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  Let m,...,:i 1  be origins and p,...,:k 1  be destinations. The merchandise, which is assumed 

to be indistinguishable, goes from an origin to a destination. However, the merchandise leaving an 

origin goes through a deposit n,...,:j 1  and reaches a destination. Each origin i has a capacity ir  and 

each destination k  needs the amount kt . We have the common condition  
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which is concerned with  the fact that all  the merchandise required is distributed. Such condition is 

natural in transportation problems. Thus, if 01 ijx  and 02 jkx  are the respective total amounts 

transported from origin i  to the deposit j , and from there to destination k , then the two-step 

transportation problem can take the following expression: 
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with   021  x,xx  

 The last equation expresses the fact that at each deposits all the incoming amounts go out. 

 The conditions above are concerned with the total transported amounts, but the complete 

transportation problem is related to a cost function 
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which is linear, where }x{x ij

11   and }x{x ij

22  . The amounts 
1

ijc  and 
2

jkc  are the costs to carry the 

unit amount from i  to j  and from j  to k , respectively. A solution of (1,1) and (1,2) is called 

feasible. 
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It is possible to arrange the linear system (1,1) in a matrix form bAx  , where A is: 
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and  t
kj ,t,rb 0 . The rank of matrix A is 1-npm  . 

 

Definition: The support of )y,y(s jkij

21  is the set      00 21  jkij y/k,jy/j,i)s(S   

Definition: Let )y,y(s jkij

21 a solution of the 2-step transportation problem, a cycle in the support of 

s is a sequence of elements of S(s), such that: 
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Characterization of extremals 

 

Theorem: A factible solution c of the 2-step transportation problem defined above is extremal if 

and only if it has no cycles in its support S(c). 

Theorem: Each extremal of the problem has at most 1-npm  positive components. 

Algorithm: Take  k,j,i  and consider   21

1
kjji

xxt,rmina
ki

 . If
i

ra 1 , delete the row i and take 

the problem in KJ,},i{-I . The new problem has the entries ir  for ii  , and 0
ik

rt  for kk   

and kt  for kk  . Follow as in the first step, in this way adding up all the entries in the different 

steps in the respective places it converges to a solution of (1,1). We call it the algorithm. 

 

Theorem: The algorithm converges and provides all the extremals. 

Example: Consider a 2-steps problem with 2 origins, 3 deposits and 2 destinations with matricial 

form:  
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which it has as solutions: 

solution 1:      solution 2: 

 

 

 

 

 

 

 

 

Solution 1 is extremal, solution 2 it is not because is a convex combination of solutions: 

     

 

 

 

 

 

 

 

 The two steps transportation problem cannot be formulated as a particular case of the classic 

transportation problem. Results with deposit capacities are also obtained. 

             It is remarkable that the two steps transportation p`roblem cannot be reduced to a classic 

transportation problem. 
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