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Abstract: The Lotka – Volterra equation for three species are integrated in an original way 

obtaining the existence of cycle. No studies of the cycle stability are held. These would be very 

interesting kind as in two species. However our results are of value. 
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Introduction 

 In life science research, the Lotka–Volterra model is considered a classical dynamic 

model which has been intensively used to explain dynamic phenomena in population ecology 

and other life science fields. In the past two decades, an increasing amount of attention has 

been addressed to the study of dynamical system models arising from biological systems. This 

is part of the development of a rich and diversified field that lies somewhere between 

mathematics and the sciences. 

In this paper we present and study a general case of ecological competition among 

three species using the Lotka-Volterra equations. The used technique is new which combine 

Volterra´s [1] idea for the problem of two species and the approach due to Montroll [2]. The 

essential idea is to eliminate one variable by the knowledge of a system integral. Such 

elimination can be obtained from the selection of a very complicate partial differential 

equation. The result is that the third variable is a function of the remaining two. Since we are 

interested not only the existence of cycles, which may be limit (see ZHENGYI Lu and YONG 

Luo [5]-[6]), but also in the real computation of then. Therefore we mention the fact that 

assuming the existence of a cycle which is a one-dimentional manifold therefore one of the 

three variables is function of the previous two. This is essentially our approach. 

There are generalizations of the Bendixon-Poincare theorem for three or higher 

dimensional non-linear systems, but these generalizations, however, are inapplicable to most 

systems of interest. At this point we would like to mention that our model has essentially the 

power of the theorem of Bendixon-Poincare. 

 

Three species model 

Consider the system of differential equations following Lotka-Volterra by the problem 

of three interacting species: 
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where x is the number of individual or density of the first species which are consider as a prey 

of the second, y is the number of individual of the second species, and third species which is 

symbolized the variable z. The ie  are growing indices of each species and ija represent the 

interrelation between the species i and j. 



Our first step is to get an integral which has to say as a variable is express as function 

of the remained two. Let 
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now we are interested in the determination of this function. Then we derive with respect to 

time and we obtain 
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Now replacing from the right to the left in the equation (3) the derivates with respect 

to time by the expressions given by (1), we obtain a partial differential equation of first order 

for the function f: 

)zaxae(y
y

f
)zayae(x

x

f
)zayaxae(z 23212131213332313 









  (4) 

In order to evaluate this last differential equation, we assume the following system: 
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It is clear that the f solution of (5) and (6), it is also solution of (4). 

Now we will solve the system (5)-(6). Using the standard Lagrange method the 

solution might be consider as an arbitrary function 0),( 21 kkF , where k1 and k2 are 

integration constants of the system 
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From the first two equalities of (7), we obtain that: 
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where the function F is arbitrary and is determined by the equation (6). Introducing the 

expression of z given by (8) in the partial differential equation (6), we have that 
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where we have introduced the new variable 

13

23

1

1

a

a

x

y
w   

Operating in (9) we conclude that F has to satisfy the following differential equation 

of first order: 
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The last equation might be written in the following way 
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If the following conditions are satisfied 
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The previous equation is 
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where the constant c0 must satisfy the initial conditions of the problem: 
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where x0, y0 and z0 represent the initial value of number of individual of each of the species. 

The next step is to replace the value of z given by (13) in the first equation of the system (1): 
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Our next step is the integration of (14). For this we introduced the following constants defined 
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replacing in the first equation of the system (14) we obtain: 
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In a similar way from the second equation of (14) it is derived: 
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Cross multiplying both equations in (19), we conclude that 
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Applying this property in the last equation we obtain that 
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Imposing the condition that: 
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the equation (20) becomes: 
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where c1 is an integration constant. 

Using the proper parameters of the problem, the equation (22) can be written in the 

following way: 
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Taking now the old variables, we get: 
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From the last expression we obtain the important relation 
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We call 1  the function in the left side of the equality (25) and 2  the function in the 

right side of the same equality. The function 1  is similar to that obtained by Volterra in the 

problem of two species, and the graph is shown in the figure 1. Now we remark that the 

function 2  depends of variable x, that is to say is more general that the corresponding 

obtained by Volterra. The graph of 2  which depends parametrically of x is also shown in the 

figure 1. Graphically it is clearly observed that for a given value for x belonging to the 

interval  10 , xx  , there are exactly two values for y such that 
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Now we will prove the existence of the points x0 and x1. First of all we are looking for 

the minimum value y0 of the function 2 , given in the function of x. From the condition 
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We will prove that there exist a unique value y0 that satisfies the condition (27). That 

is to say the function 2  has only a unique minimum. For this consider as in the figure 2, the 
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see that there exists a unique positive value of y such that the relationship (27) is true. The 

function )(0 xy  is strictly concave. Its graphic is shown in figure 3. On the other hand, the 

minimum condition given by (27) might be used in order to obtain the expression of ),(2 yx : 
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The curve of 3  as function of y0 is shown in the figure 4. In this way the composition 
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))(,( 02 xyx  in the figure 5 with the function 1  in the figure 1, we obtain that under same 

condition of the parameters, in particular P and M, which they cut in two points. Such points 

are these already mentioned x0 and x1. This comparison is shown in the figure 6. Such points 

are the superior and inferior points where the cycles closed. In this way the cycle is obtained 

under certain condition of the parameters. Thus our technique provides the existence of a 

cycle for our three species equations and we have obtained a similar result as the Bendixon-

Poincare Theorem for this case. 



 

A particular case 

In this section we develop a particular case for a given suitable set of parameters. We first 

consider 1  and 
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We evaluated the minimum of 2 , then we find that it is obtained at the coordinate 
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The extreme points x0 and x1, satisfy the conditions: 
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Such a relation is shown from a graphical point of in the figure 6, where both functions are 

presented. 

 

Period computation 

In this paragraph we study for the particular case already mentioned an approximation 

in order to determine the period of the fluctuation. From the equation (25), taking logarithm if 
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We take the lineal approximation: 
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where the parameters a and b are adjusted for each one of the four parts shown in the figure 7 

where the cycle is shown in the plane (x,y), this is the projection of the cycle solution in the 
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With the approximations for y in each one of the regions, we replace in the first 

differential equation of the system (15), therefore 
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with the aim to integrate (32) we approximate the logarithm fxgx )ln( , where the 

parameters are adjusted conveniently. In this way we obtain the following expression 
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Calling DNMeH  11 , NaceH 1222  , DQH 3  and QaH 124  , the equation 
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and if we take 2
1

xu  , we obtain the expression for the computation of the period, which is 

easily derived 
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Example 

Now we present a numerical example of a Lotka-Volterra of three interacting species. 

This is done following the aims given in the previous sections. As a simple example to be 

studied the parameters take the following values: 31 e , 5.02 e , 23 e , 212 a , 121 a , 

131 a , 213 a , 123 a , 132 a  and 033 a . And the initial values 2)0( x , 5.1)0( y  and 

1)0( z . This set of parameters satisfies the imposed conditions by the relations (11) and 

(21). And with the values 5.0  and 1 . In order to obtain the graphical description of 

)(),( tytx and )(tz , we utilize a standard general method. Consider as analytic function in the 

variable t: 





0

)(
k

k

ktxtx   





0

)(
k

k

ktyty  





0

)(
k

k

ktztz  



Now replacing these last expressions in the system (1) and identificating coefficients, 

we obtain the following recurrence relations given by 
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Using these last three relations we obtain the curve in figure 8. In the same way, we obtain the 

corresponding cycle showing in figure 5. In order to obtain the period, we have: 

628066702 321 .c,cc   

332101502310 ,H,P,A   

88412581 ,D,M   

For the interval showing in figure 5, the range of variation of x is  60613780 ,;, and for 

y is  53516150 ,;, . We have the next values for: 

61500081141231 ,b,a,f,g   

574054102024521 4321 ,H,H,H,H   

 The roots in (35) are 02523890 10 ,u;,u  and 35732 ,u  . The limits for the integral 

are 2671,´u  and 6150,´´u  . Integrating expression (35) as a rational function, we obtain the 

time for the first region 6820,TA  . In the same way we have 79404030 ,T;,T CB   and 

8140,TD  . Therefore the period is 6932,T  .  

 

Conclusion 

 According to that was developed in the present study, we found a simple but very 

effective method to find cycles in Lotka-Volterra model with three interacting species. We 

can add that apart from this important result, it can be concluded that this method can be 

easily extend to n species problem.  
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