < R.

It is a well known fact that Cauchy and Veronese completeness are equivalent
notions (see [7, 10]). For this reason we can define the Cauchy completion of
No<κ by using the Simplicity Theorem as follows:

Definition 21 (Rκ). We define Rκ as follows:

Rκ = No<κ ∪{x | x = [L|R] where 〈L,R〉 is a Veronese cut on No<κ}.

Now we will show that Rκ is a super dense κ-real extension of R. First of all we
will prove that No<κ is a dense subfield of Rκ and that Rκ is Cauchy complete
(i.e., Rκ the Cauchy completion of No<κ).

Lemma 22. The field No<κ is dense in Rκ. Moreover the set Rκ is Cauchy
complete.

In view of the previous theorem from now on we will call No<κ the κ-rational
numbers and we will use the symbol Qκ instead of No<κ.

Since we have showed that Rκ is the Cauchy completion of a real closed field,
by a standard model theoretical argument we have:

Corollary 23. The set Rκ is a real closed field extending R.

Now that we have shown that Rκ is a real closed field extending R we want
to check that all the other properties of super dense κ-real extensions of R hold
for Rκ.

Theorem 24. The real closed field Rκ has the following properties:

1. |Rκ| = 2κ, Deg(Rκ) = κ and Rκ is an ηκ-set.
2. Cof(Rκ) = Coi(Rκ) = κ and the weight of Rκ is κ.

Proof. We will only prove |Rκ| = 2κ the rest follows from the fact that Qκ is
dense in Rκ. We want to prove 2κ ≤ |Rκ| ≤ 2κ. On the one hand we have that
Rκ ⊂ No≤κ. Indeed, No≤κ contains the Dedekind completion of No<κ, hence also
its Cauchy completion Rκ. Then, since |No≤κ| = 2κ, we have that |Rκ| ≤ 2κ.

On the other hand let {0, 1}<κ be the full binary tree of height κ, we define
a tree T which is in bijection with {0, 1}<κ and whose nodes are subintervals of

2 Note that this also reflects the fact that No<ω are the dyadic numbers and R is the
Cauchy completion of No<ω.



Rκ and whose branches corresponds to different elements of Rκ. We define the
tree by recursion as follows: set Tλ = (0, 1) as the root of the tree. Now assume
that for p ∈ 2<κ and that the element Tp 6= ∅ is already defined. We define Tp0
and Tp1 as two non-empty disjoint subintervals of Tp such that Tp0 = (ap0, bp0)
and Tp1 = (ap1, bp1), where ap0, bp0, ap1, bp1 ∈ Qκ with |ap0 − bp0| ≤ 1

`(p)+1

and |ap1 − bp1| ≤ 1
`(p)+1 . Finally if p ∈ 2<κ is of limit length γ and Tp�α has

already been defined for every α < γ, we define T ′p =
⋂
α<γ Tp�α. Note that

by the fact that Rκ is an ηκ-set, the set T ′p non-empty, moreover T ′p is trivially
convex (i.e., if x, y ∈ T ′p and x ≤ z ≤ y, then z ∈ T ′p). Therefore we can
define Tp as we have done for the successor stage starting from T ′p. It follows
trivially by the way in which we have defined the tree that the set

⋂
α∈κ Tp�α

contains a single element of Rκ. Indeed by the properties of the tree we have that
[{ap�α | α ∈ κ} | {bp�α | α ∈ κ}] is a Veronese cut in Qκ. Therefore

⋂
α∈κ Tp�α is

a singleton in Rκ as desired. Therefore we have 2κ ≤ |Rκ| as desired.

5 Conclusions & future work

In this paper we have introduced a real closed field extending R suitable for
doing real analysis over the generalised Baire space κκ. We have showed that,
although it has some limitations intrinsic to the problem, Rκ preserves many
interesting properties of the real numbers. In particular we showed:

1. Rκ is a Cauchy complete super dense κ-real extension of R of cardinality 2κ.
2. Rκ has a dense subset of cardinality κ and Coi(R+

κ ) = κ.
3. The IVT holds for κ-continuous functions.

As we have seen, most of these properties are motivated by computable anal-
ysis. For this reason we propose Rκ as the generalised real line in the context of
computable analysis. An example of how Rκ can be used to study the topological
Weihrauch complexity of theorems of analysis can be found in [13].

In this paper we didn’t investigate the uniqueness of Rκ. For κ = ℵ1, CH
holds and Rκ is isomorphic to the unique field that Dales and Woodin call R̂
(see [7, Theorem 3.21(iv)]). The question is still open for κ > ℵ1.

There are two natural continuations of this paper. On one hand it is natural to
ask for a study of the computational strength of generalisations of theorems from
real analysis. To accomplish this, a theory of generalised type two computability
is needed. As we shall show in a paper soon to appear, it is possible to modify
the notions of Ordinal Turing Machine introduced by Koepke in [16] to define a
generalised version of Type Two Turing Machine (T2TM). The intuition behind
this notion is that generalised T2TMs should run classical programs for Turing
machines for κ steps instead of just ω. These machines lead to a very natural
notion of computability, in which, because of the properties of Rκ and Qκ, the
field operations restricted to Qκ are computable in less than κ steps, while one
may need to run forever (i.e., up to κ) to compute the same operations over Rκ.
Moreover, this notion of computability preserves the correspondence between
continuous functions and functions which are computable with an oracle.



A second natural continuation of this paper is the systematic study of the real
analysis of Rκ. Particularly interesting would be the study of a notion of integral.
This problem is not new in the theory of surreal numbers and partial solutions
have been proposed in the last decades (see [11, pp. 2-3]). Recently a solution to
the problem of integration over the surreal numbers has been proposed in [11].
We are currently working on the problem of integration over Rκ.
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Appendix

In this section we will list the most significant proofs of this paper.

Proofs of section 3.1

Proof (Theorem 9). We have to prove that the three properties of κ-topologies
hold for τκ:

Note that, ∅, X ∈ τκ by definition.
Now we have to show that for every ordinal β < κ and sequence (β′α)α∈β

such that
∀α < β. β′α < κ and Bα ∈ B,

the set
⋃
α∈β

⋃
α′∈β′

α
Bα is a union of less than κ elements of B. We have

|
⋃
α<β

{α′ ∈ κ | α′ < βα}| ≤
∑
α<β

|{α′ ∈ κ | α′ < βα}|

and by regularity of κ∑
α<β

|{α′ ∈ κ | α′ < βκ}| ≤ max{|β|, sup
α<β
{|βα|}} < κ.

Then
⋃
α∈β

⋃
α′∈β′

α
Bα′ is a union of less than κ elements of B as desired.

Finally, let A,B ∈ τκ. Then, there are α, β < κ and two sequences (Aγ)γ∈α
and (Bγ)γ∈β of elements of B such that A =

⋃
γ<αAγ and B =

⋃
γ<β Bγ . Then

we have
A ∩B =

⋃
γ<α

Aγ ∩
⋃
γ<β

Bγ

and therefore
A ∩B =

⋃
(γ,γ′)∈α×β

(Aγ ∩Bγ′).

Now for all (γ, γ′) ∈ α×β the set Aγ ∩Bγ′ is either ∅ or in B and since α, β < κ,
we have A ∩B ∈ τκ as desired.

Proof (Lemma 16). Assume f(X) not κ-connected. Therefore there are U, V κ-
open subsets of Y which partition f(X). By the κ-continuity of f we have that
f−1(U) and f−1(V ) are κ-open subsets of X. Moreover, since f(X) = U ∪V we
have that f−1(U) and f−1(V ) separates X, but this contradicts our hypothesis
therefore f(X) is κ-connected.



Proofs of section 3.2

Proof (IV TKκ ). We can assume f(a) 6= r 6= f(b). Assume that there is no c ∈
[a, b] such that f(c) = r. We define two sets

A = f([a, b]) ∩ (−∞, r) and B = f([a, b]) ∩ (r,+∞).

They are non empty and disjoint (f(a) ∈ A and f(b) ∈ B). By definition they
are also κ-open sets in f([a, b]). Moreover, since there is no c such that f(c) = r,
we have that f([a, b]) = A ∪ B. Hence A and B separates f([a, b]). Now [a, b] is
κ-connected and by Theorem 16, f([a, b]) is κ-connected. Therefore we have a
contradiction since we have shown that A and B separate f([a, b]) and f([a, b])
is κ-connected.

Proof (Theorem 18). Let p be a polynomial in K and (a, b) be an interval with
endpoints in K∪{+∞,−∞}. Note that since constant functions are κ-continuous
we can assume that p is not the zero polynomial. Since K is a real closed field,
the polynomials p(x) − a and p(x) − b have finitely many (possibly 0) roots in
K. Let (ri)i∈n be the strictly increasing listing of these roots. Define the set I
as follows:

1. if n = 0:

I =

{
{(−∞,+∞)} If there is x ∈ K s.t. p(x) ∈ (a, b),

{∅} otherwise.
.

2. If n > 0: define I as follows:
(a) (ri, ri+1) ∈ I iff p( ri+1−ri

2 ) ∈ (a, b).
(b) (−∞, r0) ∈ I iff p(r0 − 1) ∈ (a, b).
(c) (rn−1,+∞) ∈ I iff p(r0 + 1) ∈ (a, b).

Now we claim that p−1[(a, b)] =
⋃
I. We will first prove that p−1[(a, b)] ⊆

⋃
I.

Let x ∈ p−1[(a, b)]. If n = 0 then trivially x ∈ (−∞,+∞) =
⋃
I. Assume

n > 0. We have the following cases:
Assume that there is i < n such that ri < x < ri+1, we want to prove

p( ri+1−ri
2 ) ∈ (a, b). Assume not. Since, K is a real closed field, by [17, Theorem

3.3.9] , the IVT holds for polynomials. In particular, since p( ri+1−ri
2 ) 6∈ (a, b)

and p(x) ∈ (a, b) either p(x) − a or p(x) − b has a root in between ri and ri+1.
But this is in contradiction whit the fact that (ri)i∈n was strictly increasing.
Therefore p( ri+1−ri

2 ) ∈ (a, b) and (ri, ri+1) ⊆
⋃
I.

Assume that for every i < n, we have x < ri. We want to prove p(r0 − 1) ∈
(a, b). Assume not. As before the IVT holds for polynomials in K. In particular,
since p(r0 − 1) 6∈ (a, b) and p(x) ∈ (a, b) either p(x)− a or p(x)− b has a root in
between −∞ and r0. But this is in contradiction whit the fact that (ri)i∈n was
the strictly increasing listing of all the roots of p(x)− a and p(x)− b. Therefore
p(r0 − 1) ∈ (a, b) and (−∞, r0) ⊆

⋃
I.

Finally if for every i < n we have x > ri, then the proof is similar to the
previous case.



Note that the case in which x = ri for some ri is impossible since p(x) ∈ (a, b).
Now we will prove that p−1[(a, b)] ⊇

⋃
I. Let x ∈

⋃
I. If n = 0, then there

is y ∈ K such that p(y) ∈ (a, b). Now, since the IVT hold for polynomials, if
p(x) /∈ (a, b) we would have that either p(x) − a or p(x) − b has a root. This
contradicts the assumptions. Assume n > 0. We will only consider the case in
which x ∈ (ri, ri+1) for some i < n and p( ri+1−ri

2 ) ∈ (a, b). The other cases can
be proved similarly. We want to prove that p(x) ∈ (a, b). Assume not. Since the
IVT hold for polynomials, we would have that either p(x)− a or p(x)− b has a
root in between (ri, ri+1). But we assumed (ri)i∈n strictly increasing. Therefore
p(x) ∈ (a, b) as desired. Therefore p−1[(a, b)] =

⋃
I.

Now since I is a finite list of intervals with end points in K ∪ {−∞,+∞}
we have that

⋃
I is κ-open. Hence p−1[(a, b)] is κ-open and p is κ-continuous as

desired.

Proofs of section 4

Theorem 25 (Gonshor). Let L and R be two sets of surreal numbers such
that L < R. Then `([L|R]) is smaller or equal to the least ordinal α such that
∀x ∈ L ∪R. `(x) < α.

Proof. Note that this follows trivially from the fact that [L|R] is defined to be de
shortest surreal number strictly between L and R, then if it is of length bigger
than α. Hence [L|R]�α would be shorter than [L|R] and still in between L and
R.

Proposition 26 (Folklore). Let κ′ be a cardinal such that Cof(κ′) = α. Then
No<κ′ is a ηα-set.

Proof. Assume L,R ∈ No<κ′ such that |L|+ |R| < κ′. Then for every x ∈ L and
y ∈ R we have |x|, |y| < κ′. But since Cof(κ′) = α, we have that

Length(L) = sup{`(x) | x ∈ L} and Length(R) = sup{`(x) | x ∈ R}

are both smaller than κ′. But then by Theorem 25 we have

`([L|R]) ≤ max{Length(L),Length(R)} < κ′

which implies [L|R] ∈ No<κ′ as desired.

Proof (Proposition 19). We want to prove |No<κ| = κ. Since we assumed κ =
κ<κ, the statement follows from the fact that No<κ is the set of sequences of
pluses and minuses of length less than κ.

To prove Cof(No<κ) = Coi(No<κ) = κ, note that κ ⊂ No<κ is a cofi-
nal subset of No<κ and −κ is a coinitial subset of No<κ. By regularity of κ,
Cof(No<κ) = Coi(No<κ) = κ. Moreover, note that every dense subset of No<κ
has to be cofinal in No<κ, therefore the weight of No<κ is less than or equal to
κ and since |No<κ| = κ, we have that the weight of (No<κ) is κ.



We know that No<κ is a real closed field. Consider the following sequence
S = { 1α}α∈κ. The sequence S is coinitial in No+<κ. Indeed, take x ∈ No+<κ. We

can assume x < 1, therefore x = 1
y with y ∈ No+<κ. Take α < κ such that

α > y (note that α exists since κ is cofinal in No<κ), then x > 1
α > 0 and S

is coinitial in No+<κ. Now, since |S| = κ, therefore Coi(No+<κ) ≤ κ. Moreover,
note that any subsequence S′ of No+<κ of cardinality less than κ cannot be
coinitial in No+<κ. Indeed, let S′ be such a sequence. Since No<κ is an ηκ-set,
if we take L = {0} and R = S′, there is x ∈ No<κ such that L < {x} < R.
Trivially x ∈ No+<κ and {x} < S′. Hence S′ is not coinitial in No+<κ as desired.
In conclusion Deg(No+<κ) = Coi(No+<κ) = κ.

Lemma 27. Let 〈L,R〉 be a Veronese cut over Rκ. There are two sequences
(`γ)γ∈α and (rγ)γ∈β of elements of No<κ with

α ≤ min{|L|, κ} and β ≤ min{|R|, κ}

such that
〈
⋃
γ∈α
{`γ} |

⋃
γ∈β

{rγ}〉

is a Veronese cut and

[
⋃
γ∈α
{`γ} |

⋃
γ∈β

{rγ}] = [L|R].

Proof. Let 〈L,R〉 be a Veronese cut. We claim that there are two sequences
(`γ)γ∈α and (rγ)γ∈β of elements of No<κ with

α ≤ min{|L|, κ} and β ≤ min{|R|, κ},

which are respectively mutually cofinal in L and mutually coinitial in R. More-
over, since L has no maximum and R has no minimum, we can choose (`γ)γ∈α
and (rγ)γ∈β such that `γ < rγ′ for all γ ∈ α and γ′ ∈ β. Let ` ∈ L and
r ∈ R be two elements respectively of L and R. Since L has no maximum and
R has no minimum therefore there exist `′ ∈ L and r′ ∈ R such that ` < `′

and r′ < r. By the density of No<κ in Rκ there are `0, r0 ∈ No<κ such that
` < `0 < `′ < r′ < r0 < r. Now let 0 < γ < κ and assume we have already
defined `γ′ , for every γ′ < γ. We will define `γ , the same argument works for rγ .
We have two cases:

1. if there exists ` ∈ L such that `γ′ < ` for all γ′ < γ, then take `′ ∈ L such
that ` < `′ and `γ ∈ No<κ such that ` < `γ < `′.

2. If for all ` ∈ L there is γ′ < γ such that `γ′ ≥ ` stop.

Now let α be the smallest ordinal on which the previous definition stops. Note
that trivially α ≤ min{|L|, κ}. It is an easy induction to prove that for every
γ < α there are `, `′ ∈ L such that ` < `γ < `′ and that for every ` ∈ L there is
γ ∈ α such that ` ≤ `γ . Therefore (`γ′)γ′<α is mutually cofinal with L as desired.



Now by a standard cofinality argument we have

[
⋃
γ∈α
{`γ} |

⋃
γ∈β

{rγ}] = [L|R].

Moreover, since 〈L,R〉 is a Veronese cut, 〈
⋃
γ∈α{`γ},

⋃
γ∈β{rγ}〉 is a Veronese

representation in No<κ. Finally, since [L|R] ∈ Rκ, we have that

[
⋃
γ∈α
{`γ} |

⋃
γ∈β

{rγ}]

is in Rκ as desired.

Proof (Lemma 22). Let x, y ∈ Rκ be such that x < y. We can assume that at
least one between x and y is not in No<κ, otherwise the statement follows trivially
by the density of No<κ. Without loss of generality assume y is not in No<κ. Let
[Lx|Rx] be the standard representation of x and [Ly|Ry] be a representation
of y such that 〈Ly, Ry〉 is Cauchy. Since x < y, by [14, Theorem 2.5] we have
{x} < Ry and {y} > Lx. Moreover, since x 6= y, by [14, Theorem 2.6] we have
that either there exists xR ∈ Rx such that y ≥ xR or exists yL ∈ Lx such that
yL ≥ x. Assume that there is xR ∈ Rx such that y ≥ xR. Since yL /∈ No<κ
and y 6= xR, we have y > xR > x as desired. On the other hand if there exists
yL ∈ Lx such that yL ≥ x, then by the fact that Ly has no maximum we can
take y > y′L > yL ≥ x. Therefore y′L is the desired element of No<κ.

The fact that Rκ is Cauchy complete follows trivially by Lemma 27.

Lemma 28. Let No≤κ be the set of surreal numbers of length at most κ. Then
Rκ ⊆ No≤κ.

Proof. We will prove that No≤κ contains the Dedekind closure of Qκ. This im-
plies by definition that No≤κ also contains the Cauchy closure of Qκ, namely
Rκ. Let 〈L,R〉 be a cut in Qκ, we claim that [L|R] ∈ No≤κ. Note that for every
x ∈ L ∪ R, since L ∪ R ⊂ Qκ, we have `(x) < κ. Therefore, by Theorem 25
we have `([L|R]) ≤ κ. Then [L|R] ∈ No≤κ as desired. Now, since Rκ = Qκ ∪ V
where V is the set of Veronese cuts over Qκ, we have Rκ ⊆ No≤κ as desired.

Proof (Theorem 24).
We will begin proving that Deg(Qκ) = Deg(Rκ). Since Qκ is dense in Rκ,

then we have that Deg(Rκ) ≥ Deg(Qκ). Now, assume that every sequence of
length κ in Rκ is such that there is x ∈ R+

κ smaller than every element of the
sequence. Then, by the density of Qκ, there is x′ ∈ Qκ such that 0 < x′ < x,
but this is absurd because Deg(Qκ) = κ.

Now we want to prove that Rκ is an ηκ-set. Take L,R ⊂ Rκ such that
|L|+ |R| < κ and L < R. We have the following possibilities:

– L has no maximum and R has no minimum: by the density of Qκ in Rκ,
by Lemma 27, there are two sequences (`γ)γ∈α and (rγ)γ∈β with α, β < κ



of elements of Qκ which are respectively cofinal in L and and coinitial in R
and such that

∀α′ ∈ α∀β′ ∈ β. `α′ < rβ′ .

Hence, since Qκ is an ηκ-set, we have that there is x ∈ Rκ such that

L < {x} < R

as desired.
– L has maximum M and R has minimum m: it is enough to take x = m−M

2 .
– L has maximum M and R has no minimum: consider the sequence

(r −M)r∈R.

Note that

∀r ∈ R. r −M > 0,

therefore, since Deg(Rκ) = κ and |R| < κ there is x ∈ Rκ such that

∀r ∈ R. 0 < x < r −M,

but then M < x+M and ∀r ∈ R. x+M < r as desired.
– L has no maximum M and R has minimum m: a proof similar to the previous

case applies.

Note that by the construction of Rκ, since Qκ is a dense subfield of Rκ, we
have

Cof(Rκ) = Coi(Rκ) = κ and Rκ has weight κ.

Now, we want to prove 2κ ≤ |Rκ| ≤ 2κ. On the one hand, by Lemma 28 we
have that Rκ ⊂ No≤κ. Indeed, No≤κ contains the Dedekind completion of Qκ,
hence also its Cauchy completion Rκ. Then, since |No≤κ| = 2κ, we have that
|Rκ| ≤ 2κ.

On the other hand let {0, 1}<κ be the full binary tree of height κ, we define
a tree T which is in bijection with {0, 1}<κ and whose nodes are subsets of Rκ
and whose branches corresponds to different elements of Rκ. We define the tree
by recursion as follows:

Set Tλ = (0, 1) as the root of the tree.

Now assume that for p ∈ 2<κ, the element Tp 6= ∅ is an already defined open
interval in Rκ. We define Tp0 and Tp1 such that:

Tp0 ∪ Tp1 ⊆ Tp,
Tp0 6= ∅ and Tp1 6= ∅,
Tp0 ∩ Tp1 = ∅,
Tp0 = (ap0, bp0) and Tp1 = (ap1, bp1),



with ap0, bp0, ap1, bp1 ∈ Qκ such that

|ap0 − bp0| ≤
1

`(p) + 1
and |ap1 − bp1| ≤

1

`(p) + 1
.

Finally if p ∈ 2<κ is of limit length γ and Tp�α has already been defined for
every α < γ, we define T ′p as follows:

T ′p =
⋂
α<γ

Tp�α.

Note that by the fact that Rκ is an ηκ-set, the set Tp is never empty, moreover
T ′p is trivially convex (i.e. if x, y ∈ T ′p and x ≤ z ≤ y, then z ∈ T ′p). Therefore we
can define Tp as follows:

Tp ⊆ T ′p,
Tp 6= ∅,

Tp = (ap, bp) with ap, bp ∈ Qκ such that |ap − bp| ≤
1

`(p)
.

It follows trivially by the way in which we have defined the tree that the set⋂
α∈κ Tp�α contains a single element of Rκ. Indeed by the properties of the tree

we have that [{ap�α | α ∈ κ} | {bp�α | α ∈ κ}] is a Veronese cut in Qκ. Therefore⋂
α∈κ Tp�α is a singleton in Rκ as desired. Therefore we have 2κ ≤ |Rκ| as desired.
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