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Abstract

The isomorphism type of the knot quandle introduced by Joyce is a complete invariant of

tame knots. Whether two quandles are isomorphic is in practice difficult to determine; we show

that this question is provably hard: isomorphism of quandles is Borel complete. The class

of tame knots, however, is trivial from the perspective of Borel reducibility, suggesting that

equivalence of tame knots may be reducible to a more tractable isomorphism problem.

1 Introduction

Left distributivity arises in the study of many well-known mathematical objects such as groups,

knots and braids, and also in the study of large cardinal embeddings in set theory. Specifically,

left distributive algebras are structures with one binary operation ∗ satisfying the left self-

distributivity law a ∗ (b ∗ c) = (a ∗ b) ∗ (a ∗ c). Familiar examples include the conjugation

operation on any group and the implication operation on any Boolean algebra; symmetric spaces

in differential geometry provide further examples [1]. The first nontrivial example of a free left

distributive algebra on one generator is due to Laver [15], who showed that the algebra generated

by a certain elementary embedding under the application operation is such an algebra (the

existence of these embeddings is one of the strongest known set-theoretic axioms).

Other interesting classes of structures are obtained by adding further algebraic axioms to the

left distributive law, with an important case being the quandles. Quandles are left distributive

algebras satisfying a∗a = a and such that for every a and c in the algebra there is a unique b such

that a ∗ b = c. It is quandles that are the focus of this note. Isomorphism type of quandles is a

complete invariant of knots, and we prove that isomorphism of quandles is, from the perspective

of Borel reducibility, fundamentally difficult (Borel complete). After first offering an introduction
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to quandles and Borel reducibility, we present the technical preliminaries in Section 2, give the

main result and corollaries in the next section, and discussion in the final section.

In his doctoral thesis, and published in [12], Joyce rediscovered quandles and coined the

term quandle. There he established many foundational relationships, including those between

quandles and group conjugation and quandles and knots. Indeed he showed that the equational

theory of quandles is precisely the equational theory of the conjugation operation: any identity

true in every group with its conjugation operation is also true in every quandle, and hence

provable from the quandle axioms. The three quandle axioms may also be viewed as algebraic

versions of the familiar Reidemeister moves for translating between different regular projections

of equivalent knots. One may consequently associate to any tame knot a quandle generated by

the arcs of the knot and with identities dictated by the crossings; notice that all such quandles are

finitely presented. In addition to defining the knot quandle in this way, Joyce showed that these

quandles in fact constitute complete invariants for tame knots: two tame knots are equivalent

if and only if their associated quandles are isomorphic. (Tame knots essentially correspond

to one’s intuitive notion of finite knots in three-dimensional space, and in particular are not

assumed to be endowed with an orientation.)

The complexity of classification problems and the study of complete invariants for structures

have emerged as major themes in set theory. Broadly, a classification can be thought to assign

mathematical objects of one type — considered up to isomorphism or some other such equiva-

lence relation — to mathematical objects of another type (again up to an equivalence relation),

where the former act as invariants. Frequently the objects in question, both those to be classified

and the invariants, can be encoded by real numbers. For example, countable structures with

underlying set N, such as groups, rings, and indeed left distributive algebras, can be encoded

in a natural way by sets of finite tuples of natural numbers, and hence by reals. Classification

then amounts to finding a reasonably definable map from the reals encoding the structures to

the reals encoding the invariants that respects the relevant equivalence relations. Of course, the

“reasonably definable” is important here — a non-constructive proof of the existence of such a

map using, say, the Axiom of Choice should not be considered a classification. A natural way

to exclude such uninformative maps would be to require the map to be continuous, but this

interpretation is too restrictive to be practical. The more liberal constraint that the map be

Borel, however, permits almost all constructions that arise in practice whilst being restrictive

enough to obtain meaningful theorems about the framework.

Classifying structures using Borel maps between sets of encoding reals gives rise to the notion

of Borel reducibility. Given two equivalence relations E and F on real numbers, say that E is

Borel reducible to F , written E ≤B F , if there is a Borel function f from R to R such that for

all x and y in R, x E y holds if and only if f(x) F f(y) holds. Establishing that one equivalence

relation is not Borel reducible to another has been used in a number of cases to show that a

classification problem is impossible to resolve. For example, Farah, Toms, and Törnquist [6]

used this analysis to show that unital simple separable nuclear C∗-algebras are not classifiable

by countable structures (note that each adjective makes the theorem stronger), and Foreman,

Rudolph, and Weiss [8] showed that ergodic measure-preserving transformations of the unit
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interval are not classifiable by countable structures (and indeed much more). For more on this

area see, for example, Hjorth’s book [11]. Within the scope of knot theory, Kulikov [14] has

recently shown that the class of all knots — including, for example, wild knots with infinitely

many crossings — is not classifiable by countable structures.

Against this background it is natural to ask: what is the Borel complexity of the isomorphism

relation on the most general class of countable left distributive structures, the countable left

distributive algebras? This question was indeed posed to the second author by Matt Foreman.

In this note we show that it has the maximum possible complexity for an isomorphism relation on

countable structures: in the standard terminology introduced in the seminal paper of Friedman

and Stanley [9], isomorphism of left distributive algebras is Borel complete. Moreover the same

is true for the subclasses of racks, quandles, and keis (see Section 2 for definitions). We show

directly that isomorphism of keis (Definition 1.4) is Borel complete; the result for the other,

more general classes follows. We also show that the related class of expansions of left distributive

algebras satisfying the set of axioms Laver [16] denoted by Σ (Definition 2) is Borel complete,

although the argument proceeds differently.

Knot theorists express some dissatisfaction with quandles as knot invariants because of the

difficulty in determining whether two quandles are isomorphic. This difficulty is perhaps not

surprising: our result says that isomorphism of arbitrary countable quandles is Borel complete.

By contrast, tame knots can reasonably be encoded up to equivalence by equivalence classes of

natural numbers rather than reals, and hence are trivial in the context of Borel reducibility. It is

therefore reasonable to hope that a complete invariant for knots that is simpler than the quandle

(in terms of Borel reducibility) might be discovered. Of course, the subclass of those quandles

arising from tame knots is countable up to quandle isomorphism. Furthermore, as previously

remarked, all quandles from tame knots are finitely presented; the class of finitely presented

quandles also has only countably many members up to isomorphism, and so is trivial in Borel

reducibility terms. Finitely presented quandles are thus optimal in this sense as invariants for

tame knots, but their finite presentability is crucial to this fact. We speculate that a non-

Borel complete class of structures with a definition that does not depend on the cardinality of

the presentation of the structure may provide complete invariants for tame knots which are in

practice easier to test for isomorphism.

2 Preliminaries

As we will be discussing the related classes of left distributive algebras, racks, quandles, and

keis, we begin by giving some intuition for them. These classes of structures can usefully be

understood in terms of the behaviour of the action of left multiplication by an element of the

algebra. For structures with underlying set A and binary operation ∗, and for each a in A, denote

by ma the map from A to A that acts by multiplication on the left by a, that is, ma(b) = a ∗ b.
Then left distributive algebras are those for which ma is a homomorphism from A to itself for

each a in A. A rack is a left distributive algebra in which each ma is an automorphism (indeed

Brieskorn [2] referred to racks as automorphic sets). In a quandle, ma an automorphism and
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a is a fixed point of ma for each a in A. Finally, a kei (also called an involutory quandle) is

a quandle such that each ma is its own inverse. The word quandle was introduced in 1982 by

Joyce [12], and kei in 1943 by Takasaki [21], who introduced several variants of keis, many of

them reflecting symmetries of geometric configurations of points in the plane. While together

at Cambridge, Wraith and Conway investigated what remains of a group when all the other

structure is neglected and only conjugation remains; as a pun on Wraith’s name and these

wrecked groups, Conway called them wracks [22]. Fenn and Rourke [7] took this term, adjusted

the spelling to rack, and gave it the present precise meaning.

Formally, these structures can be defined using the following axioms:

i. For every a, b, and c in A, a ∗ (b ∗ c) = (a ∗ b) ∗ (a ∗ c).

ii. For all a and c in A, there is a unique b in A such that a ∗ b = c.

iii. For every a in A, a ∗ a = a.

iv. For all a and b in A, a ∗ (a ∗ b) = b.

Definition 1. For a set A with one binary operation ∗ (an algebra), define:

1. A left distributive algebra is an algebra satisfying axiom (i).

2. A rack is an algebra satisfying axioms (i) and (ii).

3. A quandle is an algebra satisfying axioms (i), (ii) and (iii).

4. A kei is an algebra satisfying axioms (i), (ii), (iii) and (iv).

There are a number of choices to be made in presenting the above definitions. Instead of

using axiom (ii), one can formulate racks using a second operation ∗̄ such that the function

ma : b 7→ a ∗ b is inverse to the function b 7→ a ∗̄ b: formallly, one requires that for all a and b,

a ∗̄ (a∗ b) = a∗ (a ∗̄ b) = b holds. This has the advantage of eliminating the existential quantifier.

Whether to consider self distributive structures as left distributive, like we do here, or right

distributive (with axioms (ii) and (iv) reformulated for right multiplication) is an arbitrary

choice. Many relevant references on racks, quandles, and keis use right distributivity; we chose

left distributivity in order to easily view these classes of structures as subclasses of the left

distributive algebras.

There is another well-studied left distributive structure, this one with two operations: the left

distributive operation ∗ and another operation ◦ that behaves like composition. These algebras

were first studied by Laver [15] as algebras of large cardinal embeddings in which the operation

◦ is in fact composition.

Definition 2. We denote by Σ the following collection of four identities.

a ◦ (b ◦ c) = (a ◦ b) ◦ c
(a ◦ b) ∗ c = a ∗ (b ∗ c)
a ∗ (b ◦ c) = (a ∗ b) ◦ (a ∗ c)
(a ∗ b) ◦ a = a ◦ b

Note that left distributivity follows from the second and fourth identities via the equalities

a ∗ (b ∗ c) = (a ◦ b) ∗ c = ((a ∗ b) ◦ a) ∗ c = (a ∗ b) ∗ (a ∗ c). Dehornoy refers to algebras satisfying
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Σ as LD-monoids; we use Laver’s original phrase “algebras satisfying Σ” to avoid any potential

confusion with other uses of “monoid.”

If ◦ is a group operation on A then the fourth equational condition of Σ determines that

the other operation ∗ must be the conjugation operation a ∗ b = a ◦ b ◦ a−1. Taking ∗ to denote

conjugation in the group in question, it is straightforward to check that the other identities of Σ

are also satisfied, so any group with its multiplication and conjugation operations is an algebra

satisfying Σ.

Laver showed, among other things, that Σ is a conservative extension of the left distributive

law [15]. Thus any free left distributive algebra may be expanded to a free algebra on the same

generators satisfying Σ: any identity on elements of the free left distributive algebra will hold in

the algebra satisfying Σ if and only if it is a consequence of the left distributive law. For more

on this, the linearity of several orderings on the free left distributive algebra (from the large

cardinal hypothesis), and a normal form for terms in the free left distributive algebra, see [15]

and [16]. For a simpler proof and fuller account of the theory of left distributive algebras, see

[17]. Using braid groups Dehornoy showed within the standard axioms of set theory that the

above-mentioned orderings on the free left distributive algebra are linear [4]; Dehornoy has also

contributed substantially to the literature on algebras satisfying Σ. See, for example, [5].

We now move on to preliminaries regarding Borel reducibility. Recall that a subset of a

topological space is Borel if it lies in the least σ-algebra containing the open sets, and that

a function between two topological spaces is Borel if the inverse image of any Borel set (or

equivalently, of any open set) is Borel. Thus, to discuss Borel reducibility between classes of

countable structures, we first define a topology on each of these classes. We briefly sketch this

definition here, and refer the reader to Section 2.3 of Hjorth’s book [11] for further details.

We exclusively consider countable structures, and so may assume that each structure has

underlying set N. Furthermore all of the classes of structures we consider are first-order, namely,

the structures have finitely many relations and operations, and the class is defined by formulas

involving these relations and operations. The relations and operations of a structure in one of

these classes can thus be represented by a set of tuples from N. Indeed we follow the common

practice of identifying a directed graph (N, E) (with vertex set N) with the set {(m,n) |m E

n} ⊆ N2, and we may identify an algebra (N, ∗) with the set {(`,m, n) | ` ∗m = n} ⊂ N3. The

space of countable structures for a given signature with finitely many operation and relation

symbols can thus be identified with a subset of Cantor space via the usual identification of a

power set P(X) with the space of characteristic functions 2X ; the set X here is a product of

sets of the form Nk, one for each relation and operation, and is in particular countable. The

topology considered on these classes is the standard topology on the Cantor space. Note that a

clopen subbase for this topology is given by the sets defined by determining a single “bit” from

2X — for example, on the space of countable algebras with underlying set N, the subbase is the

collection as `,m, and n vary over N of all sets either of the form {(N, ∗) | ` ∗m = n} or of the

form {(N, ∗) | ` ∗m 6= n}.
We deviate from this conventional framework in one detail: for expositional clarity, the keis

that we construct will have underlying set N× {0, 1} rather than N. However, this discrepancy
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can be easily overcome using the canonical identification of N × {0, 1} with N via the map

(n, i) 7→ 2n+ i.

Note that the Cantor space 2X with X countable is a separable topological space (that is,

it has a countable dense set) and may be endowed with a complete metric: identifying X with

N, let d(x, y) = 2−n where n is least such that x(n) 6= y(n). Separable, completely metrizable

spaces such as 2X and R are known as Polish spaces. As outlined in the Introduction, we have

the following standard definitions.

Definition 3. Let X and Y be Polish spaces, E an equivalence relation on X, and F an equiv-

alence relation on Y . We say that E is Borel reducible to F , written E ≤B F , if there is a Borel

function f from X to Y such that for all x and x′ in X, x E x′ holds (that is, x is E-equivalent

to x′) if and only if f(x) F f(x′) holds.

We say that E is continuously reducible to F , written E ≤c F , if there is a continuous

function f from X to Y such that for all x and x′ in X, x E x′ if and ony if f(x) F f(x′).

If F is the isomorphism relation for a first-order class of countable structures for a finite

signature each with underlying set N, we say F is Borel complete if every other such class has

isomorphism relation Borel reducible to F .

Continuous maps are of course Borel, and all maps we construct in the sequel will be con-

tinuous so in particular Borel.

3 Keis are Borel Complete

It is folklore that the class of countable irreflexive directed graphs is Borel complete — see

Section 13.1 of Gao’s book [10] for a proof of the stronger statement that the subclass of

countable irreflexive symmetric graphs is Borel complete. The general strategy of this section

is to construct a kei from an arbitrary irreflexive directed graph, and then to show that the

resulting keis are isomorphic if and only if the original graphs are isomorphic. Since the map

taking each irreflexive directed graph to the corresponding kei will be Borel (indeed, continuous),

this will establish that the class of countable keis is also Borel complete. To this end we shall

describe how to build what Kamada [13] calls a dynamical quandle; the specific dynamical

quandles we construct will in fact be keis.

In all of the sequel we exclusively discuss graphs that are irreflexive and directed, but for

the sake of the casual reader, we will repeat these hypotheses each time they are used.

Let A be a set and τ a bijection from A to itself. Let ϕ be a map from A to the power

set P(A) such that for every a ∈ A, ϕ(a) contains a, ϕ(a) is closed under τ and τ−1, and

ϕ(a) = ϕ(τa). We will refer to such maps ϕ as τ -replete. Kamada observes [13, Theorem 4]

that with the operation ∗ defined by

a ∗ b =

b if a ∈ ϕ(b)

τb if a /∈ ϕ(b),
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the structure (A, ∗) is a quandle. Kamada uses an equivalent definition with a function θ defined

on τ -orbits rather than our orbit-invariant function ϕ on elements of A. Axioms (ii) and (iii) of

Definition 1 are immediate from the assumptions on ϕ, and (i) follows by checking cases:

a ∗ (b ∗ c) = (a ∗ b) ∗ (a ∗ c) =



c if a ∈ ϕ(c) and b ∈ ϕ(c)

τc if a ∈ ϕ(c) and b /∈ ϕ(c)

τc if a /∈ ϕ(c) and b ∈ ϕ(c)

τ2c if a /∈ ϕ(c) and b /∈ ϕ(c).

Moreover, if τ is an involution, then clearly axiom (iv) also holds and so the quandle is a kei.

Following Kamada, but using our ϕ rather than Kamada’s θ, we call this (A, ∗) the quandle

derived from (A, τ) relative to ϕ. Kamada named the objects so constructed dynamical quandles,

in line with a view of the pair (A, τ) as a dynamical system, and we shall call those dynamical

quandles that are keis dynamical keis.

To encode an irreflexive directed graph G = (V,E) into a kei QG, we use the dynamical

quandle construction with underlying set a pair of copies of the vertex set V of G. Our involution

τ simply switches between the two copies of the vertex set, and the function ϕ corresponds to

choosing the set of neighbours (in one direction) for each vertex of G, irrespective of which copy

of V the vertices lie in.

Definition 4. Suppose G = (V,E) is an irreflexive directed graph. Let τ be the involution on

V × {0, 1} taking (v, 0) to (v, 1) and (v, 1) to (v, 0) for every v in V . Let ϕ̄G be the function

from V to P(V ) defined by u ∈ ϕ̄G(v) if and only if u E v or u = v. Let ϕG from V × {0, 1} to

P(V ×{0, 1}) be the function obtained from ϕ̄G by ignoring second coordinates: (u, i) ∈ ϕG(v, j)

if and only if u ∈ ϕ̄G(v), that is, if and only if u E v or u = v. Note that ϕG is τ -replete. The

kei QG associated to G is the quandle derived from (V ×{0, 1}, τ) relative to ϕG, and we denote

the operation on QG by ∗G.

Thus, QG is a kei on underlying set V ×{0, 1} with operation ∗ such that (u, i)∗ (v, j) equals

(v, j) if there is an edge from u to v in G or if u = v, and (u, i) ∗ (v, j) is (v, 1− j) otherwise.

We now begin toward Theorem 8, which says that the dynamical keis QG and QG′ con-

structed from graphs G and G′ are isomorphic if and only if the graphs G and G′ are isomorphic.

First we prove the existence of a particular, useful involution of the kei QG (Lemma 5).

Lemma 5. For every irreflexive directed graph G with underlying set V and every W ⊆ V , the

function IW : QG → QG defined by

IW (v, j) =

(v, j) if v ∈W

(v, 1− j) if v /∈W

is an involution of QG.

Proof. By inspection IW is a bijection and moreover (IW )2 is the identity map. To see that

IW respects the quandle operation ∗ of QG, we must verify that IW ((u, i) ∗ (v, j)) = IW (u, i) ∗
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IW (v, j). Note that for each (v, j) ∈ QG, either both of (u, 0) and (u, 1) are in ϕG(v, j) or

neither is, so

(u, i) ∗ (v, j) = (IW (u, i)) ∗ (v, j) =

(v, j) if (u, i) ∈ ϕ(v, j)

(v, 1− j) if (u, i) /∈ ϕ(v, j).

So

IW ((u, i) ∗ (v, j)) =

IW (v, j) if (u, i) ∈ ϕ(v, j)

IW (v, 1− j) if (u, i) /∈ ϕ(v, j)

and

IW ((u, i)) ∗ IW (v, j) =


IW (v, j) if (u, i) ∈ ϕ(IW (v, j)) = ϕ((v, j))

(v, 1− j) = IW (v, 1− j) if v ∈W and (u, i) /∈ ϕ((v, j))

(v, j) = IW (v, 1− j) if v /∈W and (u, i) /∈ ϕ((v, j)).

Thus it is established that IW is a homomorphism, indeed an involution of QG.

A slicker if less direct proof of Lemma 5 is to consider the graph G′ on V ∪̇ {v0} (where ∪̇
denotes disjoint union) with G′ � V = G and v0 E v if and only if v is in W for each v in V .

Then QG′ � V × {0, 1} = QG, and mv0 � QG = IW .

The keis constructed in Definition 4 are in fact quite general dynamical keis. Indeed the only

extra constraint we need on dynamical keis to get a kei QG associated to a graph G is that the

involution τ has no fixed points.

Definition 6. A kei (A, ∗) is called a folded kei1 if there is an involution τ of A with no fixed

points and a τ -replete function ϕ such that (A, ∗) is the quandle derived from (A, τ) relative to

ϕ.

By definition the kei QG associated to any graph G is a folded kei. As alluded to above, we

also have a converse to this.

Proposition 7. Every folded kei is isomorphic to a kei of the form QG for some irreflexive

directed graph G.

Proof. Let (A, ∗) be a folded kei, and in particular suppose (A, ∗) is the quandle derived from

(A, τ) relative to ϕ for τ an involution of A without fixed points and ϕ a τ -replete function from

A to P(A). Choose a subset V of A such that for each pair {a, τa} of elements of A, exactly one

of a and τa is in V , and express A as the disjoint union A = V ∪ {τv | v ∈ V }. For each v in V ,

let ϕ̄(v) denote the set ϕ(v)∩V ; since (A, ∗) is the quandle derived from (A, τ) relative to ϕ we

have that ϕ̄(v) is the set of u in V such that u ∗ v = v (this ϕ̄ will be ϕ̄G as in Definition 4 for

the graph G we now construct). Take the directed graph G on vertex set V with edge relation

defined by u E v if and only if u ∈ ϕ̄(v) holds. Then it is straightforward to check that the map

from QG to A taking (v, 0) to v and (v, 1) to τv is an isomorphism of keis.

We will now state the main result.

1In baking, one folds ingredients to achieve complete mixing with minimal disruption.
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Theorem 8. For irreflexive directed graphs G and G′ and the associated keis QG and Q′G,

G ∼= G′ if and only if QG ∼= QG′

Proof. One direction is a fairly straightforward observation:

Remark. Isomorphic irreflexive directed graphs have isomorphic associated keis.

Proof of Remark. Recall that a graph isomorphism is a bijection between vertices that preserves

both the edge relation and the failure of the edge relation. Given graphs G = (V,E) and

G′ = (V ′, E′) with an isomorphism h : G → G′ between them, u E v in G if and only

if h(u) E′ h(v) in G′, so u is in ϕ̄G(v) if and only if h(u) is in ϕ̄G′(h(v)). Therefore by

construction of the quandles QG and Q′G, h induces an isomorphism hQ from QG to Q′G taking

(u, i) to (h(u), i). Indeed for vertices u and v in G, we have that (u, i) ∈ ϕG(v, j) holds if

and only if (h(u), i) ∈ ϕG′(h(v), j) holds. The verification that x ∗G y = z if and only if

hQ(x) ∗G′ hQ(y) = hQ(z) follows immediately.

For the converse, we will show that any two isomorphic keis of the form QG and QG′ admit

an isomorphism induced by an isomorphism of the underlying graphs G and G′. Not all kei

isomorphisms between QG and QG′ arise from graph isomorphisms; indeed, Lemma 5 gives

continuum many others. Also, if the graph K is the complete irreflexive directed graph on V ,

then QK is the trivial kei on V × {0, 1}, with (u, i) ∗ (v, j) = (v, j) for all (u, i) and (v, j).

Of course there are many automorphisms of the trivial kei that are not of the form given by

Lemma 5 or induced by a graph isomorphism: any permutation of the underlying set V ×{0, 1}
is an automorphism of this kei. We will see in the Claim that follows that any kei isomorphism

ρ between folded keis splits into two parts, one of the type described by Lemma 5 and one given

by an automorphisms of a trivial kei. Each of these can be converted into a partial isomorphism

of the desired form, and the pieces recombined to yield the graph isomorphism required for the

Theorem.

To aid with intuition, for any graph G = (V,E) with associated kei QG = (V × {0, 1}, ∗G),

we refer to V × {0} ⊂ QG as the bottom of QG and V × {1} ⊂ QG as the top of QG. Also for

any v in V we refer to each of (v, 0) and (v, 1) as the twin of the other.

Claim. Suppose G = (VG, EG) and G′ = (VG′ , EG′) are irreflexive directed graphs such that

there is a kei isomorphism ρ with ρ : QG → QG′ . Then there is bijection f from VG → VG′ such

that, viewed as a map from G to G′, f is a graph isomorphism.

Proof of Claim. For any graph H = (V,E), we split the underlying set V into two components,

which we call the “fixed points” and the “moving points” based on their behaviour in the quandle

QH . The purely graph-theoretic definitions of the fixed points and moving points is simpler,

so we give them first: the fixed points are those which are complete for inward edges, and the

moving points are those that are not. That is,

FH = {v ∈ V | ∀u ∈ V (u E v)}.
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From the quandle point of view, the fixed points may equivalently be defined as those v for

which left multiplication by any element of QH does not swap (v, 0) with (v, 1), that is,

FH = {v ∈ V | ∀(u, i) ∈ QH [(u, i) ∗H (v, 0) = (v, 0)]}.

The moving points are then those not in FH , that is, MH = V r FH .

We shall define the function f : VG → VG′ piecewise, giving separately the restrictions of f

to the fixed points FG and the moving points MG. In fact, these restrictions will themselves

be bijections from FG to FG′ and from MG to MG′ , as is clearly necessary for f to be a graph

isomorphism.

We are given an isomorphism ρ : QG → QG′ . Let us denote by ρV (v, i) and ρI(v, i) respec-

tively the first and second components of ρ(v, i): that is, ρ(v, i) = (ρV (v, i), ρI(v, i)).

First we define f on the moving points. If v is in MG, then there is some (u, i) in QG that

moves (v, 0). That is, the vaule of (u, i)∗G (v, 0) is not (v, 0), and hence by the definition of ∗G it

must be that (u, i) ∗ (v, 0) is (v, 1), and furthermore that (u, i) ∗ (v, 1) is (v, 0). Applying the kei

isomorphism ρ we have that ρ(u, i) ∗ ρ(v, 0) = ρ(v, 1) holds, and by injectivity ρ(v, 1) 6= ρ(v, 0).

By the definition of ∗G′ , the first components of ρ(v, 0) and ρ(v, 1) must be equal. We take f(v)

to be this value: f(v) = ρV (v, 0) = ρV (v, 1).

Clearly f � MG so defined is injective since ρ is a bijection. Moreover f � MG surjects

onto MG′ . Indeed, for w in MG′ and (t, i) in QG′ such that (t, i) ∗G′ (w, 0) 6= (w, 0), we have

ρ−1(t, i) ∗G ρ−1(w, 0) 6= ρ−1(w, 0), and so the first component of ρ−1(w, 0) lies in MG and has

image w under f .

To complete the definition of f it remains to give the value of f(v) for those v in FG. Let v0

be an element of FG. Unlike for elements of MG, it need not be the case that ρV (v0, 0) is the

same as ρV (v0, 1). However, since ρ is surjective, we may find v1 in FG and iv1 in {0, 1} such

that ρV (v1, iv1) = ρV (v0, 1) and ρI(v1, iv1) = 1−ρI(v0, 1): that is, if ρ(v0, 1) is on the bottom of

the kei then (v1, iv1) is chosen such that ρ(v1, iv1) is its twin on the top, and conversely if ρ(v0, 1)

is on the top of the kei then (v1, iv1) is chosen such that ρ(v1, iv1) is its twin on the bottom.

Likewise we may find v−1 in FG and iv−1
in {0, 1} such that ρV (v−1, 1− iv−1

) = ρV (v0, 0) and

ρI(v0, 0) = 1− ρI(v−1, 1− iv−1). We may inductively extend our definitions, obtaining for all k

in Z a vertex vk in VG and ivk in {0, 1} (with iv0 = 0) such that ρV (vk, 1−ivk) = ρV (vk+1, ivk+1
).

Note that if there is some k such that vk = v0, then ivk defined in this way will be equal to iv0 ,

so our notation ivj gives a well-defined function from vertices vj in FG to members of {0, 1}.
Indeed, (construing for now ivj as a function of j rather than vj) consider the first repetition

in the sequence (v0, iv0), (v0, 1 − iv0), (v1, iv1), . . .. Clearly if (vk, ivk) is distinct from all of its

predecessors in the sequence, then so too is (vk, 1 − ivk). Thus, the first repetition in the

sequence must be of the form (vk, ivk). If (vk, ivk) = (vj , 1− ivj ) for some j < k, then of course

ρ(vk, ivk) = ρ(vj , 1 − ivj ), so swapping betweeen the top and bottom of the kei, we have from

the inductive construction that ρ(vk−1, 1− ivk−1
) = ρ(vj+1, ivj+1

). But then by the minimality

of k as giving a repetition, we must have j = k− 1, so (vk, ivk) = (vk−1, 1− ivk−1
), violating the

fact from the construction that ρ(vk, ivk) 6= ρ(vk−1, 1− ivk−1
).

The set {vj | j ∈ Z} may be finite or infinite, but the corrresponding subset {ρV (vj , ivj ) | j ∈
Z} has the same cardinality: (vj , ivj ) = (vk, ivk) if and only if ρ(vj , ivj ) = ρ(vk, ivk). Note also
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that for each k, the left multiplication maps mρ(vk,1−ivk ) and mρ(vk+1,ivk+1
) on QG′ are the same

since ρ(vk, 1− ivk) and ρ(vk+1, ivk+1
) have the same first component. Therefore m(vk,1−ivk ) and

m(vk+1,ivk+1
) are the same on QG. It follows that vk and vk+1 have outward edges to the same

other vertices in G, as well as to each other, and by induction the same is true of all members

of the set {vk | k ∈ Z}; likewise, all members of the set {ρV (vk, ivk)} have edges to one another

and to the same other vertices.

The set FG may be partitioned into such “cycles” of vertices {vk | k ∈ Z} by choosing a

starting vertex v0 in each cycle. With such choices made, we in particular have an assignment

of iv in {0, 1} to each v in FG, and may define f � FG by f(v) = ρV (v, iv). Clearly with

this definition f � FG is a bijection from FG to its image. Moreover its image is all of FG′ : if

(t, i) ∗G′ (w, 0) = (w, 0) for all (t, i) in QG′ , then ρ−1(t, i) ∗G ρ−1(w, 0) = ρ−1(w, 0) for all (t, i)

in QG′ , that is, (u, j) ∗G ρ−1(w, 0) = ρ−1(w, 0) for all (u, j) in QG.

We have thus constructed a bijection f : VG → VG′ , and it remains to show that f is in fact

a graph isomorphism from G to G′. So let u and v be vertices of G. If v is in FG, then f(v) is

in FG′ , so both u EG v and f(u) EG′ f(v) hold. Suppose v is in MG. If u is in FG we have iu

in {0, 1} as defined above, and otherwise take iu = 0. Then

(u, iu) ∗G (v, 0) =

(v, 0) if u EG v or u = v

(v, 1) otherwise,

so

ρ(u, iu) ∗G ρ(v, 0) =

ρ(v, 0) if u EG v or u = v

ρ(v, 1) otherwise.

Since the first component of ρ(u, iu) is f(u) and the first component of ρ(v, 0) is f(v), we have

that f(u) E′G f(v) if and only if u EG v, completing the proof that f is a graph isomorphism

from G to G′.

With the Claim we have shown that, whilst not every isomorphism of keis QG and QG′ need

arise from a graph isomorphism, such an isomorphism can be used to define a graph isomorphism

of G and G′, which by the Remark gives rise to a (potentially different) isomorphism of QG and

Q′G. This completes the proof of Theorem 8.

Theorem 9. The classes of keis, quandles, racks, left distributive algebras, and algebras satis-

fying Σ are each Borel complete.

Proof. Implicit in the statement that these classes of structures are Borel complete is that we

are considering the classes of countable such structures with underlying set N, with each class

topologized as described in Section 2.

The map G 7→ QG from the class of graphs to the class of keis is not only Borel but in

fact continuous. Recall from Section 2 that the subbasic open sets in the space of graphs are

of the form either {G |m E n} or {G |m 6E n}. Similarly, for quandles with underlying set N,

the subbasic open sets are of the form {(N, ∗) |u ∗ v = w} or {(N, ∗) |u ∗ v 6= w}. Then by the

construction of our dynamical keis, it is clear that the inverse image of any open set is open (as
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we defined ∗ in terms of the edge relation of E). Hence the map taking G to QG is continuous

and so certainly Borel, and therefore because the class of graphs is Borel complete, we have

shown that the keis, and hence quandles, and hence racks, and hence left distributive algebras

are Borel complete.

Because the language of Σ is different from that of left distributive algebras, a different

argument is needed to show that the class of algebras satisfying Σ is Borel complete. For this

we utilize the result of Mekler [18] that the class of groups is Borel complete (see [9, §2.3]

for a sketch of the argument). As discussed after Definition 2, every group endowed with its

conjugation operation and its group operation satisfies Σ. The inclusion map (G, ◦) 7→ (G, ◦, ∗)
where ◦ denotes the group operation and ∗ denotes conjugation is easily seen to be continuous

and so is certainly Borel. Of course, since the group operation is one of the two operations in

the language of Σ, and the other is conjugation which is determined by the group operation, two

groups are isomorphic if and only if their corresponding structures satisfying Σ are isomorphic.

We thus have that group isomorphism Borel reduces to isomorphism as algebras satisfying Σ,

and therefore that the latter is Borel complete.

4 Concluding remarks

We have shown that in the Borel reducibility sense, the class of left distributive algebras is

as complex as possible. Another formalization of the question of complexity is in a category-

theoretic setting. Just as the class of graphs is maximal in the Borel completeness sense (and

indeed our proof made use of this fact), the category of graphs is universal in the sense that

every algebraic category fully embeds into it [20, Theorem 5.3]. There are many such universality

results for other categories — see, for example, [20] — raising the following natural question.

Question. Does the category of graphs fully embed into the category of left distributive algebras?

Of course the same question may also be asked of the category of racks, the category of

quandles, and the category of keis. We note that the construction of QG from G in Theorem 8

is not even functorial, since a graph homomorphism need not preserve non-edges. Potentially

an even more problematic obstacle, however, is the fullness requirement — we have seen that

dynamical keis admit many more homomorphisms than simply those arising from graph ho-

momorphisms, at least in our construction. On the other hand, even if it turns out that the

category of graphs cannot be fully embedded into the category of keis because keis always ad-

mit many homomorphisms, there may be interesting minimal-non-fullness, maximal-complexity

results to be obtained in this direction. As an analogy, there can be no full embedding of the

category of graphs into the category of abelian groups, as any two abelian groups A and B

admit at least one homomorphism between them (the 0 map) and the set of homomorphisms

between them Hom(A,B) naturally forms an abelian group. Nevertheless Przeździecki [19] has

shown that there is an embedding A from the category of graphs to the category of abelian

groups such that Hom(AG,AG′) is the free abelian group generated by Hom(G,G′) — the best

possible result given these constraints.

As mentioned in the the introduction, the implication operation in a Boolean Algebra is left
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distributive. Borel completeness of the isomorphism relation on Boolean algebras was proven

by Camerlo and Gao in [3] and does not follow from what we have proven. Their work shows

that a classification of countable Boolean algebras due to Ketonen uses objects for the complete

invariants that “cannot be improved in an essential way” [3].

In contrast, our main result is that the class of quandles is Borel complete while tame knots

are trivial in terms of Borel reducibility. Whilst the subclass of finitely presented quandles

contains the quandles associated with all tame knots and is itself trivial in this context, it is not

clear that this finite presentability constraint can be used in practice to simplify the quandle

isomorphism problem. Thus, our result suggests that there may well exist a more practical

complete invariant for tame knots, with an isomorphism problem that is not as difficult as that

for quandles.
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