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Abstract. Maddy gave a semi-formal account of restrictiveness by defining a formal
notion based on a class of interpretations and explaining how to handle false positives
and false negatives. Recently, Hamkins pointed out some structural issues with Maddy’s
definition. We look at Maddy’s formal definitions from the point of view of an abstract
interpretation relation. We consider various candidates for this interpretation relation,
including one that is close to Maddy’s original notion, but fixes the issues raised by
Hamkins. Our work brings to light additional structural issues that we also discuss.

§1. Motivation There is a tradition of naturalistic philosophy of set theory
in which philosophers observe that some theories are proposed by set theorists
as reasonable contenders for foundations of mathematics and others are not. The
naturalistic philosopher aims to understand the reasons for these decisions of the
mathematical experts, preferably on the basis of mathematical understanding of
the theories involved.

The most prominent approach for this is to rule out theories because they re-
strict the development potential of the foundations of mathematics, i.e., violate the
maxim maximize (Maddy, 1988a,b, 1998). Maddy (1998, 1997) gives a semi-formal
account of restrictiveness by defining a corresponding formal notion based on a
class of interpretations. In (Löwe, 2001, 2003), Maddy’s notion of restrictiveness was
discussed and the theory ZFG (i.e., ZF + ‘Every uncountable cardinal is singular’)
was presented as a potential witness to the restrictiveness of ZFC. More recently,
Hamkins has given more examples and pointed out some structural issues with
Maddy’s definition (Hamkins, 2013).

In this paper, we shall look at Maddy’s definitions from the point of view of
an abstract interpretation relation. We shall then consider various candidates for
this interpretation relation, including one that is close to Maddy’s original notion,
but fixes the issues raised by Hamkins (2013). Our work brings to light additional
structural issues that we also discuss.
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§2. Interpretations and restrictiveness In the following, we let E be an
arbitrary interpretation relation between first-order theories. There is a rich body
of literature on the space of theories with interpretations between them (de Bouvère,
1965; Ahlbrandt & Ziegler, 1986; Visser, 2006). An interpretation of T in S is a
syntactic object describing for every model of S a subclass of that model that forms
a model of T (for definitions, cf. § 2.2. below). In this literature, it is common to have
interpretation relations that are reflexive (the identity is considered an interpreta-
tion) and transitive. We deal with relations that are neither, and, therefore, we keep
the discussion at a sufficient level of generality and make explicit all assumptions
about E in the statement of theorems.

We shall consider three properties of interpretation relations: reflexivity and
transitivity, as mentioned; and then a property we call monotonicity. The relation
E is called monotone if it has the property that whenever S E T and R ⊇ T , then
S E R.

Let BST be a basic set theory, appropriately chosen. For all applications in what
follows (with one exception), we let BST = ZF. For the purposes of this paper,
we call a theory T a set theory if it is a finite extension of BST, so the word “set
theories” refers to axiom systems in the language L∈ of the form BST+A where A
is an axiom (or, equivalently, a finite set of axioms).1 If T and S are set theories,
we say that T extends S (S ⊆ T ) if the set of S-theorems is a subset of the set of
T -theorems. If S = BST + A and T = BST + B, we write S ∪ T for BST + A ∧ B.
Note that there is exactly one + sign in the name of a set theory, so expressions of
the form BST+A∧B or BST+A∨B can only be parsed one way. As a consequence,
we omit parentheses to improve readability.

2.1. Restrictiveness As observed, Maddy’s enterprise uses the maxim max-
imize in order to rule out theories as restrictive. Here, we think of a theory T as
restrictive if it restricts the possible lines of development of set theory, i.e., there is
some other consistent desirable axiom that is incompatible with T . The following
formal sequence of definitions follows Maddy’s notions from (Maddy, 1997, § 6),
except that we keep the notion of interpretation completely open for now and allow
theories extending BST (whereas Maddy only allows theories extending ZFC).

As usual, we write T � S for T E S and S 6E T . Clearly, this is irreflexive
independently of what properties E has. Moreover, if E is transitive, then so is �.

Definition 1. Let S and T be set theories.

1. We say that T E-recaptures S if there is a consistent extension T ∗ of T such that
S E T ∗.

2. We say that S weakly E-maximizes over T if T �S and T does not E-recapture S.
(In symbols: T <E

weak S.)
3. We say that S strongly E-maximizes over T if it weakly E-maximizes over T and
S ∪ T is inconsistent. (In symbols: T <E

strong S.)
4. We say that T is (weakly / strongly) E-restrictive if there is a consistent set theory
T ∗ that (weakly/strongly) E-maximizes over T .

1 We use the term “set theory” for convenience, and the choice of terminology is not
meant to suggest that infinite extensions of a basic set theory cannot qualify as genuine
set theories.
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Maddy does not have a notion of weak maximization and the corresponding
notion of weak restrictiveness. We shall discuss the relation between weak and
strong maximization in § §5..

We now note two facts that will be important later in the paper, viz. that the
transitivity of E induces the transitivity of weak and strong E-maximization.

Proposition 2. Suppose that E is transitive. If R, S, and T are set theories and

R <E
weak S E T,

then R <E
weak T . Therefore, <E

weak is transitive.

Proof. By definition, R <E
weak S implies R� S, so by transitivity R E T . If we had

T E R, then by transitivity S E R in contradiction to R� S. Therefore, R� T .
If there was R∗ ⊇ R such that T E R∗, then by transitivity, S E R∗ contradicting

the fact that R does not E-recapture S.

Proposition 3. If E is transitive and monotone, then <E
strong is transitive.

Proof. Let R <E
strong S <

E
strong T . It follows from Proposition 2 that R <E

weak T , so
we only have to show that R∪T is inconsistent. Suppose not. Since S E T , we have
by monotonicity that S E R ∪ T . But R ∪ T is a consistent extension of R. Thus,
R E-recaptures S, which contradicts the assumption that S strongly E-maximizes
over R.

2.2. Types of interpretations Thus, the abstract notion of restrictiveness,
whether weak or strong, is defined in terms of an abstract interpretation relation.
The idea is that a restrictive theory is one that prevents us from interpreting some
theories.

In our specific situation, a translation τ consists of an L∈-formula δ with one
free variable and an L∈-formula ε with two free variables. A translation recursively
defines a translation operation on all L∈-formulas as follows:

(x ∈ y)τ := δ(x) ∧ δ(y) ∧ ε(x, y),

(ϕ ∧ ψ)τ := ϕτ ∧ ψτ ,
(¬ϕ)τ := ¬ϕτ ,

(∃xϕ)τ := ∃x(δ(x) ∧ ϕτ ).

A translation τ = 〈δ, ε〉 is an interpretation of T in S if for every axiom ϕ of T ,
S ` ϕτ (Tarski et al., 1953, pp. 20ff.). Our interpretation relations � are usually
defined in terms of a class of translations C where we say that T � S if there is a
translation τ ∈ C such that τ is an interpretation of T in S.

We say that the interpretability strength of T is at least as great as that of S if
there is an interpretation of S in T . If T has greater interpretability strength than S,
then T has greater consistency strength than S (Visser, 2006, § 1.2.2). The converse,
however, is not true (Visser, 2006, § 1.1, fn. 1). The reason is that interpretations are
designed to preserve certain important features of the interpreted theory. Specific
types of interpretations can then be obtained by requiring that the interpretation
should preserve further aspects of the original theory. Formally, this is done by
requiring that the interpreting theory should prove that the relevant interpretation
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describes a model which agrees in certain respects with the larger universe. In a
set-theoretic context, the following notions naturally suggest themselves:2

Definition 4. Let S and T be set theories and let τ = 〈δ, ε〉 be an interpretation
of T in S.

1. We say that τ is an ∈-interpretation of T in S if

S ` ∀x∀y((x ∈ y)τ → x ∈ y).

2. We say that τ is a transitive interpretation of T in S if it is an ∈-interpretation
and

S ` ∀x∀y((x ∈ y ∧ δ(y))→ δ(x)).

3. We say that τ is an inner model interpretation of T in S if τ is a transitive
interpretation of T in S and

S ` ∀αδ(α).3

§3. Fair interpretations

3.1. A reference list of set theories In this section, we present the set the-
ories that we shall be concerned with. Most of these either come from Maddy’s dis-
cussion of the original definitions, motivating the individual constituents (Maddy,
1997, pp. 218–231), or from Hamkins’s discussion of “some new problems with
Maddy’s proposal” (Hamkins, 2013, § 2).

The basic additional axioms are large cardinal axioms; these are of the form
∃κΦ(κ) where Φ is some large cardinal property. In the following, we shall consider:4

IC ∃κ(κ is strongly inaccessible),

Mahlo ∃κ(κ is Mahlo),

MC ∃κ(κ is measurable).

Since inaccessible cardinals are very important for the set-up of the definitions, we
introduce the abbreviation Inacc(κ) for “κ is strongly inaccessible”.

For each large cardinal axiom A = ∃κΦ(κ), we can consider multiple cardinal
versions such as 2A = ∃κ < λ(Φ(κ) ∧ Φ(λ)) and the unbounded version ∞A =
∀α∃κ > αΦ(κ). The latter produces axioms such as “there is a proper class of
inaccessible cardinals”, ∞IC.

The axiom MC has greater consistency strength than Mahlo, which in turn has
greater consistency strength than IC. Even more is true: MC has greater consistency
strength than ∞Mahlo, and Mahlo has greater consistency strength than ∞IC.
Furthermore, for each of our large cardinal axioms A, ∞A has strictly greater
consistency strength than A. The nontrivial parts of these claims are all proved by

2 Many other natural notions are available, but will not be used in this paper. These
include the notions of interpretations in ω-models or wellfounded models.

3 Here, and throughout this paper, the variable α always ranges over ordinals, so ∀αϕ is
an abbreviation for ∀α(α ∈ Ord→ ϕ) and ∃αϕ for ∃α(α ∈ Ord ∧ ϕ).

4 For definitions, cf. (Kanamori, 2003, §§ 1&2). All of our large cardinal axioms will be
used in the ZFC-context, so we are ignoring the subtleties that are required in the
absence of AC.
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truncating the universe at an appropriate inaccessible. As an example, consider MC
and∞IC: by the ultrapower construction, if κ is measurable, there are unboundedly
many Mahlo cardinals below κ (Kanamori, 2003, Proposition 5.15), but each Mahlo
cardinal has unboundedly many inaccessibles below it. Let λ be the least Mahlo
cardinal and consider Vλ, the set of sets of Mirimanoff rank < λ. The structure
〈Vλ,∈〉 has unboundedly many inaccessible cardinals and is a model of ZFC since
λ was inaccessible (Kanamori, 2003, Proposition 1.2), so it is a set model of ∞IC.
This construction proves that ZFC + MC ` Cons(ZFC +∞IC). The operation of
truncation used in this argument is crucial in § 3.2..

Now that we have a list of set theories, we can of course consider Boolean
combinations of the axioms defining these, such as conjunctions, disjunctions and
negations, forming new set theories. In the case of negations of large cardinal axioms
and their unbounded versions, we get axioms such as “there is no measurable
cardinal”, ¬MC, or “there is at most a set of Mahlo cardinals”, ¬∞Mahlo.

Of course, a very important anti-large cardinal axiom is V=L, which implies ¬MC
(Kanamori, 2003, § 3 & Corollary 5.5) but is consistent with other large cardinal
axioms such as IC or ∞IC. These axioms can be relativized to L, and we write AL

for these relativized axioms, e.g., ICL for “there is an inaccessible cardinal in L”.
Relativized large cardinal axioms are consistent with the negations of their full

versions, e.g., ICL ∧ ¬IC is true in the universe obtained by collapsing (by forcing)
the only inaccessible of a ground model we are starting from. Constructions of this
sort can be used to show that the negated large cardinal axioms we consider, which
might seem to be restrictive in the pre-theoretical sense, are not formally restrictive
(cf. § 3.2.).

Combinations like ICL ∧ ¬IC clearly imply V 6=L, and so do statements such as
(Inacc(ωV

1 ))L, which says “the true ω1 is an inaccessible cardinal in L”.

3.2. Definitions In § 3.1., we used the operation of truncation to deal with
situations like ZFC+Mahlo and ZFC+∞IC. The consistency strength of the former
is strictly greater than that of the latter, but the former does not imply the latter.
Furthermore, it is consistent to have a model with a Mahlo cardinal without any
inner models with unboundedly many inaccessible cardinals. Only by truncating
such model at an inaccessible limit of inaccessible cardinals (e.g., at a Mahlo
cardinal5) do we obtain a model of ∞IC. Truncated inner model interpretations
are needed to handle the operation of truncation.

Definition 5. Let S and T be set theories. We say that τ = 〈δ, ε〉 is a truncated
inner model interpretation of T in S if τ is a transitive interpretation of T in S and
S ` ∃κ(Inacc(κ) ∧ ∀α(α < κ↔ δ(α))).6

We can now define Maddy’s notion of a fair interpretation.

5 Note that one could also truncate at an inaccessible limit of inaccessible cardinals that
is not Mahlo. (There must be many such cardinals below the Mahlo cardinal.)

6 In (Maddy, 1998, p. 145) and (Maddy, 1997, p. 221), Maddy formulates truncation
at inaccessible levels by requiring that S ` ∃κ(Inacc(κ) ∧ ∀α(α < κ → δ(α))). But if
truncation has to occur at an inaccessible cardinal, rather than at an inaccessible or
somewhere above, we need to replace the conditional with a biconditional (Hamkins,
2013, § 2).
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Definition 6. Let S and T be set theories. We say that τ is a fair interpretation
of T in S if τ is either an inner model interpretation of T in S or a truncated inner
model interpretation of T in S. We write T Efair S if there is such a τ .

Thus, the definition of a fair interpretation involves a meta-disjunction: that a
theory S fairly interprets a theory T implies that S either proves that the domain
of the interpretation contains all ordinals or S proves that the domain of the
interpretation contains all ordinals up to an inaccessible. This fact will be used
in Hamkins’s proof of Proposition 9, and will be discussed further in § 4.2..

Given an interpretation τ = 〈δ, ε〉 between set theories, we define BR(x, y) to
be the formula y ⊆ x2. For v, w such that δ(v) and δ(w), we write opτ (v, w) for
the unique z such that δ(z) and τ interprets z as the ordered pair of v and w. If
BR(x, y)τ , we define two sets:

Eτx := {z : ε(z, x)} and

Rτy := {(v, w) : ε(opτ (v, w), y)}.

Then the formula ∃x∃X ⊆ x2∀y∀z(BR(y, z)τ → 〈x,X〉 6∼= 〈Eτy , Rτz 〉) says that there
is some structure which is not isomorphic to any structure in δ. We abbreviate this
formula as NewIso(τ) and use it to characterize another type of interpretation.

Definition 7. Let S and T be set theories and let τ = 〈δ, ε〉 be an interpretation of
T in S. We say that τ is a maximizing interpretation of T in S if S ` NewIso(τ).7

The notion of interpretation Maddy settles on is that of a fair interpretation
which is also maximizing.

Definition 8. Let S and T be set theories. We say that τ is a Maddy interpretation
of T in S if τ is a fair and maximizing interpretation of T in S. We write T EMaddy S
if there is such a τ .

Whilst the relation Efair is reflexive, the relation EMaddy no longer is, since
the requirement that interpretations should be maximizing rules out the trivial
interpretation 〈x = x,∈〉. We shall say more about this requirement in §5..

Maddy’s notion of restrictiveness, as used in (Maddy, 1997), is now just strong
EMaddy-restrictiveness. Her main result is to show that ZFC + V=L is strongly
EMaddy-restrictive.8 Note, on the other hand, that the negated large cardinal axioms
considered in this paper are not strongly EMaddy-restrictive. For instance, although

7 In her original presentation, Maddy (1997, 221) uses the formula ∃x∃X ⊆ x2∀y∀Y ⊆
y2(δ(y) ∧ δ(Y ) → 〈x,X〉 6∼= 〈y, Y 〉), but this expresses the new isomorphism type
requirement only if one restricts attention to transitive interpretations. Note that if
τ is an transitive interpretation (and given that S is a set theory and hence extends
ZF), requiring that S ` NewIso(τ) is the same as requiring that S ` ∃x¬δ(x). For if
there is a set A such that ¬δ(A), then the isomorphism type of the transitive closure
of {A} cannot be realized in δ, as this would force A itself into that structure by the
Mostowski collapse. This was already pointed out by Maddy (1997, 221–222, fn. 17)
for her formulation of the new isomorphism type requirement.

8 Maddy notices that her formal criterion of restrictiveness admits of false negatives and
false positives. For this reason, she weakens it to a semi-formal criterion by demanding
that the inner model described by the fair interpretation should be ‘optimal’ and that
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there is a Maddy interpretation of ZFC + ¬IC in ZFC + IC, the former EMaddy-
recaptures the latter, since there is a Maddy interpretation of ZFC + IC in ZFC +
¬IC ∧ 2ICL.

3.3. Hamkins’s counterexamples Hamkins (2013) has noticed two struc-
tural problems with Maddy’s definitions. We here reproduce the proofs using our
notation, since this will facilitate the discussion in § §4..

The first problem is that disjunction is not an upper bound with respect to Efair.

Proposition 9 (Hamkins). There is a set theory T and axioms A and B such that
T Efair ZFC + A, T Efair ZFC + B, but T 6Efair ZFC + A ∨ B.

Proof. Let δMahlo be the formula expressing “x ∈ Vκ where κ is the least Mahlo
cardinal”. It is clear that 〈δMahlo,∈〉 is a fair interpretation of ZFC+∞IC in ZFC+
Mahlo. And it is also clear that 〈x ∈ L,∈〉 is a fair interpretation of ZFC +∞IC in
ZFC + (∞IC)L. However, ZFC +∞IC 6Efair ZFC + Mahlo ∨ (∞IC)L.

To see the latter, note first that ZFC + Mahlo ∨ (∞IC)L 6` IC, since from any
model of ZFC +∞IC we can obtain by forcing a model of ZFC + Mahlo ∨ (∞IC)L

without inaccessibles (Hamkins, 2013, § 2). Thus, if τ = 〈δ,∈〉 is a fair interpretation
of ZFC +∞IC in ZFC + Mahlo ∨ (∞IC)L, it must be because τ is an inner model
interpretation of ZFC +∞IC in ZFC + Mahlo ∨ (∞IC)L, and so we must have that
ZFC + Mahlo ∨ (∞IC)L ` ∀αδ(α).

But now note that ZFC + Mahlo ∨ (∞IC)L cannot prove (∞IC)L either, since by
truncation we can get a model of ZFC + Mahlo ∨ (∞IC)L with a Mahlo cardinal in
L but no inaccessibles above. So if ZFC + Mahlo ∨ (∞IC)L ` ∀αδ(α), then ZFC +
Mahlo ∨ (∞IC)L 6` (∞IC)τ . Hence, ZFC +∞IC 6Efair ZFC + Mahlo ∨ (∞IC)L.

The second structural problem is that the fair interpretation relation is not
transitive.

Proposition 10 (Hamkins). There are set theories S, T and R such that S Efair T ,
T Efair R, but S 6Efair R.

Proof. Let δIC be the formula expressing “x ∈ Vκ where κ is the least inaccessible
cardinal”. It is easy to see that 〈δIC,∈〉 is a fair interpretation of ZFC+ V=L∧¬IC
in ZFC+V=L∧ IC. And it is also easy to see that 〈x ∈ L,∈〉 is a fair interpretation
of ZFC + V=L ∧ IC in ZFC + (Inacc(ωV

1 ))L. However, ZFC + V=L ∧ ¬IC 6Efair

ZFC + (Inacc(ωV
1 ))L.

To see this, note first that ZFC + (Inacc(ωV
1 ))L 6` IC. So if τ = 〈δ,∈〉 is a fair

interpretation of ZFC + V=L ∧ ¬IC in ZFC + (Inacc(ωV
1 ))L, it must be because τ

is an inner model interpretation of ZFC + V=L ∧ ¬IC in ZFC + (Inacc(ωV
1 ))L, and

so we must have that ZFC + (Inacc(ωV
1 ))L ` ∀αδ(α). But then in order to have

ZFC + (Inacc(ωV
1 ))L ` (ZFC + V=L ∧ ¬IC)τ , δ would have to be ‘x ∈ L’. Clearly,

however, ZFC + (Inacc(ωV
1 ))L ` ICL, and so 〈x ∈ L,∈〉 is not a fair interpretation

of ZFC+V=L∧¬IC in ZFC+ (Inacc(ωV
1 ))L after all. Thus, ZFC+V=L∧¬IC 6Efair

ZFC + (Inacc(ωV
1 ))L.

Hamkins (2013, § 4) proposes a very simple solution: replace the fair interpreta-
tion relation with the transitive interpretation relation. This relation is transitive,

the witness to a theory’s restrictiveness should not be a ‘dud’ theory (Maddy, 1997,
225–231). Since we are here interested in the formal properties of the fair interpretation
relation, we may ignore this feature of her proposal.
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and disjunction is an upper bound with respect to it. The former fact is obvious;
to establish the latter fact, we prove the more general Theorem 12 below, which we
shall also make use of in § 4.2..

But although allowing all transitive interpretations avoids the problems of the
Maddy interpretation relation EMaddy, it also has the consequence that V=L is no
longer restrictive: L and V have transitive models of exactly the same set theories
(Hamkins, 2013, § 3).9 In Hamkins’s view, this reflects the fact that “the believer in
V=L seems fully able to converse meaningfully with any large cardinal set theorist”
(Hamkins, 2013, § 4).

At the beginning of her discussion of fair interpretations, Maddy had already
considered transitive countable models inside L of theories contradicting V=L as
a possible interpretation, but discarded them with the words: “[this] is a paltry
interpretation . . . ; to begin with, it’s countable!” (Maddy, 1997, p. 219).

In the next section, we shall provide a solution to Hamkins’s problems that is
not as radical as using all transitive interpretations and is closer to the spirit of
Maddy’s proposal.

For Theorem 12, we need the following definitions.

Definition 11. In the following, let ϕ0 and ϕ1 be sentences of L∈, let τ0 = 〈δ0, ε0〉
and τ1 = 〈δ1, ε1〉 be translations, and let C be a class of translations.

1. We say that ϕ0 and ϕ1 are mutually exclusive if BST ` ϕ0 → ¬ϕ1.
2. If ϕ0 and ϕ1 are mutually exclusive, then 〈(ϕ0 → δ0)∧(ϕ1 → δ1), (ϕ0 → ε0)∧(ϕ1 →
ε1)〉 is the disjunction of τ0 and τ1 induced by ϕ0 and ϕ1. (In symbols: τ0∨ϕ0,ϕ1

τ1.)
3. We say that C is closed under disjunction if for mutually exclusive formulas ϕ0 and
ϕ1, if τ0 and τ1 are in C then so is τ0 ∨ϕ0,ϕ1

τ1.

Given these definitions, we can now prove the following theorem.

Theorem 12. Let C be a class of translations closed under disjunctions and define
T E S by “there is a translation of T in S in C”. If T E BST+A and T E BST+B,
then T E BST + A ∨ B.

Proof. Suppose τ ∈ C is a witness to T E BST + A and υ ∈ C is a witness to T E
BST+B. Clearly, A and B∧¬A are mutually exclusive. By our closure assumption
on C, we have that τ ∨A,B∧¬A υ is also in C. This translation witnesses T E BST +
A ∨ B.

§4. Possibly truncated inner model interpretations

4.1. Definitions Hamkins’s counterexamples highlight two problematic fea-
tures of Maddy’s definitions. First, the definition of a fair interpretation requires
the interpreting theory either to prove that the interpretation’s domain contains all
ordinals or to prove that it contains all ordinals up to an inaccessible. In the proof
of Proposition 9, this fact is exploited by constructing a case where there is an inner
model interpretation of T in ZFC+A and a truncated inner model interpretation of T

9 This can be seen simply by observing that the assertion that a theory T has a transitive
model has complexity Σ1

2, and is therefore absolute between L and V by Shoenfield’s
absoluteness theorem (on the assumption that T ∈ L, which is the case for the theories
under consideration in this paper).
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in ZFC+B but there is no transitive interpretation τ = 〈δ,∈〉 of T in ZFC+A∨B such
that ZFC+A∨B ` ∀αδ(α) or ZFC+A∨B ` ∃κ(Inacc(κ)∧∀α(α < κ↔ δ(α))). The
definitions below deal with the problem by dispensing with the meta-disjunction
involved in the definition of a fair interpretation and introducing the notion of a
possibly truncated interpretation, which includes a disjunctive element in what the
interpreting theory is required to prove.

Second, the definition of a truncated inner model interpretation allows us to
truncate at a cardinal κ only if κ is inaccessible in the universe of the interpreting
theory. In the example used by Hamkins to show that Efair is not transitive,
however, we would like to interpret ZFC+V=L∧¬IC in ZFC+(Inacc(ωV

1 ))L by going
to L and then truncating at a cardinal which is inaccessible there and not in the
larger universe. The definitions below are designed to allow truncation at a cardinal
which is only inaccessible in the inner model defined by the interpretation.10

We now proceed to give our definitions. First, we need some abbreviations. Let
τ = 〈δ, ε〉 be a translation and rk be the Mirimanoff rank function. Then we write
δα(y) for δ(y) ∧ rk(y) < α and τα for 〈δα, ε〉.

Let S and T be set theories, i.e., T = BST + A. Then a translation τ = 〈δ, ε〉 is
a possibly truncated interpretation of T in S if

1. S ` ϕτ for every axiom ϕ of BST;
2. S ` Aτ ∨ (∃κ Inacc(κ)τ ∧ Aτκ).

It should now be clear why we have taken set theories to be finite extensions of BST.
If we had allowed infinite extensions of BST, then we would have had to require T
to prove ϕτ ∨ (∃κ Inacc(κ)τ ∧ ϕτκ) for every axiom ϕ of S. But then it could have
been the case that some axioms of S held only in τ and others only in τκ.

Also, note that the notion of a possibly truncated interpretation is not a special
case of the notion of an interpretation as defined in § 2.2.. Nonetheless, the results in
this paper that concern an abstract interpretation relation E also apply to possibly
truncated interpretations.

Definition 13. Let S and T be set theories and let τ = 〈δ, ε〉 be a possibly
truncated interpretation of T in S.

1. We say that τ is a possibly truncated ∈-interpretation of T in S if S ` ∀x∀y((x ∈
y)τ → x ∈ y).

2. We say that τ is a possibly truncated transitive interpretation of T in S if τ is a
possibly truncated ∈-interpretation of T in S and S ` ∀x∀y((x ∈ y∧δ(y))→ δ(x)).

3. We say that τ is a possibly truncated inner model interpretation of T in S if τ is
a possibly truncated transitive interpretation of T in S and S ` ∀αδ(α). We write
T Eptim S if there is such a τ .

Definition 14. Let S and T be set theories, i.e., T = BST+A. Then a translation
τ = 〈δ, ε〉 is a maximizing possibly truncated interpretation of T in S if

10 One might also want to allow for truncation at a cardinal which is not inaccessible but
wordly in the inner model defined by the interpretation (where a cardinal κ is worldly
if Vκ |= ZFC). For the purposes of this paper, we follow Maddy in using inaccessible
cardinals to provide the points at which truncation can occur, but our definitions can
be easily adapted to the case of worldy cardinals. We hope to return to the issue in
future work when discussing Maddy’s choice to focus on inner models and truncations
thereof (cf. § §5.).
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1. S ` ϕτ for every axiom ϕ of BST;
2. S ` (Aτ ∧NewIso(τ) ∨ (∃κ Inacc(κ)τ ∧ (Aτκ ∧NewIso(τκ))).

Definition 15. Let S and T be set theories and let τ be a possibly truncated
interpretation of T in S. We say that τ is a Maddy? interpretation if τ is a possi-
bly truncated inner model interpretation and is a maximizing possibly truncated
interpretation. We write T EMaddy? S if there is such a τ .

4.2. The counterexamples defused Propositions 2, 3 and Theorem 12 show
that if EMaddy? is transitive and monotone and the class of Maddy? interpretations
is closed under disjunctions, then we have resolved all of Hamkins’s problems.

Proposition 16. Both Eptim and EMaddy? are monotone.

Proof. The relations T Eptim S and T EMaddy? S are just defined in terms of a
list of statements of the form S ` Φ, so replacing S with R ⊇ S preserves the
property.

Proposition 17. If T Eptim BST + A and T Eptim BST + B, then T Eptim BST +
A ∨ B; similarly, if T EMaddy? BST + A and T EMaddy? BST + B, then T EMaddy?

BST + A ∨ B.

Proof. It is easy to see that both the class of possibly truncated inner model
interpretations and the class of Maddy? interpretations are closed under disjunction.
The result then follows immediately from Theorem 12.

Theorem 18. If S Eptim T and T Eptim R, then S Eptim R.

Proof. Let S = BST + A and T = BST + B and suppose that S Eptim T and
T Eptim R. By definition, there is a τ = 〈δ,∈〉 such that τ is a possibly truncated
inner model interpretation of S in T and a υ = 〈ξ,∈〉 such that υ is a possibly
truncated inner model interpretation of T in R. Let ϑ = δ ◦ ξ. We claim that
σ = 〈ϑ,∈〉 is a possibly truncated inner model interpretation of S in R.

We begin by observing that R ` ∀x∀y((x ∈ y ∧ ϑ(y)) → ϑ(x)) and R ` ∀αϑ(α).
Moreover, for all ϕ in BST, R ` ϕσ since by assumption R ` ϕυ for all ϕ in BST.
It remains to be shown that R ` Aσ ∨ (∃ν Inacc(ν)σ ∧ Aσν ).

Since R ` Bυ ∨ (∃λ Inacc(λ)υ ∧ Bυλ), then R ` (Aτ ∨ (∃κ Inacc(κ)τ ∧ Aτκ))υ ∨
(∃λ Inacc(λ)υ ∧ (Aτ ∨ (∃µ Inacc(µ)τ ∧ Aτµ))υλ).

We now note that for any α, τα
υ = σα and τυα = σα. So we have that R `

(Aσ ∨ (∃κ Inacc(κ)σ ∧Aσκ))∨ (∃λ Inacc(λ)υ ∧ (Aσλ ∨ (∃µ Inacc(µ)σλ ∧Aσmin(λ,µ)))).
By elementary reasoning, it follows that R ` Aσ ∨ ((∃κ Inacc(κ)σ ∧ Aσκ) ∨

(∃λ Inacc(λ)υ ∧ Aσλ) ∨ (∃λ Inacc(λ)υ ∧ ∃µ Inacc(µ)σλ ∧ Aσµ)).
But for α and β such that α < α+ < β, Vβ |= Inacc(α) if and only if V |=

Inacc(α). It follows that R ` Aσ ∨ (∃ν Inacc(ν)σ ∧ Aσν ).

It might be instructive to see how the definition of a possibly truncated inner
model interpretation deals with the example Hamkins used to prove that Efair is
not transitive (cf. the proof of Proposition 10). We need a τ such that τ is a possibly
truncated inner model interpretation of ZFC+ V=L∧¬IC in ZFC+ (Inacc(ωV

1 ))L.
The required τ is 〈x ∈ L,∈〉.

Proposition 19. If S EMaddy? T and T EMaddy? R, then S EMaddy? R.
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Proof. Let S = BST + A and T = BST + B and suppose that S EMaddy? T
and T EMaddy? R. By definition, there is a τ = 〈δ,∈〉 such that τ is a Maddy?

interpretation of S in T and a υ = 〈ξ,∈〉 such that υ is a Maddy? interpretation of
T in R. Let ϑ = δ ◦ ξ. We claim that σ = 〈ϑ,∈〉 is a Maddy? interpretation of S in
R.

The proof of Theorem 18 tells us that σ witnesses that S �ptim R, so we only
need to check that

R ` (Aσ ∧NewIso(σ)) ∨ (∃ν Inacc(ν)σ ∧ (Aσν ∧NewIso(σν))).

The same argument used in the proof of Theorem 18 establishes that R ` (Aσ ∧
NewIso(υ)) ∨ (∃ν Inacc(ν)σ ∧ (Aσν ∧ NewIso(υν))). If R ` NewIso(υ), then R `
NewIso(σ). IfR ` ∃ν(Inacc(ν)σ∧NewIso(υν)), thenR ` ∃ν(Inacc(ν)σ∧NewIso(σν)).

§5. Discussion of some design choices In §4., we provided a notion of
Maddy? interpretation EMaddy? and its corresponding notion of strong EMaddy? -
restrictiveness that are as similar to Maddy’s original notion as possible while deal-
ing with the formal issues observed by Hamkins. The main technical components
of Maddy’s definitions are

(DC1) the focus on interpretations in inner models or truncations of inner models,
(DC2) the notion of maximizing interpretations, resulting in an irreflexive inter-

pretation relation, and
(DC3) the fact that the notion of restrictiveness is defined in terms of strongly

maximizing theories (rather than weakly maximizing theories).

Obviously, among the three, (DC1) is the most fundamental. In (Löwe, 2001, p.
352-353) and (Löwe, 2003, p. 329-331), the focus on inner models was identified as
the culprit when the theory ZFG EMaddy-strongly maximizes over ZFC. In (Löwe,
2003, p. 330), the second author proposed a “compromise option [using] a system
of ranked naturalness”; this discussion deserves an in-depth analysis that will be
the topic of future work and we shall not go into (DC1) any further here (but see
the remark about AFA below).

Concerning (DC2), the main effect that the requirement of interpretations satis-
fying NewIso(τ) is that the interpretation relation becomes irreflexive. We already
mentioned that this is a rather unusual feature since in the general theory of
interpretations, interpretation relations tend to be reflexive and transitive. The
following argument for this design choice can be extrapolated from Maddy’s dis-
cussion (Maddy, 1997, p. 216-222):

Consider the theory AFA consisting of ZFC with the Axiom of Foundation re-
placed by Aczel’s Anti-Foundation Axiom (Aczel, 1988, Chapter 1). Clearly, ZFC
or any consistent extension thereof cannot fairly interpret AFA, since any fair
interpretation is also an ∈-interpretation. But the von Neumann hierarchy WF
is a fair interpretation of ZFC in AFA (Maddy, 1997, p. 221). So ZFC�fair AFA, and
ZFC is Efair-restictive. However, as Maddy points out (Maddy, 1997, p. 218, fn. 9),
AFA 6` NewIso(〈WF,∈〉) and indeed AFA ` ¬NewIso(〈WF,∈〉), and hence the von
Neumann hierarchy is not a Maddy interpretation of ZFC in AFA. In fact, no such
interpretation exists (Maddy, 1997, p. 222, fn. 18).
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Note that the statement “ZFC �fair AFA” is the one instance mentioned in §2.
where our definitions are applied to a set theory which is not a finite extension
of ZF. However, this makes a renewed discussion of (DC1) necessary as the focus
on ∈-interpretations (which plays a crucial role in the argument) heavily depends
on our choice of ZF as base theory and the moment one moves to weaker base
theories, this choice has to be re-assessed. So, if the base theory (as in this case)
is ZF − Foundation, then we might want to deal with interpretations that are not
∈-interpretations.

Concerning (DC3), we should like to present the following abstract result.

Proposition 20. Let S and T be set theories. Suppose that E is reflexive and
monotone.11 Then S <E

weak T if and only if S <E
strong T .

Proof. The right-to-left direction is immediate from the definitions. For the left-to-
right direction, suppose S <E

weak T but not S <E
strong T . Then

(i) S � T ;

(ii) S does not E-recapture T ;

(iii) T ∪ S is consistent.

By assumption, E is reflexive and monotone and so T E T ∪S. Since, by (iii), T ∪S
is consistent, S E-recaptures T , contradicting (ii).

Proposition 20 connects (DC2) and (DC3) since all of the interpretations in
this paper are monotone, and it is only the requirement “NewIso(τ)” that is an
obstacle for reflexivity. We would like to propose the idea of using a reflexive
notion of interpretation E (such as Eptim) and then using weak E-restrictiveness
as a criterion for foundational theories. Arguments for using a notion such as
weak Eptim-restrictiveness would be: (a) as a reflexive notion of interpretation, E
fits better with the standard literature on interpretations; (b) by removing the
conditions of “NewIso(τ)” and “S ∪ T is inconsistent”, we simplify the notion
considerably; (c) the two conditions we are removing are the ones that are hardest
to argue for,12 as they do not naturally arise from the informal explanation of the
notion of restrictiveness.
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Löwe, B. (2003). A second glance at non-restrictiveness. Philosophia
Mathematica 11(3), 323–331.

Maddy, P. (1988a). Believing the axioms. I. Journal of Symbolic Logic 53(2),
481–511.

Maddy, P. (1988b). Believing the axioms. II. Journal of Symbolic Logic 53(3),
736–764.

Maddy, P. (1997). Naturalism in mathematics. New York: The Clarendon Press
Oxford University Press.

Maddy, P. (1998). V = L and MAXIMIZE. In Makowsky, J. A. & Ravve, E. V.,
editors, Logic Colloquium ’95, Papers from the colloquium held as part of the
European Summer Meeting of the Association for Symbolic Logic in Haifa, August
9–18, 1995, Volume 11 of Lecture Notes Logic, pp. 134–152. Berlin: Springer.

Tarski, A., Mostowski, A., & Robinson, A. (1953). Undecidable Theories.
Amsterdam: North-Holland.

Visser, A. (2006). Categories of theories and interpretations. In Enayat, A.,
Kalantari, I., & Moniri, M., editors, Logic in Tehran, Proceedings of the Workshop
and Conference on Logic, Algebra and Arithmetic held in Tehran, October 18–22,
2003, Volume 26 of Lecture Notes in Logic, pp. 284–341. La Jolla, CA: Association
for Symbolic Logic.

INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION
UNIVERSITEIT VAN AMSTERDAM

POSTBUS 94242, 1090 GE AMSTERDAM, THE NETHERLANDS
E-mail: {l.incurvati,b.loewe}@uva.nl

AFDELING WIJSBEGEERTE
UNIVERSITEIT VAN AMSTERDAM

OUDE TURFMARKT 141-147, 1012 GC AMSTERDAM, THE NETHERLANDS

FACHBEREICH MATHEMATIK

UNIVERSITÄT HAMBURG
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