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Abstract. In this paper, we study trees of uncountable regular heights con-

taining ascending paths of small width. This combinatorial property of trees
generalizes the concept of a cofinal branch and it causes trees to be non-special

not only in V, but also in every cofinality-preserving outer model of V. More-

over, under certain cardinal arithmetic assumptions, the non-existence of such
paths through a tree turns out to be equivalent to the statement that the

given tree is special in a cofinality preserving forcing extension of the ground

model. We will present a number of consistency results on the non-existence of
trees without cofinal branches containing ascending paths of small width. In

contrast, we will construct such trees using certain combinatorial principles.

As an application of our results, we show that the consistency strength
of a potential forcing axiom for σ-closed, well-met partial orders satisfying

the ℵ2-chain condition and collections of ℵ2-many dense subsets is at least a
weakly compact cardinal. In addition, we will use our results to show that the

infinite productivity of the Knaster property characterizes weak compactness

in canonical inner models. Finally, we study the influence of the Proper Forcing
Axiom on trees containing ascending paths.

1. Introduction

The purpose of this paper is to study combinatorial properties of trees of un-
countable regular heights that cause these trees to be non-special in a very absolute
way. Remember that a partial order T is a tree if it has a unique minimal element
root(T) and sets of the form predT(t) = {s ∈ T | s <T t} are well-ordered by <T
for every t ∈ T. Given a tree T and t ∈ T, we define lhT(t) to be the order-type of
〈predT(t), <T〉 and we define ht(T) = supt∈T lhT(t) to be the height of T. Moreover,
we define T(γ) = {t ∈ T | lhT(t) = γ} and T<γ = {t ∈ T | lhT(t) < γ} for every tree
T and γ < ht(T). Finally, given a subset S of ht(T), we define T � S to be the
suborder of T whose underlying set is the set

⋃
{T(γ) | γ ∈ S}.

One of the most basic questions about trees of infinite heights is the question of
the existence of cofinal branches, i.e. the existence of a subset B of the tree T such
that B is linearly ordered by <T and the set {lhT(t) | t ∈ B} is unbounded in ht(T).
As phrased by Todorčević in the introduction of [26, Section 6.1], it turns out that
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a large class of trees of uncountable regular heights have no cofinal branches for
very special reasons.

In the remainder of this paper, θ will denote an uncountable regular cardinal
and, unless otherwise noted, T will denote a tree of height θ.

Definition 1.1 (Todorčević). Let S be a subset of θ.

(i) A map r : T � S −→ T is regressive if r(t) <T t holds for every t ∈ T � S
that is not minimal in T.

(ii) We say that S is non-stationary with respect to T if there is a regressive
map r : T � S −→ T with the property that for every t ∈ T there is a
function ct : r−1{t} −→ θt such that θt is a cardinal smaller than θ and ct
is injective on ≤T-chains.

(iii) The tree T is special if the set θ is non-stationary with respect to T.

Todorčević showed that the above definition generalizes the classical definition
of special trees of successor height, i.e. trees of height ν+ for some infinite cardinal
ν that are the union of ν-many antichains (see [23, Theorem 14]). Moreover, his
result shows that a tree of height ν+ is special if and only if the set of all ordinals
less than ν+ of cofinality cof(ν) is non-stationary with respect to the given tree.

Proposition 1.2. If S is a stationary subset of θ that is non-stationary with respect
to T, then there are no cofinal branches through T. �

The above proposition directly shows that the non-existence of cofinal branches
through special trees is absolute in a strong sense. If T is special and W is an outer
model of the ground model V (i.e. W is a transitive model of ZFC with V ⊆ W
and On ∩ V = On ∩W) with the property that θ is a regular cardinal in W, then
there are no cofinal branches through T in W.

In this paper, we want to study special reasons that cause trees without cofinal
branches to be non-special in a very absolute way. Examples of such properties
were already studied by Baumgartner, Brodsky, Cummings, Devlin, Laver, Rinot,
Shelah, Stanley, Todorčević, Torres Pérez and others (see, for example, [4], [6], [7],
[22], [25] and [27]). For reasons described later, we will focus on the following prop-
erty that directly generalizes the concept of cofinal branches and is a consequence
of the properties studied in the above papers.

Definition 1.3. Let λ > 0 be a cardinal. A sequence 〈bγ : λ −→ T(γ) | γ < θ〉 of
functions is an ascending path of width λ through T if for all γ̄ < γ < θ, there are
α, ᾱ < λ such that bγ̄(ᾱ) <T bγ(α).

Then the existence of a cofinal branch through T is equivalent to the existence of
an ascending path of width 1 through T. The following lemma shows that the same
is true for ascending paths of finite width. The proof of this result is a modification
of Baumgartner’s elegant proof of [3, Theorem 8.2]. It is contained in Section 3.

Lemma 1.4. If there is an ascending paths of finite width through T, then there is
a cofinal branch through T.

In combination with the above lemma, the following basic observations show
that the notion of an ascending path through a tree of height θ is non-trivial if we
consider paths of width λ with ω ≤ λ and λ+ < θ.

Proposition 1.5. (i) There is an ascending path of width θ through T.
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(ii) Assume that θ = ν+ for some cardinal ν. Then there is an ascending path
of width ν through T if and only if for every γ < θ there is t ∈ T(γ) such
that for every γ ≤ δ < θ there is u ∈ T(δ) with t <T u.

Proof. (i) Fix a sequence 〈tγ ∈ T(γ) | γ < θ〉. Given γ, γ̄ < θ, define bγ(γ̄) to be
the unique element s of T(γ) with s <T tγ̄ if γ < γ̄ and define bγ(γ̄) = tγ otherwise.
The resulting sequence 〈bγ | γ < θ〉 is an ascending path of width θ through T.

(ii) First, assume that for every γ < θ there is tγ ∈ T(γ) such that for every
γ ≤ δ < θ there is uγ,δ ∈ T(δ) with tγ <T uγ,δ. Given γ < θ, fix a surjection
sγ : ν −→ γ + 1 and define bγ(α) = usγ(α),γ for all α < ν. If γ̄ < γ < θ, then
there are α, ᾱ < ν with γ̄ = sγ(α) = sγ̄(ᾱ) and hence bγ̄(ᾱ) = tγ̄ <T uγ̄,γ = bγ(α).
This shows that the resulting sequence 〈bγ | γ < θ〉 is an ascending path of width
θ through T.

Now, assume that 〈bγ | γ < θ〉 is an ascending path of width ν. If γ < θ,
then the regularity of θ implies that there is α < ν with the property that the
set {δ < θ | ∃β < ν bγ(α) <T bδ(β)} is unbounded in θ. This shows that for all
γ < θ we can find α < ν such that for every γ ≤ δ < θ there is u ∈ T(δ) with
bγ(α) <T u. �

The next lemma shows how ascending paths cause certain trees to be non-special.
Its proof is a generalization of the proof of [27, Proposition 2.3]. Given an infinite
regular cardinal κ < θ, we let Sθκ denote the set of all limit ordinals less than θ of
cofinality κ. Moreover, given some cardinal λ < θ, we let Sθ>λ denote the set of all

limit ordinals less than θ of cofinality greater than λ. The sets Sθ<λ, Sθ≤κ and Sθ≥κ
are defined analogously

Lemma 1.6. Let λ < θ be a cardinal with the property that θ is not a successor of
a cardinal of cofinality less than or equal to λ and let S ⊆ Sθ>λ be stationary in θ.
If S is non-stationary with respect to T, then there is no ascending path of width λ
through T.

Proof. Assume, towards a contradiction, that 〈bγ : λ −→ T(γ) | γ < θ〉 is an ascend-
ing path through T. Let r : T � S −→ T and 〈ct : r−1{t} −→ θt | t ∈ T〉 witness that
S is non-stationary with respect to T. Then there is a club C in θ with θr(bγ̄(α)) < γ

for all γ ∈ C, γ̄ < γ and α < λ. Since S ⊆ Sθ>λ is stationary in θ, we can find
δ < θ and E ⊆ C ∩ S stationary in θ such that the following statements hold for
all δ ∈ E and α < λ:

(i) r(bγ(α)) ∈ T<δ.
(ii) If r(bγ(α)) = r(bγ̄(α)) for some γ̄ < γ, then cr(bγ(α))(bγ(α)) < δ.

By our assumptions, there is a cardinal ν < θ of cofinality greater than λ and a
surjection s : ν −→ δ. Fix a strictly increasing cofinal sequence 〈νξ | ξ < cof(ν)〉 in
ν. Given γ ∈ E, there is a minimal ξγ < cof(ν) such that for all α < λ, there are
ζ0, ζ1 < νξγ with r(bγ(α)) ∈ T(s(ζ0)) and, if r(bγ(α)) = r(bγ̄(α)) for some γ̄ < γ,
then cr(bγ(α))(bγ(α)) = s(ζ1). Then there is U ⊆ E unbounded in θ and ξ∗ < cof(ν)
such that ξ∗ = ξγ for all γ in U .

Let γ∗ denote that ν-th element in the monotone enumeration of U . Given
γ ∈ U ∩ γ∗, our assumptions imply that there are α, β < λ with bγ(α) <T bγ∗(β).
Since the cofinality of ν is greater than λ, there are α∗, β∗ < λ such that the set

A = {γ ∈ U ∩ γ∗ | bγ(α∗) <T bγ∗(β∗)}
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has cardinality ν. Pick a function f : A −→ νξ∗ × νξ∗ with the property that
f(γ) = 〈ζ0, ζ1〉 implies that r(bγ(α∗)) ∈ T(s(ζ0)) and, if r(bγ(α∗)) = r(bγ̄(α∗))
for some γ̄ < γ, then cr(bγ(α∗))(bγ(α∗)) = s(ζ1). By our assumptions, there are
γ0, γ1, γ2 ∈ A and ζ0, ζ1 < νξ∗ such that γ0 < γ1 < γ2 and f(γi) = 〈ζ0, ζ1〉 for all
i < 3. Given i < 3, we have r(bγi(α∗)) ∈ T(s(ζ0)) and

r(bγi(α∗)) <T bγi(α∗) <T bγ∗(β∗).

This implies that r(bγ0(α∗)) = r(bγ1(α∗)) = r(bγ2(α∗)). In this situation, the above
choices ensure that

cr(bγ0
(α∗))(bγ1(α∗)) = s(ζ1) = cr(bγ0

(α∗))(bγ2(α∗))

holds. This implies that the nodes bγ1
(α∗) and bγ2

(α∗) are incompatible in T, a
contradiction. �

Corollary 1.7. Let λ < θ be a cardinal with the property that θ is not a successor
of a cardinal of cofinality less than or equal to λ. If T contains an ascending path
of width λ, then T is not special.

Proof. Our assumptions imply that the set Sθλ+ is stationary in θ and non-stationary
with respect to T. In this situation, the statement of the corollary follows directly
from Lemma 1.6. �

Note that the above result leaves open the question whether there can be special
trees whose height is the successor of a singular cardinal ν that contain an ascending
path of width λ with cof(ν) ≤ λ < ν (see Question 6.1).

The above corollary shows that ascending paths cause trees to be non-special in
an absolute way: in the situation of the corollary, the tree T remains non-special
in every outer model in which θ and λ satisfy the assumptions of the corollary. We
will later show that, if θ and λ satisfy certain cardinal arithmetic assumptions, then
the converse of this implication also holds true, i.e. if there is no ascending path
of width λ through T, then T is special in a forcing extension of the ground model
in which the above assumptions on θ and λ hold. This follows from the fact that
ascending paths are closely related to maximal antichains in the canonical partial
order that specializes a tree of uncountable regular height.

Definition 1.8. Let κ < θ be an infinite regular cardinal. We define Pκ(T) to be
the partial order that consists of partial functions from T to κ of cardinality less
than κ that are injective on chains in T and are ordered by reversed inclusion.

It is easy to see that partial orders of the form Pκ(T) are <κ-closed and forcing
with Pκ(T) collapses every cardinal in the interval (κ, θ). Moreover, if forcing with
Pκ(T) preserves the regularity of θ, then the tree T is special in all Pκ(T)-generic
extensions. Therefore it is natural to ask under which conditions this regularity
is preserved. We will later show (see Corollary 2.2) that the assumption that
forcing with Pκ(T) preserves the regularity of θ implies that µ<κ < θ holds for all
µ < θ. The following result shows that under this cardinal arithmetic assumption,
we can characterize this preservation by the non-existence of ascending paths of
small width.

Theorem 1.9. The following statements are equivalent for every infinite regular
cardinal κ < θ with µ<κ < θ for all µ < θ:

(i) There is no ascending path of width less than κ through T.
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(ii) The partial order Pκ(T) satisfies the θ-chain condition.
(iii) Forcing with the partial order Pκ(T) preserves the regularity of θ.

By the above remarks, in the setting of Theorem 1.9, the three statements listed
in the theorem are also equivalent to the statement that there is some outer model
W of the ground model V such that κ and θ are regular cardinals in W and T is
a special tree in W. Given an uncountable regular cardinal κ with κ = κ<κ, the
above theorem allows us to shows that the collection of specializable trees of height
κ+ (i.e. the collection of all trees that are special in a cofinality-preserving outer
model of the ground model V) can be defined through the existence of ascent paths
of width less than κ. It is not known to the author whether this collection is also
definable if κ < κ<κ (see Question 6.4).

In combination with Lemma 1.4, the above theorem directly implies the state-
ment of a classical result of Baumgartner (see [3, Theorem 8.2] and [5, Lemma 5.3])
stating that partial order Pω(T) satisfies the θ-chain condition if and only if there
is no cofinal branch through T.

We present an application of the above result to questions regarding potential
generalizations of Martin’s Axiom to larger cardinalities. Given a partial order P,
we let FAθ(P) denote the statement that for every collection D of θ-many dense
subsets of P, there is a D-generic filter, i.e. a filter F on P with D ∩ F 6= ∅ for all
D ∈ D. A result of Shelah (see [21, Theorem 6]) shows that CH implies that there is
a σ-closed partial order P satisfying the ℵ2-chain condition such that FAℵ2

(P) fails.
This partial order is not well-met, i.e. there are compatible conditions without a
greatest lower bound in this partial order. Since recent work of Shelah (see [20])
shows that some well-met condition is necessary for such generalizations of Martin’s
Axiom to hold and results of Baumgartner and Shelah (see [3, Section 4] and [18])
show that such forcing axioms can consistently hold for all σ-closed, well-met partial
order satisfying certain strengthenings of the ℵ2-chain condition, it is natural to ask
whether the statement that FAℵ2(P) holds for all σ-closed, well-met partial orders
P satisfying the ℵ2-chain conditions is consistent. With the help of Todorčević’s
method of walks on ordinals and a result of Todorčević from [25], we will prove the
following result that shows that the consistency strength of such a forcing axiom is
at least a weakly compact cardinal.

Theorem 1.10. Let κ be an uncountable regular cardinal with κ = κ<κ. If κ+

is not weakly compact in L, then there is a <κ-closed, well-met partial order P
satisfying the κ+-chain condition with the property that FAκ+(P) fails.

Next, we discuss an application of the notion of ascending paths to questions
about the productivity of certain chain conditions and characterizations of weak
compactness (see, for example, [5] and [16]). Baumgartner’s result mentioned above
shows that, if T has no cofinal branches, then the partial order Pω(T) satisfies the θ-
chain condition. Since special trees have no cofinal branches, this argument actually
shows that finite support products of the partial order Pω(T) satisfy the θ-chain
condition in this case. The next theorem is a strengthening of Theorem 1.9. It
shows that ascending paths of infinite width provide examples of trees where this
chain condition fails in infinite products.

Theorem 1.11. The following statements are equivalent for every infinite regular
cardinal κ < θ with µ<κ < θ for all µ < θ.

(i) There is no ascending path of width less than κ through T.
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(ii) If ν ≤ κ is an infinite regular cardinal, then <κ-support products of the
partical order Pν(T) satisfy the θ-chain condition.

In the following, we are interested in the infinite productivity of stronger chain
conditions. Remember that a partial order P is θ-Knaster if every set of θ-many
conditions in P contains a subset of cardinality θ consisting of pairwise compatible
conditions. This property of partial orders is of great interest, because it implies
the θ-chain condition and is preserved under finite products. Moreover, it is easy
to see that, if θ is weakly compact, then the class of θ-Knaster partial orders is
closed under <ν-support products for every ν < θ (see [5, Proposition 1.1] and
the proof of Theorem 1.12 in Section 4). It is now natural to ask whether this
productivity characterizes weakly compact cardinals. It was shown by Cox and the
author that it is consistent that there is an inaccessible cardinal ϑ that is not weakly
compact and has the property that the class of ϑ-Knaster partial orders is closed
under ν-support products for all ν < ϑ (see [5, Theorem 1.14]). In contrast, we will
use Theorem 1.11 to show that the infinite productivity of the ϑ-Knaster property
characterizes weak compactness in canonical inner models of set theory (so-called
Jensen-style extender models, see [29]). The proof of the following theorem relies on
Todorčević’s method of walks on ordinals and results of Schimmerling and Zeman
on the existence of square sequences in canonical inner models (see [17] and [30])
that extend seminal results of Jensen from [8].

Theorem 1.12. Let L[E] be a Jensen-style extender model. In L[E], the following
statements are equivalent for every uncountable regular cardinal ϑ:

(i) ϑ is weakly compact.
(ii) The class of ϑ-Knaster partial orders is closed under ν-support products

for all ν < ϑ.
(iii) ϑ is not the successor of a subcompact cardinal and the class of ϑ-Knaster

partial orders is closed under countable support products.

In particular, it is consistent with the axioms of ZFC that weak compactness is
characterized by the countable productivity of the Knaster property.

Next, we present result concerning the existence and non-existence of trees with-
out cofinal branches containing ascending paths of small width. The proofs of most
these results make use of the notion of narrow system introduced by Magidor and
Shelah in [15] and recent results of Lambie-Hanson about these systems contained
in [12]. The statements (i), (ii) and (v) of the following theorem are direct con-
sequences of results contained in [12]. Moreover, the statement (iii) is implicitly
proven in the base case of the inductive proof of the main theorem of [14]. Re-
member that a regular cardinal κ is indestructibly weakly compact if κ is weakly
compact in every forcing extension by a <κ-closed partial order.

Theorem 1.13. (i) If θ is weakly compact, then every tree of height θ that
contains an ascending path of width less than θ has a cofinal branch.

(ii) If κ ≤ θ is a θ-compact cardinal, then every tree of height θ that contains
an ascending path of width less than κ has a cofinal branch.

(iii) If θ is weakly compact, κ < θ is an uncountable regular cardinal and G is
Col(κ,<θ)-generic over V, then in V[G] every tree of height θ that contains
an ascending path of width less than κ has a cofinal branch.

(iv) If κ ≤ θ is indestructibly weakly compact, then then every tree of height θ
that contains an ascending path of width less than κ has a cofinal branch.
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(v) If κ ≤ θ is θ-compact, ν < κ is an uncountable regular cardinal and G is
Col(ν,<κ)-generic over V, then in V[G] every tree of height θ that contains
an ascending path of width less than ν has a cofinal branch.

Moreover, a result of Lambie-Hanson shows that it is possible to use very strong
large cardinal assumptions to prove global non-existence results. In the model
constructed in the proof of [12, Theorem 5.2], every tree of uncountable regular
height ϑ containing an ascending path of width λ with λ+ < ϑ has a cofinal branch.

In contrast to the above non-existence results, we will also show that trees with-
out cofinal branches containing ascending paths of small width can be constructed
from certain combinatorial principles (see Theorem 4.12 and Theorem 5.8). These
constructions allow us to derive lower bounds for some of the consistency results
listed in Theorem 1.13.

Finally, we study the influence of the Proper Forcing Axiom PFA on trees con-
taining ascending paths. We show that PFA implies an analogue of Lemma 1.4
for trees of height greater than ω1 that contain ascending path of countable width.
In contrast, we show that PFA does not prove a similar conclusion for ascending
paths of width ω1. Remember that T is a θ-Souslin tree if the partial order induced
by T satisfies the θ-chain condition. The proof of the second statement of the
next theorem relies on a construction of an ω3-Souslin tree containing an ascending
path of width ω1 using a partial square principle introduced by Baumgartner (see
Definition 5.5).

Theorem 1.14. Assume that PFA holds.

(i) If θ > ω1, then every tree of height θ that contains an ascending path of
width ω has a cofinal branch.

(ii) There is a partial order P with the property that, whenever G is P-generic
over V, then PFA holds in V[G] and in V[G] there is an ω3-Souslin tree
that contains an ascending path of width ω1.

(iii) If κ is a strongly compact cardinal and G is Col(ω2, <κ)-generic over V,
then, in V[G], PFA holds and every tree of regular height greater than ω2

that contains an ascending path of width ω1 has a cofinal branch.

We outline the structure of this paper. Section 2 contains the proofs of Theorem
1.9 and Theorem 1.11. In Section 3, we will prove Lemma 1.4 and Theorem 1.13.
The proofs of Theorem 1.10 and Theorem 1.12 are contained in Section 4. Theorem
1.14 is proven in Section 5. In Section 6, we list several open questions motivated
by the above results.

2. Ascending paths and antichains

This section is devoted to the proofs of Theorem 1.9 and Theorem 1.11. We start
by showing that the cardinal arithmetic assumptions of Theorem 1.9 are necessary
for the equivalence of the statements listed in the theorem.

Given a regular cardinal κ < θ, let Add(κ, θ) denote the partial order consisting

of partial functions f : θ
par−−→ 2 of cardinality less than κ ordered by reversed

inclusion. Then forcing with Add(κ, θ) adds θ-many Cohen subsets of κ to the
ground model. Moreover, given an ordinal µ ≥ κ, we let Col(κ, µ) denote the

partial order consisting of partial injections i : κ
par−−→ γ of cardinality less than κ

ordered by reversed inclusion. This partial order is forcing equivalent to the usual
Levy collapse of µ to κ.
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Proposition 2.1. If κ < θ is a regular cardinal and κ ≤ µ < θ, then there is a
forcing projection π : Pκ(T) −→ Add(κ, θ)× Col(κ, µ).

Proof. Fix a sequence 〈tγ ∈ T(γ) | γ < θ〉 with tγ <T tµ for all γ < µ. Pick a
condition p in Pκ(T). Define f(p) to be the unique condition in Add(κ, θ) with
dom(f(p)) = {γ < θ | tµ+γ ∈ dom(p)} and

f(p)(γ) = 1 ⇐⇒ p(tµ+γ) is an odd ordinal

for all γ ∈ dom(f(p)). Moreover define i(p) to be the unique condition in Col(κ, µ)
with dom(i(p)) = {p(tγ) | γ < µ, tγ ∈ dom(p)} and i(p)(p(tγ)) = γ for all γ < µ
with tγ ∈ dom(p). It is easy to check that the resulting map

π : Pκ(T) −→ Add(κ, θ)× Col(κ, µ); p 7−→ 〈f(p), i(p)〉

is a forcing projection. �

Corollary 2.2. If κ < θ is a regular cardinal such that forcing with Pκ(T) preserves
the regularity of θ, then µ<κ < θ holds for all µ < θ.

Proof. Assume, towards a contradiction, that there is κ ≤ µ < θ with µ<κ ≥ θ.
Let G be Pκ(T)-generic over V. By Proposition 2.1, we can find H0, H1 ∈ V[G]
such that H0 is Add(κ, θ) over V and H1 is Col(κ, µ)-generic over V. Then V[H0]
contains a bijection between κ and κ<κ and V[H1] contains a bijection between κ
and µ. This shows that V[G] contains a surjection from κ onto θ. �

The following proposition shows how ascending paths induce antichains in infinite
products of partial orders of the form Pκ(T).

Proposition 2.3. If 〈bγ : λ −→ T(γ) | γ < θ〉 is an ascending path through T and
κ is an infinite regular cardinal, then the full support product

∏
λ×λ Pκ(T) does not

satisfy the θ-chain condition.

Proof. Given γ < θ, let ~pγ denote the unique condition in
∏
λ×λ Pκ(T) with the

property that dom(~pγ(α, ᾱ)) = {bγ(α), bγ(ᾱ)} and

~pγ(α, ᾱ)(bγ(α)) = ~pγ(α, ᾱ)(bγ(ᾱ)) = 0

for all α, ᾱ < λ. By our assumption, the sequence 〈~pγ | γ < θ〉 is an injective
enumeration of an antichain in

∏
λ×λ Pκ(T). �

The starting point of the proof of Theorem 1.11 is the following basic observation.

Proposition 2.4. If κ < θ is an infinite regular cardinal and p, q ∈ Pκ(T) are
incompatible, then either p � (dom(p) ∩ dom(q)) 6= q � (dom(p) ∩ dom(q)) or there
are s ∈ dom(p) \ dom(q) and t ∈ dom(q) \ dom(p) such that p(s) = q(t) and the
nodes s and t are compatible in T. �

In particular, given regular cardinals ν ≤ κ < θ, every antichain in Pν(T) is an
antichain in Pκ(T).

Proposition 2.5. Let κ be an infinite regular cardinal and let Dκ(T) denote the
set of all conditions p in Pκ(T) with the property that for all s, u ∈ dom(p) with
lhT(s) < lhT(u), there is t ∈ dom(p) with lhT(s) = lhT(t) and t <T u. Then the set
Dκ(T) is dense in Pκ(T).



ASCENDING PATHS AND SPECIALIZATION FORCINGS 9

Proof. Pick a condition p in Pκ(T) and set A = {lhT(t) | t ∈ dom(p)}. Define D to
be the set of all s ∈ T such that lhT(s) ∈ A and s ≤T t for some t ∈ dom(p). Then
D is a subset of T of cardinality less than κ with dom(p) ⊆ D and we can find a
function q : D −→ κ such that q � dom(p) = p, q � (D \ dom(p)) is an injection and
q[D \ dom(p)] ⊆ κ \ ran(p). We can conclude that q ∈ Dκ(T) with q ≤Pκ(T) p. �

In the proof of Theorem 1.11, we want to restrict ourselves to trees that satisfy
the following normality condition.

Definition 2.6. We say that the tree T does not split at limit levels if for all
γ ∈ θ ∩ Lim and all t0, t1 ∈ T(γ) with t0 6= t1, we can find γ̄ < γ and s0, s1 ∈ T(γ̄)
such that s0 6= s1 and si <T ti for all i < 2.

Note that a standard construction (see [10, Section III.3]) shows that for every
tree T of height θ there is a tree T̄ of height θ that does not split at limit levels
such that T is isomorphic to the tree T̄ � (θ \ Lim). Note that this means that the
existence of an ascending path of width λ through T̄ implies the existence of an
ascending path of width λ through T. Moreover, Proposition 2.4 shows that every
antichain in a product of the partial order Pκ(T) induces an antichain of the same
size in the corresponding product of the partial order Pκ(T̄). In combination, this
shows that, in order to prove the implication from (i) to (ii) in Theorem 1.11, it
suffices to prove this implication for all trees of height θ that do not split at limit
levels.

Proof of Theorem 1.11. Let ν ≤ κ < θ be infinite regular cardinals with µ<κ < θ
for all µ < θ.

First, assume that T contains an ascending path of width λ < κ. Then Propo-
sition 2.3 shows that for every regular cardinal ν ≤ κ, the full support product∏
λ×λ Pν(T) does not satisfy the θ-chain condition.
In the other direction, assume that there is a <κ-support product of the partial

order Pν(T) that does not satisfy the θ-chain condition. By the above remarks, we
may assume that T does not split at limit levels. Moreover, our cardinal arithmetic
assumption allows us to find µ < κ and an injective enumeration 〈~pγ | γ < θ〉 of an
antichain in the full support product P =

∏
µ Pν(T). By Proposition 2.5, there is a

sequence 〈~qγ | γ < θ〉 of conditions in P such that ~qγ ≤P ~pγ and ~qγ(β) ∈ Dν(T) for
all γ < θ and β < µ.

Fix γ ∈ Sθκ. Set Aγ = {〈t, β〉 ∈ T× µ | t ∈ dom(~qγ(β))} and let 〈tγ(α) | α < λγ〉
be a bijective enumeration of the set

{t ∈ T(γ) | ∃β < µ ∃u ∈ dom(~qγ(β)) t ≤T u}
for a cardinal λγ < κ. Since T does not split at limit levels, there is r(γ) < γ
and an injection ιγ : λγ −→ T(r(γ)) such that Aγ ∩ (T<γ × µ) ⊆ T<r(γ) × µ and
ιγ(α) <T tγ(α) for all α < λγ .

By our assumptions, we may apply Fodor’s Lemma to find λ < κ, ρ < θ, E ⊆ Sθκ
stationary in θ and a sequence 〈Hβ ⊆ ρ | β < µ〉 such that λ = λγ , ρ = r(γ) and
Hβ = {lhT(s) | s ∈ dom(~qγ(β)) ∩ T<γ} for all γ ∈ E and β < µ. In this situation,
our cardinal arithmetic assumption allows us to use the ∆-system lemma to find
F ⊆ E unbounded in θ, Q ⊆ T×µ and R ⊆ T(ρ) such that the set {Aγ | γ ∈ F} is
a ∆-system with root Q and the set {ran(ιγ) | γ ∈ F} is a ∆-system with root R.
Next, we use the pigeonhole principle and our cardinal arithmetic assumption to
find U ⊆ F unbounded in θ, B ⊆ λ, a map c : Q −→ ν and an injection ι : B −→ R
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such that c(t, β) = ~qγ(β)(t), B = {α < λ | ιγ(α) ∈ R} and ι(α) = ιγ(α) for all
γ ∈ U , α ∈ B and 〈t, β〉 ∈ Q.

Pick γ0, γ1 ∈ U such that γ0 < γ1 and Aγ0 ⊆ T<γ1 × µ. Since the condi-
tions ~qγ0

and ~qγ1
are incompatible in P, there is a β < µ such that the condi-

tions ~qγ0
(β) and ~qγ1

(β) are incompatible in Pν(T). By the above choices, we have
~qγ0

(β)(t) = c(t, β) = ~qγ1
(β) for all t ∈ dom(~qγ0

(β))∩dom(~qγ1
(β)). In this situation,

Proposition 2.4 shows that there are t0 ∈ dom(~qγ0(β)) and t1 ∈ dom(~qγ1(β)) such
that ~qγ0(β)(t0) = ~qγ1(β)(t1) and tI <T t1−I for some I < 2.

Assume, towards a contradiction, that tI ∈ T<γI . Then lhT(tI) ∈ Hβ and there
is an s ∈ dom(~qγ1−I (β)) with lhT(s) = lhT(tI). Since ~qγ1−I (β) ∈ Dν(T), we can find
t ∈ dom(~qγ1−I (β)) with t <T t1−I and lhT(s) = lhT(t). But then t = tI ∈ Q and

~qγ1−I (β)(tI) = c(tI , β) = ~qγI (β)(tI) = ~qγ1−I (β)(t1−I),

a contradiction.
The above computations show that tI /∈ T<γI and this implies that I = 0 and

t1 /∈ T<γ1
, because dom(~qγ0

(β)) ⊆ T<γ1
and dom(~qγ1

) ∩ T<γ1
⊆ T<ρ. Then there

are α0, α1 < λ with tγ0(α0) ≤T t0 and tγ1(α1) ≤T t1. In particular, this implies
that λ > 0. By the above choices, we have ιγ0(α0) <T tγ0(α0) ≤T t0 <T t1
and ιγ1

(α1) <T tγ1
(α1) ≤T t1. This implies that ιγ0

(α0) = ιγ1
(α1) ∈ R and

α0, α1 ∈ B. But then ι(α0) = ιγ0
(α0) = ιγ1

(α1) = ι(α1) and α0 = α1. Since
tγ0

(α0) ≤T t0 <T t1, tγ1
(α0) ≤T t1 and

lhT(tγ0(α0)) = γ0 < γ1 = lhT(tγ1(α0)),

we can conclude that tγ0
(α0) <T tγ1

(α0) holds.
Given γ < θ and α < λ, let δ ∈ U \ γ be minimal with Aδ̄ ⊆ T<δ × µ for all

δ̄ ∈ U ∩ δ and define bγ(α) to be the unique element of T(γ) with bγ(α) ≤T tγ(α).
By the above computations, if γ̄ < γ < θ, then there is α < λ with bγ̄(α) <T bγ(α).
This shows that the resulting sequence 〈bγ : λ −→ T(γ) | γ < θ〉 is an ascending
path of width less than κ through T. �

Proof of Theorem 1.9. Let κ < θ be a regular cardinal with µ<κ < θ for all µ < θ.
If forcing with the partial order Pκ(T) does not preserve the regularity of θ, then
Pκ(T) does not satisfy the θ-chain condition and Theorem 1.11 shows that there is
an ascending path of width less than κ through T. In the other direction, assume
that there is an ascending path of width less than κ through T and forcing with
Pκ(T) preserves the regularity of θ. Let G be Pκ(T)-generic over V. In V[G], T
contains an ascending path of width less than κ and θ is not the successor of a
cardinal of cofinality less than κ. In this situation, Corollary 1.7 implies that T is
not special in V[G], a contradiction. �

Note that the proof of Theorem 1.11 shows that, if κ < θ is a regular cardinal
with µ<κ < θ for all µ < θ and there is an ascending path of width λ < κ through
T, then there is such a path 〈bγ : λ −→ T(γ) | γ < θ〉 with the additional property
that for all γ̄ < γ < θ there is an α < λ with bγ̄(α) <T bγ(α). In the general
terminology of [4], such a path is called an Fλ-ascent path through T. It is not
known to the author whether the existence of a Fλ-ascent path is always equivalent
to the existence of an ascending path of width λ (see Question 6.5).
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3. Narrow system and Ultrafilters

In this section, we will prove the non-existence results stated in Lemma 1.4 and
Theorem 1.13 in Section 1. Instead of presenting the author’s original proofs of
these statements, we will present more elegant arguments that rely on the notion
of narrow systems introduced by Magidor and Shelah in [15] and recent results of
Lambie-Hanson contained in [12].

Definition 3.1 ([15, Definition 2.2]). Let ϑ be a limit ordinal, let D be an un-
bounded subset of ϑ and let λ > 0 be a cardinal.

(i) A set R of binary transitive relations on D × λ is a ϑ-system of width λ
on D if the following statements hold:
(a) If γ, γ̄ ∈ D, α, ᾱ < λ and R ∈ R with 〈γ̄, ᾱ〉 R 〈γ, α〉, then γ̄ < γ.
(b) If γ, γ0, γ1 ∈ D, α, α0, α1 < λ and R ∈ R such that γ0 < γ1 and
〈γi, αi〉 R 〈γ, α〉 for all i < 2, then 〈γ0, α0〉 R 〈γ1, α1〉.

(c) If γ, γ̄ ∈ D with γ̄ < γ, then there are α, ᾱ < λ and R ∈ R with
〈γ̄, ᾱ〉 R 〈γ, α〉.

(ii) A ϑ-system R of width λ is narrow if |R| < λ+ < |ϑ|.
(iii) Given a ϑ-system R of width λ on D and R ∈ R, a subset B of D×λ is an

R-branch through R if for all 〈γ0, α0〉, 〈γ1, α1〉 ∈ B with 〈γ0, α0〉 6= 〈γ1, α1〉
there is an i < 2 with 〈γi, αi〉 R 〈γ1−i, α1−i〉.

(iv) Given a ϑ-system R of width λ on D and R ∈ R, an R-branch B through
R is cofinal if the set {γ ∈ D | ∃α < λ 〈γ, α〉 ∈ B} is unbounded in ϑ.

(v) Given a ϑ-system R of width λ on D and a set B of cardinality at most λ
with the property that every element of B is an R-branch through R for
some R ∈ R, then B is a full set of branches through R if for every γ ∈ D
there are B ∈ B and α < λ with 〈γ, α〉 ∈ B.

A simple cardinality argument shows that the existence of a full set of branches
through a narrow θ-system R implies the existence of a cofinal branch through R.

It is easy to see that, if the tree T has no cofinal branches and there is an
ascending path of width λ through T, then there is a θ-system R of width λ such
that |R| = 1 and there are no cofinal branches through R. This shows that the
statements of Lemma 1.4 and Theorem 1.13 follow from the next lemma. Note
that many of the statements of the lemma already appear in [12]. For sake of
completeness, we also present the proofs of these results in this paper.

Lemma 3.2. (i) A narrow θ-system of finite width has a full set of branches.
(ii) If θ is weakly compact, then every narrow θ-system has a full set of branches.

(iii) If κ ≤ θ is θ-compact, then every narrow θ-system of width less than κ has
a full set of branches.

(iv) If κ ≤ θ is indestructibly weakly compact, then every narrow θ-system of
width less than κ has a cofinal branch.

(v) If θ is weakly compact, κ < θ is an uncountable regular cardinal and G
is Col(κ,<θ)-generic over V, then in V[G] every narrow θ-system has a
cofinal branch.

(vi) If κ ≤ θ is θ-compact, ν < κ is an uncountable regular cardinal and G is
Col(ν,<κ)-generic over V, then in V[G] every narrow θ-system of width
less than ν has a cofinal branch.



12 PHILIPP LÜCKE

The proof of the last three statements relies on the following preservation lemma
proven by Lambie-Hanson in [12].

Lemma 3.3 ([12, Lemma 4.1]). Let θ be an uncountable regular cardinal, let κ < θ
be a regular cardinal, let D be an unbounded subset of θ and let R be a narrow
θ-system of width less than κ on D. If there is a <κ-closed partial order P with
the property that in some P-generic extension there is a complete set of branches
through R, then there is a cofinal branch through R in V.

The idea used in the proof of the next lemma is taken from Baumgartner’s
elegant proof of [3, Theorem 8.2]. Remember that, given a collection S of subsets
of some set D, a filter F on D is an S-ultrafilter if for all S ∈ S, either S ∈ F of
D \ S ∈ F holds.

Lemma 3.4. Let θ be an uncountable regular cardinal and let κ < θ be a cardinal.
Then for every narrow θ-system R of width less than κ there is a collection SR of
θ-many subsets of θ such that the following statements hold:

(i) If there is a <κ-closed SR-ultrafilter on θ that consists of unbounded subsets
of θ, then there is a full set of branches through R.

(ii) If there is a <κ-closed partial order P with the property that forcing with
P adds a <κ-closed SR-ultrafilter on θ that consists of unbounded subsets
of θ, then R has a cofinal branch in V.

Proof. Let D be an unbounded subset of θ, let 0 < λ < κ be a cardinal and let R
be a narrow θ-system of width λ on D. Set I = λ × λ × R. Define SR to be the
set consisting of all subsets of D of the form

Sγ,I = {δ ∈ D | 〈γ, αI〉 RI 〈δ, βI〉}
for some γ ∈ D and I = 〈αI , βI , RI〉 ∈ I. Then SR has cardinality θ.

Both of the above assumptions imply that there is a <κ-closed partial order P, a
filter G on P that is generic over V and a <κ-closed SR-ultrafilter F on D in V[G]
that consists of unbounded subsets of θ. Work in V[G]. Given γ ∈ D, we have

D \ (γ + 1) =
⋃
{Sγ,I | I ∈ I}.

In this situation, our assumptions on F imply that there is a sequence 〈Iγ | γ ∈ D〉
with the property that Sγ,Iγ ∈ F for all γ ∈ D. Given I ∈ I, define

BI = {〈γ, αI〉 | γ ∈ D, I = Iγ}.
Pick I ∈ I and γ0, γ1 ∈ D with γ0 < γ1 and I = Iγ0

= Iγ1
. Then we have

S = Sγ0,I ∩ Sγ1,I ∈ F and our assumptions imply that there is a δ ∈ S with δ > γi
for all i < 2. This implies that 〈γi, αI〉 RI 〈δ, βI〉 for all i < 2. By the definition of
narrow systems, this implies that 〈γ0, αI〉 RI 〈γ1, αI〉.

The above computations show that BI is an RI -branch thoughR for every I ∈ I.
Since we have 〈γ, αIγ 〉 ∈ BIγ for all γ ∈ D, the set {BI | I ∈ I} is a full set of
branches through R in V[G]. By Lemma 3.3, this implies that there is a cofinal
branch through R in V. �

Proof of Lemma 3.2. (i) Let U be an ultrafilter on θ that extends the filter of
cobounded subsets of θ. Then U is closed under finite intersections and consists of
unbounded subsets of θ. If R is a narrow θ-system of finite width, then U is an
SR-ultrafilter and we can use the first part of Lemma 3.4 to conclude that there is
a full set of branches through R.
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(ii) Assume that θ is weakly compact and let R be a narrow θ-system. By
the filter property of weakly compact cardinals, there is a non-principal <κ-closed
SR-ultrafilter on θ and the above statement follows directly from the first part of
Lemma 3.4.

(iii) Assume that κ ≤ θ is θ-compact. By the filter property of θ-compact
cardinals, there is a<κ-closed ultrafilter on θ that extends the filter of all cobounded
subsets of θ. In this situation, the first part of Lemma 3.4 implies that every narrow
θ-system of width less than κ has a full set of branches.

(iv) Assume that κ ≤ θ is indestructibly weakly compact, let R be a narrow θ-
system of width less than κ and let G be Col(κ, θ)-generic over V. Then κ is weakly
compact in V[G] and the proof of the second part of the lemma shows that there is
a non-principal <κ-closed SR-ultrafilter in V[G]. In this situation, the second part
of Lemma 3.4 shows that there is a cofinal branch through R in V.

(v) Assume that θ is weakly compact, κ < θ is an uncountable regular cardinal
and G is Col(κ,<θ)-generic over V. Let R be a narrow θ-system in V[G] and let SR
denote the corresponding collection of subsets of θ given by Lemma 3.4. Since the
partial order Col(κ,<θ) satisfies the θ-chain condition, there is a Col(κ,<κ)-name

Ṡ ∈ H(θ+)V with SR = Ṡ.
Work in V and pick an elementary submodel M of H(θ+) of cardinality θ with

Ṡ ∈ M and <θM ⊆ M . By the embedding property of weakly compact cardinals,
there is a transitive set N of cardinality θ with <θN ⊆ N and an elementary
embedding j : M −→ N with critical point θ. Then Col(κ,<θ) is an element of M
and j(Col(κ,<θ)) is isomorphic to Col(κ,<θ)× Col(κ, [θ, j(θ))) both in V and N .

Let H be Col(κ, [θ, j(θ)))-generic over V[G]. Then we can lift j to an elementary
embedding j∗ : M [G] −→ N [G,H]. Let F = {A ∈ P(θ) ∩M [G] | θ ∈ j∗(A)} be
the induced M [G,H]-ultrafilter in V[G,H]. Since Col(κ, [θ, j(θ))) is <κ-closed and
SR ∈M [G], the filter F is a non-principal <κ-closed SR-ultrafilter on θ in V[G,H]
and the second part of Lemma 3.4 shows that R has a cofinal branch in V[G].

(vi) Assume that κ ≤ θ is θ-compact, ν < κ is an uncountable regular cardi-
nal and G is Col(ν,<κ)-generic over V. In V, the θ-compactness of κ yields an
elementary embedding j : V −→ M with critical point κ such that j[θ] ⊆ λ for
some λ < j(θ). Then j(Col(κ,<θ)) is isomorphic to Col(κ,<θ) × Col(κ, [θ, j(θ)))
both in V and M . Let H be Col(κ, [θ, j(θ)))-generic over V[G]. Then we can
lift j to an elementary embedding j∗ : V[G] −→ M [G,H] in V[G,H]. Define
F = {A ∈ P(θ)V[G] | λ ∈ j∗(A)}. Since Col(κ, [θ, j(θ))) is <κ-closed, we can con-
clude that F is a <κ-closed V[G]-ultrafilter on θ in V[G,H] that consists of un-
bounded subsets of θ. With the help of the second part of Lemma 3.4, we can
conclude that in V[G] every narrow θ-system has a cofinal branch. �

As mentioned in Section 1, the results of [12] also provide a global non-existence
result for trees without cofinal branches containing ascending paths of small width.
In the proof of [12, Theorem 5.2], Lambie-Hanson starts with a model containing
a proper class of supercompact cardinals and produces a class forcing extension in
which every narrow ϑ-system for an uncountable regular cardinal ϑ has a cofinal
branch. By the above remarks, every tree of uncountable regular height ϑ containing
an ascending path of width λ with λ+ < ϑ has a cofinal branch in this model.
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4. Trees constructed from walks on ordinals

This section contains the proofs of Theorem 1.10 and Theorem 1.12. These
proofs show that certain combinatorial principles allow us to construct trees with
very specific properties. The construction of these trees uses the concept of walks
on ordinals and their characteristics introduced by Todorčević.

Definition 4.1 (Todorčević). (i) A sequence ~C = 〈Cγ ⊆ γ | γ < θ〉 is a C-
sequence of length θ if the following statements hold for all γ < θ.
(a) If γ is a limit ordinal, then Cγ is a closed unbounded subset of γ.
(b) If γ = γ̄ + 1, then Cγ = {γ̄}.

(ii) Let ~C = 〈Cγ | γ < θ〉 be a C-sequence of length θ.

(a) Given γ ≤ δ < θ, the walk from δ to γ through ~C is the unique
sequence 〈ε0, . . . , εn〉 with ε0 = δ, εn = γ and εi+1 = min(Cεi \ γ) for
all i < n. In this situation, we define the full code of the walk from δ

to γ through ~C to be the sequence

ρ
~C
0 (γ, δ) = 〈otp (Cε0 ∩ γ), . . . , otp

(
Cεn−1 ∩ γ

)
〉.

(b) Given δ < κ, we define

ρ
~C
0 ( · , δ) : δ + 1 −→ <ωθ; γ 7−→ ρ

~C
0 (γ, δ).

(c) We define T(ρ
~C
0 ) to be the tree of height θ consisting of all functions

of the form ρ
~C
0 ( · , δ) � γ with γ ≤ δ < θ ordered by inclusion.

Remember that a tree T is a θ-Aronszajn tree if T has no cofinal branches and
|T(γ)| < θ holds for all γ < θ. The following results of Todorčević show how such
sequences can be used to construct θ-Aronszajn trees.

Lemma 4.2 ([24, Lemma 1.3]). If ~C = 〈Cγ | γ < θ〉 is a C-sequence and γ < θ,

then |T(ρ
~C
0 )(γ)| ≤ |{Cδ ∩ γ | γ ≤ δ < θ}|+ ℵ0.

Lemma 4.3 ([24, Lemma 1.7]). The following statements are equivalent for every

C-sequence ~C = 〈Cγ | γ < θ〉 of length θ.

(i) There is a cofinal branches through the tree T(ρ
~C
0 ).

(ii) There is a club subset C of θ and ξ < θ such that for all ξ ≤ γ < θ there
is γ ≤ δ < θ with C ∩ γ = Cδ ∩ [ξ, γ).

We will now show that trees of the form T(ρ
~C
0 ) do not contain ascending paths

of small width if they contain no cofinal branches and the underlying sequence ~C
is coherent in the following sense.

Definition 4.4. Given S ⊆ θ, we say that a C-sequence ~C = 〈Cγ | γ < θ〉 is
S-coherent if Cγ̄ = Cγ ∩ γ̄ holds for all γ ∈ θ ∩ Lim and γ̄ ∈ Lim(Cγ) ∩ S.

The proof of the following lemma relies on some computations of full codes of
walks that are presented in detail in [9, Section 3].

Lemma 4.5. Let λ < θ be a cardinal, let S ⊆ Sθ>λ be stationary in θ and let ~C be

an S-coherent C-sequence of length θ. If the tree T(ρ
~C
0 ) contains an ascending path

of width λ, then T(ρ
~C
0 ) has a cofinal branch.
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Proof. Let ~C = 〈Cγ | γ < θ〉. Set T = T(ρ
~C
0 ) and ρ0 = ρ

~C
0 . Assume, towards a

contradiction, that 〈bγ : λ −→ T(γ) | γ < θ〉 is an ascending path through T.
Given γ ∈ S and α < λ, let γ ≤ δαγ < θ be minimal with bγ(α) = ρ0( · , δαγ ) � γ,

let 〈εαγ (0), . . . , εαγ (nαγ )〉 denote the walk from δαγ to γ through ~C and let kαγ ≤ nαγ
be minimal with Cεαγ (kαγ ) ∩ γ unbounded in γ. By our assumptions, we can find

µ ≤ ν < θ and E ⊆ S \ (ν + 1) stationary in θ such that max(Cεαγ (l) ∩ γ) < µ and

min(Cγ \ µ) = ν for all γ ∈ E, α < λ and l < kαγ .

Claim. If γ0, γ1 ∈ E and α < λ with γ0 < γ1 and bγ0(α) <T bγ1(α), then kαγ0
= kαγ1

.

Proof of the Claim. Note that our assumptions imply that ν ∈ Cεαγi (k
α
γi

) for all

i < 2. Given i < 2, we can combine this observation with [9, Lemma 3.2] to see

that the sequence 〈εαγi(0), . . . , εαγi(k
α
γi), ν〉 is the walk from δαγi to ν through ~C. Since

our assumptions imply that ρ0(ν, δαγ0
) = ρ0(ν, δαγ1

) holds, we can conclude that

kαγ0
= lh(ρ0(ν, δαγ0

))− 1 = lh(ρ0(ν, δαγ1
))− 1 = kαγ1

. �

Claim. If γ0, γ1 ∈ E with γ0 < γ1, then Cγ0
= Cγ1

∩ γ0.

Proof of the Claim. By our assumption, there is an α < λ with bγ0(α) <T bγ1(α).
In this situation, the above claim shows that kαγ0

= kαγ1
. Set k = kαγ0

and pick
an ordinal ξ ∈ Cγ0

∩ [µ, γ0). Since our assumptions imply that Cγ0
= Cεαγ0

(k) ∩ γ
and hence ξ ∈ Cεαγ0

(k), an application of [9, Lemma 3.2] shows that the sequence

〈εαγ0
(0), . . . , εαγ0

(k), ξ〉 is the walk from δαγ0
to ξ through ~C. Another application of

[9, Lemma 3.2] shows that the sequence 〈εαγ1
(0), . . . , εαγ1

(k)〉 is an initial segment
of the walk from δαγ1

to ξ. In this situation, ρ0(ξ, δαγ0
) = ρ0(ξ, δαγ1

) implies that the

sequence 〈εαγ1
(0), . . . , εαγ1

(k), ξ〉 is the walk from δαγ1
to ξ through ~C. In particular,

this shows that ξ is an element of Cεαγ1
. Since our assumptions also imply that

Cγ1
= Cεαγ1

∩ γ1, we can conclude that ξ ∈ Cγ1
. This shows that Cγ0

⊆ Cγ1
and

hence we have γ0 ∈ Lim(Cγ1) ∩ S and S-coherency implies Cγ0 = Cγ1 ∩ γ0. �

The last claim shows that C =
⋃
{Cγ | γ ∈ E} is a club in θ with Cγ = C ∩ γ

for all γ ∈ E. Using Lemma 4.3, we can conclude that T has a cofinal branch. �

We will later show that it is not possible to prove the statement of the above
lemma without some coherency assumption on the C-sequence (see Theorem 4.12).

Definition 4.6 (Todorčević). A C-sequence ~C = 〈Cγ | γ < θ〉 is a �(θ)-sequence

if ~C is θ-coherent and there is no club C in θ with Cγ = C ∩ γ for all γ ∈ Lim(C).

If ~C is a �(θ)-sequence, then Lemma 4.3 and Lemma 4.2 imply that T(ρ
~C
0 ) is a

θ-Aronszajn tree. In combination with Lemma 4.5, this yields the following result.

Corollary 4.7. If ~C is �(θ)-sequence and λ is a cardinal with λ+ < θ, then the

tree T(ρ
~C
0 ) does not contain an ascending path of width λ. �

Seminal results of Jensen and Todorčević (see [8, Section 6] and [24, Theorem
1.10]) show that the existence of a constructible �(θ)-sequence follows from the
assumption that θ is not weakly compact in L. In combination with the main
result of [25], these results allow us to prove Theorem 1.10.
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Proof of Theorem 1.10. Let κ be an uncountable cardinal such that κ = κ<κ and
κ+ is not weakly compact in L. In this situation, [24, Theorem 1.10] implies that
there is a �(κ+)-sequence and [25, Theorem 3] implies that there is a �(κ+)-

sequence ~C with the property that the tree T = T(ρ
~C
0 ) is not special. Then the

partial order Pκ(T) is <κ-closed and well-met. Moreover, Corollary 4.7 shows that
there are no ascending paths of width less than κ through T and, by our assumptions
on κ, we can apply Theorem 1.9 to conclude that Pκ(T) satisfies the κ+-chain
condition. Given t ∈ T, define Dt to be the dense subset {p ∈ Pκ(T) | t ∈ dom(p)}
of Pκ(T). Since T is a κ+-Aronszajn tree, the collection D = {Dt | t ∈ T} has
cardinality κ+. But then there is no D-generic filter on Pκ(T), because the existence
of such a filter would imply that T is special. This shows that FAκ+(Pκ(T)) fails. �

In the remainder of this section, we will prove Theorem 1.12. The following
definition and lemmas are crucial for the proof of this result.

Definition 4.8. A C-sequence ~C = 〈Cγ | γ < θ〉 avoids S ⊆ θ if Lim(Cγ) ∩ S = ∅
holds for all γ ∈ Lim ∩ θ.

Lemma 4.9 ([5, Lemma 6.8]). There is a club D in θ with the property that

whenever ~C is a C-sequence of length θ that avoids a subset S of θ, then D ∩ S is

non-stationary with respect to T(ρ
~C
0 ).

Lemma 4.10 ([5, Lemma 6.4]). Assume that T is a θ-Aronszajn tree that does
not split at limit levels. If there is a stationary subset S of θ such that S is non-
stationary with respect to T, then the partial order Pω(T) is θ-Knaster.

Note that trees of the form T(ρ
~C
0 ) for some C-sequence ~C consist of functions

ordered by inclusion and therefore such trees do not split at limit levels. In the
following, we will start from the assumption that there is a �(θ)-sequence that
avoids a stationary set consisting of ordinals of small cofinality and use the above

lemma to find a C-sequence ~C of length θ with the property that the tree T(ρ
~C
0 ) is

a θ-Aronszajn tree containing an ascending path of small width and the property

that the partial order Pω(T(ρ
~C
0 )) is θ-Knaster. The constructed path will satisfy

the following stronger property first considered by Laver (see [7] and [22]). In the
general terminology of [4], such paths are called Fbdλ -ascent paths.

Definition 4.11 (Laver). Let λ > 0 be a cardinal. A λ-ascent paths through T is
a sequence 〈bγ : λ −→ T(γ) | γ < θ〉 with the property that for all γ, γ̃ < θ, there

is a λ̃ < λ such that bλ̃(α) ≤T bγ(α) for all λ̃ < α < λ.

In [25], Todorčević constructed a θ-Aronszajn tree containing such a κ-ascent

path assuming the existence of a �(θ)-sequence ~C = 〈Cγ | γ < θ〉 with the property
that there is an infinite regular cardinal κ < θ such that θ is not the successor of a
cardinal of cofinality κ and the set {γ < θ | otp (Cγ) = κ} is stationary in θ. The
results of [11, Section 3] show that this assumption is slightly stronger than the
assumptions of the next theorem. This theorem also shows that the conclusion of

Lemma 4.5 does not hold without some coherency assumptions on the sequence ~C.

Theorem 4.12. Let λ < θ be an infinite regular cardinal and let S ⊆ Sθλ be
stationary in θ. Assume that there is a �(θ)-sequence that avoids S. Then there is

a C-sequence ~C of length θ that avoids S and has the property that the tree T(ρ
~C
0 )

is a θ-Aronszajn tree that contains a λ-ascent path.
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Proof. Fix a �(θ)-sequence ~D = 〈Dγ | γ < θ〉 that avoids S and let A denote the
set of all ordinals less than θ that are divisible by ω · λ, i.e. A = {ω · λ · γ | γ < θ}.
Then 0 ∈ A and A is closed in θ.

In the following, we inductively construct a sequence 〈〈Cγ+ω·α | α < λ〉 | γ ∈ A〉
that satisfies the following statements for all γ ∈ A:

(i) Cγ = Dγ .
(ii) If 0 < α < λ, then Cγ+ω·α is a club in γ + ω · α with Cγ+ω·α ∩ S = ∅.
(iii) If γ̃ < γ and 0 < α < λ, then there is γ̄ < min(A \ γ̃) + ω · λ with

Cγ+ω·α ∩ γ̃ = (Cγ̄ ∪ {γ̄}) ∩ γ̃. (1)

(iv) If γ ∈ A \ S and γ̄ ∈ Lim(A ∩ Dγ), then Cγ+ω·α is an end-extension of
Cγ̄+ω·α for all 0 < α < λ.

(v) If γ̃ ∈ A ∩ γ, then there is λ̃ < λ such that Cγ+ω·α is an end-extension of

Cγ̃+ω·α for all λ̃ < α < λ.

In the construction of this sequence, we will distinguish several cases.

Case 0: γ = 0. Define Cω·α = ω · α for all α < λ.

Case 1: A is bounded in γ > 0. Pick ordinals γ0 ≤ γ1 < γ with the property
that γ1 = max(A∩ γ) and either Lim(A∩Dγ) 6= ∅ and γ0 = max(Lim(A∩Dγ)) or
Lim(A ∩Dγ) = ∅ and γ0 = γ1. By our induction hypothesis, there is λ1 < λ such
that Cγ1+ω·α is an end-extension of Cγ0+ω·α for all λ1 < α < λ. Set λ0 = 0 and
λ2 = λ. Given 0 < α < λ, pick i < 2 with λi < α ≤ λi+1 and define

Cγ+ω·α = Cγi+ω·α ∪ {γi + ω · α} ∪ (γ, γ + ω · α).

Given 0 < α < λ, the set Cγ+ω·α is a club in γ + ω · α that is disjoint from S.
Moreover, for all γ̃ < γ and 0 < α < λ, we can find i < 2 with

Cγ+ω·α ∩ γ̃ = (Cγi+ω·α ∪ {γi + ω · α}) ∩ γ̃.

Together with our induction hypothesis, this allows us to find γ̄ < min(A\ γ̃)+ω ·λ
such that (1) holds. If Lim(A ∩ Dγ) 6= ∅, then our induction hypothesis implies
that Cγ+ω·α is an end-extension of Cγ̄+ω·α for all γ̄ ∈ Lim(A∩Dγ) and 0 < α < λ,
because the above construction ensures that Cγ+ω·α is an end-extension of Cγ0+ω·α
for all 0 < α < λ. Finally, for every γ̃ ∈ A∩γ there is λ1 ≤ λ̃ < λ such that Cγ1+ω·α
is an end-extension of Cγ̃+ω·α for all λ̃ < α < λ and this implies that Cγ+ω·α is an

end-extension of Cγ̃+ω·α for all λ̃ < α < λ.

Case 2: A is unbounded in γ and Lim(A∩Dγ) is bounded in γ. Then cof(γ) = ω
and we can pick a strictly increasing sequence 〈γn ∈ A | n < ω〉 that is cofinal in
γ such that Lim(A ∩Dγ) 6= ∅ implies γ0 = max(Lim(A ∩Dγ)). By our induction
hypothesis, there is a strictly increasing sequence 〈λn < λ | n < ω〉 such that λ0 = 0,
Cγn+1+ω·α is an end-extension of Cγn+ω·α for all n < ω and λn+1 ≤ α < λ and, if
cof(λ) = ω, then this sequence is cofinal in λ. Then Cγn+ω·α is an end-extension of
Cγm+ω·α for all m ≤ n < ω and λn ≤ α < λ. Set λω = supn<ω λn ≤ λ. Note that
λω < λ implies that λ > ω and γ /∈ S. Given 0 < α < λω, let n < ω be maximal
with λn ≤ α and define

Cγ+ω·α = Cγn+ω·α ∪ {γβ + ω · α} ∪ (γ, γ + ω · α).

Given λω ≤ α < λ, define

Cγ+ω·α =
⋃
{Cγn+ω·α | n < ω} ∪ [γ, γ + ω · α).
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Then the set Cγ+ω·α is a club in γ+ω ·α that it is disjoint from S for all 0 < α < λ.
If γ̃ < γ and 0 < α < λ, then there is an n < ω with

Cγ+ω·α ∩ γ̃ = (Cγn+ω·α ∪ {γn + ω · α}) ∩ γ̃.

In combination with our induction hypothesis, this yields a γ̄ < min(A \ γ̃) + ω · λ
such that (1) holds. Next, observe that Lim(A ∩ Dγ) 6= ∅ implies that Cγ+ω·α is
an end-extension of Cγ0+ω·α for all 0 < α < λ. If γ̄ ∈ Lim(A ∩Dγ) and 0 < α < λ,
then γ0 ∈ A \S, γ̄ ∈ Lim(A∩Dγ0) and our induction hypothesis together with the
above observation shows that Cγ+ω·α is an end-extension of Cγ̄+ω·α. Finally, pick

γ̃ ∈ A ∩ γ. By our induction hypothesis, there are n < ω and λn ≤ λ̃ < λ such
that γ̃ ≤ γn and Cγn+ω·α is an end-extension of Cγ̃+ω·α for all λ̃ < α < λ. Fix

λ̃ < α < λ and let β ≤ ω be maximal with λβ ≤ α. Then β ≥ n, Cγ+ω·α is an
end-extension of Cγn+ω·α and therefore Cγ+ω·α is an end-extension of Cγ̃+ω·α.

Case 3: Lim(A ∩Dγ) is unbounded in γ and γ /∈ S. Define

Cγ+ω·α =
⋃
{Cγ̄+ω·α | γ̄ ∈ Lim(A ∩Dγ)} ∪ [γ, γ + ω · α)

for all 0 < α < λ. If γ0, γ1 ∈ Lim(A ∩Dγ) with γ0 < γ1, then γ0 ∈ Lim(A ∩Dγ1
)

and our induction hypothesis implies that Cγ1+ω·α is an end-extension of Cγ0+ω·α
for all 0 < α < λ. This shows that for all 0 < α < λ, the set Cγ+ω·α is a club
in γ + ω · α that is disjoint from S. Moreover, if γ̃ < γ and 0 < α < λ, then
there is γ0 ∈ Lim(A ∩ Dγ) with Cγ+ω·α ∩ γ̃ = Cγ0+ω·α ∩ γ̃ and, by our induction
hypothesis, this shows that there there is a γ̄ < min(A \ γ̃) + ω · λ such that (1)
holds. Next, our induction hypothesis shows that Cγ+ω·α is an end-extension of
Cγ̄+ω·α for all γ̄ ∈ Lim(A ∩ Dγ) and 0 < α < λ. Finally, if γ̃ ∈ A ∩ γ, then our

induction hypothesis implies that there is γ̄ ∈ Lim(A ∩ Dγ) and λ̃ < λ such that

γ̃ ≤ γ̄, Cγ̄+ω·α is an end-extension of Cγ̃+ω·α for all λ̃ < α < λ and Cγ+ω·α is an

end-extension of Cγ̃+ω·α for all λ̃ < α < λ.

Case 4: Lim(A ∩Dγ) is unbounded in γ and γ ∈ S. Then cof(γ) = λ and we
can pick a strictly increasing continuous sequence 〈γα ∈ Lim(A ∩Dγ) | α < λ〉 that
is cofinal in γ. Given 0 < α < λ, define

Cγ+ω·α = Cγα+ω·α ∪ {γα + ω · α} ∪ (γ, γ + ω · α).

Given 0 < α < λ, the set Cγ+ω·α is a club in γ + ω · α that it is disjoint from S.
Next, if γ̃ < γ and 0 < α < λ, then

Cγ+ω·α ∩ γ̃ = (Cγα+ω·α ∪ {γα + ω · α}) ∩ γ̃

and our induction hypothesis yields γ̄ < min(A \ γ̃) + ω · λ such that (1) holds.

Finally, pick γ̃ ∈ A∩ γ. Then our induction hypothesis allows us to find α̃ ≤ λ̃ < λ
such that γ̃ ≤ γα̃ and Cγα̃+ω·α is an end-extension of Cγ̃+ω·α for all λ̃ < α < λ. Fix

λ̃ < α < λ. Since γα ∈ A \ S and γα̃ ∈ Lim(A ∩ Dγα), our induction hypothesis
implies that Cγα+ω·α is an end-extension of Cγα̃+ω·α. This allows us to conclude
that Cγ+ω·α is an end-extension of Cγ̃+ω·α.

This completes our inductive construction. We let ~C denote the resulting C-

sequence. Set T = T(ρ
~C
0 ) and ρ0 = ρ

~C
0 .

Claim. The tree T is a θ-Aronszajn tree.
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Proof of the Claim. Pick γ < θ. Since ~D is a �(θ)-sequence, we have

|{Cδ ∩ γ | δ ∈ A \ γ}| ≤ |γ|+ ℵ0 < θ.

Moreover, the above construction ensures that

|{Cδ+ω·α ∩ γ | γ + ω · λ ≤ δ ∈ A, 0 < α < λ}|
≤ |{(Cδ ∪ {δ}) ∩ γ | δ < min(A \ γ) + ω · λ}| < θ.

In combination, this shows that |{Cδ ∩ γ | γ ≤ δ < θ}| < θ holds.
Together with Lemma 4.2, the above computations show that |T(γ)| < θ holds

for all γ < θ. Since ~C avoids S, we can apply Proposition 1.2 and Lemma 4.9
to conclude that there are no cofinal branches through T. This shows that T is a
θ-Aronszajn tree. �

Given γ ∈ A and α < λ, define

tγ(α) = ρ0( · , γ + ω · (1 + α)) � γ ∈ T(γ).

Claim. If γ, γ̃ ∈ A with γ̃ < γ, then there is λ̃ < λ such that tγ̃(α) <T tγ(α) for

all λ̃ < α < λ.

Proof of the Claim. By the above construction, we can find λ̃ < λ with the property
that Cγ+ω·α is an end-extension of Cγ̃+ω·α for all λ̃ < α < λ. By the definition of

ρ0, this implies that tγ̃(α) <T tγ(α) holds for all λ̃ < α < λ. �

Given γ < θ and α < λ, set δ = min(A \ γ) and define bγ(α) to be the unique
element of T(γ) with bγ(α) ≤T tδ(α). Then the above claim shows that the resulting
sequence 〈bγ : λ −→ T(γ) | γ < θ〉 is a λ-ascent path through T. �

Before we prove Theorem 1.12, we use the above theorem to reprove a result
of [25] on lower bounds for the consistency strength of the conclusion of Theorem
1.13,(iii). Note that the derived lower bound is strictly smaller than the upper
bound given by the theorem (see Question 6.6).

Corollary 4.13. Assume that θ > ω1 and there is a �(θ)-sequence ~C with the

property that the tree T(ρ
~C
0 ) is special.

(i) If θ is not a successor of a cardinal of cofinality ω, then there is a C-

sequence ~C of length θ with the property that T(ρ
~C
0 ) is a θ-Aronszajn tree

that contains an ω-ascent path.

(ii) If θ is a successor of a cardinal of cofinality ω, then there is a C-sequence ~C

of length θ with the property that T(ρ
~C
0 ) is a θ-Aronszajn tree that contains

an ω1-ascent path.

Proof. Let κ < θ be a regular cardinal with the property that θ is not a successor of a
cardinal of cofinality κ. Then a combination of [25, Lemma 4] with [11, Proposition

30] implies that there is a �(θ)-sequence ~D and S ⊆ Sθκ stationary in θ such that
~D avoids S. By Theorem 4.12, this implies the conclusion of the corollary. �

Note that results of Jensen show that the assumption of Corollary 4.13 holds if
θ is not a Mahlo cardinal in L (see [25, Theorem 2]). Moreover, Jensen’s classical
definition of �κ-sequences provides examples for sequences with the above property.

Definition 4.14 (Jensen). Let κ be an infinite cardinal. A �κ-sequence is a κ+-

coherent C-sequence ~C = 〈Cγ | γ < κ+〉 with otp (Cγ) ≤ κ for all γ < κ+.
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Basic computations contained in [25] show that for every �κ-sequence ~C, the

tree T(ρ
~C
0 ) is a special κ+-Aronszajn tree. Using results from inner model theory,

this shows that the non-existence of Aronszajn trees containing ascending paths of
width at most ω1 at the successor of a singular cardinal or the successor of a weakly
compact has very large consistency strength.

Proof of Theorem 1.12. Assume that V is a Jensen-style extender model and let ϑ
be an uncountable regular cardinal.

First, assume that ϑ is weakly compact. Let ν < ϑ, let P =
∏
η<ρ Pη be a

ν-support product of ϑ-Knaster partial orders and let 〈~pγ | γ < ϑ〉 be a sequence
of conditions in P. By the ∆-system lemma, there is an unbounded subset S of ϑ
and a subset R of ρ of cardinality at most ν such that supp(pη)∩ supp(pη̄) = R for
all η, η̄ ∈ S with η 6= η̄. Let c : S × S −→ R ∪ {ρ} denote the unique function with
the property that the following statements hold for all γ, γ̄ ∈ S:

(i) c(γ, γ̄) = ρ if and only if the conditions ~pγ and ~pγ̄ are compatible in P.
(ii) If c(γ, γ̄) < ρ, then c(γ, γ̄) is the minimal element η of R with the property

that the conditions ~pγ(η) and ~pγ̄(η) are incompatible in Pη.

Since ϑ is weakly compact and each partial order Pη satisfies the ϑ-chain condition,
there is U ⊆ S unbounded in ϑ with c(γ, γ̄) = ρ for all γ, γ̄ ∈ U . Then the sequence
〈~pγ | γ ∈ U〉 consists of pairwise compatible conditions in P.

Next, assume that ϑ is neither weakly compact nor the successor of a subcompact
cardinal. If ϑ is inaccessible, then [30, Theorem 0.1] shows that there is a �(ϑ)-

sequence ~C and S ⊆ Sϑω stationary in ϑ such that ~C avoids S. In the other case, if
ϑ is the successor of a cardinal κ that is not subcompact, then [17, Theorem 0.1]
shows that there is a �κ-sequences and a combination of [11, Proposition 30] with

[11, Corollary 32] shows that in this case we can also find a �(ϑ)-sequence ~C and

S ⊆ Sϑω stationary in ϑ such that ~C avoids S. By Lemma 4.9 and Theorem 4.12,
this implies that there is a club D in ϑ and a ϑ-Aronszajn tree T such that there is
an ascending path of width ω through T and the set D ∩ S is non-stationary with
respect to T. Then Lemma 4.10 shows that the partial order Pω(T) is ϑ-Knaster and
Proposition 2.3 implies that the full support product

∏
ω Pω(T) is not ϑ-Knaster.

Finally, assume that ϑ is the successor of a subcompact cardinal κ. Since sub-
compact cardinals are weakly compact, we have κ = κ<κ and a classical result of
Specker shows that there is a normal special ϑ-Aronszajn tree T. Then Lemma 4.10
implies that the partial order Pω(T) is ϑ-Knaster. In this situation, Proposition
1.5 shows that T contains an ascending path of width κ and Proposition 2.3 shows
that the full support product

∏
κ Pω(T) is not ϑ-Knaster. �

5. PFA and ascending paths

In this section, we prove the three statements of Theorem 1.14. We start by
showing how the theory of guessing models developed by Viale and Weiss in [28]
can be used to show that the Proper Forcing Axiom implies the non-existence
of trees containing ascending paths of countable width without cofinal branches.
Basically the same implication was independently proven by Lambie-Hanson in [12,
Section 10]. For sake of completeness, we still present this application of the results
of [28]. Given a set X and a cardinal κ, we let Pκ(X) denote the collection of all
subsets of X of cardinality less than κ.
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Definition 5.1. Let ϑ be an uncountable regular cardinal and let M be an ele-
mentary substructure H(ϑ).

(i) A set X ∈ H(ϑ) is M -approximated if X∩Y ∈M for all Y ∈M ∩Pω1
(M).

(ii) A set X ∈ H(ϑ) is M -guessed if there is an Y ∈M with X ∩M = Y ∩M .
(iii) M is a guessing model if for all X ∈ M and every Y ⊆ X that is M -

approximated, the set X is M -guessed.

Definition 5.2 ([28]). Given an uncountable regular cardinal κ, we let ISP(κ)
denote the statement that for every regular cardinal ϑ > κ, the collection of all
guessing models is stationary in M ∈ Pκ(H(ϑ)).

Theorem 5.3 ([28, Theorem 4.8]). PFA implies ISP(ω2).

The following results also appeared as [12, Theorem 10.2].

Lemma 5.4. If ISP(κ) holds and θ ≥ ω2, then every narrow θ-system of width ω
has a cofinal branch.

Proof. Let R be a narrow θ-system of width ω, let ϑ > θ be a regular cardinal
with R ∈ H(ϑ) and let M ∈ Pω2

(H(ϑ)) be a guessing model with R ∈ M . Set
δ = sup(M ∩ θ) < θ. Then cof(δ) = ω1, because our assumptions imply that every
subset of M ∩ δ of order-type ω is contained in M . By our assumptions, there are
β < λ ⊆M and R ∈ R ⊆M such that the set

{γ ∈ D ∩M | ∃α < λ 〈γ, α〉 R 〈δ, β〉}
is unbounded in δ. Set

A = {〈γ, α〉 ∈ D × λ | 〈γ, α〉 R 〈δ, β〉}.
Then A ⊆ D × λ ∈M is a branch through R.

Pick X ∈ M ∩ Pω1
(M). Since cof(δ) = ω1, we can find γ ∈ D ∩M and α < λ

such that A ∩X ⊆ γ × λ and 〈γ, α〉 R 〈δ, β〉. Then

A ∩X = {〈γ̄, ᾱ〉 ∈ D × λ | 〈γ̄, ᾱ〉 ∈ X, 〈γ̄, ᾱ〉 R 〈γ, α〉} ∈ M.

The above computations show that A is M -approximated and hence it is M -
guessed. This shows that there is B ∈ M with B ⊆ D × λ and A ∩M = B ∩M .
In M , the set B is a cofinal R-branch though R. By elementarity, R has a cofinal
branch in V. �

In the following, we will show that PFA is compatible with the existence of an ω3-
Souslin tree that contains an ascending path of width ω1. This proof uses the weak
square principle introduced by Baumgartner in unpublished work and parallels the
constructions of [12, Section 9].

Definition 5.5 (Baumgartner). Let κ be an infinite regular cardinal, let B be a

subset of κ+ with Sκ
+

κ ⊆ B ⊆ Lim and let ~C = 〈Cγ | γ < κ+〉 be a C-sequence.

We say that ~C is a �Bκ -sequence if the following statements hold:

(i) otp (Cγ) ≤ κ for all γ < κ+.
(ii) If γ ∈ B ∩ Lim and γ̄ ∈ Lim(Cγ), then γ̄ ∈ B and Cγ̄ = Cγ ∩ γ̄.

In contrast to �κ-sequences, these sequences can be added by <κ-directed closed
forcings that preserve the regularity of κ+.

Lemma 5.6 ([2, Fact 2.7]). If κ is an infinite regular cardinal, then there is a
partial order P with the following properties:
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(i) P is <κ-directed closed and (κ+ 1)-strategically closed.
(ii) If G is P-generic over V, then there is a �Bκ -sequence in V[G].

The following observation shows that we can modify a given �Bκ -sequence to
obtain a sequence that avoids a stationary subset of a given stationary set.

Proposition 5.7. Let κ be an infinite regular cardinal with the property that there
is a �Bκ -sequence.

(i) The set B is a fat stationary subset of κ+. In particular, S ∩ Sκ+

ν is
stationary in κ+ for every regular cardinal ν ≤ κ.

(ii) If S ⊆ B is stationary in κ+, then there is A ⊆ S stationary in κ+ and a

�Bκ -sequence ~C = 〈Cγ | γ < κ+〉 A ∩ Lim(Cγ) = ∅ holds for all γ ∈ B.

Proof. Let ~D = 〈Dγ | γ < κ+〉 be a �Bκ -sequence.
(i) We may assume that κ is uncountable, because otherwise the statement holds

trivially. Let C be a club in κ+. Pick γ ∈ Lim(C) ∩ Sκ+

κ ⊆ B, then the set
(C ∩Lim(Cγ))∪{γ} is a closed subset of B ∩C of order-type κ+ 1. By [1, Lemma
1.2], this argument shows that B is fat stationary in κ+.

(ii) By our assumptions, we have otp (Cγ) < γ for all γ ∈ S \ (κ+1). This allows
us to find ξ ≤ κ and A ⊆ S stationary in κ+ such that otp (Dγ) = ξ for all γ ∈ A.
Then |A ∩ Lim(Dγ)| ≤ 1 holds for all γ ∈ B. If γ ∈ B and A ∩ Lim(Dγ) = {γ̄},
then we define Cγ = Dγ∩(γ̄, γ). In the other case, if either γ ∈ κ+\B or γ ∈ B and
A ∩ Lim(Dγ) = ∅, then we define Cγ = Dγ . The resulting sequence 〈Cγ | γ < κ+〉
is a C-sequence with otp (Cγ) ≤ κ and A ∩ Lim(Cγ) = ∅ for all γ < κ+. If γ ∈ B
and γ̄ ∈ Lim(Cγ), then γ̄ ∈ Lim(Dγ), γ̄ ∈ B \ A, Dγ̄ = Dγ ∩ γ̄ and the above
computation implies that Cγ̄ = Cγ ∩ γ̄. �

In combination with certain fragments of the GCH, the above principle allows
us to construct Souslin trees containing ascending paths of small width.

Theorem 5.8. Let κ be an uncountable regular cardinal that satisfies 2κ = κ+

and 2κ
+

= κ++. If there is a �Bκ+-sequence, then there is a κ++-Souslin tree that
contains a κ-ascent path.

Proof of the Theorem. Set ϑ = κ++. By our assumptions and Proposition 5.7,

there is a �Bκ -sequence ~C = 〈Cγ | γ < ϑ〉 and A ⊆ B∩Sϑκ stationary in ϑ such that
A∩Lim(Cγ) = ∅ for all γ ∈ B. Set B̄ = B ∪ {0}. Results of Shelah (see [19]) show
that our assumptions imply that ♦(E) holds for all E ⊆ Sϑ≤κ stationary in ϑ. This

allows us to fix a ♦(A)-sequence 〈Aγ | γ ∈ A〉.
We construct the following objects by induction on γ < ϑ:

(i) A subtree T of <ϑ2 of height ϑ (i.e. T is a tree of height ϑ that consists of
functions t : γ −→ 2 with γ < ϑ ordered by inclusion and is closed under
initial segments) with the following properties:
(a) If γ < ϑ, then |T(γ)| < ϑ and every element of T(γ) has two distinct

direct successors in T(γ + 1).
(b) If ν ≤ κ and 〈tξ | ξ < ν〉 is an ascending sequence in T with the

property that supξ<ν lhT(tξ) /∈ A, then
⋃
ξ<ν tξ ∈ T.

(c) If t ∈ T and lhT(t) ≤ γ < ϑ, then there is u ∈ T(γ) with t ⊆ u.
(ii) An injection ι : T −→ ϑ with the following properties:

(a) If s, t ∈ T with lhT(s) < lhT(t), then ι(s) < ι(t).



ASCENDING PATHS AND SPECIALIZATION FORCINGS 23

(b) If γ ∈ A and the (ι � T<γ)-preimage of Aγ is a maximal antichain
in T<γ , then for every u ∈ T(γ), there is a t ∈ T<γ with t ⊆ u and
ι(t) ∈ Aγ .

(iii) A sequence 〈aγ : κ −→ T(γ) | γ ∈ B̄〉 of functions such that the following
statements hold:
(a) If γ ∈ B \A and γ̄ ∈ Lim(Cγ), then aγ̄(α) ⊆ aγ(α) for all α < κ.
(b) If γ, γ̄ ∈ B̄ with γ̄ < γ, then there is a κ̄ < κ with aγ̄(α) ⊆ aγ(α) for

all κ̄ ≤ α < κ.

In the inductive construction of the above objects, we have to distinguish several
cases and subcases:

Case 0: γ = 0. Set T(0) = {∅} and a0(α) = ∅ for all α < κ.

Case 1: γ = γ̄ + 1. Define T(γ) = {t ∈ γ2 | t � γ̄ ∈ T(γ̄)}. In this situation,
our induction hypothesis ensures that |T(γ)| < ϑ and hence there is an injection
ι � T<γ+1 : T<γ+1 −→ ϑ that extends the previous injections and satisfies the above
requirement.

Case 2: γ ∈ Sϑ<κ. Define T(γ) = {t ∈ γ2 | ∀γ̄ < γ t � γ̄ ∈ T(γ̄)}. Then our
induction hypothesis implies that for every t ∈ T<γ there is a u ∈ T(γ) with
t ⊆ u. Moreover, our assumptions imply that γ<κ < ϑ holds and this shows that
|T(γ)| < ϑ. In particular, we can use our induction hypothesis to find an injection
ι � T<γ+1 : T<γ+1 −→ ϑ that extends the previous injections and satisfies the above
requirements.

Now, assume that γ ∈ B. In the construction of the function aγ : κ −→ T(γ),
we distinguish several subcases:

Subcase 2.1: Lim(Cγ) is unbounded in γ. Set aγ(α) =
⋃
{aγ̄(α) | γ̄ ∈ Lim(Cγ)}

for all α < κ. Then our induction hypothesis implies that aγ(α) ∈ T(γ) for all
α < κ. Given γ̄ ∈ B ∩ γ, there is γ0 ∈ Lim(Cγ) with γ̄ ≤ γ0 and our induction
hypothesis shows that there is κ̄ < κ with aγ̄(α) ⊆ aγ0

(α) for all κ̄ ≤ α < κ. This
shows that aκ̄(α) ⊆ aγ(α) for all κ̄ ≤ α < κ.

Subcase 2.2: γ ∈ Lim(B) and Lim(Cγ) is bounded in γ. Then cof(γ) = ω
and there is a strictly increasing sequence 〈γn ∈ B ∩ γ | n < ω〉 cofinal in γ such
that Lim(Cγ) 6= ∅ implies γ0 = max(Lim(Cγ)). By our induction hypothesis,
there is a strictly increasing sequence 〈κn < κ | n < ω〉 such that κ0 = 0 and
aγn(α) ⊆ aγn+1

(α) for all n < ω and κn+1 ≤ α < κ. Then aγm(α) ⊆ aγn(α)
for all m ≤ n < ω and κn ≤ α < κ. Given n < ω and κn ≤ α < κn+1, we
define aγ(α) to be some element of T(γ) that extends aγn(α). In the other case,
if supn<ω κn ≤ α < κ, then we define aγ(α) =

⋃
{aγn(α) | n < ω} ∈ T(γ). Then

the above choices ensure that aγn(α) ⊆ aγ(α) for all n < ω and κn ≤ α < κ. In
particular, we have aγ0

(α) ⊆ aγ(α) for all α < κ and our induction hypothesis
implies that aγ̄(α) ⊆ aγ(α) for all γ̄ ∈ Lim(Cγ) and α < κ. Finally, fix γ̄ ∈ B̄ ∩ γ
and pick n < ω with γ̄ ≤ γn. By our induction hypothesis, there is κn ≤ κ̄ < κ
with aγ̄(α) ⊆ aγn(α) for all κ̄ ≤ α < κ. By the above computations, we have
aγ̄(α) ⊆ aγ(α) for all κ̄ ≤ α < κ.

Subcase 2.3: γ /∈ Lim(B) and sup(γ ∩ B̄) ∈ B̄. Then Lim(Cγ) is bounded in
γ and there are γ0 ≤ γ1 < γ such that γ0, γ1 ∈ B̄, γ1 = max(B̄ ∩ γ), Lim(Cγ) 6= ∅
implies γ0 = max(Lim(Cγ)) and Lim(Cγ) = ∅ implies γ0 = γ1. By our induction
hypothesis, there is an κ1 < κ with aγ0

(α) ⊆ aγ1
(α) for all κ1 ≤ α < κ. Set κ0 = 0

and κ2 = κ. Given α < κ, pick i < 2 with κi ≤ α < κi+1 and define aγ(α) to be
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some element of T(γ) that extends aγi(α). Given α < κ , we have aγ0
(α) ⊆ aγ(α)

and our induction hypothesis implies that aγ̄(α) ⊆ aγ(α) for all γ̄ ∈ Lim(Cγ).
Finally, if γ̄ ∈ B̄ ∩ γ, then γ̄ ≤ γ1 and our induction hypothesis allows us to find
κ1 ≤ κ̄ < κ with aγ̄ ⊆ aγ1

(α) for all κ̄ ≤ α < κ. This implies that aγ̄ ⊆ aγ(α) for
all κ̄ ≤ α < κ.

Subcase 2.4: γ /∈ Lim(B) and γ̃ = sup(γ ∩ B̄) /∈ B̄. Then Lim(Cγ) is bounded
in γ by γ̃ and λ = cof(γ̃) ≤ κ. Pick a strictly increasing continuous sequence
〈γβ < γ̃ | β < λ〉 that is cofinal in γ̃ such that γβ+1 ∈ B for all β < λ, Lim(Cγ) 6= ∅
implies γ0 = max(Lim(Cγ)) and Lim(Cγ) = ∅ implies γ0 = 0. By our induction
hypothesis, there is a strictly increasing continuous sequence 〈κβ < κ | β < λ〉 such
that κ0 = 0 and aγβ̄ (α) ⊆ aγβ+1

(α) for all κβ+1 ≤ α < κ and β̄ ≤ β < λ with
γβ̄ ∈ B. Set κλ = supβ<λ λβ ≤ κ. Fix α < κ and let β ≤ λ be maximal with
κβ ≤ α. Then the above definitions and our induction hypothesis imply that

āγ(α) =
⋃
{aγβ̄ (α) | β̄ < max{β, 1}, γβ̄ ∈ B} ∈ T<γ .

Define aγ(α) to be an element of T(γ) with āγ(α) ⊆ aγ(α). Then aγ0(α) ⊆ aγ(α)
for all α < κ. In particular, if γ̄ ∈ Lim(Cγ), then our induction hypothesis implies
that aγ̄(α) ⊆ aγ(α) for all α < κ. Finally, pick γ̄ ∈ γ ∩ B. Then γ̄ < γ̃ and we
can find β̄ < λ and κβ̄+1 ≤ κ̄ < κ with γ̄ < γβ̄ ∈ B and aγ̄(α) ⊆ aγβ̄ (α) for all

κ̄ ≤ α < κ. Fix κ̄ ≤ α < κ and let β ≤ λ be maximal with α ≥ κβ . Then β > β̄
and aγβ̄ (α) ⊆ āγ(α). This allows us to conclude that aγ̄(α) ⊆ aγ(α).

Case 3: γ ∈ Sϑκ \ A. Define T(γ) = {t ∈ γ2 | ∀γ̄ < γ t � γ̄ ∈ T(γ̄)}. As above,
our assumptions and the induction hypothesis imply that |T(γ)| < ϑ and we can
find an injection ι � T<γ+1 : T<γ+1 −→ ϑ with the desired properties.

Now, assume that γ ∈ B. Since cof(γ) > ω, we know that Lim(Cγ) ⊆ B is
unbounded in γ and our induction hypothesis shows that

aγ(α) =
⋃
{aγ̄(α) | γ̄ ∈ Lim(Cγ)} ∈ T(γ)

for all α < κ. Moreover, Our induction hypothesis directly implies that this se-
quence has the desired properties.

Case 4: γ ∈ A. Since cof(γ) > ω, there is a strictly increasing continuous
sequence 〈γα ∈ Lim(Cγ) | α < κ〉 cofinal in γ. Pick a maximal antichain A in T<γ
such that A is equal to the (ι � T<γ)-preimage of Aγ if this preimage is a maximal
antichain in T<γ . Let TA denote the set of all t ∈ T<γ with s ≤T t for some s ∈ A.
Given t ∈ TA, our induction hypothesis allows us to find ut ∈ γ2 such that t ⊆ ut
and ut � γ̄ ∈ T(γ̄) for all γ̄ < γ. We define T(γ) = {ut | t ∈ TA}. Then our
induction hypothesis implies that |T(γ)| < ϑ and we can find a suitable injection
ι � T<γ+1 : T<γ+1 −→ ϑ. Moreover, if the (ι � T<γ)-preimage of Aγ is a maximal
antichain in T<γ , then the above construction ensures that for every u ∈ T(γ),
there is a t ∈ T<γ with t ⊆ u and ι(t) ∈ Aγ . Finally, the maximality of A in T<γ
implies that for every α < κ, there is an āγ(α) ∈ TA with aγα(α) ⊆ āγ(α). Define
aγ(α) = uāγ(α) ∈ T(γ) for all α < κ. Pick γ̄ ∈ B̄ ∩ γ. Then we can find ᾱ < κ̄ < κ
such that γ̄ < γᾱ and aγ̄(α) ⊆ aγᾱ(α) for all κ̄ ≤ α < κ. Fix κ̄ ≤ α < κ. Then
ᾱ < α, γα ∈ B \ A and γᾱ ∈ Lim(Cγα). Using our induction hypothesis, we can
conclude that aγ̄(α) ⊆ aγᾱ(α) ⊆ aγα(α) ⊆ āγ(α) ⊆ aγ(α).

Case 5: γ ∈ Sϑκ+ . Then A ∩ Lim(Cγ) = ∅ and otp (Cγ) = κ+. Given t ∈ T<γ ,
this shows that we can use our induction hypothesis to construct ut ∈ γ2 with t ⊆ ut
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and ut � γ̄ ∈ T(γ̄) for all γ̄ < γ. Next, define aγ(α) =
⋃
{aγ̄(α) | γ̄ ∈ Lim(Cγ)}

for each α < κ. Given α < κ, our induction hypothesis shows that aγ(α) ∈ γ2 and
aγ(α) � γ̄ ∈ T(γ̄) for all γ̄ < γ. We define T(γ) = {ut | t ∈ T<γ} ∪ {aγ(α) | α < κ}.
Then our induction hypothesis implies that |T(γ)| < ϑ and we can find a suitable
injection ι � T<γ+1 : T<γ+1 −→ ϑ. Finally, our induction hypothesis implies that
the function aγ : κ −→ T(γ) has the desired properties.

This completes the inductive construction of T and ι : T −→ ϑ.

Claim. T is a ϑ-Souslin tree.

Proof of the Claim. By the above construction, T is a tree of height ϑ. Let A be
a maximal antichain in T. Using the properties of ι, we can construct a club C
in ϑ with the property that ran(ι � T<γ) = γ ∩ ran(ι) and A ∩ T<γ is a maximal
antichain in T<γ for all γ ∈ C. Then there is γ ∈ A ∩ C such that Aγ is equal to
the ι-image of A∩T<γ . Then the (ι � T<γ)-preimage of Aγ is a maximal antichain
in T<γ and for every u ∈ T(γ), there is a t ∈ T<γ with t ⊆ u and ι(t) ∈ Aγ . This
shows that A ⊆ T<γ and |A| < ϑ. �

Given γ < ϑ and α < κ, set δ = min(B̄ \ γ) and let bγ(α) denote the unique
element of T(γ) with bγ(α) ⊆ aδ(α). By the above constructions, if γ̄ < γ < ϑ,
then there κ̄ < κ such that bγ̄(α) ⊆ bγ(α) for all κ̄ ≤ α < κ. This shows that the
resulting sequence 〈bγ(α) : κ −→ T(γ) | γ < ϑ〉 is a κ-ascent path through T. �

In the remainder of this section, we will combine the above results with a theorem
of Larson from [13] on the preservation of PFA under <ω2-directed closed forcings
to derive the statements of Theorem 1.14.

Proof of Theorem 1.14. Assume that PFA holds.
(i) Assume that θ > ω1 and T contains an ascending path of width ω. Then

Theorem 5.3 implies that ISP(ω2) holds and Lemma 5.4 shows that every narrow
θ-system of width ω has a cofinal branch. This shows that T has a cofinal branch.

(ii) Let Ṗ be a Col(ω3, 2
ω2)-name for the partial order given by Lemma 5.6

for ω2 and let G ∗ H be Col(ω3, 2
ω2) ∗ Ṗ-generic over V. Since the partial order

Col(ω3, 2
ω2) ∗ Ṗ is <ω2-directed closed, the results of [13] show that PFA holds

V[G,H] and this implies that 2ω1 = ω2 holds in V[G,H]. Moreover, since ṖG is
(ω2 + 1)-strategically closed in V[G], we have

(2ω2)V[G,H] = (2ω2)V[G] = ω
V[G]
3 = ω

V[G,H]
3 .

Finally, there is a �Bω2
-sequence in V[G,H] and Theorem 5.8 shows that there is an

ω3-Souslin tree with an ω1-ascent path in V[G,H].
(iii) Assume that κ is strongly compact and let G be Col(ω2, <κ)-generic over

V. Then the results of [13] show that PFA holds in V[G]. In V[G], if T is a tree
of regular height greater than ω2 containing an ascending path of width ω1, then
Theorem 1.13,(v) implies that T has a cofinal branch. �

6. Open Questions

We close this paper with a list of questions raised by the above results. The first
question is motivated by the assumptions of Corollary 1.7 and asks whether these
assumption are necessary for successors of singular cardinals.
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Question 6.1. Given a singular cardinal ν and a cardinal cof(ν) ≤ λ < ν, is it
possible that a special tree of height ν+ contains an ascending path of width λ?

Given an uncountable cardinal κ with κ = κ<κ, Theorem 1.9 shows that a tree
of height κ+ is specializable if and only if it contains no ascending paths of width
less than κ. It is natural to ask whether this equivalence holds without the cardinal
arithmetic assumption.

Question 6.2. If κ is an uncountable regular cardinal and T is a tree of height κ+

that does not contain an ascending path of width less than κ, is T specializable?

The following special case of the above question is motivated by Theorem 1.14.

Question 6.3. Assume that PFA holds. Is every tree of height ω2 without a cofinal
branch specializable?

A negative answer to Question 6.2 would leave open the possibility that special-
izable trees can be characterized by some combinatorial property.

Question 6.4. If κ is an uncountable regular cardinal, is the class of specializable
trees of height κ+ definable in V?

The proof of Theorem 1.11 in Section 2 shows that, under the cardinal arith-
metic assumptions of the theorem, the existence of a ascending path through T
is equivalent to the existence such a path with seemingly stronger compatibility
properties. It is not known to the author whether this equivalence holds without
the assumptions of the theorem.

Question 6.5. If the tree T contains an ascending sequence of width λ, is there a
sequence 〈bγ : λ −→ T(γ) | γ < θ〉 such that for all γ̄ < γ < θ, there is an α < λ
with bγ̄(α) <T bγ(α)?

Theorem 1.13,(iii) shows that it is possible to obtain a model in which every
tree of height ω2 that contains an ascending path of width ω has a cofinal branch.
The discussion following the proof of Corollary 4.13 in Section 4 shows that this
statement implies that ω2 is Mahlo in L. Therefore it is natural to ask for the exact
consistency strength of this statement.

Question 6.6. Does the assumption that every tree of height ω2 that contains an
ascending path of width ω has a cofinal branch imply that ω2 is a weakly compact
cardinal in L?

The obvious strategy answer Question 6.6 in the positive is to show that the
extra assumptions on the �(θ)-sequence in Theorem 4.12 are not necessary.

Question 6.7. Does the existence of a �(θ)-sequence imply the existence of an
θ-Aronszajn tree that contains an ascending path of width λ with λ+ < θ?
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