THE «*-ANTICHAIN PROPERTY FOR
(k,1)-SIMPLIFIED MORASSES

CHARLES MORGAN

ABSTRACT. We discuss Shelah, Vidnanen and Velickovié’s recently
introduced kt-antichain property for (r,1)-simplified morasses.
We give a streamlined characterization of the property, and show
how the property can be destroyed by forcing and hence that it
is consistent that no (w,1)-simplified morasses have the property.
We briefly touch on the combination of the antichain property with
complete amalgamation systems.

PRELIMINARIES

We start by fixing some standard notation and reminding the reader of
the definition of (k, 1)-simplified morasses, in order to be able to intro-
duce an extremely interesting partial order on ™, compatible with the
usual ordering of the ordinals, recently isolated by Shelah, Vaédnanen
and Velickovi¢ (|5]).

Notation 1.1. For a set X and cardinal x, [X]" ={Y C X | Y =x}.

Notation 1.2. If 7 < 6 are ordinals the set of order preserving func-
tions from 7 to 0, {f | f: T —,,. 0}, is denoted (0)".

Notation 1.3. The strong supremum of a set of ordinals X, ssup(X),
is the least v such that X C 7. So ssup(X) is max(X) + 1 if X has a
maximal element and sup(X) otherwise.

Notation 1.4. If x is a regular cardinal then Add(k,1) is the usual
forcing to add a single Cohen subset of k: the set of partial functions
of size <k from k to 2 ordered by reverse inclusion.

Definition 1.5. If 7 < # are ordinals then F = {id,h} C (0)" is an
amalgamation pair if there is some o < 7 such that
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2 MORGAN
e h|o=id,
e for all £ such that 0 +¢& < 7 we have h(c + &) =7+ &, and
e 7 U h“r is an initial segment of 6.
In this case we say that o is the splitting point of F. We say F is exact
if 0 = 7 Uh“r and almost exact if 6 = (1 Uh“T) + 1.
Let x be a regular cardinal.

Definition 1.6. ([6]) M = ({6, | @ < k), (Fap | a < B < k)) is a
(K, 1)-simplified morass if

o (0,|i<kr)e (k) and 0, =kT

o for each a < 8 < k one has that Fog C{f | f: 00 —0p 05}
and

e for each o <k, F,o = {id}
e for each a < k,
Foas1 18 a singleton or an amalgamation pair
e for each o < g <~ <k,
Foy={9-f | f € Faplg € Fay }

e for each a < 8 < &, ]-":ag<li
e if ¢ < k is a limit ordinal then M is directed at e:
if a, B <e, eq € Fae and eg € Fp. there are v € [aU 3, ¢),
9 € Fyey fo € Foy and fg € Fp, such that e, =g - f, and
es =9-Js
o | H{fby | a<r&feFal}=r".

We say M is neat if 0 = | J{f“a | f € Fup} for all @ < f < k (and
60: 1)

From now on let M = ((0, | @« < k), (Fap | a < B < k)) be a (k,1)-
simplified morass.

Recall Stanley’s important lemma.

Lemma 1.7. ([6], Stanley). If a < 5 <k, &, & < 0, and £ < 03, fo,
1 € faﬁ; and f(fo) = f(fl) =&, then & =& and fo | &0 = fi | &o-
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This motivates the following two pieces of notation.

Notation 1.8. (c¢f. 2], [3]) For o < k write &, for the unique ¢’ such
that there is some f € F,, with f(¢') = £, and write ¢ for f [ &,. (In
[3] the extended notation, (a.,),(x¢), Was also used for ¢¢")

Notation 1.9. If o < § < k, { < 6, and f € F,p then (o, §)<(B, f(£)).

By Stanley’s lemma < is a (collection of) tree(s).

It is also useful to have a name for the function that marks at which
level below k two elements of kT separate (i.e., branch apart).

Notation 1.10. ([2]) If £, ¢ < & then b({,() = the least a + 1 such
that o1 # Cat-

2. < AND THE kT-ANTICHAIN PROPERTY

We continue to let M = ({0, | a < k), (Fap | < B < k)) be a
(k, 1)-simplified morass.

Shelah, Vaandnen and Velickovié ([5]) isolated a very interesting partial
order, compatible with the usual ordering of the ordinals, on ™.

Definition 2.1. ([5]) For £, ( < k™ define ¢ < ¢ if and only if §, < (,
for all a < k for which both &, and (, are defined.

Note that &, = & for all £ < k™, so £ < ¢ implies £ < (.

Definition 2.2. M has the x*-antichain property if for every X €
[]"" there are €, ¢ € X such that & < (.

Shelah, Védndnen and Velickovi¢ showed in [5] that the usual forcing
for adding an (wy, 1)-simplified morass (as in [6], [10]) actually adds
one with the ws-antichain property. Their proof, in fact, applies just
as well for arbitrary regular x in place of wy.

Shelah, Vddnénen and Velickovi¢’s original definition of the antichain
property (which they gave in the case k = w;) in fact talks about an
order induced by < on sequences of ordinals.

Definition 2.3. M has the SVV-skT-antichain property if for every
for every § < s and X € [(k7)°]*" there are s, t € X such that
dom(s) = dom(t) = ¢ and for all v < § we have s(y) < t(v)
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Note 2.4. M has the SVV-skt-antichain property if and only if for
every X € [(kT)<%]"" there are s, t € X such that dom(s) = dom(t)
and for all 7 € dom(s) we have s(7) < t(7).

Proof. Immediate *2.4

Proposition 2.5. If M has the SVV-kT-antichain property it has the
k1 -antichain property.

Proof. We prove the contrapositive. If X € [/ﬁ]”qu and 6 < k, by
thinning if necessary we may assume that if £, ( € X and & < (¢
then £ + < (. For £ € X let s¢ € (k7)<" be the function given by
s8(y) = €+ 4. If X is an antichain in < then {s°*| ¢ € X} is an
antichain in the product ordering. *9 5

In [5] the SVV-wy-antichain property is always proved, mentioned or
used in the context of CH holding. The culmination of the next few
results, in the case kK = wy, indicates that this is not mere coincidence.

Notation 2.6. For each o < k and £ < 6, let

B(a,g) = {f(f) | f € fcm}-

As a memnomic, B(,¢) is the blossom above (o, §).

Notation 2.7. Let

F={{<r"|Va<k(& is defined — Bne,) =r(")}

So F'is the set of elements of k™ all of whose predecessors in < have a
maximal cardinality collection of blossom above them.

Lemma 2.8. F is cobounded in k%, i.e, k¥ \ F < k.

Proof. For each £ € kT \ F let a(&) be the least a such that B,¢,) <
kT. As M is a (k,1)-simplified morass we have that 05 < x for all

B < k. Hence {(a(§),8une) | € € kT \ F} < k. Thus we have that
KT\ E CU{Ba(©)taey | € € 7\ F'}. However the latter is a union
of k many sets of size k. *9.8

Lemma 2.9. If £ € F there are unboundedly many o < k such that
Foar1 18 an amalgamation pair and o, < &, = Eqt1-
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Proof. Let & € F. Suppose, towards a contradiction that the lemma is
false for £. Let 8 < k be least such that for all & € [, k) it is not the
case that F,,.1 1s an amalgamation pair and o, < &, = £,.1. Then
By € €+ 1, contradicting the assumption that £ € F' (and hence

By = KT). *92.9

Corollary 2.10. There are antichains of size k in <[ kK X k. There
are antichains of order-type kK + 1 in <.

Proof. Let £ € F\ k. Let He = {a < k| Faat1 1S an amalgamation
pair and o, < &, = .41 }. For each o € He we have Foo 41 = {id, by }.
Then {hq(&a) | @ € He} is an antichain in <, and we still have an
antichain if we adjoin £ to this set. *9.10

Proposition 2.11. If k < 2<" then no (k, 1)-simplified morass M has
the SVV-kT-antichain property.

Proof. Let 0 < k be such that k™ < k < 2<%, By Corollary (2.10)
choose a <-antichain {&" | i < &} of size § with & < & for i < j.

Now let X consist of all distinct increasing sequences of length ¢ from
{€ )i < §}. Suppose that s, t € X. Let v < § be least such that
s(7) # t(). We have that there are distinct 7, j <  such that s(y) = &
and t(y) = &. As {&]i < §} is a <-antichain we have s(y) A t(v)
and t(y) A s(). Thus the SVV-xT-antichain property fails. *9.11

Consequently the following result, together with Proposition (2.5),
shows that the property defined in Definition (2.2) is a streamlined
equivalent of the SVV-xT-antichain property when the latter does not
simply always fail for cardinal arithmetic reasons. This explains taking
Definition (2.2) as our official definition of the x™-antichain property.

Proposition 2.12. If 2<% = k and M has the k' -antichain property
then M has the SVV-xT-antichain property.

Proof. Again we prove the contrapositive.

Suppose that X € [(k7)°]*". As 2<% = k, after thinning if necessary,
we can suppose that we can enumerate X as (s’ | i < k') with there
being some p < k such that s' | p = s/ | p and ssup(rge(s')) < s/(p)
fori < j<kt.

For i < k™ let " = ssup(rge(s’)). By thinning again (if necessary),
again using 2<% = k, we may assume that there is some a < k, some
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s € (0,)°"! and some maps f' € F,. for i < x*, such that for all
i < kT we have s'(y) = fi(s(y)) for all ¥ < § and fi(s(d)) = ¢'.

Suppose that i < j < k* and s' £ s7. Let 8 € [a, k) be least such that
there is v < k with (s7(7))s41 < (s(7))s+1. Then we have that

o5 < (5'(1)s < (9 ())s = (57 (7))ps1 < iy < 05 < ($' (7)1 < -

Hence we have shown that if X is an antichain of size ™ in the product
ordering derived from < then {(’ | j < '} is an antichain in <.

*2.12

3. DESTROYING THE ANTICHAIN PROPERTY

It is worthwhile observing that there are no long chains in <.

Proposition 3.1. There are no <-chains of length k™.

Proof. For s, t € (k)" set s < tif s(a) < t(a) for all & < x and there
is some o < k such that s(a) < t(a). It is well known that there are
no (strictly increasing) chains of length ™ in ((k)", <).

(To see the latter, if (s* | ¢ < k) enumerates a strictly increasing chain
in <, in increasing order then set Iy = ™, and, by induction on 5 < &
set I = (Nyepli € Lo | s'(@) = 7} and 75 = max({s'(3) |Z € Iz}),
Then I, has size k* and for all ¢ € I, and a < k we have s'(a) = 7,.
This is a contradiction to the chain being increasing.)

In order to prove the proposition, now suppose, towards a contradic-
tion, that (¢ |i < xT) is a <-chain of length x™. By thinning, if
necessary, suppose that there is some o* < x such that for all 1 < s
we have that a* is the least « such that &, is defined. Apply the result
that there are no xkT-chains of length k™ in ((k)~, <) to (s | i < k™)
where for i < kt and a € [a*, k) we take s'(a) = £} *3.1

L Morass-y version of the same proof. Suppose, towards a contradiction, that
X € [st]*" is a <-chain. For o < & let Xoq = {€ € X | £ay1 < 6o }. For cach
a < k we have thatX, is an initial segment of X, and hence either X, < K or
Xo=X.SetY =X\U{Xa | a<k & Xy <k}. Thus Y = k™.

Now let &, ¢ € Y and set o = b(&, €), so that &, = (, and Eq41 # (at1. We derive
a contradiction. If X, < x then we would have that ¢, ( # X, and hence 0, < £,41,
Cat1, and 80 €nr1 = ha(€a) = ha(Cy) = Cat1, and thus b(€,¢) # «. On the other
hand, if X, = X then {11, (at1 < 6o and hence, again {o 11 = {0 = (o = Cart1,
and so b(¢, () # a. *3.1
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Corollary 3.2. For each 6 < k there are no <-chains of length k™ in

the product order on (k%)°.

However we can actually prove a stronger result. In order to state it
we need to make a definition.

Definition 3.3. Let P, be the forcing consisting of conditions which
are small antichains in <: so p € Py if p € [sT|~" and for all £, { € p
we have & £ (, ordered by ¢ < pif p Cq.

Observe that with this definition we can restate Proposition (3.1) as
that if X € [Py]"" and for all p € X we have p = 1 then X is not an
antichain in P,.

Proposition 3.4. Suppose 2<% = k. If M has the k" -antichain prop-
erty then P has the k' -chain condition.

Proof. Let 2 € [Pxg)*" be an antichain and assume, after thinning if
necessary, that the set forms a A-system with root a, with ssup(p) <
min(q \ a) or vice versa for each pair p, ¢ € 2.

Let N < H,++ be an elementary submodel of size x with N N kT =
dert, P,A M € N and a, N<* C N. Then MNN = ({0, | a <
) (Fap | < 8 < k)6, {({f € Far | rge(f) C 6} |a < k).
Thus if £ < 0, @ < k and 7 < 6, then N | “¢, = 77 if and only if
Ea =T.

Choose p, ¢ € A\ N with 6 < min(p \ a) and ssup(p) < min(q \ a).
Let g* = the least a < k such that there is some map f € F,, with
pUq C rge(f). Note that if £ € p and ¢ € ¢\ a there is some a < [*
such that &, < (,.

Let {q(y) | 7 < €} enumerate ¢ in increasing order. For 7 < ¢ and
a < 7 set y(v, ) = q(V)a-

By elementarity and the closure of N there is some r» € 2N N such
that, letting {r(y) | v < €} enumerate r in increasing order, for all
v < e and a < % we have r(7) = y(7, ).

But then we have that if { = r(y) € r and ¢ € p\a there is some o < *

such that ¢(7)a < (a, and hence &, = (7)o = y(7, @) = ¢(V)a < Ca;
and as r C § and 0 < min(p\ a) there is some a < k such that &, < (,.
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Thus p U r is a <-antichain and hence is a condition in P,,. However
we then have that pUr < p, r, thus contradicting 2l being an antichain
in Puy. *3.4

Observe that there is some freedom in the argument above: if we also
‘reflect’ p to a condition s in N, so that — writing informally — we
have s << r << p << ¢, rather than amalgamating r and p we could
instead amalgamate s and gq.

Proposition 3.5. Suppose 2<% = k. If V |= “M has the k" -antichain
property” and G is P -generic over V' then Card"® = Card"” and

VI[G] IF “ M does not have the k™ -antichain property. ”

Proof. The antichain property is destroyed as P, generically adds an
antichain of length . Cardinals are preserved since Py has the xk*-
chain condition and is k-closed. *3 5

Let us focus briefly on the case K = w. Recall Velleman’s theorem
(|8]) that ZFC implies there are always (w, 1)-simplified morasses. In
contrast we have the following regarding simplified morasses with the
wi-antichain property.

Corollary 3.6. MA,, implies no (w,1)-simplified morass has the ws -
antichain property.

Proof. Suppose M is an (w, 1)-simplified morass with the w;-antichain
property. By Proposition (3.4) in the case k = w there is there is a ccc
forcing to destroy the property and so, applying MA,,, M does not
have the wy-antichain property — a contradiction. *3.6

Unfortunately one cannot directly generalize Corollary (3.6) to higher
cardinals and obtaining a similar independence result. The Appendix
of [4] gives examples showing that no generalization of Martin’s Ax-
iom for forcings with the x*-cc or strengthenings of it can hold for
collections of forcings which would include P Those results do not
preclude that one could, in principle, iterate this specific forcing in
order to reach a model in which no (k,1)-simplified morass has the
xt-antichain property, however we are not aware of any applicable it-
eration theorems.
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One might wonder whether there is a simpler forcing notion which
destroys the antichain property, which one could use instead of Py, in
the hope of side-stepping these difficulties. However there are severe
inherent difficulties with such a plan.

Definition 3.7. A forcing notion P has the x*-Knaster property if
given any X € [P]"" there is some Z € [X]*" such that any two
elements of Z are compatible.

Proposition 3.8. If M has the ™ -antichain property and P has the
kT -Knaster property then lkp “ M has the k™ -antichain property ”

Proof. Suppose that IFp © A is an antichain of size kT 7. Let p; IFp
“g e A7 and € € p; for i < kT and a strictly increasing sequence
(€' | i < k*). By the Knaster property let I € [s7]"" be such that for
i, j € I we have that p; and p; are compatible; for such 7, j let p;; < p;,
p;. Then, for ¢, j € I we have p;; IFp “ & 4 &7, and hence £ £ &7. So
(€' ] i < k') is an antichain of size k™ in the ground model. *3.8

Clearly the forcing P used in Proposition (3.4) does not have the
kT-Knaster property, but we are not aware of any iteration technology
which works sucessfully for iterands of this type.

4. COMPLETE AMALGAMATION SYSTEMS AND THE ANTICHAIN
PROPERTY

We make a couple of remarks about a strengthening of the notion of a
complete amalgamation system ([9]) and the xT-antichain property.

Definition 4.1. ([9]) Let ({(pa, Xa, Ya) | @ < k) be a sequence of
triples where p, < k and X,, Y, C 6, for each a < k. Define, by
induction on o < K,

Ay =0,
Ao ={{p, [*X, YY) | [ € Faar1 & (p, X,Y) € Ay} U
{{pa, Xa,h“Yy)}, and
Ay ={{p, [“X, fY)|Ta<AfeFun&(p,X,Y)e€ A}
for limit A < k.

The sequence ((pa, Xa, Ya) | @ < k) is an amalgamation system if for
all & < k either X, =Y, or {pa, Xa, Ya) € Ay oF (pa, Yo, Xo) € Aa.



10 MORGAN

(New in this paper and not taken from [9].) It is a strong amalgamation
system if for all a < k either X, =Y, or (pa, Xa, Ya) € A,.

It is complete if in addition whenever p < x and X € [[k*]<"]*" there
are distinct X, Y € X such that (p, X,Y") € A,.

Lemma 4.2. If ({pa, Xao, Ya) | @ < K) is a complete amalgamation
system then 2<% = k.

Proof. Let A < k. Foreach X C Alet Xx = {XU{\, 7} | 7€ (N, ")}
By the completeness of the amagamation system there is some a < k
and f € F,, such that X, = X U{\,7}, X CA<T <0, X = f“X,
fOO) =Xand f(7) = 7. Thus P(\) C{¢“XaNA) |a <k} *4o

Theorem 4.3. ([9]). If k = u™ and 2" = K there is a complete amal-
gamation system for every (k,1)-simplified morass.

Corollary 4.4. If k = p* and M is a (k, 1)-simplified morass there is
a complete amalgamation system for M if and only if 2" = k.

Theorem 4.5. (|9]) If V = 2<% = k and ¢ is Add(k,1)-generic over
V' there is a complete amalgamation system for every (k,1)-simplified
morass in V[c|. (Of course, as (k7)Y = (k7)Y every (k,1)-simplified
morass in 'V remains such in V|c|.)

Proposition 4.6. If there is a complete strong amalgamation system
for M then M satisfies the k™t -antichain property.

Proof. Immediate from the definitions. *4.6

Proposition 4.7. If k = put and 2 = k there is a complete strong
amalgamation system for every (k,1)-simplified morass which satisfies
the k*-antichain property. If V |= 2<% = k and ¢ is Add(k,1)-generic
over V there is a complete strong amalgamation system for every (k,1)-
simplified morass in V] with the k™ -antichain property.

Proof. Exactly as Velleman’s proofs, but using the x*-antichain prop-
erty to ensure that one can choose strong amalgamation systems. %47

Note that if V' |= 2<% = k and c¢ is Add(k, 1)-generic over V' then every
(k, 1)-simplified morass in V' with the x-antichain property continues
to have the x*-antichain property in V[c] because Add(k,1) trivially
has the x™-Knaster condition.
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