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Abstract

We establish the descriptive set theoretic representation of the
mouse M#

n , which is called 0(n+1)#. This part deals with the case
n ≤ 3.

1 Introduction

The collection of projective subsets of R is the minimum one which contains
all the Borel sets and is closed under both complements and continuous
images. Despite its natural-looking definition, many fundamental problems
about projective sets are undecidable in ZFC, for instance, if all projective
sets are Lebesgue measurable. The axiom of Projective Determinacy (PD)
is the most satisfactory axiom that settles these problems by producing a
rich structural theory of the projective sets. PD implies certain regularity
properties of projective sets: all projects of reals are Lebesgue measurable
(Mycielski, Swierczkowski), have the Baire property (Banach, Mazur) and are
either countable or have a perfect subset (Davis) (cf. [36]). The structural
theory of the projective sets are centered at good Suslin representations of
projective sets. Moschovakis [36] shows that PD implies the scale property
of the pointclasses Π1

2n+1 and Σ1
2n+2. It follows that there is a nicely behaved

tree T2n+1 that projects to the good universal Σ1
2n+2 set. So the analysis of

Σ1
2n+2 sets is reduced to that of the tree T2n+1, the canonical model L[T2n+1]
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and its relativizations. The canonicity of L[T2n+1] is justified by Becker-
Kechris [3] in the sense that L[T2n+1] does not depend on the choice of T2n+1.
The model L[T2n+1] turns out to have many analogies with L = L[T1]. These
analogies support the generalizations of classical results on Σ1

2 sets to Σ1
2n+2

sets.
The validity of PD is further justified by Martin-Steel [34]. They show

that PD is a consequence of large cardinals: if there are n Woodin cardinals
below a measurable cardinal, then Π1

n+1 sets are determined. Inner model
quickly developed into the region of Woodin cardinals. M#

n , the least active
mouse with n Woodin cardinals, turns out to have its particular meaning in
descriptive set theory. Martin [33] (for n = 0) and Neeman [37,38] (for n ≥ 1)
show that M#

n is many-one equivalent to the good universal an+1(<ω2-Π1
1)

real. Steel [49] shows that L[T2n+1] = L[M#
2n,∞|δ1

2n+1] where M#
2n,∞ is the

direct limit of all the countable iterates of M#
2n, and that δ1

2n+1 is the least

cardinal that is strong up to the least Woodin of M#
2n,∞. This precisely

explains the analogy between L[T2n+1] and L. The mechanism of inner model
theory is therefore applicable towards understanding the structure L[T2n+1].

In this paper and its sequel, we generalize the Silver indiscernibles for L
to the level-(2n + 1) indiscernibles of L[T2n+1]. The theory of L[T2n+1] with
the level-(2n + 1) indiscernibles will be called 0(2n+1)#, which is many-one
equivalent to M#

2n. At the level of mice with an odd number of Woodins,
M#

2n−1 is the optimal real with the basis result for Σ1
2n+1 sets (cf. [51, Section

7.2]): Every nonempty Σ1
2n+1 set has a member recursive in M#

2n−1. The
basis result for Σ1

2n+1 was originally investigated in [27], with the intention
of generalizing Kleene’s basis theorem: Every nonempty Σ1

1 set of real has a
member recursive in Kleene’s O. The real y2n+1, defined [27], turns out ∆1

2n+1

equivalent to M#
2n−1. In this paper and its sequel, we define the canonical tree

T2n that projects to a good universal Π1
2n set. It is the natural generalization

of the Martin-Solovay tree T2 that projects a good universal Π1
2 set. We

show that Lκ2n+1 [T2n], the minimum admissible set over T2n, shares most of
the standard properties of LωCK1

, in particular, the higher level analog of the

Kechris-Martin theorem [21, 23]. We define 0(2n)# as the set of truth values
in Lκ2n+1 [T2n] for formulas of complexity slightly higher than Σ1. 0(2n)# is

many-one equivalent to both M#
2n+1 and y2n+1. Summing up, we have

0(n+1)# ≡m M#
n .

We start to give a detailed explanation of the influence of the higher sharp
in the structural theory of projective sets and in inner model theory. The
set theoretic structures tied to Π1

1 sets are LωCK1
and its relativizations. The

classical results on Π1
1 sets and LωCK1

include:
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1. (Model theoretic representation of Π1
1) A ⊆ R is Π1

1 iff there is a Σ1

formula ϕ such that x ∈ A↔ Lωx1 [x] |= ϕ(x).

2. (Mouse set) x ∈ R∩LωCK1
iff x is ∆1

1 iff x is ∆1
1 in a countable ordinal.

3. (The transcendental real over LωCK1
) O is the Σ1-theory of LωCK1

.

4. (Π1
1-coding of ordinals below ω1) x ∈WO iff x codes a wellordering of

a subset of ω. Every ordinal below ω1 is coded by a member of WO.
WO is Π1

1.

Σ1
2 sets are ω1-Suslin via the Shoenfield tree T1. The complexity of T1 is

essentially that of WO, or Π1
1. The set-theoretic structures in our attention

are L = L[T1] and its relativizations. Assuming every real has a sharp, the
classical results related to L include:

1. (Model theoretic representation of Σ1
2) A ⊆ R is Σ1

2 iff there is a Σ1

formula ϕ such that x ∈ A↔ L[x] |= ϕ(x).

2. (Mouse set) x ∈ R ∩ L iff x is ∆1
2 in a countable ordinal.

3. (The transcendental real over L) 0# is the theory of L with Silver
indiscernibles, or equivalently, the least active sound mouse projecting
to ω.

4. (∆1
3-coding of ordinals below uω) WOω is the set of sharp codes. Every

ordinal α < uω has a sharp code 〈pτq, x#〉 so that α = τL[x](x, u1, . . . , uk).
The comparison of sharp codes is ∆1

3.

Inner model theory start to participate at this level. Based on the theory
of sharps for reals, the Martin-Solovay tree T2 is defined. T2 is essentially a
tree on uω. The complexity of T2 is ∆1

3 via the sharp coding of ordinals.
Σ1

3 sets are uω-Suslin via the Martin-Solovay tree T2. The structures tied
to Π1

3 sets are Lκ3 [T2] and its relativizations. The theory at this level is in
parallel to Π1

1 sets and LωCK1
:

1. (Model theoretic representation of Π1
3, [21,23]) A ⊂ R is Π1

3 iff there is
a Σ1 formula ϕ such that x ∈ A↔ Lκx3 [T2, x] |= ϕ(T2, x).

2. (Mouse set, [21, 23, 27, 47]) x ∈ R ∩ Lκ3 [T2] iff x is ∆1
3 in a countable

ordinal iff x ∈ R ∩M#
1 .

3. (The transcendental real over Lκ3 [T2], Theorem 4.8) M#
1 ≡m 02#.
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4. (Π1
3-coding of ordinals below δ1

3, essentially by Kunen in [46]) WO(3) is
the set of reals that naturally code a wellordering of uω. WO(3) is Π1

3.

In general, if Γ is a pointclass, α is an ordinal, and f : R� α is a surjection,
then Code(f) = {(x, y) : f(x) ≤ f(y)} and f is in Γ iff Code(f) is in Γ; α is
Γ-wellordered cardinal iff there is a surjection f : R� α such that f is in Γ
but there is no β < α and surjections g : R � β, h : β � α such that both
g and {(x, y) : f(x) = h ◦ g(y)} is in Γ. The above list can be continued:

5. The uncountable ∆1
3 wellordered cardinals are (uk : 1 ≤ k ≤ ω).

The heart of the new knowledge is the equality of pointclass in Theorem 4.5:
a2(<ω2-Π1

1) =<uω-Π1
3. Philosophically speaking, as a2Π1

1 = Π1
3, this equality

reduces the “non-linear” part a2 to the “linear” part <uω. Based on this
equality, 02# is defined to be the set of truth of Lκ3 [T2] for formulas of
complexity slightly larger than Σ1, cf. Definitions 4.6-4.7. 02# is essentially
y3, defined in [27]. It is a good universal < uω-Π1

3 subset of ω. The many-
one equivalence M#

1 ≡m 02# is thus obtained using Neeman [37, 38]. Under
AD, we have uk = ℵk, and [25] summarizes the further structural theory at
this level. The expression of 02# opens the possibility of running recursion-
theoretic arguments in Lκ3 [T2] that generalize those in LωCK1

.

The Moschovakis tree T2n+1 projects to the good universal Σ1
2n+2 set. The

structures tied to Σ1
2n+2 sets are L[T2n+1] and its relativizations. L[T2n+1] is

the higher level analog of L:

1. (Model theoretic representation of Σ1
2n+2) A ⊆ R is Σ1

2n+2 iff there is a
Σ1 formula ϕ such that x ∈ A↔ L[T2n+1, x] |= ϕ(T2n+1, x).

2. (Mouse set, [47]) x ∈ R∩L[T2n+2] iff x is ∆1
2n+2 in a countable ordinal

iff x ∈ R ∩M#
2n.

3. (The transcendental real over L[T2n+2], Theorem 5.13 for n = 1)M#
2n ≡m

0(2n+1)#.

4. (∆1
2n+3-coding of ordinals below u

(2n+1)
E(2n+1)) WO

(2n+1)
E(2n+1) is the set of level-

(2n+ 1) sharp codes for ordinals in u
(2n+1)
E(2n+1). The comparison of level-

(2n+ 1) sharp codes is ∆1
2n+3.

0(2n+1)# is the theory of L[T2n+1] with level-(2n+1) indiscernibles. The struc-
ture of the level-(2n+ 1) indiscernibles is more complicated than their order,
as opposed to the order indiscernibles for L. The level-(2n+1) indiscernibles
form a tree structure, and the type realized in L[T2n+1] by finitely many of
them depends only on the finite tree structure that relates them. This tree
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structure resembles the structure of measures (under AD) witnessing the ho-
mogeneity of S2n+1, a tree on ω × δ1

3 that projects to the good universal
Π1

2n+1 set. We give a purely syntactical definition of 0(2n+1)# as the unique
iterable, remarkable, level ≤ 2n correct level-(2n + 1) EM blueprint. This
is the higher level analog of 0# as the unique wellfounded remarkable EM
blueprint. The “iterability” part takes the form ∀R(Π1

2n+1 → Π1
2n+1), making

the complexity of the whole definition Π1
2n+2. The ordinal u

(2n+1)
E(2n+1) is a level-

(2n + 1) uniform indiscernible. It will be discussed in the next paragraph.

When n = 0, u
(1)
E(1) = uω.

The structure tied to arbitrary Π1
2n+1 sets are defined. By induction,

we have level-(2n − 1) indiscernibles for Lδ1
2n−1

[T2n−1] and the real 0(2n−1)#.

Based on the EM blueprint formulation of 0(2n−1)#, we define the level-2n
Martin-Solovay tree T2n. It is the higher level analog of T2. This is the
most canonical tree that enables the correct generalization of the structural
theory related to Π1

2n+1 sets. The structures in our attention are Lκ2n+1 [T2n],
the least admissible set over T2n, and its relativizations:

1. (Model theoretic representation of Π1
2n+1, Theorem 7.4 for n = 2)

A ⊆ R is Π1
2n+1 iff there is a Σ1 formula ϕ such that x ∈ A ↔

Lκx2n+1
[T2n, x] |= ϕ(T2n, x).

2. (Mouse set, [47]) x ∈ R ∩ Lκ2n+3 [T2n+1] iff x is ∆1
2n+1 in a countable

ordinal iff x ∈M#
2n−1.

3. (The transcendental real over Lκx2n+1
[T2n, x], Theorem 7.10 for n = 2)

M#
2n−1 ≡m 0(2n)#.

4. (Π1
2n+1-coding of ordinals below δ1

2n+1) WO(2n+1) is the set of reals that

naturally code a wellordering of u
(2n−1)
E(2n−1). WO(2n+1) is Π1

2n+1.

5. The uncountable ∆1
2n+1 wellordered cardinals are (uk : 1 ≤ k ≤ ω),

(u
(3)
ξ : 1 ≤ ξ ≤ E(3)), . . . , (u

(2n−1)
ξ : 1 ≤ ξ ≤ E(2n − 1)), where

E(0) = 1, E(i+ 1) = ωE(i) via ordinal exponentiation.

The equivalence M#
2n−1 ≡m 0(2n)# is based on the equality of pointclasses

(Theorem 7.7 for n = 2): a2n(<ω2-Π1
1) = <u

(2n−1)
E(2n−1)-Π

1
2n+1. {u(2n−1)

ξ : 1 ≤
ξ ≤ E(2n − 1)} is the set of level-(2n − 1) uniform indiscernibles. It is the
higher level analog of the first ω+ 1 uniform indiscernibles {un : 1 ≤ n ≤ ω}.
Under full AD, the uncountable ∆1

2n+1 wellordered cardinals enumerate all

the uncountable cardinals below δ1
2n+1: uk = ℵk for 1 ≤ k < ω, u

(2i+1)
ξ =

ℵE(2i−1)+ξ for 1 ≤ ξ ≤ E(2i+ 1). Assume AD for the moment. The equation
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δ1
2n+1 = ℵE(2n−1)+1 is originally proved by Jackson in [12,15]. Jackson shows

that every successor cardinal in the interval [δ1
2n−1,ℵE(2n−1)) is the image of

δ1
2n−1 via an ultrapower map induced by a measure on δ1

2n−1. [16] goes on to
show that for a certain collection of measures µ on δ1

3, every description leads
to a canonical function representing a cardinal modulo µ. [16, 17] compute
the cofinality of the cardinals below δ1

ω. In this paper and its sequel, we
demonstrate the greater importance of the set theoretic structures tied to
these cardinals over their order type. It is the inner model L[T2n−1] and its
images via different ultrapower maps that give birth to the uncanny order
type E(2n− 1) + 1. The level-(2n− 1) uniform indiscernibles (u

(2n−1)
ξ : 1 ≤

ξ ≤ E(2n − 1)) are defined under this circumstance. Recall that the first
ω uniform indiscernibles can be generated by jµ

n
(Lω1) = Lun+1 , where µn

is the n-fold product of the club measure on ω1; if 1 ≤ i ≤ n+ 1, then
ui is represented modulo µn by a projection map; every ordinal below un+1

is in the Skolem hull of {x, u1, . . . , un} over L[x] for some x ∈ R. This
scenario is generalized by the level-(2n − 1) uniform indiscernibles. As a
by-product, we simplify the arguments in [12,15–17], show in full generality
that any description represents a cardinal modulo any measure on δ1

2n−1, and
establish the effective version of the cofinality computations.

The whole argument is inductive. Assume AD for simplicity. In the com-
putation of δ1

2n+1 in [12,15], the strong partition property of δ1
2n+1 is proved

and used inductively in the process. Our argument reproves the strong par-
tition property of δ1

2n+1 using the EM blueprint formulation of 0(2n+1)#. The
definition of 0(2n+1)# is based on the analysis of level-(2n+ 1) indiscernibles,
whose existence depend on the homogeneous Suslin representations of Π1

2n

sets, which in turn follow from the strong partition property of δ1
2n−1. Just

as the main ideas of the computation of δ1
2n+1 boil down to that of δ1

5, this
paper defines 02#, 03#, 04#, which contains all the key ideas in a general in-
ductive step. The sequel to this paper will deal with the general inductive
step. It will be merely a technical manifestation.

A deeper insight into the interaction between inner model theory and
Jackson’s computation of projective ordinals in [12,15] is the concrete infor-
mation on the direct system of countable iterates of M#

2n. Put n = 1 and

assume AD for simplicity sake. PutM−
2,∞ = Lδ1

3
[T3]. We define (c

(3)
ξ : ξ < δ1

3),

a continuous sequence in δ1
3 that generates the set of level-3 indiscernibles

for M−
2,∞. Each M−

2,∞|c
(3)
ξ is the direct limit of Π1

3-iterable mice whose Dodd-

Jensen order is c
(3)
ξ . We define an alternative direct limit system indexed by

ordinals in uω which is dense in the system leading to M−
2,∞|c

(3)
ξ . The advan-

tage of this dense subsystem is that it leads to a good coding of M−
2,∞|c

(3)
ξ by
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a subset of uω. The indexing ordinals are represented by wellorderings on ω1

of order type ω1 +1 modulo measures on ω1 arising from the strong partition
property on ω1. Any order-preserving injection between two such wellorder-
ings corresponds to an elementary embedding between models of this new
direct limit. This injection is an isomorphism just in case its corresponding
elementary embedding is essentially an iteration map, i.e., commutes with
the comparison maps. The new direct system is then guided by isomor-
phisms between wellorderings on ω1 of order type ω1 + 1. In this regard,
the Dodd-Jensen property of mice corresponds to the simple fact that if f is
an order preserving map between ordinals, then α ≤ f(α) pointwise. This
observation is not surprising at all, as the Dodd-Jensen property on iterates
of 0# is originated from this simple fact. This viewpoint might be a prelude
to understanding the combinatorial nature of iteration trees on mice with
finitely many Woodin cardinals.

A key step in computing the upper bound of δ1
5 in [12] is the (level-

3) Martin tree. For the reader familiar with the Martin tree and the purely
descriptive set theoretical proof of the Kechris-Martin theorem in [13, Section
4.4], the level-1 version of the Martin tree is essentially an analysis of partially
iterable sharps. The level-3 Martin tree is therefore replaced by an analysis
of partially iterable level-3 sharps in this paper. The aforementioned new
direct limit system indexed by ordinals in uω applies to any partially iterable
mouse, so that its possibly illfounded direct limit is naturally coded by a
subset of uω. This is yet another incidence that descriptive set theory and
inner model theory are two sides of the same coin.

Apart from inner model theory, the pure computational component in
[12, 15] has a major simplification. Under AD, a successor cardinal in the
interval [δ1

3,ℵωωω ) is represented by a measure µ on δ1
3 and a description. The

original definition of description involves a finite iteration of ultrapowers on
uω. The “finite iteration of ultrapowers” part is now simplified to a single
ultrapower, due to Lemma 4.53.

As Lκ2n+1 [T2n] is the correct structure tied to Π1
2n+1 sets, it is natural

to investigate its intrinsic structure. However, little is known at this very
step. The closest result is on the full model L[T2n]. The uniqueness of
L[T2n] is proved by Hjorth [9] for n = 1 and Atmai [2] for general n. Here,
uniqueness means that if T ′ is the tree of another ∆1

2n+1-scale on a good
universal Π1

2n set, then L[T2n] = L[T ′]. Atmai-Sargsyan [2] goes on to show
that the full model L[T2n] is just L[M#

2n−1,∞], where M#
2n−1,∞ is the direct

limit of all the countable iterates of M#
2n−1. A test question that separates

Lκ3 [T2] from L[T2] is the inner model theoretic characterization of C3, the
largest countable Π1

3 set: if x ∈ C3, must x be ∆1
3-equivalent to a master code
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in M2? (cf. [50, p.13]) Section 4.5 sets up a good preparation for tackling
this problem.

Looking higher up, the technique in this paper and its sequel should gen-
eralize to arbitrary projective-like pointclasses in L(R) and beyond. The
descriptive set theory counterpart of larger mice should enhance our un-
derstanding of large cardinals. Typical open questions in the higher level
include:

1. (cf. [1, Problem 19]) Assume AD. Let Γ be a Π1
1-like scaled pointclass

(i.e., closed under ∀R, continuous preimages and non-self-dual) and Let
∆ = Γ ∩ Γ`, δ = sup{|<| :< is a prewellordering in ∆}. Is Γ closed
under unions of length < δ?

2. Assume AD. Let Γ, δ be as in 1. Must δ have the strong partition
property?

3. Assume AD. If κ ≤ λ are cardinals, must cf(κ++) ≤ cf(λ++)?

We now switch to some immediate applications on the theory of higher
level indiscernibles. Our belief is that any result in set theory that involves
sharp and Silver indiscernibles should generalize to arbitrary projective levels.

Woodin [43] proves that boldface Π1
2n+1-determinacy is equivalent to “for

any real x, there is an (ω, ω1)-iterable M#
2n(x)”. The lightface scenario is

tricky however. Neeman [37, 38] proves that the existence of an ω1-iterable
M#

n implies boldface Π1
n-determinacy and lightface Π1

n+1-determinacy.

Question 1.1 (cf. [4, #9]). Assume Π1
n-determinacy and Π1

n+1-determinacy.
Must there exist an ω1-iterable M#

n ?

Note that the assumption of boldface Π1
n-determinacy in Question 1.1 is

necessary, as ∆1
2-determinacy alone is enough to imply that there is a model of

OD-determinacy (Kechris-Solovay [28]). The cases n ∈ {0, 1} in Question 1.1
are solved positively by Harrington in [8] and by Woodin in [48]. The proof
of the n = 1 case heavily relies on the theory of Silver indiscernibles for L.
The theory of level-3 indiscernibles for Lδ1

3
[T3] is thus involved in proving the

general case when n is odd.

Theorem 1.2. Assume Π1
2n+1-determinacy and Π1

2n+2-determinacy. Then

there exists an (ω, ω1)-iterable M#
2n+1.

The proof of Theorem 1.2 will appear in further publications. The case
n ≥ 2 even in Question 1.1 remains open.

Another application is the δ-ordinal of intermediate pointclasses between
Π1
m and ∆1

m+1. If Γ is a pointclass, δ(Γ) is the supremum of the lengths of
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Γ-prewellorderings on R. A ⊆ R is Γm,n(z) iff for some formula ψ we have x ∈
A↔Mm−1[x, z] |= ψ(x, z,ℵ1, . . . ,ℵn). A is Γm,n iff A is Γm,n(z) for some real
z. Hjorth [11] proves that δ(Γ1,n) = un+2 under ∆1

2-determinacy. Sargsyan
[41] proves that under AD, supn<ω δ(Γ2k+1,n) is the cardinal predecessor of
δ1

2k+3. The exact value of δ(Γ2k+1,n) remains unknown. Based on the theory
of higher level indiscernibles, we can define the pointclasses Λ2k+1,ξ for 0 <
ξ ≤ E(2k+ 1). For the moment we need the notations in this paper. A ⊆ R
is Λ3,ξ+1(z) iff for some level-3 tree R such that J∅KR = ξ̂, for some Lx,R-
formula ψ we have x ∈ A↔ pψq ∈ (x, z)3#(R). When ξ is a limit, Λ3,ξ(z) =⋃
η<ξ Λ3,η(z). A is Λ3,ξ iff A is Λ3,ξ(z) for some real z.

Theorem 1.3. Assume ∆1
4-determinacy and 0 < ξ < ωω

ω
. If ξ is a successor

ordinal, then δ(Λ3,ξ) = u
(3)
ξ+1. If ξ is a limit ordinal, then δ(Λ3,ξ) = u

(3)
ξ .

The proof of Theorem 1.3 and its higher level analog will appear in further
publications. The question on the value of δ(Γ3,n) is then reduced to the
relative position of Γ3,n in the hierarchy (Λ3,ξ : 0 < ξ < ωω

ω
). The results of

this paper combined with Neeman [37,38] yields the following estimate:

Λ3,ωωn ⊆ Γ3,n ⊆ Λ3,ωωn+1+1.

We conjecture that Λ3,ωωn+1 ( Γ3,n ( Λ3,ωω
n+1

+1 and δ(Γ3,n) = u
(3)

ωωn+1+1
.

We try to make this paper as self-contained as possible. The reader is
assumed to have some minimum background knowledge in descriptive set
theory and inner model theory. On the descriptive set theory side, we as-
sume basic knowledge of determinacy, scale and its tree representation, ho-
mogeneous tree and its ultrapower representation, and at least the results of
Moschovakis periodicity theorems. We will briefly recall them in Section 2.
Theorem 2.1 by Becker-Kechris [3] and Kechris-Martin [21,23] will basically
be treated as a black box. Knowing its proof would help, though not nec-
essary. On the inner model theory side, we assume basic knowledge of mice
and iteration trees in the region of finitely many Woodin cardinals, especially
Theorem 6.10 in [51]. The level-wise projective complexity associated to mice
will be recalled in Section 2.5. Theorem 2.18 by Steel [49] will be treated as
a black box. In particular, we require absolutely no knowledge of Jackson’s
analysis in [12,15].

This paper is structured as follows. Section 2 fixes notations and briefly
reviews the background knowledge. Section 3 is basically a review of sharps
and the Martin-Solovay tree, expressed in a form that is easy to general-
ize. Section 4 proves the many-one equivalence of 02# and M#

1 , generalizes
Jackson’s level-2 and level-3 analysis, and establishes useful properties of the
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coding system for ordinals in δ1
3. Built on these results, Section 5 defines

the level-3 indiscernibles for Lδ1
3
[T3], proves the many-one equivalence of 03#

and M#
2 , and gives a Π1

4-axiomatization of the real 03#. Section 6 defines the
uniform level-3 indiscernibles and the level-4 Martin-Solovay tree. Section 7
proves the level-4 Kechris-Martin theorem and the many-one equivalence of
04# and M#

3 (x), which prepares for the induction into the next level.

2 Backgrounds and preliminaries

Following the usual treatment in descriptive set theory, R = ωω is the Baire
space, which is homeomorphic to the irrationals of the real line. If A ⊆ R×X,
then y ∈ ∃RA iff ∃x ∈ R (x, y) ∈ A, y ∈ ∀RA iff ∀x ∈ R (x, y) ∈ A, y ∈ aA
iff Player I has a winning strategy in the game with output Ay =DEF {x :
(x, y) ∈ A}. an+1A = a(an(A)) when A is a subset of an appropriate product
space. A pointclass is a collection of subsets of Polish spaces (typically finite
products of ω and R). If Γ is a pointclass, then ∃RΓ = {∃RA : A ∈ Γ}, and
similarly for ∀RΓ, aΓ, anΓ. Σ0

1 = Σ1
0 is the pointclass of open sets. Σ0

1 = Σ1
0

is the pointclass of effectively open sets. Π1
n+1 = ∀RΣ1

n, Σ1
n+1 = ∃RΠ1

n,
Π1
n+1 = ∀RΣ1

n, Σ1
n+1 = ∃RΠ1

n.
If α is an ordinal and A ⊆ α×X, then

x ∈ Diff A↔ ∃i < α (α is odd ∧ ∀j < i((j, x) ∈ A) ∧ (i, x) /∈ A).

If α < ωCK1 then A ⊆ X is α-Π1
1 iff A = Diff B for some Π1

1 B ⊆ α×X. A is
<α-Π1

1 iff A is β-Π1
1 for some β < α. Martin [33] proves that Π1

1-determinacy
implies <ω2-Π1

1-determinacy.
A tree on X is a subset of X<ω closed under initial segments. If T is a

tree on X, [T ] is the set of infinite branches of T , i.e., x ∈ T iff ∀n (x�n) ∈ T .
If T is a tree on λ, λ is an ordinal, [T ] 6= ∅, the leftmost branch is x ∈ [T ]
such that for any y ∈ [T ], (x(0), x(1), . . . ) is lexicographically smaller than or
equal to (y(0), y(1), . . . ). In addition, if x ∈ [T ] and for any y ∈ [T ] we have
∀n x(n) ≤ y(n), then x is the honest leftmost branch of T . A tree T on ω×X
is identified with a subset of ω<ω×X<ω consisting of (s, t) so that lh(s) = lh(t)
and ((s(i), t(i)))i<lh(s) ∈ T . If T is a tree on ω ×X, [T ] ⊆ ω<ω ×X<ω is the
set of infinite branches of T . p[T ] = {x : ∃y (x, y) ∈ [T ]} is the projection of
T . If T is a tree on ω × λ and p[T ] 6= ∅, then x is the leftmost real of T iff
∃~α (x, ~α) is the leftmost branch of T .

Suppose A ⊆ R. A norm on A is a function ϕ : A→ Ord. ϕ is regular iff
ran(ϕ) is an ordinal. A scale on A is a sequence of norms ~ϕ = (ϕn)n<ω on A
such that if (xi)i<ω ⊆ A, xi → x(i→∞) in the Baire topology, and for all n,
ϕn(xi)→ λn(i→∞) in the discrete topology, then x ∈ A and ∀n ϕn(x) ≤ λn.

10



~ϕ is regular iff each ϕn is regular. If A = p[T ], T is a tree on ω × λ, the
λ-scale associated to T is (ϕn)n<ω where ϕn(x) = 〈α0

x, . . . , α
n
x〉, (αnx)n<ω is the

leftmost branch of Tx =DEF {~β : (x, ~β) ∈ [T ]}, 〈. . .〉 : λn+1 → Ord is order
preserving with respect to the lexicographic order and is onto an ordinal.
Suppose Γ is a pointclass. If ϕ is a norm on A, then ϕ is a Γ-norm iff the
relations

x ≤ϕ y ↔ x ∈ A ∧ (y ∈ A→ ϕ(x) ≤ ϕ(y)),

x <ϕ y ↔ x ∈ A ∧ (y ∈ A→ ϕ(x) < ϕ(y)).

are both in Γ. ~ϕ = (ϕn)n<ω is a Γ-scale iff the relations x ≤ϕn y and x <ϕn y
in (x, y, n) are both in Γ. Γ has the prewellordering property iff every set in
Γ has a Γ-norm. Γ has the scale property iff every set in Γ has a Γ-scale.
Assuming PD, Moschovakis [36] shows that the pointclasses Π1

2n+1, Π1
2n+1,

Σ1
2n+2, Σ1

2n+2 have the scale property.
For a nonempty finite tuple t = (a0, . . . , ak), put t− = (a0, . . . , ak−1). This

notation will be followed throughout this paper. If <i is a linear ordering on
Ai for i < ω, then <

(<i)i
BK is the Brouwer-Kleene order on

⋃
n<ω(Πi<nAi) where

(a0, . . . , an) <
(<i)i
BK (b0, . . . , bm) iff either (a0, . . . , an) is a proper lengthening of

(b0, . . . , bm) or there exists k ≤ min(m,n) such that ∀i < k ai = bi∧ak <k bk.
In our applications, these orderings <i will be apparent enough so that (<i)i
can be omitted from the superscript without confusion.

Put L =
⋃
x∈R L[x], Lα =

⋃
x∈R Lα[x]. If A is a set, put L[A] =⋃

x∈R L[A, x], Lα[A] =
⋃
x∈R Lα[A, x]. L and L[A] are in general not models

of ZF . Nonetheless, cardinality and cofinality in L[A] are well defined. So
for example, cfL[A](α) = min{cfL[A,x](α) : x ∈ R}.

If R is a wellfounded relation, ‖x‖R denotes the R-rank of x, i.e., ‖x‖R =
sup{‖y‖R + 1 : yRx}. If < is a linear order, then pred<(a), succ<(a) denote
the <-predecessor and <-successor of a respectively, if exists.

We recall the basic theory of the first ω + 1 uniform indiscernibles. γ
is a uniform indiscernible iff for every x ∈ R, γ is an x-indiscernible. The
uniform indiscernibles form a club in Ord, which are listed u1, u2, . . . in the
increasing order. In particular, u1 = ω1 and uω = supn<ω un.

2.1 The Martin-Solovay tree and Q-theory

In Sections 2.1-2.3, we assume ∆1
2-determinacy.

The set {x# : x ∈ R} is Π1
2. WO = WO1 is the set of codes for countable

ordinals. For 1 ≤ m < ω, WOm+1 is the set of 〈pτq, x#〉 where τ is an (m+1)-
ary Skolem term for an ordinal in the language of set theory and x ∈ R. The

11



ordinal coded by w = 〈pτq, x#〉 ∈WOm+1 is

|w| = τL[x](x, u1, . . . , um).

Every ordinal in um+1 is of the form |w| for some w ∈ WOm+1. For each
1 ≤ m < ω,

{τL[x](x, um) : 〈pτq, x#〉 ∈WO2}
is a cofinal subset of um+1. WOω =

⋃
1<m<ω WOm. WO is Π1

1, and WOm+1

is Π1
2 for 1 ≤ m < ω.
If X is a Polish space, A ⊆ X × uω and Γ is a pointclass, say that A is in

Γ iff
A∗ = {(x,w) : x ∈WOω ∧ (x, |w|) ∈ A}

is in Γ. Γ acting on product spaces are similarly defined.
T2 refers to the Martin-Solovay tree on ω× uω that projects to {x# : x ∈

R}, giving the scale

ϕpτq(x
#) = τL[x](x, u1, . . . , ukτ ),

where pτq is the Gödel number of τ , τ is kτ + 1-ary. Details can be found
in [31] or [3,23], or in Section 3.2 of this paper. T2 is a ∆1

3 subset of (ω×uω)<ω.

From T2 one can compute a tree T̂2 on ω×uω that projects to a good universal
Π1

2 set. The definition of T̂2 will be recalled in Section 3.2.
For x ∈ R, Lκx3 [T2, x] is the minimum admissible set containing (T2, x).

The fact that the T̂2 projects to a good universal Π1
2 set implies for every Π1

3

set of realsA, there is a Σ1-formula ϕ such that x ∈ A iff Lκx3 [T2, x] |= ϕ(T2, x);
ϕ can be effectively computed from the definition of A. Becker-Kechris in [3]
strengthens this fact by allowing a parameter in uω. The converse direction
is shown by Kechris-Martin in [21, 23]. The back-and-forth conversion is
concluded in [3].

Theorem 2.1 (Becker-Kechris, Kechris-Martin). Assume ∆1
2-determinacy.

Then for each A ⊆ uω × R, the following are equivalent.

1. A is Π1
3.

2. There is a Σ1 formula ϕ such that (α, x) ∈ A iff Lκx3 [T2, x] |= ϕ(T2, α, x).

The conversion between the Π1
3 definition of A and the Σ1-formula ϕ are

effective. The original proof of 2⇒ 1 in Theorem 2.1 is based on Theorem 2.2
and Corollary 2.3.

Theorem 2.2 (Kechris-Martin, [21,23]). Assume ∆1
2-determinacy. Let x ∈

R. If A is a nonempty Π1
3(x) subset of uω, then ∃w ∈ ∆1

3(x)∩WOω(|w| ∈ A).

12



Corollary 2.3 (Kechris-Martin, [21, 23]). Assume ∆1
2-determinacy. Then

Π1
3 is closed under quantifications over uω, i.e., if A ⊆ (uω)2×R is Π1

3, then
so are

B = {(α, x) : ∃β < uω (β, α, x) ∈ A},
C = {(α, x) : ∀β < uω (β, α, x) ∈ A}.

Suppose X is a Polish space. For x ∈ R and α < uω, A ⊆ X is Σ1
3(x, α)

iff there is a Σ1
3(x) set B ⊆ uω × X such that y ∈ A iff (α, y) ∈ B. Or

equivalently, A is Σ1
3(x, α) iff there is a Σ1

3(x) set B ⊆ R×X such that y ∈ A
iff ∃w ∈ WOω (|w| = α ∧ (w, α) ∈ B). A is Π1

3(x, α) iff X \ A is Σ1
3(x, α).

A is ∆1
3(x, α) iff A is both Σ1

3(x, α) and Π1
3(x, α). Σ1

3(x,<β) means Σ1
3(x, α)

for some α < β. Similarly define Π1
3(x,<β) and ∆1

3(x,<β).
In the proof of Theorem 2.1, the prewellordering property for Π1

3 subsets
of ω × uω, originally proved by Solovay, is used.

Theorem 2.4 (Solovay, [24, Theorem 3.1]). Assume ∆1
2-determinacy. Sup-

pose A ⊆ uω×R is Π1
3(x, α), where x ∈ R, α < uω. Then there is a Π1

3(x, α)
norm ϕ : A→ Ord, i.e., the relations

(β, y) ≤∗ϕ (γ, z)↔ (β, y) ∈ A ∧ ((γ, z) ∈ A→ ϕ(β, y) ≤ ϕ(γ, z))

(β, y) <∗ϕ (γ, z)↔ (β, y) ∈ A ∧ ((γ, z) ∈ A→ ϕ(β, y) < ϕ(γ, z))

are Π1
3(x, α).

Corollary 2.5 (Reduction). Assume ∆1
2-determinacy. Suppose A,B ⊆ uω×

R are both Π1
3(x, α), where x ∈ R, α < uω. Then there exist Π1

3(x, α) sets
A′, B′ ⊆ uω×R such that A′ ⊆ A, B′ ⊆ B, A∪B = A′∪B′ and A′∩B′ = ∅.

Corollary 2.6 (Easy uniformization). Assume ∆1
2-determinacy. Suppose

A ⊆ (uω × R) × uω is Π1
3(x, α), where x ∈ R, α < uω. Then A can be

uniformized by a Π1
3(x, α) function, i.e., there is a Π1

3(x, α) function f such
that dom(f) = {(β, y) : ∃γ ((β, y), γ) ∈ A} and that ((β, y), f(β, y)) ∈ A for
all (β, y) ∈ dom(f).

The Π1
3 coding system for ∆1

3 sets (e.g., [7, Theorem 3.3.1]) applies to the
larger pointclass ∆1

3(<uω). The proof is similar.

Corollary 2.7 (Π1
3-codes for ∆1

3(<uω)). Assume ∆1
2-determinacy. Then

there is a Π1
3 set C ⊆ uω and sets P, S ⊆ uω × R in Π1

3,Σ
1
3 respectively such

that for any α ∈ C,
Pα = Sα =DEF Dα

and
{Dα : α ∈ C} = {A ⊆ R : A is ∆1

3(<uω)}.

13



Proof. Let U ⊆ ω × R2 be a good universal Π1
3 set. Define

((n, α), (m,β), x) ∈ A↔ ∀w ∈WOω (|w| = α→ (n,w, x) ∈ U)

((n, α), (m,β), x) ∈ B ↔ ∀w ∈WOω (|w| = β → (m,w, x) ∈ U)

Then A, B are Π1
3 subsets of (ω× uω)2. Reduce them to A′, B′ according to

Corollary 2.5. Define

((n, α), (m,β)) ∈ C ↔ (A′)(n,α),(m,β) ∪ (B′)(n,α),(m,β) = R

C is a Π1
3 subset of (ω×uω)2. Let P = A′, S = (ω×uω)2×R\B′. Identifying

(ω×uω)2 with uω with the Gödel pairing function, C,P, S are as desired.

Theorem 2.1 provides a model-theoretic view of Q-theory [27] at the level
of Q3-degrees. We give an exposition of these results, probably with simple
strengthenings thereof.

The higher level analog of the hyperarithmetic reducibility on reals is Q3

reducibility. Q3-degrees are coarser than ∆1
3-degrees. y ∈ Q3(x) iff y is ∆1

3(x)
in a countable ordinal, i.e., there is α < ω1 such that ∀w ∈ WO(|w| = α →
y ∈ ∆1

3(x). y is ∆1
3(x) in an ordinal < uω iff there is α < uω such that

∀w ∈ WOω(|w| = α → y ∈ ∆1
3(x)). y ≤∆1

3
x iff y ∈ ∆1

3(x). y ≡∆1
3
x iff

y ≤∆1
3
x ≤∆1

3
y. y ≤Q3 x iff y ∈ Q3(x). y ≡Q3 x iff y ≤Q3 x ≤Q3 y.

Proposition 2.8 ( [20, 21,23,27,47]). 1. Let x, y ∈ R. Then y ∈ Lκx3 [T2, x]

iff y ∈M#
1 (x) iff y is ∆1

3(x) in a countable ordinal iff y is ∆1
3(x) in an

ordinal < uω.

2. The relation y ∈ Lκx3 [T2, x] is Π1
3, where x, y ranges over R.

3. The relation y ∈ ∆1
3(x) is Π1

3, where x, y ranges over R.

κx3 is the higher level analog of ωx1 , the least x-admissible. It is defined in
a different way in [27, Section 14]. As in [23,27], we define

λx3 = sup{|W | : W is a ∆1
3(x) prewellordering on R}

= sup{ξ < κx3 : ξ is ∆1-definable over Lκx3 [T2, x] from {T2, x}}.

The equivalence of these two definitions of κx3 is proved in [23]:

κx3 = sup{o.t.(W ) : W is a ∆1
3(x,<uω) wellordering on R}

= sup{λx,y3 : M#
1 (x) �∆1

3
(x, y)}.

Moreover,
∀α < uω ∃w ∈WOω (|w| = α ∧ λx,w3 < κx3).
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Note that κx3 < λ
M#

1 (x)
3 < δ1

3, as proved in [27, Lemma 14.2].
The Kunen-Martin theorem implies that κx3 is a bound on the rank of any

Σ1
3(x,<uω) wellfounded relation.

Theorem 2.9 (Kunen-Martin, [36, 2G.2]). Suppose W is a wellfounded re-
lation on R. Suppose γ is an ordinal and T is a tree on (ω×ω)×γ such that
W = p[T ]. Let Lκ[T ] be the least admissible set containing T as an element.
Then the rank of W is smaller than

sup{ξ < κ : ξ is ∆1-definable over Lκ[T ] from {T}}.

Corollary 2.10. Suppose W is a Σ1
3(x,<uω) wellfounded relation on R.

Then the rank of W is smaller than κx3.

2.2 A ∆1
3 coding of subsets of uω in Lδ13

[T2]

As a corollary to Theorem 2.1, every subset of uω in Lδ1
3
[T2] is ∆1

3. The proof
of Theorem 2.1 gives a better definability estimate of P(uω) ∩ Lδ1

3
[T2].

For x ∈ R, A putative x-sharp is a remarkable EM blueprint over x.
Suppose x∗ is a putative x-sharp. For any ordinal α,Mx∗,α is the EM model
built from x∗ and indiscernibles of order type α. The wellfounded part of
Mx∗,α is transitive. For any limit ordinal α < β, Mx∗,α is a rank initial
segment of Mx∗,β. Say that x∗ is α-wellfounded iff α ∈ wfp(Mx∗,α). A
putative sharp code for an increasing function is w = 〈pτq, x∗〉 such that x∗

is a putative x-sharp, τ is a {∈, x}-unary Skolem term for an ordinal and

“∀v, v′((v, v′ ∈ Ord∧v < v′)→ (τ(v) ∈ Ord∧τ(v) < τ(v′)))”

is a true formula in x∗. The statement “〈pτq, x∗〉 is a putative sharp code
for an increasing function, x∗ is α-wellfounded, r codes the order type of
τMx∗,α(α)” about (〈pτq, x∗〉, r) is Σ1

1 in the code of α. In addition, when
x∗ = x#, 〈pτq, x∗〉 is called a (true) sharp code for an increasing function.

A subset A ⊆ un is coded by Coden(A) = {w ∈WOn : |w| ∈ A}.

Lemma 2.11. Assume ∆1
2-determinacy. Suppose n < ω, A ⊆ un and A ∈

Lδ1
3
[T2]. Then Coden(A) is in a(ω(n+ 1)-Π1

1).

Proof. By Kechris-Woodin [29], a(<ω2-Π1
1) sets are determined. We prove

by induction on n the following claim:

Suppose A ⊆ un. Suppose B,C ⊆ R are Π1
2 subsets of R2 such

that (w ∈WOn ∧ |w| ∈ A) iff ∃z((w, z) ∈ B) iff ¬∃z((w, z) ∈ C).
Then there is x ∈ R such that

∀v ∈WOn ∃w ∈WOn∩L[v, x] (|v| = |w|∧L[v, x] |= ∃z((w, z) ∈ B∪C)).
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By Shoenfield absoluteness, this claim gives a uniform definition of the rela-
tion |v| ∈ A over L[v, x] from parameters in {u1, . . . , un}. In the definition,
the parameters u1, . . . , un are used to decide whether or not |v| = |w| for
v, w ∈WOn. Combined with the fact from Theorem 2.1 that every subset of
uω in Lδ1

3
[T2] is ∆1

3, the lemma will follow from our claim.
We start the induction with n = 1. Consider the game G(B,C, 0), where

I produces v, II produces (w, y). II wins iff either v /∈WO or

v, w ∈WO ∧ |v| < |w| ∧
∀α < |v| ∃(w̄, z) ≤T y (w̄ ∈WO ∧ |w̄| = α ∧ (w̄, z) ∈ B ∪ C).

This game is Π1
2 for Player II, hence determined. I does not have a winning

strategy by Σ1
1-boundedness. So II has a winning strategy g. g plays the role

of x in the claim, verifying the n = 1 case.
Suppose the claim holds for n and we want to prove for n+ 1. Consider

the game G(B,C, n+1), where I produces 〈pτq, a∗〉, II produces (〈pσq, b∗〉, y).
II wins iff

1. If 〈pτq, a∗〉 is a putative sharp code for an increasing function, then so
is 〈pσq, b∗〉. Moreover, for any η < ω1, if

a∗ is η-wellfounded ∧ τMa∗,η(η) ∈ wfp(Ma∗,η)

then

b∗ is η-wellfounded ∧ σMb∗,η(η) ∈ wfp(Mb∗,η)

∧ τMa∗,η(η) < σMb∗,η(η).

2. If 〈pτq, a∗〉 is a true sharp code for an increasing function, a∗ = a#,
then

∀v ∈WOn+1(|v| < τL[a](un)→ ∃(w̄, z) ∈ L[v, y]

(w̄ ∈WOn+1 ∧ |w̄| = |v| ∧ (w̄, z) ∈ B ∪ C)).

This game is a(ω(n + 1)-Π1
1), hence determined. If Player I has a winning

strategy f , then for each η, let Xη be the set of r ∈ R such that there are
putative sharp codes for increasing functions on ordinals 〈pτq, a∗〉, 〈pσq, b∗〉
and an ordinal β ≤ η such that

1. 〈pτq, a∗〉 = f ∗ 〈pσq, b∗〉;
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2. for any β̄ < β, b∗ is β̄-wellfounded, σMb∗,η(β̄) ∈ wfp(Mb∗,η), σ
Mb∗,η(β̄) ≤

η;

3. a∗ is β-wellfounded, τMa∗,η(β) has order type coded in r.

Xη is a Σ1
1 set in the code of η. Since f is a winning strategy for I, Xη ⊆

WO. Let C be the set of countable f -admissibles and their limits. By
Σ1

1-boundedness, if 〈pσq, b#〉 is a true sharp code for an increasing function,
such that ∀β < ω1 σ

L[b](β) ∈ C, then 〈pτq, a#〉 =DEF f ∗ 〈pσq, b#〉 is a true
sharp code for an increasing function, and for any η ∈ C such that ∀β <
η σL[b](β) < η, τL[a](η) < min(C \ η + 1), and in particular, τL[a](un) <the
least f -admissible above un. Let ξ be the least f -admissible above un. In
L[f ], there is a bijection π : un → ξ, definable from {un}. A ∩ β is thus
identified with (π−1)′′(A ∩ β), as a subset of un. π induces a ∆1

3(f) map
π∗ such that for any v ∈ WOn, π∗(v) ∈ WOn+1 and |π∗(v)| = π(|v|). Let
π(v) = w iff ∃z(v, w, z) ∈ D, where D is Π1

2(f).
Let (v, z) ∈ B′ iff v ∈ WOn, (v, (z)0, (z)1) ∈ D, and ((z)0, (z)2) ∈ B.

Similarly define C ′. Then |v| ∈ (π−1)′′(A∩β) iff ∃z (v, z) ∈ B′ iff ¬∃z (v, z) ∈
C ′. B′, C ′ are Π1

2. By induction hypothesis, there is a real x∗ such that

∀v ∈WOn∃w ∈WOn ∩ L[v, x∗](|v| = |w| ∧ L[v, x∗] |= ∃z((w, z) ∈ B′ ∪ C ′))

In G(B,C, n+1), II defeats f by playing ((pσ∗q, f#), f⊕x∗), where (σ∗)L[f ](β)
is the β-th f -admissible. This is a contradiction.

Thus, II has a winning strategy g in G(B,C, n+ 1). g plays the role of x
in the claim, verifying the inductive case.

As a corollary to Lemma 2.11, we obtain a ∆1
3 coding of subsets of uω

that lie in Lδ1
3
[T2]. The ∆1

3 coding was first established by Kunen under AD
in a less effective way in [46].

Corollary 2.12. Assume ∆1
2-determinacy. There is ∆1

3 set X ⊆ R×uω such
that {Xv : v ∈ R} = P(uω) ∩ Lδ1

3
[T2]. Here Xv = {α < uω : (x, α) ∈ X}.

Proof. If v = 〈k, pϕq, z〉, k < ω, z ∈ R, (ϕ, z) defines a Π1
1(z) subset Aϕ of

ωk × R2, put Xv;k = a(Diff Aϕ). Put Xv =
⋃
k<ωX(v)k;k. X = {(v, β) :

β ∈ Xv}. X is clearly ∆1
3. The map v 7→ Xv is onto P(uω) ∩ Lδ1

3
[T2] by

Lemma 2.11.

As a corollary, assuming ∆1
2-determinacy, if A ⊆ ω1, then A ∈ L iff

A ∈ Lδ1
3
[T2].
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2.3 Silver’s dichotomy on Π1
3 equivalence relations

Harrington’s proof [22], [18, Chapter 32] of Silver’s dichotomy [44] on Π1
1

equivalence relations generalizes to Π1
3 in a straightforward fashion. This

folklore generalization is stated in [9, 10] in a slightly weaker form.
An equivalence relation E on R is thin iff there is no perfect set P such

that ∀x, y ∈ P (xEy → x = y). If Γ is a pointclass, for equivalence relations
E,F (possibly on different spaces of the form Rm × (uω)n), E is Γ-reducible
to F iff there is a function π in Γ such that xEy ↔ π(x)Fπ(y).

Theorem 2.13 (Folklore). Assume ∆1
2-determinacy. Let x ∈ R. If E is a

thin Π1
3(x) equivalence relation on R, then E is ∆1

3(x) reducible to a Π1
3(x)

equivalence relation on a Π1
3(x) subset of uω.

Proof. For simplicity, let x = 0. The generalization of Harrington’s proof of
Silver’s dichotomy shows that for every y ∈ R, there is a ∆1

3(<uω) set A such
that y ∈ A ⊆ [y]E.

Let C,P, S, (Dα)α∈C be the Π1
3 coding system for ∆1

3(<uω) subsets of R,
given by Corollary 2.7. Let α ∈ C ′ iff α ∈ C and ∀y ∈ Dα∀z ∈ Dα(yEz). C ′

is Π1
3. The set

A = {(y, α) : α ∈ C ′ ∧ y ∈ Dα}

is Π1
3. By Corollary 2.6, A can be uniformized by a Π1

3 function π. Let αFβ
iff α ∈ C ′, β ∈ C ′, and ∀y ∈ Dα∀z ∈ Dβ(yEz). F is a Π1

3 equivalence
relation on C ′. π is a reduction from E to F . To see that π is also Σ1

3,
apply Corollary 2.3 and use the fact that π is a total function taking values
in uω.

The reduction π and the target equivalence relation F in Theorem 2.13
are uniformly definable from the Π1

3(x) definition of E, independent of x. A
similar uniformity applies to the following corollary.

Corollary 2.14. Assume ∆1
2-determinacy. Let x ∈ R. If E is a thin ∆1

3(x)
equivalence relation on R, then E is ∆1

3(x) reducible to =uω . Here α =uω β
iff α = β < uω.

Proof. Assume x = 0. Proceed as in the proof of Theorem 2.13 until we
reach the set A. We now show that A can be uniformized by a Π1

3 function
π such that yEz iff π(y) = π(z). Indeed, let ϕ be a Π1

3-norm on A, given by
Theorem 2.4, and let π(y) = α iff (y, α) ∈ A and (ϕ(y, α), α) is lexicograph-
ically minimal among the set {(ϕ(z, β), β) : zEy ∧ (z, β) ∈ A}. Similarly to
the proof of Corollary 2.6, π is Π1

3 (we use E ∈ ∆1
3 here). Again, π is Σ1

3. π
is the desired reduction from E to =uω .
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It should be possible to give an alternative proof of Corollary 2.14 using
the forceless proof of the dichotomy of chromatic numbers of graphs in [35],
but the author has not checked the details.

Corollary 2.15. Assume ∆1
2-determinacy. Let x ∈ R. If ≤∗ is a ∆1

3(x)
prewellordering on R and A is a Σ1

3(x) subset of R, then |≤∗| and {‖x‖≤∗ : x ∈
A} are both in L

κ
M

#
1 (x)

3

[T2,M
#
1 (x)] and ∆1-definable over L

κ
M

#
1 (x)

3

[T2,M
#
1 (x)]

from parameters in {T2,M
#
1 (x)}.

Proof. The equivalence relation a ≡∗ b ↔ a ≤∗ b ≤∗ a is thin. By Corol-
lary 2.14, we get a ∆1

3(x)-function π : R → uω such that a ≡∗ b iff π(a) =
π(b). π induces a wellordering <∗∗ on ran(π) where π(a) <∗∗ π(b) iff a <∗ b.
|≤∗| is then the order type of <∗∗. ran(π) and <∗∗ are Σ1

3, hence Π1-
definable over Lκx3 [T2, x] from {T2, x} by Theorem 2.1. Put w = M#

1 (x).
By [27, Lemma 14.2], κx3 < κw3 . So ran(π) and <∗∗ are ∆1-definable over
Lκw3 [T2, w] from {T2, w}. By admissibility, |≤∗| is ∆1-definable in Lκw3 [T2, w]
from {T2, w}. The part concerning {‖x‖≤∗ : x ∈ A} is similar.

Remark 2.16. We do not know if M#
1 (x) can be replaced by x in the

conclusion of Corollary 2.15.

2.4 N-homogeneous trees

As this paper deals with restricted ultrapowers and “restricted homogeneous
trees” over and over again, it is convenient to abstract the relevant properties.

A transitive set or class N is admissibly closed iff

∀M ∈ N∃M ′ ∈ N(M ′ is admissible ∧M ∈M ′)

Suppose N is admissibly closed and X ∈ N . ν is an N-filter on X iff there
is a filter ν∗ on X such that ν = ν∗ ∩ N . An N -filter ν is an N-measure
on X iff ν is countably complete and for any A ∈ P(X) ∩ N , either A ∈ ν
or X \ A ∈ ν. If ν is an N -measure on X, then Ult(N, ν) is the ultrapower
consisting of equivalence classes of functions f : X → N that lie inN . Denote
by jνN : N → Ult(N, ν) the ultrapower map and [f ]νN the ν-equivalence class
of f in Ult(N, ν). The ultrapower is well-defined by admissible closedness of
N , and is wellfounded by countable completeness of ν. The usual  Loś proof
shows for any transitive M ∈ N containing {X}, for any first order formula
ϕ, for any fi : X →M that belongs to N , 1 ≤ i ≤ n,

jνN(M) |= ϕ([f1]νN , . . . , [fn]νN)
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iff
for ν-a.e. a ∈ X, M |= ϕ(f1(a), . . . , fn(a)).

Suppose ν is an N -measure on Xn and µ is an N -measure on Xm, m ≤ n. ν
projects to µ iff for all A ⊆ Xm, A ∈ µ iff {~α : ~α �m ∈ A} ∈ ν. ~ν = (νn)n<ω
is a tower of N-measures on X iff for each n, νn is an N -measure on Xn and
νn projects to νm for all m < n.

Suppose N is admissibly closed, X ∈ N , and ~ν = (νn)n<ω is a tower of N -
measures on X. This naturally induces factor maps jνm,νnN from Ult(N, νm)
to Ult(N, νn). We say ~ν is close to N iff whenever (An)n<ω is a sequence such
that An ∈ νn ∩N for all n, there exists (Bn)n<ω ∈ N such that Bn ⊆ An and
Bn ∈ νn for all n. If ~ν is close to N , we say ~ν is N-countably complete iff
whenever (An)n<ω is a sequence such that An ∈ νn ∩N for all n, there exists
(an)n<ω such that (a1, . . . , an) ∈ An for all n. The usual homogeneous tree
argument shows:

Proposition 2.17. Suppose ~ν = (νn)n<ω is close to N . Then ~ν is N-
countably complete iff the direct limit of (jνm,νnN )m<n<ω is wellfounded.

Proof. The new part is to show N -countable completeness of ~ν from well-
foundedness of the direct limit of (jνm,νnN )m<n<ω. Given (An)n<ω such that
An ∈ νn ∩ N for all n, suppose towards contradiction that there does not
exist (an)n<ω such that (a1, . . . , an) ∈ An for all n. By closedness of ~ν to
N , let (Bn)n<ω ∈ N such that Bn ⊆ An and Bn ∈ νn for all n. The tree
T consisting of (a1, . . . , an) such that ai ∈ Bi for all i is wellfounded. The
ranking function f of T belongs to N by admissible closedness. From f we
can construct fn : Xn → N so that fn ∈ N and [fn]νn > [fn+1]νn+1 as usual,
contradicting to wellfoundedness of (jνm,νnN )m<n<ω.

An N -homogeneous system is a sequence (νs)s∈ω<ω such that for any
x ∈ R, νx =DEF (νx�n)n<ω is a tower of N -measures which is close to N . For
X ∈ N , a tree T on ω×X is N -homogeneous iff there is an N -homogeneous
system (νs)s∈ω<ω such that Ts ∈ νs for all s ∈ ω<ω and for all x ∈ p[T ],
νx is N -countably complete. If T is N -homogeneous, by Proposition 2.17
and standard arguments, x ∈ p[T ] iff the direct limit of (j

νx�m,νx�n
N )m<n<ω is

wellfounded.

2.5 L[T3] as a mouse

The notations concerning inner model theory follow [51]. IfM is a premouse,
o(M) denotes Ord∩M. In Steel [47], the level-wise projective complexity
associated to mice is discussed in detail. In this paper, we find it more
convenient to work with Π1

n+1-iterability rather than ΠHC
n -iterability in [47].
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A countable normal iteration tree T on a countable premouse is Π1
1-guided

iff for any limit λ ≤ lh(T ), there is ξ ≤ o(MT
λ ) such thatMT

λ |ξ = Jξ[M(T �
α)] and Jξ+1[M(T � α)] |=“δ(T � α) is not Woodin”. A countable stack of

countable normal iteration trees ~T is Π1
1-guided iff every normal component

of ~T is Π1
1-guided.

x ∈ R codes a Π1
2-iterable mouse iff x codes a 1-small premouse Px such

that for any Π1
1-guided normal iteration trees ~T ∈ HC on Px, either T has a

last wellfounded model or lh(T ) is a limit ordinal and for any ξ ≥ o(M(T )),
if Jξ[M(T )] |=“δ(T �α) is Woodin”, then there is a cofinal branch b through
T such that either Jξ[M(T )] EMT

b or MT
b E Jξ[M(T )].

Π1
2-iterability is enough to compare countable 1-small premice that project

to ω. A countable normal iteration tree T on a countable premouse is Π1
2-

guided iff for any limit λ ≤ lh(T ), there is ξ ≤ o(MT
λ ) such that MT

λ |ξ is
Π1

2-iterable above δ(T |λ) and rud(M(T �α)) |=“δ(T �α) is not Woodin”. A

countable stack of countable normal iteration trees ~T is Π1
2-guided iff every

normal component of ~T is Π1
2-guided.

Assume ∆1
2-determinacy. x ∈ R codes a Π1

3-iterable mouse iff x codes a
countable 2-small premouse Px such that for any v ∈ R coding Π1

2-guided

stack of normal iteration trees ~T = (Ti)i<α on Px, either

1. M~T
∞ exists, either as the last model of Tα−1 when α is a successor

or as the direct limit of (MT
i : i < α) when α is a limit, and there

is Q .M~T
∞ such that Q ∈ M#

1 (x, v), Q is Π1
2-iterable above o(M~T

∞),

rud(Q) |=“there is no Woodin cardinal ≤ o(M~T
∞)”, or

2. α is a successor cardinal and there is b ∈ M#
1 (x, v) such that b is

a maximal branch through Tα−1, and there is Q .MTα−1

b such that

Q ∈M#
1 (x, v), Q is Π1

2-iterable above o(MTα−1

b ), rud(Q) |=“there is no

Woodin cardinal ≤ o(MTα−1

b )”.

Π1
3-iterability is a Π1

3 property by Spector-Gandy. “countable” and “2-small”
are usually omitted from prefixing “Π1

3-iterable mouse”. P is a Π1
3-iterable

mouse iff there is x ∈ R that codes a Π1
3-iterable mouse P = Px. Note that

Π1
3-iterable mice are genuinely (ω1, ω1)-iterable. ≤DJ is the Dodd-Jensen

prewellordering on Π1
3-iterable mice. M ≤DJ N iff M,N are Π1

3-iterable
mice and in the comparison between M and N , the main branch on the
M-side does not drop. M ∼DJ N iff M ≤DJ N ≤DJ M. M <DJ N
iff M ≤DJ N �DJ M. The norm x 7→ ‖Px‖<DJ for x coding a Π1

3-iterable
mouse Px is Π1

3. For instance, (Px is a Π1
3-iterable mouse ∧(Py is a Π1

3-iterable
mouse → Px ≤DJ Py)) iff Px is a Π1

3-iterable mouse and for any Π1
2-guided

normal iteration trees T ,U on Px,Py respectively, if T ,U have the common
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last model Q and the main branch of T drops, then the main branch of U
also drops.

If N is a Π1
3-iterable mouse, then IN is the direct system consisting of

countable nondropping iterates of N , and N∞ is the direct limit of IN ,
πN ,∞ : N → N∞ is the direct limit map. o(N∞) < δ1

3 as it is the length of a
∆1

3-prewellordering.
For a real z, all the iterability notions relativize to z-mice. <DJ(z) is the

Dodd-Jensen prewellordering on Π1
3-iterable z-mice.

Assume Π1
3-determinacy. F2,z is the direct system consisting of countable

iterates of M#
2 (z). M#

2,∞(z) is the direct limit of F2,z. M
−
2,∞(z) = M#

2,∞(z)|δ1
3.

(F2,M#
2,∞,M−

2,∞) = (F2,0,M#
2,∞(0),M−

2,∞(0)).

Theorem 2.18 (Steel [49]). Assume Π1
3-determinacy. Then for any real z,

1. δ1
3 is the least < δz2,∞-strong cardinal of M#

2,∞(z), where δz2,∞ is the least

Woodin cardinal of M#
2,∞(z).

2. M−
2,∞(z) = L[T3, z].

3 The level-1 sharp

The level-1 sharp is the usual sharp, originally published in [45]. We present
the usual arguments of Martin’s proof of Π1

1-determinacy and the Martin-
Solovay tree on a Π1

2-complete set in a form that conveniently generalizes to
higher levels.

3.1 The tree S1, level-1 description analysis

We are working under ZF + DC.
The technical definition of tree of uniform cofinalities is extracted from

[26], defined in [14], and redefined in our paper in a more convenient way. A
tree of uniform cofinality pinpoints a particular measure that appears in a
homogeneity system for a projective set. A level-1 tree of uniform cofinalities,
or a level-1 tree, is a set P ⊆ ω<ω such that:

1. ∅ /∈ A.

2. If (i1, . . . , ik+1) ∈ T , k ≥ 1, then (i1, . . . , ik) ∈ T and for every j < ik+1,
(i1, . . . , ik, j) ∈ T .
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Any countable linear ordering is isomorphic to <BK�P for some level-1 tree
P . If P, P ′ are finite level-1 trees, s /∈ P , P ′ = P ∪ {s}, then the <BK�P ′-
predecessor of s− is s. Level-1 trees are just convenient representations of
countable linear orderings and their extensions.

A level-1 tree P is said to be regular iff (1) /∈ P . In other words, when P
is regular and P 6= ∅, (0) must be the <BK-maximal node of P .

The ordinal representation of P is

rep(P ) = {(p) : p ∈ P} ∪ {(p, n) : p ∈ P, n < ω}.

rep(P ) is endowed with the ordering

<P=<BK�rep(P ).

Thus, for p ∈ P , (p) is the <P -supremum of (p, n) for n < ω. If B ⊆ ω1 is in
L, let BP↑ the set of functions f : rep(P ) → B which are continuous, order
preserving (with respect to <P and <) and belong to L. If f ∈ ωP↑1 , let

[f ]P = ([f ]Pp )p∈P ,

where [f ]Pp = f((p)) for p ∈ P . Let [B]P↑ = {[f ]P : f ∈ BP↑}. P is said to
be Π1

1-wellfounded iff P ∪ {∅} is a wellfounded tree, or equivalently, <P is a
wellordering. Π1

1-wellfoundedness of a level-1 tree is a Π1
1 property in the real

coding the tree. A tuple ~α = (αp)p∈P is said to respect P iff ~α ∈ [ω1]P↑. In
other words, each αp is a countable limit ordinal, and the map p 7→ αp is an
isomorphism between (P ;<BK�P ) and ({αp : p ∈ P};<). In particular, when
P is regular, P 6= ∅ and ~α respects P , then α(0) > αp whenever p ∈ P \{(0)}.

A finite level-1 tower is a tuple (Pi)i≤n such that n < ω, Pi is a level-1
tree of cardinality i for any i, and i < j → Pi ⊆ Pj. An infinite level-1 tower
is (Pi)i<ω such that (Pi)i≤n is a finite level-1 tower for any n < ω. A level-1

system is a sequence ~P = (Ps)s∈ω<ω such that for each s ∈ ω<ω, (Ps�i)i<lh(s)

is a finite level-1 tower. ~P is regular iff each Ps is regular. Associated to a
Π1

1 set A we can assign a regular level-1 system (Ps)s∈ω<ω so that x ∈ A iff
the infinite regular level-1 tree Px =DEF ∪n<ωPx�n is Π1

1-wellfounded. If A is
lightface Π1

1, then (Ps)s∈ω<ω can be picked effective.

Definition 3.1. S1 is the tree on Vω × ω1 such that (∅, ∅) ∈ S1 and a
nonempty node

(~P , ~α) = ((Pi)i≤n, (αi)i≤n) ∈ S1

iff (Pi)i≤n is a finite regular level-1 tower and putting pi ∈ Pi+1 \Pi, βpi = αi,
then (βp)p∈Pn respects Pn.
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Since every tree occurring in S1 is regular, for a nonempty node (~P , ~α) ∈
S1, we must have α0 > max(α1, . . . , αn).

S1 projects to the universal Π1
1 set:

p[S1] = {~P : ~P is a Π1
1-wellfounded regular level-1 tower}.

The (non-regular) ω1-scale associated to S1 is Π1
1.

Definition 3.2. 1. Suppose P is a level-1 tree. The set of P -descriptions
is desc(P ) =DEF P ∪ {∅}. The constant P -description is ∅.

2. p ≺ p′ iff p, p′ ∈ desc(P ) and p <BK p′.

3. Suppose P,W are level-1 trees. A function σ : P ∪ {∅} → W ∪ {∅} is
said to factor (P,W ) iff σ(∅) = ∅ and σ preserves the <BK-order. (σ
does not necessarily preserve the tree order.)

4. Suppose P is a level-1 tree. σ factors (P, ∗) iff σ factors (P,W ) for
some level-1 tree W .

Suppose P,W are Π1
1-wellfounded. Then o.t.(<P ) ≤ o.t.(<W ) is equiv-

alent to “∃σ (σ factors (P,W ))”. o.t.(<P ) < o.t.(<W ) is equivalent to
“∃σ∃w ∈ W (σ factors (P,W ) ∧ ∀p ∈ P σ(p) ≺W w)”. The higher level
analog of this simple fact will be established in Section 4.9, which will be an
ingredient in the axiomatization of 03# in Section 5.

3.2 Homogeneity properties of S1

From now on, we assume Π1
1-determinacy. This is equivalent to ∀x ∈

R(x# exists) by Martin [32] and Harrington [8].
The first ω uniform indiscernibles (un)n<ω can be generated by restricted

ultrapowers of L. Recall that L =
⋃
x∈R L[x], which is admissibly closed.

Then for every subset A ⊆ ω1 in L, there is a real x such that A is Σ1-
definable over (Lω1 [x];∈, x). Let

µL

be the L-club measure on ω1, i.e., A ∈ µL iff A ∈ L and ∃C ∈ L (C ⊆
A ∧ C is a club in ω1). When P is a finite level-1 tree, µP is the L-measure
on card(P )-tuples in ω1 given by: A ∈ µP iff there is C ∈ µL such that
[C]P↑ ⊆ A. So µP is essentially a variant of the card(P )-fold product of µL,
concentrating on tuples whose ordinals are ordered according to the <BK-
order of P . In particular, µ∅ is the principal ultrafilter concentrating on
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{∅}. Put jP = jµ
P

L , [f ]µP = [f ]µ
P

L for f ∈ L. Standard arguments show
that Ult(L, µP ) = L, and jP (ω1) = ucard(P )+1. For any real x, jP � L[x] is
elementary from L[x] to L[x].

The set of uncountable L-regular cardinals below uω is {un : 1 ≤ n < ω}.
The relation “β = cfL(α)” is ∆1

3 (in the sharp codes). Suppose P is a finite
level-1 tree, p ∈ desc(P ). Then

seedPp ∈ L

is the element represented modulo µP by the projection map sending ~α =
(αp′)p′∈P to αp if p ∈ P , by the constant function with value ω1 if p = ∅.
We have seedPp = u‖p‖≺P +1, where ‖p‖≺P is the ≺P -rank of p. In particular,

seedP∅ = ucard(P )+1 = jP (ω1). For each p ∈ P , µP projects to µL via the map
~α 7→ αp.

pP : L→ L

is the induced factoring map that sends jµL(h)(ω1) to jP (h)(seedPp ). Thus,
pP is the unique map such that for any z ∈ R, pP is elementary from L[z]
to L[z] and pP ◦ jµL = jP , pP (ω1) = seedPp . If p is the ≺P -predecessor of p′,

then (pP )′′u2 is a cofinal subset of seedPp′ . Put

seedP = (seedPp )p∈desc(P ),

So p ≺P p′ iff seedPp < seedPp′ . Every element in L is expressible in the form

jP (h)(seedP ) for some h ∈ L.
If P, P ′ are finite level-1 trees, P is a subtree of P ′, then µP

′
projects to

µP in the language of Section 2.4, i.e., the identity map factors (P, P ′). Let

jP,P
′
= jµ

P ,µP
′

L : L→ L

be the factor map given by Section 2.4. Thus, for any real x,

jP,P
′
�L[x] : L[x]→ L[x]

is elementary and

jP,P
′
(τL[x](seedPp1

, . . . , seedPpn)) = τL[x](seedP
′

p1
, . . . , seedP

′

pn)

for p1, . . . , pn ∈ P . If (Pn)n<ω is an infinite level-1 tower, the associated
measure tower (µPn)n<ω is easily seen close to L.

The proof of Π1
1-determinacy [32] shows:

Theorem 3.3 (Martin). Assume Π1
1-determinacy. Let (Pn)n<ω be an infinite

level-1 tower. The following are equivalent.

25



1. (Pn)n<ω is Π1
1-wellfounded.

2. [ω1]
⋃
{Pn:n<ω}↑ 6= ∅.

3. (µPn)n<ω is L-countably complete.

4. The direct limit of (jPm,Pn)m<n<ω is wellfounded.

If σ : {1, . . . , n} → {1, . . . , n′} is order preserving, let

jσ : L→ L

where jσ(τL[x](u1, . . . , un)) = τL[x](uσ(1), . . . , uσ(n)). Let

jσsup : un+1 → un′+1

where jσsup(β) = sup(jσ)′′β. So jσ is continuous at β iff jσ(β) = jσsup(β). The
continuity points of jσ are characterized by their L-cofinalities:

Lemma 3.4. Suppose σ : {1, . . . , n} → {1, . . . , n′} is order preserving, β <
un+1. Put σ(0) = 0. Then jσ(β) 6= jσsup(β) iff for some k, cfL(β) = uk
and σ(k) > σ(k − 1) + 1. If cfL(β) = uk and σ(k) > σ(k − 1) + 1, then
jσsup(β) = jσk ◦ jτksup(β), where σ = σk ◦ τk, σk(i) = σ(i) for 1 ≤ i < k,
σk(k) = σ(k − 1) + 1, σk(i) = σ(i− 1) for k < i ≤ n+ 1.

The second half of this lemma states that jσsup acting on points of L-
cofinality uk is factored into the “continuous part” jσk and the “discontin-
uous part” jτksup. This simple fact about factoring jσsup is essentially part of
effectivized Kunen’s analysis on uω in [46].

A partial level ≤ 1 tree is a pair (P, t) such that P is a finite regular
level-1 tree, and either

1. t /∈ P ∧ P ∪ {t} is a regular level-1 tree, or

2. P 6= ∅, t = −1.

−1 is regarded as the “level-0” component, hence the name “level ≤ 1”. (P, t)
is of degree 0 if t = −1, of degree 1 otherwise. We put dom(P, t) = P ∪ {t}.
The uniform cofinality of (P, t) is

ucf(P, t) =

{
−1 if t = −1,

t− if t 6= −1.

~α = (αs)s∈P∪{t} respects (P, t) iff ~α � P respects P and t = −1 → αt < ω,
t 6= −1 → αt < αt− . The cardinality of (P, t) is card(P, t) = card(P ) + 1.
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The unique partial level ≤ 1 tree of cardinality 1 is (∅, (0)). If (P, t) is of
degree 1, its completion is P ∪ {t}. (P,−1) has no completion. (P, t) is a
partial subtree of P ′ iff the completion of (P, t) exists and is a subtree of P ′.

A partial level ≤ 1 tower of discontinuous type is a nonempty finite se-
quence (~P , ~p) = (Pi, pi)i≤k such that card(P0, p0) = 1, each (Pi, pi) is a partial
level ≤ 1 tree, and Pi+1 is the completion of (Pi, pi). Its signature is (pi)i<k.
Its uniform cofinality is ucf(Pk, pk). A partial level ≤ 1 tower of continu-
ous type is (Pi, pi)i<k

_(P∗) such that either k = 0 ∧ P∗ = ∅ or (Pi, pi)i<k
is a partial level ≤ 1 tower of discontinuous type ∧P∗ is the completion of
(Pk−1, pk−1). Its signature is (pi)i<k. When k > 0, its uniform cofinality is
pk−1. For notational convenience, the information of a partial level ≤ 1 tower
is compressed into a potential partial level ≤ 1 tower. We say a potential
partial level ≤ 1 tower is (P∗, ~p) = (P∗, (pi)i<lh(~p)) such that for some level-1

tower ~P = (Pi)i≤k, either P∗ = Pk ∧ (~P , ~p) is a partial level ≤ 1 tower of

discontinuous type or (~P , ~p)_(P∗) is a partial level ≤ 1 tower of continuous
type. The signature, (dis-)continuity type, uniform cofinality of (P∗, ~p) are
defined according to the partial level ≤ 1 tree generating (P∗, ~p).

ucf(P∗, ~p)

denotes the uniform cofinality of (P∗, ~p). If (P∗, (pi)i≤k) is a potential partial
level ≤ 1 tower of discontinuous type, its completion is the completion of
(P, pk).

Clearly, a potential partial level ≤ 1 tower (P∗, ~p) is of continuous type
iff card(P∗) = lh(~p), of discontinuous type iff card(P∗) = lh(~p)− 1.

Suppose P,W are level-1 trees, σ factors (P,W ). Given a tuple ~α =
(αw)w∈W ∈ [ω1]W↑, define

~ασ = (ασ,p)p∈P ∈ [ω1]P↑

where ασ,p = ασ(p). If W is finite, put seedWσ = (seedWσ(p))p∈P , i.e., seedWσ is

represented modulo µW by the function ~α 7→ ~ασ.
If P,W are finite, σ factors (P,W ), then for any A ∈ µP , for µW -a.e. ~α,

~ασ ∈ A. Thus, for any A ∈ µP , seedWσ ∈ jW (A). Thus, we can unambigu-
ously define

σW : L→ L
by σW (jP (h)(seedP )) = jW (h)(seedWσ ). σW is the unique map such that for
any z ∈ R, σW is elementary from L[z] to L[z], σW ◦ jP = jW , and for any
p ∈ P , σW ◦ pP = σ(p)W . Define σWsup(β) = sup(σW )′′β.

The next two lemmas compute the “effective uniform cofinality” of the
image of certain ordinals under level-1 tree factoring maps. They will be
useful in the level-2 description analysis in Section 4.4.
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Lemma 3.5. Suppose (P−, p) is a partial level ≤ 1 tree whose completion
is P . σ, σ′ both factor (P,W ). σ and σ′ agree on P−, σ′(p) is the ≺W -

predecessor of σ(p). Then for any β < jP
−

(ω1) such that cfL(β) = seedP
−

p− ,

σW ◦ jP−,Psup (β) = (σ′)Wsup ◦ jP
−,P (β).

Proof. Note that cfL(jP
−,P (β)) = seedPp− . As in Lemma 3.4, (σ′)Wsup acting on

points of L-cofinality seedPp− is decomposed into the discontinuous part jP,P
+

sup

and the continuous part (σ+)W , where P+ is the completion of the partial
level ≤ 1 tree (P, p+), (p+)− = p−, σ+ factors (P+,W ), σ′ and σ+ agree on
P , σ+(p+) = σ(p). Let ι factor (P, P+) where ι � P− = id, ι(p) = p+. So

σ+ ◦ ι = σ. By considering the seedP
−

p− -cofinal sequence in β, it is not hard

to show that jP,P
+

sup ◦ jP−,P (β) = ιP
+ ◦ jP−,Psup (β). Hence,

(σ′)Wsup ◦ jP
−,P (β) = (σ+)W ◦ jP,P+

sup ◦ jP−,P (β)

= (σ+)W ◦ ιP+ ◦ jP−,Psup (β)

= σW ◦ jP−,Psup (β).

Lemma 3.6. Suppose (P, p) is a partial level ≤ 1 tree, σ factors (P,W ).
Suppose β < jP

−
(ω1) and either

1. p = −1, P+ = P , σ′ = σ, cfL(β) = ω, or

2. p 6= −1, P+ is the completion of (P, p), σ′ factors (P+,W ), σ = σ′ �P ,
σ′(p) is the ≺W -predecessor of σ(p−), cfL(β) = seedPp−.

Then
σW (β) = (σ′)Wsup ◦ jP,P

+

(β).

Proof. By commutativity of factoring maps, σW (β) = (σ′)W ◦jP,P+
(β). Note

that cfL(jP,P
+

(β)) = seedP
+

p− when p 6= −1, cfL(jP,P
+

(β)) = ω when p = −1.

In either case, by Lemma 3.4, (σ′)W is continuous at jP,P
+

(β).

To conclude this section, we define the Martin-Solovay tree T2 projecting
to {x# : x ∈ R} and its variant T̂2 projecting to a good universal Π1

2 set. This

formulation of T2 and T̂2 will generalize to the higher level in Section 6.3.
Let T ⊆ 2<ω be a recursive tree such that [T ] is the set of remarkable EM
blueprints over some real. Here we have fixed in advance an effective Gödel
coding of first order formulas in the language {∈, x, cn : n < ω}, so that an
infinite string x ∈ 2ω represents the theory {ϕ : xpϕq = 0}. Fix an effective list
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of Skolem terms (τk)k<ω in the language of set theory, where τk is f(k)+1-ary,
f is effective. T2 is defined as a tree on 2× uω where

(s, (α0, . . . , αn−1)) ∈ T2

iff s ∈ T , lh(s) = n, and for any k, l < n, for any order preserving σ :
{1, . . . , f(k)} → {1, . . . , f(l)},

1. if “τk(x, cσ(1), . . . , cσ(f(k))) = τl(x, c1, . . . , cf(l))” is true in s, then jσ(αk) =
αl;

2. if “τk(x, cσ(1), . . . , cσ(f(k))) < τl(x, c1, . . . , cf(l))” is true in s, then jσ(αk) <
αl;

3. if “τk(x, cσ(1), . . . , cσ(f(k))) > τl(x, c1, . . . , cf(l))” is true in s, then jσ(αk) >
αl.

In essence, the second coordinate of T2 attempts to verify the wellfoundedness
of the EM blueprint coded in the first coordinate. From T2 we compute
T̂2, a tree on ω × (ω × uω) that projects to a good universal Π1

2 set. By
Shoenfield absoluteness, if ϕ(v) is a Π1

2 formula, effectively from pϕq we can

compute a unary Skolem term τpϕq such that τ
L[x]
pϕq (x) = 0 iff ϕ(x) holds.

Define (pϕq_(v), (s, ~α)) ∈ T̂2 iff (s, ~α) ∈ T2 and

1. if “x(m) = n” is true in s, then v(m) = n;

2. “τpϕq(x) 6= 0” is not true in s.

So p[T̂2] = {pϕq_(x) : ϕ(x)}.

3.3 The tree S2

In this section, we redefine the tree S2 introduced in [26, Section 2] in the
language of trees of uniform cofinalities in [14].

A tree of level-1 trees is a tree T on ω<ω (i.e., T ⊆ (ω<ω)<ω and closed
under ⊆) and such that for any s ∈ T , {a ∈ ω<ω : s_(a) ∈ T} is a level-1
tree.

A level-2 tree of uniform cofinalities, or level-2 tree, is a function Q such
that dom(Q) is a tree of level-1 trees, ∅ ∈ dom(Q) and for any q ∈ dom(Q),
(Q(q � l))l≤lh(q) is a partial level≤ 1 tower of discontinuous type. In particular,
Q(∅) = (∅, (0)).

We denote Q(q) = (Qtree(q), Qnode(q)) and Q[q] = (Qtree(q), (Qnode(q �
l))l≤lh(q)). So Q[q] is a potential partial level ≤ 1 tower of discontinuous
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type. Denote Q{q} = {a ∈ ω<ω : q_(a) ∈ dom(Q)}, which is a level-1 tree.
The cardinality of Q is card(Q) = card(dom(Q)). card(Q) could be finite or
ℵ0.

For Q a level-2 tree, Let

dom∗(Q) = dom(Q) ∪ {q_(−1) : q ∈ dom(Q)}.

Here −1 is a distinguished element which is <BK-smaller than any node in
ω<ω. So <BK� dom∗(Q) extends <BK� dom(Q) where q_(−1) comes be-
fore any q_(s) ∈ dom(Q). If q 6= ∅, denote Q{q,−} = {q−_(−1)} ∪
{q−_(a) : Qtree(q

−_(a)) = Qtree(q) ∧ a <BK q(lh(q) − 1)}, Q{q,+} =
{q−} ∪ {q−_(a) : Qtree(q

−_(a)) = Qtree(q) ∧ a >BK q(lh(q) − 1)}, For
q ∈ dom∗(Q), q is of discontinuous type if q ∈ dom(Q); q is of continu-
ous type if q ∈ dom∗(Q) \ dom(Q). In particular, {∅, (−1)} ⊆ dom∗(Q). Put
Q[q_(−1)] = (P, (Qnode(q � l))l≤lh(q)), where P is the completion of Q(q). So
Q[q_(−1)] is a potential partial level ≤ 1 tower of continuous type.

Definition 3.7. Suppose Q is a level-2 tree. A Q-description is a triple

q = (q, P, ~p)

such that q ∈ dom∗(Q) and (P, ~p) = Q[q]. desc(Q) is the set ofQ-descriptions.
A Q-description (q, P, ~p) is of (dis-)continuous type iff q is of (dis-)continuous
type. The constant Q-description is (∅, ∅, ∅).

If q = (q, P, ~p) ∈ desc(Q) is of discontinuous type, put q_(−1) =
(q_(−1), P+, ~p) where P+ is the completion of (P, ~p). If ~α = (αp)p∈N is
a tuple indexed by N , q ∈ dom∗(Q), dom(Q(q−)) ⊆ N if q 6= ∅, we put

~α⊕Q q = (αp0 , q(0), . . . , αplh(q)−1
, q(lh(q)− 1)),

where pi = Qnode(q � i).
The ordinal representation of Q is the set

rep(Q) ={~α⊕Q q : q ∈ dom(Q), ~α respects Qtree(q)}
∪ {~α⊕Q q_(−1) : q ∈ dom(Q), ~α respects Q(q)}.

rep(Q) is endowed with the <BK ordering:

<Q=<BK�rep(Q).

Thus, the <Q-greatest element is ∅ = ∅ ⊕Q ∅, and the set {(β,−1) : β < ω1}
is <Q-cofinal below ∅. In general, if q ∈ dom(Q) and ~α respects Qtree(q),
then ~α ⊕Q q is the <Q-sup of ~α_(β) ⊕ q_(−1) ∈ rep(Q). The fact that (0)
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is the <BK-maximum node of a nonempty regular level-1 tree implies that if
(q, P ) ∈ desc(Q), q 6= ∅, (αp)p∈P respects P , then α(0) is bigger than αp for
any p ∈ P \ {(0)}. Hence, when Q is finite, <Q has order type ω1 + 1. If
B ∈ L is a subset of ω1, we put

f ∈ BQ↑

iff f ∈ L is an order preserving, continuous function from rep(Q) to B∪{ω1}.
If f ∈ BQ↑, for each q ∈ dom(Q), letting Pq = Qtree(q), fq is the function on
[ω1]Pq↑ that sends ~α to f(~α⊕Q q), and

[f ]Q = ([f ]Qq )q∈dom(Q)

where [f ]Qq = [fq]µPq . A tuple ~β respects Q iff ~β = [f ]Q for some f ∈
ωQ↑1 ; ~β weakly respects Q iff β∅ = ω1 and for any q ∈ dom(Q) \ {∅}, βq <
jQtree(q−),Qtree(q)(βq−).

If y ∈ [dom(Q)], let Q(y) =DEF ∪n<ωQtree(y �n) be an infinite level-1 tree.
Q is Π1

2-wellfounded iff

1. ∀q ∈ dom(Q) Q{q} is Π1
1-wellfounded,

2. ∀y ∈ [dom(Q)] Q(y) is not Π1
1-wellfounded.

In particular, finite level-2 trees are Π1
2-wellfounded. Π1

2-wellfoundedness of
a level-2 tree is a Π1

2 property in the real coding the tree.
A level-2 tree Q is a called a subtree of Q′ iff Q is a subfunction of Q′. A

finite level-2 tower is a (possibly empty) sequence (Qi)1≤i≤n such that Qi is
a level-2 tree for 1 ≤ i ≤ n, card(Qi) = i and i < j → Qi is a subtree of Qj.

An infinite level-2 tower is a sequence ~Q = (Qn)1≤n<ω such that for each n,
(Qi)1≤i≤n is a finite level-2 tower. A level-2 system is (Qs)s∈ω<ω such that
for each s, (Qs�i)1≤i<lh(s) is a finite level-2 tower. Associated to a Π1

2 set A
we can assign a level-2 system (Qs)s∈ω<ω so that x ∈ A iff the level-2 tower
Qx =DEF (Qx�n)n<ω is Π1

2-wellfounded. If A is lightface Π1
2, then (Qs)s∈ω<ω

can be picked effective.
In our language, the level-2 tree S2, originally defined in [26, Section 2],

takes the following form.

Definition 3.8. Assume Π1
1-determinacy.

1. S−2 is the tree on Vω × uω such that (∅, ∅) ∈ S−2 and a nonempty node

(∅, ∅) 6= ( ~Q, ~α) = ((Qi)1≤i≤n, (αi)1≤i≤n) ∈ S−2

iff ~Q is a finite level-2 tower, and putting Q0 = ∅, qi ∈ dom(Qi+1) \
dom(Qi), βqi = αi, then (βq)q∈dom(Qn) respects Qn.
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2. S−2 is the tree on Vω × uω such that (∅, ∅) ∈ S−2 and a nonempty node

(∅, ∅) 6= ( ~Q, ~α) = ((Qi)1≤i≤n, (αi)1≤i≤n) ∈ S−2

iff ~Q is a finite level-2 tower, and putting Q0 = ∅, qi ∈ dom(Qi+1) \
dom(Qi), βqi = αi, then (βq)q∈dom(Qn) weakly respects Qn.

By Theorem 3.3,

p[S−2 ] = p[S2] = { ~Q :
⋃

~Q is Π1
2-wellfounded}.

The (non-regular) uω-scale associated to S2 is ∆1
3 (cf. [26]).

A level ≤ 2 tree is a pair Q = (1Q, 2Q) such that dQ is a level-d tree
for d ∈ {1, 2}. Its cardinality is card(Q) =

∑
d card(dQ). We follow the

convention that dQ always stands for the level-d component of a level ≤ 2 tree
Q. Q is a level ≤ 2 subtree of Q′ iff dQ is a level-d subtree of dQ′ for d ∈ {1, 2}.
rep(Q) =

⋃
d({d} × rep(dQ)). <Q=<BK� rep(Q). So <Q is essentially the

concatenation of <
1Q and <

2Q. dom(Q) =
⋃
d({d} × dom(dQ)), dom∗(Q) =⋃

d({d}×dom∗(dQ)), where dom∗(1Q) = dom(1Q) = 1Q. desc(Q) =
⋃
d({d}×

desc(dQ)) is the set of Q-descriptions. (d,q) ∈ desc(Q) is of continuous type
iff d = 2 and q is of continuous type; otherwise, (d,q) is of discontinuous
type. Q is Π1

2-wellfounded iff 1Q is Π1
1-wellfounded and 2Q is Π1

2-wellfounded.
By virtue of the Brower-Kleene ordering, the next proposition is a corollary
of Theorem 3.3.

Proposition 3.9. Let Q be a level ≤ 2 tree. Then Q is Π1
2-wellfounded iff

<Q is a wellordering on rep(Q).

As a corollary, if Q is Π1
2-wellfounded, then o.t.(<Q) = ω1 + 1.

If f is a function on rep(Q), let df be the function on rep(dQ) that sends
v to f(d, v). If B ∈ L is a subset of ω1, we put

f ∈ BQ↑

iff f ∈ L is an order preserving, continuous function on rep(Q), and df ∈ BdQ↑

for d ∈ {1, 2}. f represents a card(Q)-tuple of ordinals

[f ]Q = (d[f ]Qq )(d,q)∈dom(Q)

where d[f ]Qq = [df ]
dQ
q . In particular, we must have 2[f ]Q∅ = ω1. Let

[B]Q↑ = {[f ]Q : f ∈ BQ↑}.

The properties of a tuple [f ]Q for f ∈ ωQ↑1 are analyzed in [26, 46]. We
restate the key results in the effective context.

32



Definition 3.10. SupposeQ is a level≤ 2 tree. An extended Q-description is
either a Q-description or of the form (2, (q, P, ~p)) such that (2, (q_(−1), P, ~p))
is a Q-description of continuous type. desc∗(Q) is the set of extended Q-
descriptions. (d,q) ∈ desc∗(Q) is regular iff either (d,q) ∈ desc(Q) of dis-
continuous type or (d,q) /∈ desc(Q).

Suppose (2,q) = (2, (q, P, ~p)) ∈ desc∗(Q). If f ∈ ωQ↑1 , 2fq is the function
on [ω1]P↑ defined as follows: 2fq = 2fq if (2,q) ∈ desc(Q); 2fq(~α) = 2fq(~α �
2Qtree(q)) if (2,q) /∈ desc(Q). If ~β = (dβq)(d,q)∈dom(Q) ∈ [ω1]Q↑, we define
dβq for (d,q) ∈ desc∗(Q): if d = 2, q = (q, P, ~p), put dβq = [dfq]µP where
~β = [f ]Q. Clearly, 2βq = 2βq if (2,q) ∈ desc(Q) of discontinuous type,
2βq = j

2Qtree(q),P (2βq) if (2,q) /∈ desc(Q). The next lemma computes the
remaining case when q ∈ desc(Q) is of continuous type, justifying that dβq
does not depend on the choice of f .

Lemma 3.11. Suppose Q is a level ≤ 2 tree. Suppose ~β = (dβq)(d,q)∈dom(Q) ∈
[ω1]Q↑, (2,q) = (2, (q, P, ~p)) ∈ desc(Q) is of continuous type, P− = Qtree(q

−),
then 2βq = jP

−,P
sup (2βq−).

Proof. Let ~β = [f ]Q, f ∈ [ω1]Q↑. Let v = plh(q)−1. So P is the completion of
Q(q−) = (P−, v).

Suppose γ = [g]µP− <
2βq− , g ∈ L. So for µP

−
-a.e. ~α, g(~α) < 2fq−(~α) =

supξ<αv−
2fq(~α

_(ξ)), where ~α_(ξ) is the extension of ~α whose entry indexed

by v is ξ. Let h(~α) be the least ξ < αv− such that g(~α) < 2fq(~α
_(ξ)). Then

h ∈ L. By remarkability of level-1 sharps, we get C ∈ µL such that for any
~α ∈ [C]P↑, h(~α�dom(P−)) < αv. Hence for any ~α ∈ [C]P↑, g(~α�dom(P−)) <
2fq(~α). Hence jP

−,P (γ) < 2βq.
Suppose on the other hand γ = [g]µP <

2βq. Then for µP -a.e. ~α, g(~α) <
2fq(~α) = supξ<αv

2fq(~α � dom(P−)_(ξ)). Let h(~α) be the least ξ < αv such
that g(~α) < 2fq(~α � dom(P−)_(ξ)). By remarkability, we get C ∈ µL and
h′ ∈ L such that for any ~α ∈ [C]P↑, h(~α) = h′(~α � {p : p ≺P v}). Hence,
g(~α) < 2fq(α � dom(P−)_h′(~α � {p : p ≺P v})) = jP

−,P (η), where η = [~α 7→
2fq(~α

_h′(~α�{p : p ≺P− v−}))]µP− . Clearly, η < 2βq− . So γ < jP
−,P

sup (2βq−).

A tuple ~β = (dβq)(d,q)∈dom(Q) respects Q iff ~β ∈ [ω1]Q↑. In particular, if ~β

respects Q, then 2β∅ = ω1. ~β weakly respects Q iff (1βq)q∈1Q respects 1Q and
(2βq)q∈2Q weakly respects 2Q.

The relation of weak respectability is clearly ∆1
3. It is essentially shown

in [46] that respectability is also ∆1
3. We restate the relevant definitions in a

more applicable fashion.
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Definition 3.12. Suppose W is a finite level-1 tree, ~w = (wi)i<m is a distinct
enumeration of a subset of W . Suppose f : [ω1]W↑ → ω1 is a function which
lies in L. The signature of f is ~w iff there is C ∈ µL such that

1. for any ~α, ~β ∈ [C]W↑, if (αw0 , . . . , αwm−1) <BK (βw0 , . . . , βwm−1) then

f(~α) < f(~β);

2. for any ~α, ~β ∈ [C]W↑, if (αw0 , . . . , αwm−1) = (βw0 , . . . , βwm−1) then

f(~α) = f(~β).

In particular, f is constant on a µW -measure one set iff the signature of f is
∅.

Suppose the signature of f is ~w = (wi)i<m. f is essentially continu-

ous iff m > 0 and for µW -a.e. ~α, f(~α) = sup{f(~β) : (βw0 , . . . , βwm−1) <
(αw0 , . . . , αwm−1)}. Otherwise, f is essentially discontinuous. Put [B]W↑−1 =

[B]W↑ × ω. For w ∈ dom(W ), put [B]W↑w = {(~β, γ) : ~β ∈ [B]W↑, γ < βw}.
For v ∈ {−1} ∪ W , say that the uniform cofinality of f is v iff there is
g : [ω1]W↑v → ω1 such that g ∈ L and for µW -a.e. ~α, F (~α) = sup{G(~α, β) :
(~α, β) ∈ [ω1]W↑v} and the function β 7→ G(~α, β) is order preserving. It is
essentially shown in [46] that every f : [ω1]W↑ → ω1 in L has a unique sig-
nature and uniform cofinality. Let (Pi, pi)i<m

_(Pm) be the partial level ≤ 1
tower of continuous type and let σ factor (Pm,W ) such that σ(pi) = wi for
each i < m. Note that wi ≺W w0 for 0 < i < m, so each Pi is indeed a
regular level-1 tree. ~P = (Pi)i≤m is called the level-1 tower induced by f , and
σ is called the factoring map induced by f . Note that σ �Pi factors (Pi,W )
for each i. The potential partial level ≤ 1 tower induced by f is

1. (Pm, (pi)i<m), if f is essentially continuous;

2. (Pm, (pi)i<m
_(−1)), if f is essentially discontinuous and has uniform

cofinality −1;

3. (Pm, (pi)i<m
_(p+)), if f is essentially discontinuous and has uniform

cofinality w∗ ∈ W , (Pm, p
+) is a partial level ≤ 1 tree, σ((p+)−) = w∗.

In particular, if w∗ ∈ W , f(~α) = αw∗ is the projection map, then the potential
partial level ≤ 1 tower induced by f is (∅, (0)). The approximation sequence
of f is (fi)i≤m where dom(fi) = [ω1]Pi↑, f0 is the constant function with

value ω1, fi(~α) = sup{f(~β) : ~β ∈ [ω1]W↑, (βw0 , . . . , βwi−1
) = (αp0 , . . . , αpi−1

)}
for 1 ≤ i ≤ m. In particular, fm(~βσ) = f(~β) for µW -a.e. ~β.

Note that all the relevant properties of f depend only on the value of f
on a µW -measure one set. We will thus be free to say the signature, etc. of
f when f is defined on a µW -measure one set.

34



Definition 3.13. Suppose ω1 ≤ β < uω is a limit ordinal. Suppose W is
a finite level-1 tree, β = [f ]µW < ucard(W )+1, the signature of f is (wi)i<m,
the approximation sequence of f is (fi)i≤m, the level-1 tower induced by f
is (Pi)i≤m, the factoring map induced by f is σ. Then the signature of β is
(seedWwi)i<m, the approximation sequence of β is ([fi]µPi )i≤m, β is essentially
continuous iff f is essentially continuous. The uniform cofinality of β is ω if
f has uniform cofinality −1, seedWw∗ if f has uniform cofinality w∗ ∈ W ∪{∅}.
The potential partial level ≤ 1 tower induced by β is the potential partial
level ≤ 1 tower induced by f .

The uniform cofinality of β is exactly cfL(β). The signature, approxima-
tion sequence and essential continuity of β are independent of the choice of
(W, f) in Definition 3.13, and moreover ∆1

3 in β uniformly.
Suppose the signature of β is (uli)i<m, the approximation sequence of β is

(γi)i≤m. For i ≤ m, let τi,m : {1, . . . , i+1} → {l0, . . . , li} be order preserving.
For i < k < m, let τi,k = τ−1

k,m ◦ τi,m. A straightforward analysis on the
representative function of β yields the following:

1. For i < k < m, j
τi,k
sup (γi) < γk < jτi,k(γi).

2. For i < m, j
τi,m
sup (γi) ≤ γm < jτi,m(γi).

3. For i < m, jτi,msup (γi) = γm iff i = m− 1 and β is essentially continuous.

4. β = jτm,m(γm).

The next lemma is a version of the “converse direction”. In its statement,
the inequality jπsup(γ) < γ′ < jπ(γ) forces π to move the signature of γ to a
proper initial segment of that of γ′, and forces the approximation sequence of
γ to be a proper initial segment of that of γ′. It will be useful in the analysis
of descriptions and tree factoring maps in Sections 4.4-4.8, which eventually
justifies the axiomatization of 03# in Section 5.4. The proof is again based
on an analysis of the representative function of γ and γ′.

Lemma 3.14. Suppose A is a finite subset of ω. Let π : {1, . . . , card(A)} →
A be order preserving. Suppose that γ < ucard(A)+1 and jπsup(γ) < γ′ < jπ(γ).
Let (ulk)k<v, (γk)k≤v, (P, ~p) be the signature, approximation sequence and po-
tential partial level ≤ 1 tower induced by γ respectively. Let (ul′k)k<v, (γ

′
k)k≤v′,

(P ′, ~p′) be the signature, approximation sequence and potential partial level
≤ 1 tower induced by γ′ respectively. Let cfL(γ) = ul∗. Then

1. v < v′, π(lk, γk) = (l′k, γ
′
k). γ is essentially discontinuous → γv = γv′.

γ is essentially continuous→ γv < γv′.
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2. l′k /∈ A for v ≤ k < v′.

3. For any k < v, l′v < π(lk)↔ l∗ ≤ lk.

4. P is a proper subtree of P ′ and ~p is an initial segment of ~p′.

Moreover, if γ′ < γ′′ < jπ(γ) and (γ′′k)k≤v′′ is the approximation sequence of
γ′′, then γ′v < γ′′v .

The next few lemmas are essentially part of effectivized Kunen’s analysis
[46] of tuples of ordinals in uω. The proofs are rather routine.

Suppose E is a club in ω1. For a partial level ≤ 1 tree (P, t), put ~α =
(αp)p∈P∪{t} ∈ [E](P,t)↑ iff ~α respects (P, t), (αp)p∈P ∈ [E]P↑, and t 6= −1 →
αt ∈ E. For a level ≤ 2 tree Q, put

rep(2Q)�E ={~α⊕2Q q : q ∈ dom(2Q), ~α ∈ [E]
2Qtree(q)↑}

∪ {~α⊕2Q q
_(−1) : q ∈ dom(2Q), ~α ∈ [E]

2Q(q)↑}.

Put rep(Q)�E = ({1} × rep(1Q)) ∪ ({2} × rep(2Q)�E). Then rep(Q)�E is a
closed subset of rep(Q) (in the order topology of <Q).

Lemma 3.15. Suppose Q is a finite level ≤ 2 tree, C ∈ µL is a club. Then
~β ∈ [C]Q↑ iff there exist f ∈ ωQ↑1 and E ∈ µL such that ~β = [f ]Q and
for any q ∈ 1Q, 1f(q) is a limit point of C; for any q ∈ dom(2Q), for any
~α ∈ [E]

2Qtree(q)↑, 2fq(~α) is a limit point of C.

Proof. The nontrivial direction is ⇐. Suppose f ∈ ωQ↑1 and E ∈ µL are
as given. For q ∈ dom(2Q) \ {∅}, let 2Q(q) = (Pq, pq), and let q∗ be the
<BK-maximum of 2Q{q,−}.

Claim 3.16. There is E ′ ∈ µL such that E ′ ⊆ E and for any q ∈ dom(2Q) \
{∅}, for any ~α ∈ [E ′]Pq↑, if pq 6= −1 then C ∩ (2fq∗(~α), 2fq(~α)) has order type
αp−q .

Proof of Claim 3.16. Otherwise, there is q ∈ dom(2Q)\{∅} such that pq 6= −1
and for µPq -a.e. ~α, C ∩ (2fq∗(~α), 2fq(~α)) has order type smaller than αp−q .

However, by assumption, C∩(2fq∗(~α), 2fq(~α)) is cofinal in 2fq(~α), and 2fq_(−1)

witnesses that 2fq has uniform cofinality p−q . This leads to a function h ∈ L
where for µPq -a.e. ~α, h(~α) is a cofinal sequence in αp−q of order type < αp−q .

Hence, cfL(seed
Pq

p−q
) < seed

Pq

p−q
by  Loś, which is absurd.

Fix E ′ as in Claim 3.16. We are able to define f ′ : rep(Q) � E ′ → C
such that f(1, q) = f ′(1, q) for q ∈ 1Q, f(2, ~α ⊕2Q q) = f ′(2, ~α ⊕2Q q) for
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q ∈ dom(2Q) \ {∅}, ~α ∈ [E ′′]Pq↑. Let θ : rep(Q) → rep(Q) �E ′ be an order
preserving bijection. Let E ′′ ∈ µL where η ∈ E ′′ iff E ′ ∩ η has order type η.
It is easy to see that θ � (rep(Q) �E ′′) is the identity map. Define g = f ′ ◦ θ.
Then g ∈ CQ↑ and [g]Q = [f ]Q.

Lemma 3.17. Suppose Q is a finite level ≤ 2 tree, 2Q(q) = (Pq, pq) for
q ∈ dom(Q), E ∈ µL is a club. Suppose f : rep(Q)�E → ω1 + 1 satisfies

1. f �({1} × rep(1Q)) is continuous, order preserving;

2. if q ∈ dom(2Q), then the potential partial level ≤ 1 tower induced by
2fq is 2Q[q], the approximation sequence of 2fq is (2fq�i)i≤lh(q), and the
uniform cofinality of 2fq on [E]Pq↑ is witnessed by 2fq_(−1), i.e., if ~α ∈
[E]Pq↑, then 2fq(~α) = sup{2fq_(−1)(~α

_(β)) : ~α_(β) ∈ rep(2Q) �E}, and

the map ~β 7→ 2fq_(−1)(~α
_(β)) is continuous, order preserving;

3. if a, b ∈ 2Q{q} and a <BK b, then [fq_(a)]µPq_(a) < [fq_(b)]µPq_(b) .

Then there is E ′ ∈ µL such that E ′ ⊆ E and f � (rep(Q) � E ′) is order
preserving.

Proof. We know by assumption that for µPq -a.e. ~α, fq(~α) = sup{fq_(a)(~α
_(β)) :

β < αp−q }. Fix for the moment q such that pq 6= −1. For ~α = (αp)p∈Pq , put

~α− = (αp)p<BKp−k
. By remarkability of (level-1) sharps, there is a function

h ∈ L and E ′q ∈ µL such that for any ~α ∈ [E ′q]
Pq↑, h(~α−) < αp−q and for any

β ∈ αp−q ∩ E
′
q, for any a, b ∈ 2Q{q}, fq_(a)(~α

_(β)) < fq_(b)(~α
_(h(~α−))). Let

η ∈ E ′′q iff for any ~α ∈ [E ′q]
Pq↑, if ∀p <BK p−k αp < η then h(~α−) < η. Finally,

let E ′′ =
⋂
{E ′′q : pq 6= −1}. E ′′ works for the lemma.

Lemma 3.18. Suppose that Q is a finite level ≤ 2 tree and ~β = (dβq)(d,q)∈dom(Q)

is a tuple of ordinals in uω. Then ~β respects Q iff all of the following holds:

1. (1βq)q∈1Q respects 1Q.

2. For any q ∈ dom(2Q), the potential partial level ≤ 1 tower induced by
βq is Q[q], and the approximation sequence of βq is (βq�l)l≤lh(q).

3. If a, b ∈ 2Q{q} and a <BK b then 2βq_(a) <
2βq_(b).

Moreover, if C ∈ µL is a club, then ~β ∈ [C]Q↑ iff ~β respects Q and letting C ′

be the set of limit points of C, then 1βq ∈ C ′ for q ∈ 1Q, 2βq ∈ j
2Qtree(q)(C ′)

for q ∈ dom(2Q).
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Lemma 3.19. The relation “Q is a finite level ≤ 2 tree ∧ ~β respects Q” is
∆1

3.

Lemma 3.20. Suppose Q and Q′ are level ≤ 2 trees with the same domain.
Suppose ~β respects both Q and Q′. Then Q = Q′.

Suppose Q is a finite level ≤ 2 tree. Suppose (d,q) ∈ desc∗(Q), and if
d = 2 then q = (q, P, ~p). Put

J(d,q)KQ =

{
‖(1, (q))‖<Q if d = 1,

[~α 7→ ‖(2, ~α⊕2Q q)‖<Q ]µP if d = 2.

To save ink, put Jd,qKQ = J(d,q)KQ. If in addition, d = 2 and q ∈ desc(Q)
of discontinuous type, put J2, qKQ = J2,qKQ. It is easy to compute Jd,qKQ
only from the syntactics.

Definition 3.21. To every ordinal ξ < ωω
ω

(ordinal arithmetic), we assign

ξ̂ as follows:

1. 0̂ = 0.

2. 1̂ = ω.

3. If 0 < η = ωn1 + · · · + ωnk < ωω, ω > n1 ≥ · · · ≥ nk in the Cantor
normal form, then ω̂η = un1+1 · · · · · unk+1.

4. If 0 < ξ = ωη1 + · · · + ωηk , ωω > η1 ≥ · · · ≥ ηk in the Cantor normal
form, then ξ̂ = ω̂η1 + · · ·+ ω̂ηk .

Then

{ξ̂ : 0 < ξ < ωω
ω} = {Jd,qKQ : Q finite level ≤ 2 tree, (d,q) ∈ desc∗(Q)}

and the relation ξ̂ = Jd,qKQ is effective. The ordering among different Jd,qKQ
can be computed in the following concrete way. Put 〈1,q〉 = (1,q). For
q = (q, P, ~p), k = lh(q), ~p = (pi)i<lh(~p), put

〈2,q〉 =



(2, ‖p0‖≺P , q(0), . . . , ‖pk−2‖≺P , q(k − 2),−1)

if q ∈ desc(2Q) of continuous type,

(2, ‖p0‖≺P , q(0), . . . , ‖pk−1‖≺P , q(k − 1),−1)

if q ∈ desc(2Q) of discontinuous type,

(2, ‖p0‖≺P , q(0), . . . , ‖pk−1‖≺P , q(k − 1), ‖pk‖≺P )

if q /∈ desc(2Q).
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Define
(d,q) ≺ (d′,q′)

iff 〈d,q〉 <BK 〈d′,q′〉. Define

(d,q) ∼ (d′,q′)

iff 〈d,q〉 = 〈d′,q′〉. Then for any finite level ≤ 2 tree Q, Jd,qKQ < Jd′,q′KQ
iff (d,q) ≺ (d′,q′); Jd,qKQ = Jd′,q′KQ iff (d,q) ∼ (d′,q′). In fact, (d,q) ∼
(d′,q′) iff either (d,q) = (d′,q′) or {(d,q), (d′,q′)} = {(2, (∅, ∅, ∅)), (2, ((−1), {(0)}, ((0))))}.

Define ≺Q=≺� desc∗(Q), ∼Q=∼� desc∗(Q). It is also easy to verify the

next lemma on the order of the entries of ~β which respects Q.

Lemma 3.22. Suppose Q is a level ≤ 2 tree and ~β respects Q. Suppose
(d,q), (d′,q′) ∈ desc∗(Q). Then dβq <

d′βq′ iff (d,q) ≺Q (d,q′); dβq = d′βq′ iff
(d,q) ∼Q (d,q′).

4 The level-2 sharp

4.1 The equivalence of x2# and M#
1 (x)

From now on, we assume ∆1
2-determinacy. By Kechris-Woodin [29], a(<ω2-Π1

1)-
determinacy follows. By Neeman [37, 38] and Woodin [30, 48], this is also
equivalent to “for every x ∈ R, there is an (ω, ω1)-iterable M#

1 (x)”.

Definition 4.1. Suppose X = ωk×Rl is a product space. Suppose x is a real
and β ≤ uω. A subset A ⊆ X is β-Π1

3(x) iff there is a Π1
3(x) set B ⊆ uω ×X

such that A = Diff B. A is β-Π1
3 iff A is β-Π1

3(0). A is β-Π1
3 iff A is β-Π1

3(x)
for some real x.

By Theorem 2.1, when β is a limit ordinal, A ⊆ X is β-Π1
3(x) iff there is

a pair of Σ1-formulas (ϕ, ψ) such that

(~n, ~y) = (n1, . . . , nk, y1, . . . , yl) ∈ A

iff

L
κx,~y3

[T2, x, ~y] |= ∃α < β(∀η < α ϕ(η, ~n, ~y, T2, x) ∧ ¬ψ(α,~n, ~y, T2, x)).

Lemma 4.2. Assume ∆1
2-determinacy. Suppose n,m are positive integers.

If A is (un)m-Π1
3(x), then A is a2(ωn-Π1

1(x)).
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Proof. Without loss of generality, we assume x = 0, m = 1, and A ⊆ R.
Let B be a Π1

3 subset of uω × R such that A = Diff B. Let B∗ = {(w, y) :
(|w| , y) ∈ B} be the Π1

3 code set of B. Let C ⊆ R3 be a Σ1
2 set such that

(w, y) ∈ B∗ ↔ ∀r(w, y, r) ∈ C.

Consider the game H(y), where I produces w, r ∈ R, II produces w′, r′ ∈
R. The game is won by I iff both of the following hold:

1. w ∈WOn, |w| is odd, and (w, y, r) /∈ C.

2. If w′ ∈WOn, |w′| is even, and (w′, y, r′) /∈ C, then |w| < |w′|.

Therefore, y ∈ A iff I has a winning strategy in H(y).
Since L[y, w, r, w′, r′] is Σ1

2-absolute, and since the relation |w| ≤ |w′| for
w,w′ ∈WOn is definable over L[y, w, r, w′, r′] from parameters u1, . . . , un−1,
the payoff set of the game H(y) can be expressed as a first order statement
over L[y, ·] from parameters u1, . . . , un−1. That is, there is a formula θ such
that an infinite run

(w, r, w′, r′)

is won by I iff

L[y, w, r, w′, r′] |= θ(y, w, r, w′, r′, u1, . . . , un−1).

It follows by Martin [33] that the payoff set of H(y) is a(ωn-Π1
1(y)), uniformly

in y, hence determined. Hence A is in a2(ωn-Π1
1).

Lemma 4.3. Assume ∆1
2-determinacy. Let n < ω. If A is a2(ωn-Π1

1(x)),
then A is un+2-Π1

3(x).

Proof. Without loss of generality, assume x = 0 and A ⊆ R. We produce an
effective transformation from a a2(ωn-Π1

1) definition to the desired un+2-Π1
3

definition. By Martin [33], if (y, r) ∈ R2, C ⊆ R is ωn-Π1
1(y, r), then there is

a formula ϕ such that Player I has a winning strategy in G(C) iff

L[y, r] |= ϕ(y, r, u1, . . . , un).

The transform from the ωn-Π1
1(y, r) definition of C to ϕ is uniform, indepen-

dent of (y, r). Suppose A = aB, where B ⊆ R2 is a(ωn-Π1
1). Suppose ϕ is a

formula such that

(y, r) ∈ B ↔ L[y, r] |= ϕ(y, r, u1, . . . , un).

To establish a un+2-Π1
3 definition of A, we have to decide which player has

a winning strategy in G(By), for y ∈ R. For ordinals ξ1 < · · · < ξn < η <
ω1, we say that M is a Kechris-Woodin non-determined set with respect to
(y, ξ1, . . . , ξn, η) iff
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1. M is a countable subset of R;

2. M is closed under join and Turing reducibility;

3. ∀σ ∈M ∃v ∈M Lη[y, σ ⊗ v] |= ¬ϕ(y, σ ⊗ v, ξ1, . . . , ξn);

4. ∀σ ∈M ∃v ∈M Lη[y, v ⊗ σ] |= ϕ(y, v ⊗ σ, ξ1, . . . , ξn).

In clause 3, “∀σ ∈M” is quantifying over all strategies σ for Player I that is
coded in some member of M ; σ ∗ v is Player I’s response to v according to
σ, and σ ⊗ v = (σ ∗ v)⊕ w is the combined infinite run. Similarly for clause
4, roles between two players being exchanged. Say that z is (y, ξ1, . . . , xn, η)-
stable iff z is not contained in any Kechris-Woodin non-determined set with
respect to (y, ξ1, . . . , ξn, η). z is y-stable iff z is (y, ξ1, . . . , ξn, η)-stable for all
ξ1 < . . . < ξn < η < ω1. The set of (y, z) such that z is y-stable is Π1

2. By the
proof of Kechris-Woodin [29], for all y ∈ R, there is z ∈ R which is y-stable.

Note that if z is (y, ξ1, . . . , ξn, η)-stable and z ≤T z′, then z′ is (y, ξ1, . . . , ξn, η)-
stable. Let <ξ1,...,ξn,η

y be the following wellfounded relation on the set of z
which is (y, ξ1, . . . , ξn, η)-stable:

z′ <ξ1,...,ξn,η
y z ↔ z is (y, ξ1, . . . , ξn, η)-stable ∧ z ≤T z′∧

∀σ ≤T z ∃v ≤T z′ Lη[y, σ ⊗ v] |= ¬ϕ(y, σ ⊗ v, ξ1, . . . , ξn)

∀σ ≤T z ∃v ≤T z′ Lη[y, v ⊗ σ] |= ϕ(y, v ⊗ σ, ξ1, . . . , ξn).

Wellfoundedness of <ξ1,...,ξn,η
y follows from the definition of (y, ξ1, . . . , ξn, η)-

stableness. If z is (y, ξ1, . . . , ξn, η)-stable, then <ξ1,...,ξn,η
y �{z′ : z′ <ξ1,...,ξn,η

y z}
is a Σ1

1 wellfounded relation in parameters (y, z) and the code of (ξ1, . . . , ξn, η),
hence has rank < ω1 by Kunen-Martin. If z is y-stable, let f zy be the function
that sends (ξ1, . . . , ξn, η) to the rank of z in <ξ1,...,ξn,η

y . Then f zy is a func-

tion into ω1. By Σ1
2-absoluteness between V and L[y, z]Coll(ω,η), we can see

f zy ∈ L[y, z]. Furthermore, f zy is definable over L[y, z] in a uniform way, so
there is a {∈}-Skolem term τ such that for all (y, z) ∈ R2, if z is y-stable,
then

f zy (ξ1, . . . , ξn, η) = τL[y,z](y, z, ξ1, . . . , ξn, η).

Let
βzy = τL[y,z](y, z, u1, . . . , un+1).

The function
(y, z) 7→ βzy

is ∆1
3 in the sharp codes. We say that z is y-ultrastable iff z is y-stable and

βzy = min{βwy : w is y-stable}.
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Claim 4.4. If z is y-ultrastable, then there is σ ≤T z such that σ is a winning
strategy for either of the players in G(By).

Proof of Claim 4.4. Suppose otherwise. For any σ ≤T z which is a strat-
egy for either player, pick wσ which defeats σ in G(By). Let w be a real
coding {(σ,wσ) : σ ≤T z}. By an indiscernability argument, for any (y, w)-
indiscernibles ξ1 < · · · < ξn < η, for any σ ≤T z, if σ is a strategy for Player
I, then

Lη[y, σ ⊗ wσ] |= ¬ϕ(y, σ ⊗ wσ, ξ1, . . . , ξn);

if σ is a strategy for Player II, then

Lη[y, wσ ⊗ σ] |= ϕ(y, wσ ⊗ σ, ξ1, . . . , ξn).

This exactly means
w <ξ1,...,ξn,η

y z,

and hence
fwy (ξ1, . . . , ξn, η) < f zy (ξ1, . . . , ξn, η).

Since z is y-stable and z ≤T w, w is y-stable. Therefore, βwy is defined and
βwy < βzy , contradicting to y-ultrastableness of z.

From Claim 4.4, if Player I (or II) has a winning strategy in G(By), then
for any y-ultrastable z, there is a winning strategy for Player I (or II) in
G(By) which is Turing reducible to z. Therefore, Player I has a winning
strategy in G(By) iff there is δ < un+2 such that

∃z (z is y-stable ∧ βzy = δ) (1)

and

∀γ ≤ δ ∀z ((z is y-stable ∧ βzy = γ)→
∃σ ≤T z (σ is a winning strategy for I in G(By))). (2)

Note that in (1),

{(δ, y) : ∃z (z is y-stable ∧ βzy = δ)}

is a Σ1
3 subset of uω × R, and in (2),

{(γ, y) : ∀z ((z is y-stable ∧ βzy = γ)→
∃σ ≤T z (σ is a winning strategy for I in G(By)))}

is a Π1
3 subset of uω × R. So ∃δ < un+2((1) ∧ (2)) is a un+2-Π1

3 definition of
A.
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Lemma 4.2 and Lemma 4.3 are concluded in a simple equality between
pointclasses.

Theorem 4.5. Assume ∆1
2-determinacy. Then for x ∈ R,

a2(<ω2-Π1
1(x)) =<uω-Π1

3(x).

Definition 4.6.

OT2,x = {(pϕq, α) : ϕ is a Σ1-formula, α < uω, Lκx3 [T2, x] |= ϕ(T2, x, α)}.
OT2,x is the uω-version of Kleene’s O relative to (T2, x). It is called Px3

in [23].

Definition 4.7.

x2#
n = {(pϕq, pψq) : ∃α < un((pϕq, α) /∈ OT2,x ∧ ∀η < α(pψq, η) ∈ OT2,x)}.

x2# = {(n, pϕq, pψq) : n < ω ∧ (pϕq, pψq) ∈ x2#
n }.

OT2,x splits into ω many parts (OT2,x∩(ω×un))n<ω. Each part is squeezed
into a real x2#

n by applying the difference operator on its second coordinate.
The join of (x2#

n )n<ω is x2#. In particular, x2#
0 is Turing equivalent to the

good universal Π1
3 real, which is called the ∆1

3-jump of x. Each x2#
n belongs

to Lκx3 [T2, x], but x2# /∈ Lκx3 [T2, x]. The distinction between x2#
0 and x2#

does not have a lower level analog.
The expression of 02# generalizes Kleene’s O to the higher level. Note

that the transformations between a2(<ω2-Π1
1(x)) and <uω-Π1

3(x) definitions
in Theorem 4.5 are uniform. Applying Theorem 4.5 to the space X = ω,
in combination with Theorem 2.1, we get the equivalence between x2# and
M#

1 (x).

Theorem 4.8. Assume ∆1
2-determinacy. Then x2# is many-one equivalent

to M#
1 (x), the many-one reductions being independent of x.

02# is essentially a fancy way of expressing y3, the leftmost real of T̂2

which is used in the standard uniformization argument. T2 and y3 are used
in [31] to show that every nonempty Σ1

3 set of reals contains a member which
is recursive in y3, or in our terminology, recursive in 02#. Basis theorems can
also be proved with inner model theory. If M#

2n−1 exists, then every nonempty

Σ1
2n+1 set of reals contains a member recursive in M#

2n−1 (cf. [47, 51]). At
higher levels, the leftmost real basis arguments are investigated in [27]. It is
shown by Harrington (modulo Neeman [37,38]) that under ∆1

2n-determinacy,
there is a ∆1

2n+1-scale on a ∆1
2n+1 set whose leftmost real y2n+1 is ∆1

2n+1-

equivalent to M#
2n−1 and such that every nonempty Σ1

2n+1 set contains a real
recursive in y2n+1. It is asked in [27, Conjecture 11.2] whether y2n+1 is Turing
equivalent to M#

2n−1. Theorem 4.8 solves this conjecture in the n = 1 case in
an effective manner.
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4.2 Homogeneity properties of S2

By [27, Lemma 14.2], Lδ1
3
[T2] is admissibly closed. We shall define a system of

Lδ1
3
[T2]-measures on finite tuples in uω. This system of Lδ1

3
[T2]-measures will

witness S2 being Lδ1
3
[T2]-homogeneous. Under AD, these Lδ1

3
[T2]-measures

are total measures induced from the strong partition property on ω1 (cf. [26]).
These measures enable the Martin-Solovay tree construction of S3 projecting
to the universal Π1

3 set, to be redefined in Section 4.3. In our situation, we
must recast the effective version of the proof of the strong partition property
on ω1. Let X↑ be the set of strictly increasing functions f : ω1 → X that
belong to L. Only functions in L will be partitioned, and the partition must
be guided by a ∆1

3 surjection from ω↑1 onto uω and a subset A ⊆ uω which
lies in Lδ1

3
[T2].

Every function f ∈ ω↑1 is of the form α 7→ τL[x](x, α) where x ∈ R and τ is
a Skolem term. Thus, sharp codes for increasing functions is a good coding
system for ω↑1.

Definition 4.9. ω1 has the level-2 strong partition property iff for every
function ψ : ω↑1 → uω such that the relation “(τ, x#) is a sharp code for
an increasing function, α = ψ(τL[x](x, ·))” is ∆1

3, for every B ∈ Lδ1
3
[T2],

there is X ⊆ ω1 such that o.t.(X) = ω1, X ∈ L and either ψ′′X↑ ⊆ B or
ψ′′X↑ ⊆ uω \B.

In most applications, ψ will have the property that ψ(f) = ψ(g) whenever
∀α < ω1 sup f ′′α = sup g′′α. The partition will be essentially on continuous
functions only. In this case, when X is the homogeneous set produced by
Definition 4.9, so is the set of limit points of X. We will henceforth demand
that the homogeneous set is a club in ω1.

Martin’s proof of the strong partition property on ω1 under AD carries
over in a trivial way. For the reader’s convenience, we include a proof.

Theorem 4.10 (Martin). Assume ∆1
2-determinacy. Then ω1 has the level-2

strong partition property.

Proof. We imitate the proof in [19, Theorem 28.12], which builds on partially
iterable sharps. We are given ψ : ω↑1 → uω whose complexity is ∆1

3 (in
the sharp codes for increasing functions) and the target of the partition
B ∈ Lδ1

3
[T2]. Define the game G in which I produces 〈pτq, a∗〉, II produces

〈pσq, b∗〉. An infinite run is won by Player II iff

1. If 〈pτq, a∗〉 is a putative sharp code for an increasing function, then so
is 〈pσq, b∗〉. Moreover, for any η < ω1, if

a∗ is η-wellfounded ∧ τMa∗,η(η) ∈ wfp(Ma∗,η)
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then
b∗ is η-wellfounded ∧ σMb∗,η(η) ∈ wfp(Mb∗,η).

2. If 〈pτq, a∗〉, 〈pσq, b∗〉 are true sharp codes for increasing functions, a∗ =
a#, b∗ = b#, letting h(η) = sup{τL[a](ωη + n), σL[b](ωη + n) : n < ω}
for η < ω1, then ψ(h) ∈ B.

The payoff set of G is in Lδ1
3
[T2] by Theorem 2.1, hence in a(<ω2-Π1

1) by
Lemma 2.11. Hence G is determined.

Suppose that player I has a winning strategy ϕ inG. Let C be the set of ϕ-
admissibles and limits of ϕ-admissibles. Similarly to the proof of Lemma 2.11,
using boundedness, if 〈pσq, v#〉 is a true sharp code for an increasing function
such that ∀β < ω1 σ

L[v](β) ∈ C, then 〈pτq, w#〉 =DEF f ∗ 〈pσq, v#〉 is a true
sharp code for an increasing function, and for any η ∈ C, for any β ≤ η such
that ∀β̄ < β σL[v](β̄) ≤ η, we have τL[w](β) < min(C \ η + 1).

Let e : ω1 → C enumerate C in the increasing order and let X =
{supn<ω e(ωξ + n) : ξ < ω1}. We show that ψ′′X↑ ⊆ B. Suppose that
f ∈ X↑. By definition of X there is a function g ∈ C↑ such that f(α) =
supn<ω g(ωα+n) for any α < ω1. Let b ∈ R and σ be such that g(η) = τL[b](η)
for any η < ω1. Feed in 〈pσq, b#〉 for Player II in G. Then the response
〈pτq, a#〉 =DEF f ∗ 〈pσq, b#〉 is a true sharp code for an increasing function,
and for any α < ω1, for any n < ω,

τL[a](ωα + n) < min(C \ (g(ωα + n) + 1)) ≤ g(ωα + n+ 1),

where the last inequality follows from the fact g ∈ C↑. Let h be given as in
the definition of G. Then h = f . Since ϕ is a winning strategy for Player I,
ψ(h) /∈ B.

A symmetrical argument shows that if Player II has a winning strategy
in G, then there is X ∈ L which is cofinal in ω1 such that ψ′′X↑∩B = ∅.

Definition 4.11. Let Q be a finite level ≤ 2 tree. We define

A ∈ µQ

iff there is C ∈ µL such that

[C]Q↑ ⊆ A.

µQ is easily verified to be a countably complete filter concentrating on
[ω1]Q↑. In particular, when card(Q) = 1, µQ is the principal measure con-
centrating on {(ω1)(2,∅)}. Noticing the facts that rep(Q) has order type
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ω1 + 1, and that [f ]Q depends only on {f(v) : ‖v‖<Q is a limit ordinal}.
Theorem 4.10 implies that

µQ is an Lδ1
3
[T2]-measure.

Let jQ = jµ
Q

L
δ1
3
[T2] be the restricted ultrapower map of µQ on Lδ1

3
[T2]. Put

[f ]µQ = [f ]µ
Q

L
δ1
3
[T2] for f ∈ Lδ1

3
[T2].  Loś’ theorem reads: for any first order

formula ϕ, for any x ∈ R, for any fi ∈ Lδ1
3
[T2], with ran(fi) ⊆ Lκx3 [T2, x],

1 ≤ i ≤ n,
jQ(Lκx3 [T2, x]) |= ϕ([f1]µQ , . . . , [fn]µQ)

iff
for µQ-a.e. ~ξ, Lκx3 [T2, x] |= ϕ(f1(~ξ), . . . , fn(~ξ)).

Lemma 4.12. Assume ∆1
2-determinacy. If P , W are finite level-1 trees,

A ⊆ [ω1]W↑ × R is Π1
3 (or Σ1

3, ∆1
3 resp.), then so are

B = {x : for µW -a.e. ~α, (~α, x) ∈ A},
C = {(~β, x) : ~β ∈ jP (Ax)},

where Ax = {~α : (~α, x) ∈ A}.

Proof. x ∈ B iff ∃y ∀~α ∈ [ω1]W↑(~α are y-admissibles → (~α, x) ∈ A). x /∈ B
iff ∃y ∀~α ∈ [ω1]W↑(~α are y-admissibles → (~α, x) /∈ A). The quantifier ∀~α ∈
[ω1]W↑ does not increase the complexity due to Corollary 2.3. The complexity
of C follows from that of B and  Loś.

A purely descriptive set theoretic proof of Lemma 4.12 is given in [13,
Lemma 4.40].

Lemma 4.13. Assume ∆1
2-determinacy. Suppose Q is a finite level ≤ 2 tree.

If A ⊆ ω1 × R is Π1
3 (or Σ1

3, ∆1
3 resp.), then so is

B = {(~β, x) : ~β ∈ [Ax]
Q↑},

where Ax = {α : (α, x) ∈ A}.

Proof. Put A′x =the set of limit points of Ax. By Lemma 3.18, ~β ∈ [Ax]
Q↑

iff ~β respects Q and for any q ∈ 1Q, 1βq ∈ A′x , for any q ∈ dom(2Q),
2βq ∈ jQtree(q)(A′x).

Now apply Lemma 4.12 and Lemma 3.19.
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Lemma 4.14. Assume ∆1
2-determinacy. Suppose Q is a finite level ≤ 2 tree.

If A ⊆ [ω1]Q↑ × R is Π1
3 (or Σ1

3, ∆1
3 resp.), then so is

B = {x : for µQ-a.e. ~β, (~β, x) ∈ A},

Proof. Let C = {(y, α) : α < ω1∧α is y-admissible}. C is ∆1
3. Then x ∈ B iff

∃y ∀~β (~β ∈ [Cy]
Q↑ → (~β, x) ∈ A). x /∈ B iff ∃y ∀~β (~β ∈ [Cy]

Q↑ → (~β, x) /∈ A).
Use Lemma 4.13.

Corollary 4.15. Assume ∆1
2-determinacy. Suppose Q is a finite level ≤ 2

tree. Then jQ(α) < δ1
3 for any α < δ1

3. jQ(T2) ∈ Lδ1
3
[T2].

Proof. By Lemma 4.14, for any α < δ1
3, jQ(α) is the length of a ∆1

3 prewellorder-
ing on R. jQ(T2) ∈ L

κ
M

#
1

3

[T2,M
#
1 ] by Corollary 2.15.

Corollary 4.15 is the effective version of [46, Corollary 3.9]. Actually,
jQ(T2) is ∆1

3 in the sharp codes, a fact to be shown in Section 4.5.
ForQ a finite level≤ 2 tree, by Corollary 4.15, Lδ1

3
[jQ(T2)] = Ult(Lδ1

3
[T2], µQ).

If Q is a subtree of Q′, both finite, then µQ
′

projects to µQ via the map
that sends (βq)(d,q)∈dom(Q′)to (dβq)(d,q)∈dom(Q). Let

jQ,Q
′
: Ult(Lδ1

3
[T2], µQ)→ Ult(Lδ1

3
[T2], µQ

′
)

be the induced factor map. If ~Q = (Qn)n<ω is a level≤ 2 tower, the associated
Lδ1

3
[T2]-measure tower (µQn)n<ω is easily seen close to Lδ1

3
[T2].

If (P, ~p) = (P, (pi)i<m) is a potential partial level≤ 1 tower, let f ∈ B(P,~p)↑

iff f : [ω1]P↑ → B is a function and

1. if (P, ~p) is of continuous type, then the signature of f is (pi)i<m, f is
essentially continuous;

2. if (P, ~p) is of discontinuous type, then the signature of f is (pi)i<m−1,
f is essentially discontinuous, f has uniform cofinality ucf(P, ~p).

Let β ∈ [B](P,~p)↑ iff β = [f ]µP for some f ∈ B(P,~p)↑.

µ(P,~p)

is the Lδ1
3
[T2]-measure where A ∈ µ(P,~p) iff there is E ∈ µL such that

[E](P,~p)↑ ⊆ A. β respects (P, ~p) iff β ∈ [ω1](P,~p)↑. Let j(P,~p) = jµ
(P,~p)

L
δ1
3
[T2] be

the induced Lδ1
3
[T2]-ultrapower map. Let seed(P,~p) be represented modulo

µ(P,~p) by the identity map.
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If (d,q) ∈ desc(Q), let µ(d,q) = µL if d = 1; µ(d,q) = µ(P,~p) if d = 2,

q = (q, P, ~p). Thus, µQ projects to µ(d,q) via the map ~β 7→ dβq, i.e., A ∈ µ(d,q)

iff {~β : dβq ∈ A} ∈ µQ. (Recall the definition of dβq from ~β in Section 3.3.)
Let

(d,q)Q

be the induced factor map, so that jQ = (d,q)Q ◦ jµL if d = 1, jQ = (d,q)Q ◦
j(P,~p) if d = 2. Let

seedQ(d,q)

be represented modulo µQ by the map ~β 7→ dβq.
The homogeneity property of the Martin-Solovay tree on a Π1

2 set (cf. [26])
translates to our context:

Theorem 4.16. Assume ∆1
2-determinacy. Let ~Q = (Qn)n<ω be an infinite

level-2 tower. Let Qω = ∪n<ωQn. The following are equivalent.

1. Qω is Π1
2-wellfounded.

2. <Qω is a wellordering.

3. There is ~β = (βt)t∈dom(Qω) which respects Qω.

4. (µQn)n<ω is Lδ1
3
[T2]-countably complete.

5. The direct limit of (jQm,Qn)m<n<ω is wellfounded.

Proof. 1 ⇔ 2: By Proposition 3.9.
2 ⇒ 4: Suppose <Qω is a wellordering. Let (An)n<ω be such that An ∈

µQn ∩Lδ1
3
[T2]. Let x ∈ R and C ∈ L[x] be a club in ω1 such that [C]Qn↑ ⊆ An

for all n. Let f : dom(<Qω)→ C be given by

f(~α⊕Qω t) = the ‖~α⊕Qω t‖<Qω -th element of C.

Then f ∈ L[x,Qω] and is order preserving. Let βn = [f � rep(Qn)]Qn . Then
for all n, (β1, . . . , βn) ∈ An.

4 ⇒ 3: This follows from the fact that µQn concentrates on tuples that
respect Qn.

3 ⇒ 1: If x ∈ [dom(Qω)], then jQω(x�k),Qω(x�l)(βx�k) > βx�l for all k < l < ω.
This means the direct limit of jQω(x�k),Qω(x�l) is illfounded. Hence Qω(x) is not
Π1

1-wellfounded by Theorem 3.3.
4 ⇔ 5: By Proposition 2.17.

Definition 4.17. Q0, Q1, Q20, Q21 denote the following typical level ≤ 2
trees of cardinalities at most 2:
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• 1Q0 = ∅, 1Q1 = {(0)}, dom(2Q0) = dom(2Q1) = {∅}.

• For d ∈ {0, 1}, 1Q2d = ∅, dom(2Q2d) = {∅, ((0))}, 2Q2d((0)) is of degree
d.

µQ
0

is a principle measure. µQ
1

is essentially µL. µQ
20

and µQ
21

are
essentially refinements of the Lδ1

3
[T2]-club filter on u2, the former concentrates

on ordinals of Lδ1
3
[T2]-cofinality ω, the latter of Lδ1

3
[T2]-cofinality ω1.

4.3 The tree S3

A partial level ≤ 2 tree is a pair (Q, (d, q, P )) such that Q is a finite level ≤ 2
tree, and one of the following holds:

1. (d, q, P ) = (0,−1, ∅), or

2. d = 1, q /∈ 1Q, 1Q ∪ {q} is a level-1 tree, P = ∅, or

3. d = 2, q /∈ dom(2Q), dom(2Q) ∪ {q} is tree of level-1 trees, P is the
completion of 2Q(q−). (In particular, 2Q(q−) must have degree 1.)

The degree of (Q, (d, q, P )) is d. We put dom(Q, (d, q, P )) = dom(Q) ∪
{(d, q)}. The cardinality of (Q, (d, q, P )) is card(Q, (d, q, P )) = card(Q) + 1.
The uniform cofinality of a partial level ≤ 2 tree (Q, (d, q, P )) is

ucf(Q, (d, q, P )),

defined as follows.

1. ucf(Q, (d, q, P )) = (0,−1) if d = 0;

2. ucf(Q, (d, q, P )) = (1, q−) if d = 1, lh(q) > 1;

3. ucf(Q, (d, q, P )) = (2, (∅, ∅, ∅)) if d = 1, lh(q) = 1;

4. ucf(Q, (d, q, P )) = (2, (q′, P, ~p)) if d = 2, 2Q[q−] = (P−, ~p), and q′ is the
<BK-least element of 2Q{q,+}.

So ucf(Q, (d, q, P )) is either (0,−1) or a regular extended Q-description. The

cofinality of (Q,
−−−−−→
(d, q, P )) is

cf(Q,
−−−−−→
(d, q, P )) =


0 if d = 0,

1 if d = 1 and q = min(≺1Q∪{q}),

2 otherwise.
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A tuple ~β = (eβt)(e,t)∈dom(Q,(d,q,P )) respects (Q, (d, q, P )) iff ~β �dom(Q) respects
Q and dβq < ω if d = 0, dβq <

dβt if d > 0 and ucf(Q, (d, q, P )) = (d, t). A
partial level ≤ 2 tree of degree 0 has no completion. A completion of a
partial level ≤ 2 tree (Q, (d, q, P )) of degree ≥ 1 is a level ≤ 2 tree Q∗ such
that dom(Q∗) = dom(Q, (d, q, P )), 2Q∗ � dom(2Q) = 2Q, and either d = 1 or
d = 2∧ 2Qtree(t) = P . For a level ≤ 2 tree Q′, (Q, (d, q, P )) is a partial subtree
of Q′ iff a completion of (Q, (d, q, P )) is a subtree of Q′.

A partial level ≤ 2 tower of discontinuous type is a nonempty finite se-
quence (Qi, (di, qi, Pi))1≤i≤k such that card(Q1) = 1, each (Qi, (di, qi, Pi)) is
a partial level ≤ 2 tree, and each Qi+1 is a completion of (Qi, (di, qi, Pi)). Its
signature is (di, qi)1≤i<k. Its uniform cofinality is ucf(Qk, (dk, qk, Pk)). A par-
tial level ≤ 2 tower of continuous type is (Qi, (di, qi, Pi))1≤i<k

_(Q∗) such that
either k = 0∧Q∗ is the level ≤ 2 tree of cardinality 1 or (Qi, (di, qi, Pi))1≤i<k
is a partial level ≤ 2 tower of discontinuous type ∧Q∗ is a completion of
(Qk−1, (dk−1, qk−1, Pk−1)). Its signature is (di, qi)1≤i<k. If k > 0, its uni-
form cofinality is (1, qk−1) if dk−1 = 1, (2, (qk−1, P, ~p)) if dk−1 = 2 and
2Q[qk−1] = (P, ~p). For notational convenience, the information of a partial
level ≤ 2 tower is compressed into a potential partial level ≤ 2 tower. A po-

tential partial level ≤ 2 tower is (Q∗,
−−−−−→
(d, q, P )) = (Q∗, (di, qi, Pi)1≤i≤lh(~q)) such

that for some level ≤ 2 tower ~Q = (Qi)1≤i≤k, either Q∗ = Qk ∧ ( ~Q,
−−−−−→
(d, q, P ))

is a partial level ≤ 2 tower of discontinuous type or ( ~Q,
−−−−−→
(d, q, P ))_(Q∗) is a

partial level ≤ 2 tower of continuous type. The signature, (dis-)continuity

type, uniform cofinality of (Q∗,
−−−−−→
(d, q, P )) are defined according to the partial

level ≤ 2 tree generating (Q∗,
−−−−−→
(d, q, P )).

ucf(Q∗,
−−−−−→
(d, q, P ))

denotes the uniform cofinality of (Q∗,
−−−−−→
(d, q, P )). Clearly, a potential partial

level ≤ 2 tower (Q∗,
−−−−−→
(d, q, P )) is of continuous type iff card(Q∗) = lh(~q), of

discontinuous type iff card(Q∗) = lh(~q)− 1.

Definition 4.18. A level-3 tree of uniform cofinality, or level-3 tree, is a
function

R

such that ∅ /∈ dom(R), dom(R) ∪ {∅} is tree of level-1 trees and for any
r ∈ dom(R), (R(r � l))1≤l≤lh(r) is a partial level ≤ 2 tower of discontinu-
ous type. If R(r) = (Qr, (dr, qr, Pr)), we denote Rtree(r) = Qr, Rnode(r) =
(dr, qr), R[r] = (Qr, (dr�l, qr�l, Pr�l)1≤l≤lh(r)). R[r] is a potential partial level
≤ 2 tower of discontinuous type. If Q is a completion of R(r), put R[r,Q] =
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(Q, (dr�l, qr�l, Pr�l)1≤l≤lh(r)), which is a potential partial level ≤ 2 tower of con-
tinuous type. For r ∈ dom(R) ∪ {∅}, put R{r} = {a ∈ ω<ω : r_(a) ∈
dom(R)}, which is a level-1 tree.

The cardinality of R is card(R) = card(dom(R)). R is said to be regular
iff ((1)) /∈ dom(R). In other words, when R 6= ∅, ((0)) is the <BK-maximum
of dom(R).

Suppose R is a level-3 tree. Let dom∗(R) = dom(R) ∪ {r_(−1) : r ∈
dom(R)}. For r ∈ dom(R), putR{r,−} = {r−_(−1)}∪{r−_(a) : Rtree(r

−_(a)) =
Rtree(r), a <BK r(lh(r) − 1)}, R{r,−} = {r−} ∪ {r−_(a) : Rtree(r

−_(a)) =
Rtree(r), a >BK r(lh(r)− 1)},

If ~β = (dβq)(d,q)∈N is a tuple indexed by N , r ∈ dom∗(R), lh(r) = k, either
k = 1 or dom(R(r−)) ⊆ N , we put

~β ⊕R r = (r(0), dβq1 , r(1), . . . , dβqk−1
, r(k − 1)),

where (di, qi) = Rnode(r � i). The ordinal representation of R is the set

rep(R) ={~β ⊕R r : r ∈ dom(R), ~β respects Rtree(r)}
∪ {~β ⊕R r_(−1) : r ∈ dom(R), ~β respects R(r)}.

rep(R) is endowed with the <BK ordering

<R=<BK�rep(R).

R is Π1
3-wellfounded iff

1. ∀r ∈ dom(R) ∪ {∅} R{r} is Π1
1-wellfounded, and

2. ∀z ∈ [dom(R)]R(z) =DEF ∪n<ω(Rtree(z �n))1≤n<ω is not Π1
2-wellfounded.

For level-3 trees R and R′, R is a subtree of R′ iff R is a subfunction
of R′. A finite level-3 tower is a sequence (Ri)i≤n such that n < ω, each
Ri is a regular level-2 tree, card(Ri) = i + 1 and i < j → Ri is a subtree

of Rj. ~R is regular iff each Ri is regular. An infinite level-3 tower is a

sequence ~R = (Rn)n<ω such that for each n, (Ri)i≤n is a finite level-3 tower.
Π1

3-wellfoundedness of a level-3 tower is a Π1
3 property in the real coding the

tower. In particular, every finite level-3 tree is Π1
3-wellfounded. Similarly to

Proposition 3.9, we have

Proposition 4.19. Assume ∆1
2-determinacy. Suppose R is a level-3 tree.

Then R is Π1
3-wellfounded iff <R is a wellordering.
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Associated to a Π1
3 set A we can assign a level-3 system (Rs)s∈ω<ω so that

x ∈ A iff the infinite level-3 tree Rx =DEF ∪n<ωRx�n is Π1
3-wellfounded. If A

is lightface Π1
3, then (Rs)s∈ω<ω can be picked effective.

Suppose F ∈ Lδ1
3
[T2] is a function on rep(R), r ∈ dom(R). Then Fr is a

function on ω
Rtree(r)↑
1 that sends ~β to F (~β⊕R r). F represents a card(R)-tuple

of ordinals
[F ]R = ([F ]Rr )r∈dom(R)

where [F ]Rr = [Fr]µRtree(r) for r ∈ dom(R). If B ⊆ δ1
3, put

F ∈ BR↑

iff F ∈ Lδ1
3
[T2] and F is an order-preserving continuous function from rep(R)

to B (with respect to <R and <). Let

[B]R↑ = {[F ]R : F ∈ BR↑}.

A tuple of ordinals ~γ = (γr)r∈dom(R) is said to respect R iff ~γ ∈ [δ1
3]R↑. ~γ is said

to weakly respect R iff for any t, t′ ∈ dom(R), if t is a proper initial segment
of t′, then jRtree(t),Rtree(t′)(γt) > γt′ . By virtue of the order <R, if ~γ respects
R, then ~γ weakly respects R and whenever Rtree(t

_(p)) = Rtree(t
_(q)) and

p < q, then γt_(p) < γt_(q).
The trees S−3 and S3 are defined in [26]. They both project to the universal

Π1
3 set. In our language, they take the following form.

Definition 4.20. Assume ∆1
2-determinacy.

1. S−3 is the tree on Vω × δ1
3 such that (∅, ∅) ∈ S−3 and

(~R, ~α) = ((Ri)i≤n, (αi)i≤n) ∈ S−3

iff ~R is a finite regular level-3 tower and letting ri ∈ dom(Ri+1) \
dom(Ri), βri = αi+1, then (βr)r∈dom(Rn) respects Rn.

2. S3 is the tree on Vω × δ1
3 such that (∅, ∅) ∈ S3 and

(~R, ~α) = ((Ri)i≤n, (αi)i≤n) ∈ S3

iff ~R is a finite regular level-3 tower and letting ri ∈ dom(Ri+1) \
dom(Ri), βri = αi+1, then (βr)r∈dom(Rn) weakly respects Rn.

By Theorem 4.16,

p[S−3 ] = p[S3] = {~R : ~R is a Π1
3-wellfounded level-3 tower}.
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The (non-regular) scale associated to S3 is Π1
3. For ξ < δ1

3, put (~R, ~α) ∈ S3 �ξ
iff (~R, ~α) ∈ S3 and (~R, ~α) 6= (∅, ∅)→ α0 < ξ.

The properties of a tuple respecting R is decided by the signature, ap-
proximation sequence and relative ordering of its entries, in a parallel way to
the level-2 case. It is handled in [12]. We state the results in our language.

For level ≤ 2 trees Q,X, we say that π : dom(X) → dom(Q) factors
(X,Q) iff putting (d, dπ(x)) = π(d, x) for (d, x) ∈ dom(X),

1. 1π factors (1X, 1Q);

2. if x ∈ dom(2X) then 2X(x) = 2Q(2π(x));

3. if x, x′ ∈ dom(2X), then x <BK x′ → 2π(x) <BK
2π(x′), x ⊆ x′ →

2π(x) ⊆ 2π(x′).

For d ∈ {1, 2}, dπ has this fixed meaning if π factors (Q,X). Extend the
definition of 2π on dom∗(2Q) and desc(2Q) is the following natural way: if
q_(−1) ∈ dom∗(2Q), define 2π(q_(−1)) = π(q)_(−1); if q = (q, P, ~p) ∈
desc(2Q), define 2π(q) = (2π(q), P, ~p). If ~β = (dβq)(d,q)∈dom(Q) ∈ [ω1]Q↑, put
~βπ = (dβπ,x)(d,x)∈dom(X) ∈ [ω1]X↑ where dβπ,x = dβdπ(x).

Definition 4.21. Suppose Q is a finite level ≤ 2 tree,
−−−→
(d, q) = ((di, qi))1≤i<k

is a distinct enumeration of a subset of Q and such that {qi : di = 2} ∪ {∅}
forms a tree on ω<ω. Suppose F : [ω1]Q↑ → δ1

3 is a function which lies is

Lδ1
3
[T2]. The signature of F is

−−−→
(d, q) iff there is E ∈ µL such that

1. for any ~β,~γ ∈ [E]Q↑, if (d0γq0 , . . . ,
dk−1γqk−1

) <BK (d0βq0 , . . . ,
dk−1βqk−1

)

then f(~β) < f(~γ);

2. for any ~β,~γ ∈ [E]Q↑, if (d0γq0 , . . . ,
dk−1γqk−1

) = (d0βq0 , . . . ,
dk−1βqk−1

) then

f(~β) = f(~γ).

Clearly the signature of F exists and is unique. In particular, F is constant
on a µQ-measure one set iff the signature of F is ∅.

Suppose the signature of F is
−−−→
(d, q) = ((di, qi))1≤i<k. F is essentially con-

tinuous iff for µQ-a.e. ~β, F (~β) = sup{F (~γ) : ~γ ∈ [ω1]Q↑, (d0γq0 , . . . ,
dk−1γqk−1

) <BK

(d0βq0 , . . . ,
dk−1βqk−1

)}. Otherwise, F is essentially discontinuous. Put [ω1]Q↑(0,−1) =

[ω1]Q↑ × ω. For (d,q) ∈ desc∗(Q) regular, put [ω1]Q↑(d,q) = {(~β, γ) : ~β ∈
[ω1]Q↑, γ < dβq}. For (d,q) either (0,−1) or in desc∗(Q) regular, say that the
uniform cofinality of F is ucf(F ) = (d,q) iff there is G : [ω1]Q↑(d,q) → δ1

3 such

that G ∈ Lδ1
3
[T2] and for any for µQ-a.e. ~β, F (~β) = sup{G(~β, γ) : (~β, γ) ∈
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[ω1]Q↑(d,q)} and the function γ 7→ G(~β, γ) is order preserving. The cofinality
of F is

cf(F ) =


0 if ucf(F ) = (0,−1),

1 if ucf(F ) = (1, q), q = min(≺1Q),

2 otherwise.

Let (Xi, (di, xi,Wi))
_(Xk) be the partial level ≤ 2 tower of continuous type

and let π factor (Xk, Q) such that π(di, xi) = (di, qi) for each 1 ≤ i < k. The
potential partial level ≤ 2 tower induced by F is

1. (Xk, (di, xi,Wi)1≤i<k), if F is essentially continuous;

2. (Xk, (di, xi,Wi)1≤i<k
_(0,−1, ∅)), if F is essentially discontinuous and

has uniform cofinality (0,−1);

3. (Xk, (di, xi,Wi)1≤i<k
_(1, x+, ∅)), if F is essentially discontinuous and

has uniform cofinality (1, q∗), (Xk, (1, x
+, ∅)) is a partial level ≤ 2 tree,

π(1, (x+)−) = (1, q∗);

4. (Xk, (di, xi,Wi)1≤i<k
_(2, x+, P∗)), if F is essentially discontinuous and

has uniform cofinality (2,q∗), q∗ = (q∗, P∗, ~p∗), (Xk, (2, x
+, P∗)) is a

partial level ≤ 2 tree, and either

(a) q∗ ∈ desc(2Q), x+ = (x+)−_(a), π(2, (x+)−_(a−)) = (2, q∗), or

(b) q∗ /∈ desc(2Q), π(2, (x+)−) = (2, q∗).

The approximation sequence of F is (Fi)1≤i≤k where Fi is a function on

[ω1]Xi↑, Fi(~β) = sup{F (~γ) : ~γ ∈ [ω1]Q↑, (d1γq1 , . . . ,
di−1γqi−1

) = (d1βx1 , . . . ,
di−1βxi−1

)}
for 1 ≤ i ≤ k.

The existence and uniqueness of the uniform cofinality of F will be proved
in Section 4.5. In particular, ifR is a level-3 tree, H ∈ (δ1

3)R↑, then for any r ∈
dom(R), Hr has signature (Rnode(r � i))1≤i<lh(r), is essentially discontinuous,
has uniform cofinality ucf(R(r)) and cofinality cf(R(r)), induces the potential
partial level ≤ 2 tower R[r], and (Hr�i)1≤i≤lh(r) is the approximation sequence
of Hr. Again, all the relevant properties of F depends only on the value of
F on a µQ-measure one set. We will thus be free to say the signature, etc.
of F when F is defined on a µQ-measure one set.

Definition 4.22. Suppose ω1 ≤ γ < δ1
3 is a limit ordinal. Suppose Q

is a finite level ≤ 2 tree, γ = [F ]µQ , the signature of F is ((di, qi))1≤i<k,
the approximation sequence of F is (Fi)1≤i≤k. Then the Q-signature of β
is ((di, qi))1≤i<k, the Q-approximation sequence of γ is ([Fi]µQ)1≤i≤k, γ is
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Q-essentially continuous iff F is essentially continuous. The Q-uniform cofi-
nality of γ is ω if F has uniform cofinality (0,−1), seedQ(d,q) if f has uniform

cofinality (d,q) ∈ desc∗(Q). The Q-potential partial level ≤ 2 tower induced
by γ is the potential partial level ≤ 2 tower induced by F .

In Section 4.5, we will show that all the relevant properties in Defini-
tion 4.22 are independent of the choice of F (but depends on Q of course).

We will also show that the Q-uniform cofinality of γ is exactly cf
L
δ1
3
[jQ(T2)]

(γ),

and cf
L
δ1
3
[T2]

(γ) = ucf(F ), where we set u0 = ω.

Definition 4.23. We fix the notations for all the level-3 trees of cardinality
1. For d ∈ {0, 1, 2}, dom(Rd) = {((0))} and Rd((0)) is of degree d.

4.4 Level-2 description analysis

If Q is a level-2 tree, q = (q, P, ~p) ∈ desc(Q), lh(q) = k, ~p = (pi)i<lh(~p), σ is a
function whose domain contains P , we put

σ ⊕ q = σ ⊕Q q = (σ(p0), q(0), . . . , σ(pk−1), q(k − 1)).

Definition 4.24. Suppose W is a finite level-1 tree and suppose Q is a level
≤ 2 tree. A (Q,W )-description is of the form

D = (d, (q, σ))

such that either

1. d = 1, q ∈ 1Q, σ = ∅, or

2. d = 2, q = (q, P, ~p) ∈ desc(2Q), σ factors (P,W ).

desc(Q,W ) is the set of (Q,W )-descriptions. A (Q, ∗)-description is a (Q,W ′)-
description for some finite level-1 tree W ′. desc(Q, ∗) is the set of (Q, ∗)-
descriptions. We sometimes abbreviate (d,q, σ) for (d, (q, σ)) ∈ desc(Q,W )
without confusion.

Suppose now D = (d,q, σ) and if d = 2, then q = (q, P, ~p), ~p = (pi)i<lh(~p),
lh(q) = k. The degree of D is d. The level-1 signature of D is

sign1(D) =

{
∅ if d = 1,

(σ(pi))i<k if d = 2.

D is of level-1 continuous type iff d = 2 and q is of continuous type; otherwise,
D is of level-1 discontinuous type. The level-1 uniform cofinality of D is

ucf1(D) =

{
−1 if d = 1 ∨ (d = 2 ∧ ucf(P, ~p) = −1),

σ(ucf(P, ~p)) if d = 2 ∧ ucf(P, ~p) 6= −1.
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The level-2 signature of D is

sign2(D) =


((1,q)) if d = 1,

((2, q � i))1≤i≤k−1 if d = 2, q of continuous type,

((2, q � i))1≤i≤k if d = 2, q of discontinuous type.

D is of level-2 W -continuous type iff d = 2 and if ucf(P, ~p) 6= −1∧σ(ucf(P, ~p)) 6=
min(≺W ), then pred≺W (σ(ucf(P, ~p))) ∈ ran(σ). Otherwise, D is of level-2
W -discontinuous type. The level-2 W -uniform cofinality of D is

ucfW2 (D)

defined as follows. If d = 1, then ucfW2 (D) = (1,q). If d = 2, q is of
continuous type,

1. if D is of level-2 W -continuous type, then ucfW2 (D) = (2, (q−, P \
{pk−1}, ~p));

2. if D is of level-2 W -discontinuous type, then ucfW2 (D) = (2, (q−, P, ~p)).

If d = 2, q is of discontinuous type,

1. if D is of level-2 W -continuous type, then ucfW2 (D) = (2,q);

2. if D is of level-2 W -discontinuous type, then ucfW2 (D) = (2, (q, P ∪
{pk}, ~p).

The constant (Q, ∗)-description is (2, (∅, ∅, ∅), σ0) where σ0 is the unique
that factors (∅, ∗), i.e., σ0(∅) = ∅.

Note that if D ∈ desc(Q,W ) and W is a subtree of W ′, then D ∈
desc(Q,W ′), but ucfW2 (D) could be different from ucfW

′

2 (D). If Q is finite,
there are in total

card(1Q) +
∑

q∈dom(2Q)

(
card(W )

lh(q)

)
+

∑
2Q(q) of degree 1

(
card(W )

lh(q) + 1

)

many (Q,W )-descriptions. We shall establish an exact correspondence be-
tween desc(Q,W ) and uniform indiscernibles ≤ jQ ◦ jW (ω1).

Suppose D = (d,q, σ) ∈ desc(Q,W ), and if d = 2, then q = (q, P, ~p),
~p = (pi)i<lh(~p), lh(q) = k. For g ∈ ωQ↑1 , let

gWD : [ω1]W↑ → ω1 + 1
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be the function as follows: if d = 1, then gWD (~α) = 1[g]Qq when min(~α) > 1[g]Qq ,
gWD (~α) = ‖(1, (q))‖<Q otherwise1; if d = 2, then gWD (~α) = 2gq(~ασ) (Recall the
definition of ~ασ in Section 3.2). In particular, if D is the constant (Q, ∗)-
description, then gWD is the constant function with value ω1. Clearly, the
signature of gWD is sign1(D); D is of level-1 continuous type iff gWD is essentially
continuous; the uniform cofinality of gWD is ucf1(D). Suppose additionally
that Q is finite. Let

idQ,WD

be the function [g]Q 7→ [gWD ]µW , or equivalently, ~β 7→ σW (dβq), where ∅W
is interpreted as jW . Clearly, the signature of idQ,WD is signW2 (D); idQ,WD

is essentially continuous iff D is of level-2 W -continuous type; the uniform
cofinality of idQ,WD is ucfW2 (D). Let

seedQ,WD ∈ Lδ1
3
(jQ ◦ jW [T2])

be the element represented modulo µQ by idQ,WD . In particular, if d = 1
then seedQ,WD = seedQ(1,q); if d = 2, P = W and σ = idP , then seedQ,WD =

seedQ(2,q). By  Loś, if D is not the constant (Q, ∗)-description, for any A ∈ µL,

seedQ,WD ∈ jQ ◦ jW (A). Thus, we can define

DQ,W : Lδ1
3
[jµL(T2)]→ Lδ1

3
(jQ ◦ jW [T2])

by sending jµL(h)(ω1) to jQ ◦ jW (h)(seedQ,WD ).
If Q is a level-2 tree, q = (q, P, ~p) ∈ desc(Q), l ≤ lh(q), define

q� l = (q � l, {pi : i < l}, (pi)i<l).

which is a Q-description. If D = (2,q, σ) ∈ desc(Q, ∗), q = (q, P, ~p), l ≤
lh(q), define

D� l = (2,q� l, σ �{pi : i < l})

which is a (Q, ∗)-description. Define

D C D′

iff D = D′ � l for some l < lh(D′). Define CQ,W=C�desc(Q,W ).
The ordering of seedQ,WD is definable in the following concrete way. Put

〈D〉 =

{
(1,q) if d = 1,

(2, σ ⊕ q) if d = 2.

1the split in definition is insignificant, only to ensure Lemma 4.25.
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Define
D ≺ D′

iff 〈D〉 <BK 〈D′〉, the ordering on subcoordinates in ω<ω again according to
<BK . For example, the constant (Q, ∗)-description D0 is the ≺-maximum,
and we have 〈D0〉 = (2, ∅). When 1 ≤ card(1Q) < ℵ0, the ≺-least (Q, ∗)-
description is (1, q, ∅), where q is the <BK-least node in 1Q. When W 6= ∅, the
≺-least (Q,W )-description of degree 2 is DW = (2, ((−1), {(0)}, ((0))), σW ),
where σW ((0)) =the<BK-least node inW , and we have 〈DW 〉 = (2, (σW (1),−1)).
Define ≺Q,W=≺� desc(Q,W ). ≺Q,W exactly determines the order of the
seedQ,WD ’s, as in the following lemma. It is parallel to Lemma 3.22.

Lemma 4.25. Suppose D,D′ ∈ desc(Q,W ) and D ≺Q,W D′. Then

1. For any g ∈ ωQ↑1 , for any ~α ∈ ωW↑1 , gWD (~α) < gWD′(~α).

2. Suppose Q is finite. Then seedQ,WD < seedQ,WD′ . Moreover, for any

β < u2, DQ,W (β) < seedQ,WD′ .

Proof. 1. Simple computation.
2. Note that DQ,W (ω1) = seedQ,WD . We directly prove the “moreover”

part. We are given β = jµL(h)(ω1), where h is a function into ω1. Let E ∈ µL
such that for any α ∈ E, h(α) < min(E \ α + 1). We have DQ,W (β) =
jQ ◦ jW (h)(seedQ,WD ). By  Loś, it suffices to show that for any g ∈ EQ↑,
jW (h)([gWD ]µW ) < [gWD′ ]µW . By  Loś again, it suffices to show that for any
~α ∈ [ω1]W↑, h(gWD (~α)) < gWD′(~α). We already know that gWD (~α), gWD′(~α) ∈ E.
By our choice of E, it suffices to show that gWD (~α) < gWD′(~α). This is exactly
part 1.

Suppose W is a level-1 proper subtree of W ′, W ′ is finite, w ∈ W ∪ {∅},
w′ ∈ W ′ \W . Define

w CW1 w′

iff w′ <BK w and {w∗ ∈ W : w′ <BK w∗ <BK w} = ∅.
CW1 inherits the following trivial continuity property.

Lemma 4.26. Suppose W is a level-1 proper subtree of W ′, W ′ is finite,
w ∈ W , w′ ∈ W ′ \W , w CW1 w′. Suppose C ∈ µL is a club, C ′ is the set of
limit points of C. Then for any ~α ∈ [C ′]W↑,

αw = sup{βw′ : ~β ∈ [C]W
′↑, ~β extends ~α}.
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Suppose W is a proper level-1 subtree of W ′. For D ∈ desc(Q,W ) and
D′ ∈ desc(Q,W ′) \ desc(Q,W ), define the level-1 end extension relation

D CQ,W1 D′

iff D′ ≺ D and {D∗ ∈ desc(Q,W ) : D′ ≺ D∗ ≺ D} = ∅. Thus, D CQ,W1

D′ iff both D,D′ are of degree 2 and letting D = (2, (q, P, ~p), σ), D′ =
(2, (q′, P ′, ~p′), σ′), lh(q) = k, ~p = (pi)i<lh(~p), then either

1. q is of continuous type (hence lh(~p) = k), D− C D′, σ(pk−1) CW1
σ′(pk−1), or

2. q is of discontinuous type (hence lh(~p) = k + 1), D C D′, σ(p−k ) CW1
σ′(pk).

As a corollary to Lemma 4.26, CQ,W1 inherits the following continuity
property.

Lemma 4.27. Suppose W is a proper subtree of W ′, D ∈ desc(Q,W ), D′ ∈
desc(Q,W ′), D CQ,W1 D′. Suppose C ∈ µL is a club, C ′ is the set of limit
points of C. Then for any g ∈ ωQ↑1 , for any ~α ∈ [C ′]W↑,

gWD (~α) = sup{gW ′D′ (
~β) : ~β ∈ [C]W

′↑, ~β extends ~α}.

Suppose Q is a proper subtree of Q′, both finite. For (d,q) ∈ desc∗(Q),
(d′,q′) ∈ desc∗(Q′), define the level-2 extension relation

(d,q) CQ2 (d′,q′)

iff (d′,q′) ≺ (d,q) and {(d∗,q∗) ∈ desc∗(Q) : (d′,q′) ≺ (d∗,q∗) ≺ (d,q)} = ∅.
Thus, (d,q) CQ2 (d′,q′) iff either

1. d = d′ = 1, q C
1Q
1 q′, or

2. d′ = 1, ∅ C
1Q
1 q′, d = 2, q ∈ {((−1), {(0)}, ((0))), (∅, ∅, ∅)}, or

3. d = d′ = 2, letting q = (q, P, ~p), ~p = (pi)i<lh(~p), q = (q′, P ′, ~p′), ~p′ =
(p′i)i<lh(~p′), lh(q) = k, then either

(a) q ∈ desc(Q) is of continuous type, k ≥ 2, (P, ~p) = (P ′, ~p′ � k),

(q−)− ( q′, q(k − 2) C
2Q{(q−)−}
1 q′(k − 2), or

(b) q ∈ desc(Q) is of discontinuous type, (P, ~p � k) = (P ′, ~p′ � k),

q− = (q′)−, q(k − 1) C
2Q{q−}
1 q′(k − 1), or
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(c) q /∈ desc(Q), q ( q′, ∅ C
2Q{q}
1 q′(k).

As a corollary to Lemma 3.22 and Lemma 3.18, CQ2 inherits the following
continuity property.

Lemma 4.28. Suppose C ∈ µL is a club. Let η ∈ C ′ iff C ∩ η has order type
η. Suppose Q is a proper subtree of Q′, Q,Q′ are finite, (d,q) ∈ desc∗(Q) ,

(d′,q′) ∈ desc∗(Q′), (d,q) CQ2 (d′,q′). Then for any ~β ∈ [C ′]Q↑,

dβq = sup{d′γq′ : ~γ ∈ [C]Q
′↑, ~γ extends ~β}.

In the proof of Lemma 4.28, the construction of ~γ that witnesses the ≤
direction relies on the assumption that η ∈ C ′ iff C ∩ η has order type η.

Suppose Q is a proper subtree of Q′, both finite. For D ∈ desc(Q,W ),
D′ ∈ desc(Q′,W ) \ desc(Q,W ). Define the level-2 end extension relation

D CQ,W2 D′

iff D′ ≺ D and {D∗ ∈ desc(Q,W ) : D′ ≺ D∗ ≺ D} = ∅. Thus, putting
D = (d,q, σ), D = (d′,q′, σ′), D CQ,W2 D′ iff either

1. d = d′ = 1, q C
1Q
1 q′, or

2. d′ = 1, ∅ C
1Q
1 q′, d = 2, q = ((−1), {(0)}, ((0))), σ((0)) = min(≺W ), or

3. d = d′ = 2, letting q = (q, P, ~p), ~p = (pi)i<lh(~p), q = (q′, P ′, ~p′), ~p′ =
(p′i)i<lh(~p′), lh(q) = k, then either

(a) q is of continuous type (hence lh(~p) = k), D− C D′, ∅ C
2Q{q−}
1

q′(k − 1), either pk−1 = −1 or σ′(pk−1) = pred≺W (σ(pk−1)), or

(b) q is of discontinuous type (hence lh(~p) = k+ 1), D C D′, ∅ C
2Q{q}
1

q′(k), σ′(p−k ) = pred≺W (σ(pk)).

In particular, D CQ,W2 D′ implies that D is of level-2 W -discontinuous type.
CQ,W2 inherits the following continuity property.

Lemma 4.29. Suppose C ∈ µL is a club. Let η ∈ C ′ iff η ∈ C and C ∩ η
has order type η. Suppose Q is a proper subtree of Q′, both finite, D =
(d,q, σ) ∈ desc(Q,W ), D′ = (d′,q′, σ′) ∈ desc(Q′,W ), D CQ,W2 D′. Then

for any ~β ∈ [C ′]Q↑,

σW (dβq) = sup{(σ′)W (dγq′) : ~γ ∈ [C]Q
′↑, ~γ extends ~β}.
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Proof. The ≥ direction follows from Lemma 4.25. We show the ≤ direction.
When d = d′ = 1, both sides are equal to dβq by Lemma 4.26. When
d = 2∧d′ = 1, both sides are equal to ω1 by Lemma 4.26 again. Suppose now
d = d′ = 2. Let q = (q, P, ~p), ~p = (pi)i<lh(~p), q = (q′, P ′, ~p′), ~p′ = (p′i)i<lh(~p′),
lh(q) = k.

Case 1: q is of continuous type.
Let P− = P \{pk−1}. So 2Q(q−) = (P−, pk−1). Let q′′ = q′ �k, σ′′ = σ′ �P ,

p′′ = 2Qnode(q
′′). Then (2, (q′′, P, ~p_(p′′))) CQ2 (2, (q−, P, ~p)). By Lemma 4.28,

jP
−,P (2βq−) = sup{2γq′′ : ~γ ∈ [C]Q

′↑, ~γ extends ~β}.

It suffices to show that

σW ◦ jP−,Psup (2βq−) = (σ′′)Wsup ◦ jP
−,P (2βq−).

This is exactly Lemma 3.5, using the fact cfL(2βq−) = seedP
−

p−k−1
.

Case 2. q is of discontinuous type.
Let P+ be the completion of (P, pk) if pk 6= −1, P+ = P if pk = −1. Let

q′′ = q′ � k + 1, σ′′ = σ′ � P+. Then (2, (q′′, P+, ~p)) CQ2 (2, (q, P+, ~p)). By
Lemma 4.28,

jP,P
+

(2βq) = sup{2γq′ : ~γ ∈ [C]Q
′↑, ~γ extends ~β}.

It remains to show

σW (2βq) = (σ′′)Wsup ◦ jP,P
+

(2βq).

This is exactly Lemma 3.6, using the fact cfL(2βq) = seedP
p−k

when pk 6= −1,

cfL(2βq) = ω when pk = −1.

Definition 4.30. Suppose S is a finite regular level-1 tree and Q is a level
≤ 2 tree. Suppose τ : S ∪ {∅} → desc(Q, ∗) is a function. Then τ factors
(S,Q, ∗) iff

1. τ(∅) is the constant (Q, ∗)-description.

2. If s ≺S s′, then τ(s) ≺ τ(s′).

For a level-1 tree W , τ factors (S,Q,W ) iff τ factors (S,Q, ∗) and ran(τ) ⊆
desc(Q,W ). In particular, if every τ(s) is of degree 1, then τ factors (S,Q, ∅).

If S is a level-1 tree, then
id∗,S

factors (S,Q0, S), where id∗,S(s) = (2, ((−1), {(0)}, ((0))), σs), σs(0) = s.

61



Suppose τ factors (S,Q,W ). For g ∈ ωQ↑1 , let

gWτ : [ω1]W↑ → [ω1]S↑

be the function sending ~α to (gWτ(s)(~α))s∈dom(S). Lemma 4.25 ensures that gWτ
is indeed a function into [ω1]S↑. In particular, gSid∗,S is the identity map on

[ω1]S↑.
idQ,Wτ

is the map sending [g]Q to [gWτ ]µW . So idQ,Wτ (~β) = (idQ,Wτ(s) (~β))s∈S. Put

seedQ,Wτ = [idQ,Wτ ]µQ

By Lemma 4.25 and  Loś, for any A ∈ µS, seedQ,Wτ ∈ jQ ◦ jW (A). Hence, we
can unambiguously define

τQ,W : Lδ1
3
[jS(T2)]→ Lδ1

3
[jQ ◦ jW (T2)]

by sending jS(h)(seedS) to jQ ◦ jW (h)(seedQ,Wτ ). τQ,W is the unique map
such that for any z ∈ R, τQ,W is elementary from Lκz3 [jS(T2), z] into Lκz3 [jQ ◦
jW (T2), z] and for any s ∈ S, τQ,W ◦ sS = τ(s)Q,W .

Lemma 4.31. Suppose Q,W are finite.

1. If D = min(≺Q,W ), then seedQ,WD = ω1. Hence DQ,W is the identity on
ω1 + 1.

2. If E = pred≺Q,W (D), then (EQ,W )′′u2 is a cofinal subset of seedQ,WD .

Proof. We only prove the case when 1Q = ∅. The general case takes an
analogous additional argument.

Case 1: W = ∅.
The only (Q,W )-description is the constant (Q, ∗)-description D0. We

only have to prove part 1. For any x ∈ R, DQ,W
0 = jQ ◦ jW is elementary

from Lκx3 [T2, x] into Lκx3 [jQ ◦ jW (T2), x]. It follows that DQ,W
0 � ω1 is the

identity map. It remains to show that seedQ,WD0
= ω1. We already know that

seedQ,WD0
= jQ(ω1). Suppose [g]µQ < jQ(ω1) and we try to show that [g]µQ ≤

ω1. Let Q′ be the completion of the partial level ≤ 2 tree (Q, (1, (0), ∅)). Let
D′ = (1, (0), ∅) ∈ desc(Q′,W ). Then D0 C

Q,W
2 D′. We partition functions

f ∈ ωQ
′↑

1 according to whether 1[f ]Q
′

(0) ≤ g([f � rep(Q)]Q). We obtain a club

C ∈ µL which is homogeneous for this property. Let η ∈ C ′ iff η ∈ C and
C ∩ η has order type η. If the homogeneous side satisfies 1[f ]Q

′

(0) > g([f �

rep(Q)]Q), we let α0 =the ω-th element of C, and so every f ∈ [C ′]Q↑ is
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extendable to f ′ ∈ CQ′↑ so that 1[f ′]Q
′

(0) = α0. Therefore, for every ~ξ ∈ [C ′]Q↑,

g(~ξ) < α0. Hence by  Loś, [g]µQ < jQ(α0) = α0 and we are done. If the

homogeneous side satisfies 1[f ]Q
′

(0) ≤ g([f � rep(Q)]Q), then by Lemma 4.29,

ω1 = 2[f �rep(Q)]Q∅ ≤ g([f �rep(Q)]Q), contradicting to the assumption on g.
Case 2: W 6= ∅.
We firstly prove part 1. The ≺Q,W -minimum is D0 = (2,q, σ), where

q = ((−1), {(0)}, ((0))), σ((0)) is the <BK-least node in W . seedQ,WD0
is

represented modulo µQ by the function that sends ~β to σW (βq) = σW (ω1) =

ω1. Hence, seedQ,WD0
= jQ(ω1). Work with the same Q′ as in Case 1 and argue

with the same partition arguments.
Next, we prove part 2. Let D = (2,q, σ), q = (q, P, ~p), E = (2, r, τ),

r = (r, Z, ~z). Then q 6= (−1). Put 2Qv = {a ∈ ω<ω : v_(a) ∈ dom(2Q)} for
v ∈ dom(2Q).

Subcase 2.1: r is of discontinuous type.
Let Q′ be the level ≤ 2 tree extending Q such that dom(Q′) \ dom(Q) =

{(2, r′)}, r′ = r−_(a), ∅ C
2Q{r−}
1 a, Q′(r′) = Q(r). Let r′ = (r′, Z, ~z),

E′ = (2, r′, τ). Then D CQ,W2 E′. Our partition arguments will be based on
Q′.

Suppose [g]µQ < seedQ,WD and we seek η0 < u2 such that [g]µQ < EQ,W (η0).

We partition functions f ∈ ωQ
′↑

1 according to whether τW (2[f ]Q
′

r′ ) ≤ g([f �
rep(Q)]Q). By Theorem 4.10, we obtain a club C ∈ µL which is homoge-
neous for this property. Let η ∈ C ′ iff η ∈ C and C ∩ η has order type
η. If the homogeneous side satisfies τW (2[f ]Q

′

r′ ) > g([f � rep(Q)]Q), we let
η0 = jµL(h0)(ω1), where h0(α) = min(C ′ \ (α + 1)). This allows us to ex-

tend every f ∈ (C ′)Q↑ to f ′ ∈ CQ′↑ so that 2[f ′]Q
′

r′ = jP (h0)([f ]Qr ). There-

fore, for every ~ξ ∈ [C ′]Q↑, g(~ξ) < τW (jZ(h0)(ξr)) = jW (h0)(τW (ξr)). Hence
[g]µQ < jQ ◦jW (h0)(seedQ,WE ) = EQ,W (jµL(h0)(ω1)). Hence [g]µQ < EQ,W (η0).

If the homogeneous side satisfies τW (2[f ]Q
′

r′ ) ≤ g([f � rep(Q)]Q), then by
Lemma 4.29, σW (2[f ]Qq ) ≤ g([f �rep(Q)]Q). This contradicts our assumption
on g.

Subcase 2.2: r is of continuous type.
Let Q′ be the level ≤ 2 tree extending Q such that dom(Q′) \ dom(Q) =

{(2, r′)}, r′ = (r−)−_(a), ∅ C
2Q{(r−)−}
1 a, Q′(r′) = Q(r−). Let r′ = (r′_(−1), Z, ~z),

E′ = (2, r′, τ). Then D CQ,W2 E′. The rest is similar to Subcase 2.1.

At this point, it is convenient to label the nodes of a tree of uniform
cofinalities using arbitrary sets instead of elements in ω<ω and (ω<ω)<ω.
Suppose Q is a level ≤ 2 tree and W is a level-1 tree. A representation
of Q ⊗W is a pair (S, τ) such that S is a level-1 tree, τ factors (S,Q,W ),
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ran(τ) = desc(Q,W ), and s ≺S s′ iff τ(s) ≺Q,W τ(s′). Representations of
Q⊗W are clearly mutually isomorphic. We shall informally regard

Q⊗W = desc(Q,W ) \ {the constant (Q,W )-description}

as a “level-1 tree” by identifying it with S via τ . We put seedQ⊗WD =
seedSτ−1(D) for D ∈ desc(Q,W ). If τ ′ factors (S ′, Q,W ), then τ ′ also factors

“level-1 trees” (S ′, Q ⊗W ), and (τ ′)Q⊗W makes sense. That is, (τ ′)Q⊗W =
(τ−1 ◦ τ ′)S, where τ−1 ◦ τ ′ factors (S ′, S). The identity map idQ⊗W : D 7→ D
factors (Q⊗W,Q,W ). If Q is a subtree of Q′ and W is a subtree of W ′, then
Q⊗W is regarded as a subtree of Q′ ⊗W ′, and the map jQ⊗W,Q

′⊗W ′ makes
sense. In other words, let (S, τ) be a representation of Q⊗W and (S ′, τ ′) be
a representation of Q′ ⊗W ′ such that S is a subtree of S ′ and τ ⊆ τ ′, then
jQ⊗W,Q

′⊗W ′ = jS,S
′
. If π factors level ≤ 2 trees (Q, T ), then

π ⊗W

factors level-1 trees (Q⊗W,T ⊗W ), where π(d,q, σ) = (d, dπ(q), σ).

Lemma 4.32. Suppose Q is a finite level ≤ 2 tree, W is a finite level-1 tree.

1. If D ∈ desc(Q,W ), then seedQ⊗WD = seedQ,WD .

2. (idQ⊗W )Q,W is identity on jQ ◦ jW (ω1 + 1).

3. If S is a level-1 tree, τ factors (S,Q,W ), then τQ,W = τQ⊗W .

Proof. Let D0, . . . ,Dm enumerate desc(Q,W ) in the ≺Q,W -ascending order.
We prove by induction on l ≤ m that seedQ⊗WDi

= seedQ,WDi
for any i ≤ l.

Suppose l = 0. The fact seedQ,WD0
= ω1 follows from Lemma 4.31.

Suppose the induction hypothesis holds at l < m. That is, (Dl)
Q,W (ω1) =

seedQ,WDl
= ul+1 for l < m. By  Loś, (idQ⊗W )Q,W is identity on ul+2. But

((Dl)
Q,W )′′u2 is a cofinal subset of seedQ,WDl+1

by Lemma 4.31. Hence, seedQ,WDl+1
=

ul+2. This proves part 1. Parts 2-3 are immediate corollaries.

D ∈ desc(Q,W ) is direct iff either D is of degree 1 or D is of the form
(2, (q, P, ~p), idP ). Lemma 4.32 has the following corollary on representations
of uniform indiscernibles in the µQ-ultrapower.

Lemma 4.33. Suppose Q is a finite level ≤ 2 tree. Then

{un : 1 ≤ n < ω} = {seedQ,WD : W finite, D ∈ desc(Q,W ) is direct}.
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For (d, q) ∈ dom(Q), define

cfQ(d, q) =


0 if d = 1 ∨ (d = 2 ∧ 2Q(q) of degree 0),

1 if d = 2 ∧ ucf(2Q(q)) = min(≺2Qtree(q)),

2 otherwise.

By Lemma 4.31, if ~β respects Q, then

cf
L
δ1
3
[T2]

(dβq) = ucfQ(d,q)

where u0 = ω.

4.5 Approximations of S3 in Lδ13
[T2]

Lemma 4.34. Suppose Q is a level ≤ 2 tree, W is a level-1 subtree of W ′, all
trees are finite. Then jQ(jW,W

′
� jW (ω1 + 1)) = jQ⊗W,Q⊗W

′
� (jQ⊗W (ω1 + 1)),

and hence jQ(jW,W
′

sup � jW (ω1 + 1)) = jQ⊗W,Q⊗W
′

sup (jQ⊗W (ω1 + 1)) by sufficient
elementarity of jQ.

Proof. By Lemma 4.32, seedQ,WD = seedQ⊗WD for D ∈ desc(Q,W ), and sim-

ilarly for W ′. So jQ⊗W,Q⊗W
′
(seedQ,WD ) = seedQ,W

′

D for D ∈ desc(Q,W ).
since jQ(jW,W

′
) is elementary from L[z] to L[z] for any z ∈ R, it suffices

to show that jQ(jW,W
′
� jW (ω1 + 1))(seedQ,WD ) = jQ⊗W,Q⊗W

′
(seedQ,WD ) for

any D ∈ desc(Q,W ). Fix D ∈ desc(Q,W ). Suppose the typical case when
D = (2,q, σ) is of degree 2. Then by  Loś,

jQ(jW,W
′
�jW (ω1 + 1))(seedQ,WD ) = jQ(jW,W

′
�jW (ω1 + 1))([~ξ 7→ σW (2ξq)]µQ)

= [~ξ 7→ jW,W
′ ◦ σW (2ξq)]µQ

= [~ξ 7→ σW
′
(2ξq)]µQ

= seedQ,W
′

D

= jQ⊗W,Q⊗W
′
(seedQ,WD ).

Lemma 4.35. Suppose π factors finite level ≤ 2 trees (Q, T ) and W is a
finite level-1 tree, all trees are finite. Then πT � jQ ◦ jW (ω1 + 1) = (π ⊗
W )Q⊗W,T⊗W �jQ⊗W (ω1 + 1).

Proof. Apply Lemma 4.32 and use the fact that πT (seedQ,WD ) = seedT,Wπ⊗W (D)

for D ∈ desc(Q,W ).
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Lemma 4.36. Suppose Q is a finite level ≤ 2 tree. Then

1. jQ �{un : n < ω} is ∆1
3, uniformly in Q.

2. jQ(uω) = uω.

3. jQ �uω is ∆1
3, uniformly in Q.

4. Suppose P, P ′ are finite level-1 trees and π factors (P, P ′). Then jQ(πP
′
�

uω) is ∆1
3, uniformly in (Q,P, P ′, π).

5. jQ(T2) is ∆1
3, uniformly in Q.

Proof. 1 and 2. By Lemma 4.32.
3. jQ(τL[z](u1, . . . , un)) = τL[z](jQ(u1), . . . , jQ(un)).
4. By Lemma 4.34.
5. by 4.

The following lemma refines Corollary 4.15.

Lemma 4.37. Assume ∆1
2-determinacy. Suppose x ∈ R. Then for any

finite level ≤ 2 tree Q, jQ(κx3 , λ
x
3) = (κx3 , λ

x
3). Moreover, S3 � κx3 and S3 � λx3

are both uniformly ∆1-definable over Lκx3 [T2, x] from {T2, x}.
Proof. By elementarity, jQ(κx3) is the least γ for which Lγ[j

Q(T2), x] is admis-
sible. But jQ(T2) ∈ Lκx3 [T2, x] by Lemma 4.36. Consequently, Lκx3 [jQ(T2), x]
is admissible. Since jQ is non-decreasing on ordinals, we must have jQ(κx3) =
κx3 . Similarly, λx3 , being the sup of the ordinals ∆1-definable over Lκx3 [T2, x]
from {T2, x}, is also fixed by jQ.

To define S3 � κx3 , it is of course enough to establish a uniformly ∆1

definition of jQ,Q
′
�κx3 over Lκx3 [T2, x], for Q a level ≤ 2 subtree of Q′. Note

that every element of Lκx3 [T2, x] is ∆1-definable over Lκx3 [T2, x] from uω ∪
{T2, x}, and hence by  Loś, every ordinal in jQ(Lκx3 [T2, x]) is ∆1-definable
over jQ(Lκx3 [T2, x]) from parameters in uω ∪ {jQ(T2), x}. The lemma follows
immediately from Lemma 4.37 and  Loś:

jQ,Q
′
(γ) = γ′

iff for some ξ < κx3 , some Σ1-formula ϕ, some ordinal α < uω,

LjQ(ξ)[j
Q(T2), x] |= ∀δ (δ = γ ↔ ϕ(δ, jQ(T2), x, α)),

and
LjQ′ (ξ)[j

Q′(T2), x] |= ∀δ (δ = γ′ ↔ ϕ(δ, jQ
′
(T2), x, jQ,Q

′
(α))).

This is a Σ1 definition of jQ,Q
′
(γ) = γ′ over Lκx3 [T2, x] from {T2, x}. In

a similar way, we can write down a Σ1 definition of jQ,Q
′
(γ) 6= γ′. The

definition of S3 �λx3 is similar.
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In light of Lemma 4.37, Lκx3 [S3 �κx3 ] is regarded as the “lightface core” of
Lκx3 [T2, x], analogous to Lωx1 versus Lωx1 [x]. In parallel to Guaspari-Kechris-
Sacks in [5,20,40], if C3 is the largest countable Π1

3 set of reals, then x ∈ C3

iff x ∈ Lκx3 [S3 � κx3 ] iff x ∈ Lλx3 [S3 � λx3 ]. A related result about C3 is in [6]
which follows the same line. An inner model theoretic characterization of C3

is still unknown.
Recall that the set of uncountable L-regular cardinals below uω is {un :

1 ≤ n < ω}. The scenario in the AD world suggests that the set of un-
countable Lδ1

3
[T2]-regular cardinals should be {u1, u2}. For a finite level ≤ 2

tree Q, by Lemma 4.36, Luω ⊆ Lδ1
3
[jQ(T2)] ⊆ Lδ1

3
[T2], so the set of un-

countable Lδ1
3
[jQ(T2)]-regular cardinals should be {un : n ∈ A} for some

set {1, 2} ⊆ A ⊆ ω \ 1. Which un is Lδ1
3
[jQ(T2)]-regular? The answer to

this is an abstraction of Jackson’s uniform cofinality analysis on functions
F : [ω1]Q↑ → δ1

3 that lie in Lδ1
3
[T2], originally in [12]. In particular, we con-

firm that the set of uncountable Lδ1
3
[T2]-regular cardinals is indeed {u1, u2}.

Theorem 4.38. Suppose Q is a finite level ≤ 2 tree, W is a finite level-1
tree. Suppose D = (d,q, σ) ∈ desc(Q,W ). Then

cf
L
δ1
3
[jQ(T2)]

(seedQ,WD ) = seedQ
ucfW2 (D)

.

In particular, the set of Lδ1
3
[jQ(T2)]-regular cardinals is exactly

{seedQ(d,q) : (d,q) ∈ desc∗(Q) is regular}.

Proof. Put (d, r) = ucfW2 (D). Firstly, we prove cf
L
δ1
3
[jQ(T2)]

(seedQ,WD ) =

cf
L
δ1
3
[jQ(T2)]

(seedQ(d,r)). There is nothing to prove for d = 1. Suppose now
d = 2.

Case 1: q is of continuous type.
Subcase 1.1: D is of level-2 W -continuous type.
In this case, σ is continuous at 2βq. For any ~β ∈ [ω1]Q↑, σW (2βq) =

sup(σW ◦ jP−,P )′′(2βq−). So cfLκ3 [T2](σW (2βq)) = cfLκ3 [T2](2βq−). Note that

seedQ(2,r) is represented by the function ~β 7→ 2βq− . By  Loś, cfLκ3 (jQ(T2))(seedQ,WD ) =

cfLκ3 (jQ(T2))(seedQ(2,r)).
Subcase 1.2: D is of level-2 W -discontinuous type.
Then pred≺W (σ(pk−1)) exists and is not in ran(σ). Put P− = P \

{pk−1}. Let σ′ factor (P,W ) where σ and σ′ agree on P− and σ′(pk−1) =
pred≺W (σ(pk−1)). By Lemma 3.5, σW (2βq) = (σ′)Wsup(jP

−,P (2βq−)). So cfLκ3 [T2](

σW (2βq)) = cfLκ3 [T2](jP
−,P (2βq−)). Note that seedQ(2,r) is represented by the

function ~β 7→ jP
−,P (2βq−). By  Loś, cfLκ3 (jQ(T2))(seedQ,WD ) = cfLκ3 (jQ(T2))(seedQ(2,r)).
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Case 2: q is of discontinuous type.
Subcase 2.1: D is of level-2 W -continuous type.
Then σ is continuous at 2βq. Proceed as in Subcase 1.1.
Subcase 2.2: D is of level-2 W -discontinuous type.
Then pred≺W (σ(p−k )) exists and is not in ran(σ). Put P+ = P ∪{pk}. Let

σ′ factor (P+,W ) where σ′ ⊇ σ and σ′(pk) = pred≺W (σ(p−k )). By Lemma 3.6,
σW (2βq) = (σ′)Wsup(jP,P

+
(2βq)). Proceed as in Subcase 1.2.

Note that by Lemma 4.33, each un (1 ≤ n < ω) is of the form seedQ,WD for
some finite W and D ∈ desc(Q,W ). In summary, we have proved that every
Lδ1

3
[jQ(T2)]-regular cardinal must be of the form seedQ(d,q), where (d,q) ∈

desc∗(Q) is regular.
Secondly, we prove that if (d,q) ∈ desc∗(Q) is regular, then seedQ(d,q) is

regular in Lδ1
3
[jQ(T2)].

Suppose towards a contradiction that cf
L
δ1
3
[jQ(T2)]

(seedQ(d,q)) = seedQ(e,r),

where (e, r) ≺Q (d,q). Let g ∈ Lδ1
3
[jQ(T2)] be a cofinal map from seedQ(e,r)

into seedQ(d,q). Let g = [G]µQ , where G ∈ Lδ1
3
[T2]. By  Loś, for µQ-a.e. ~β,

g(~β) ∈ Lδ1
3
[T2] is a cofinal map from eβr into dβq.

We prove the case when d = e = 2, the other cases being similar. Put
r = (r, Z, ~z). Let Q1 be a level ≤ 2 tree which extends Q such that dom(Q′)\
dom(Q) = {(2, q′)}, and

1. if (2,q) ∈ desc(Q), then q′ = q−_(a), ∅ C
2Q{q−}
1 a, Q′(q′) = Q(q);

2. if (2,q) /∈ desc(Q), then q′ = q_(a), ∅ C
2Q{q}
1 a, Q′tree(q

′) = P .

Let Q2 be the level ≤ 2 tree defined in a similar way with (q, q′) replaced
by (r, r′). Let Q′ be the tree extending both Q1 and Q2 and dom(Q′) =
dom(Q1) ∪ dom(Q2). Put q′ = (q′, P, ~p), r′ = (r′, Z, ~z). So q′ CQ2

2 q,

r′ CQ1

2 r. We partition functions f ∈ ωQ
′↑

1 according to whether g([f �
rep(Q)]Q)(2[f ]Q

′

r′ ) < 2[f ]Q
′

q′ . By Theorem 4.10, we obtain a club C ∈ µL
which is homogeneous for this property. Let η ∈ C ′ iff η ∈ C and C ∩ η
has order type η. Let η ∈ C ′′ iff η ∈ C ′ and C ′ ∩ η has order type η. If
the homogeneous side satisfies g([f � rep(Q)]Q)(2[f ]Qr′) <

2[f ]Qq′ , then every

function f ∈ (C ′′)Q↑ extends to some f ′ ∈ (C ′)Q1↑ by Lemma 3.18, and

{2[f ′′]Q
′

r′ : ∃f ′′ ∈ CQ′↑(f ′ ⊆ f ′′)} is cofinal in 2[f ]Qr by Lemma 4.28. Hence,

sup(g([f �rep(Q)]Q))′′(2[f ]Qr ) ≤ 2[f ′]Q1

q′ <
2[f ]Qq , contradicting to our assump-

tion. If the homogeneous side satisfies g([f � rep(Q)]Q)(2[f ]Qr′) ≥ [f ]Qq′ , a

similar arguments yields sup(g([f �rep(Q)]Q))′′(2[f ]Qr ) > 2[f ]Qq , contradiction
again.
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It is easy to deduce the following corollary using  Loś:

Corollary 4.39. Suppose β < δ1
3 is a limit ordinal. Then β has Q-uniform

cofinality (d,q) iff cf
L
δ1
3
[jQ(T2)]

(β) = seedQ(d,q). In particular, the Q-uniform
cofinality of β exists and is unique.

If π factors finite level≤ 2 trees (Q, T ), then πT (un) = um → πTsup(un+1) =
um+1. Therefore, the continuity of πT is decided by πT � {un : n < ω}. If
(d,q) ∈ desc∗(Q) is regular, π is continuous at (d,q) iff one of the following
holds:

1. d = 1, either 1π(q) = min(≺1T ) or pred≺1T (1π(q)) ∈ ran(1π).

2. d = 2, q = (∅, ∅, ((0))), either 1T = ∅ or max(≺1T ) ∈ ran(1π).

3. d = 2, q = (q, P, ~p) ∈ desc(2Q), and letting t′ = max<BK
2T{2π(q),−},

then either t′ = 2π(q−)_(−1) or t′ ∈ ran(2π).

4. d = 2, q = (q, P, ~p) /∈ desc(2Q), and letting a = max<BK (2T{2π(q)} ∪
{−1}), then either a = −1 or 2π(q)_(a) ∈ ran(2π).

Thus, π is continuous at (d,q) iff πT is continuous at seedQ(d,q). We obtain the

following lemma discussing the continuity behavior of πT . It is the level-2
version of Lemma 3.4.

Lemma 4.40. Suppose π factors finite level ≤ 2 trees (Q, T ), γ < δ1
3 is a

limit ordinal, cf
L
δ1
3
[jQ(T2)]

(γ) = seedQ(d,q), (d,q) ∈ desc∗(Q) is regular. Then

1. πT (γ) = πTsup(γ) iff π is continuous at (d,q).

2. Suppose π is not continuous at (d,q). Let Q+ be a level ≤ 2 tree and
let π+ factor (Q+, π) so that Q+ extends Q, π+ extends π, and

(a) if d = 1, then dom(Q+)\dom(Q) = {(1, q+)}, q C
1Q
1 q+, 1π+(q+) =

succ≺1T (1π(q−));

(b) if d = 2 and q = (∅, ∅, ((0))), then dom(Q+)\dom(Q) = {(1, q+)},
∅ C

1Q
1 q+, 1π+(q+) = min≺1T {a : ∀r ∈ dom(1Q) 1π(r) ≺1T a};

(c) if d = 2 and q = (q, P, ~p) ∈ desc(2Q), then dom(Q+) \ dom(Q) =
{(2, q+)}, q+ = max<BK

2Q+{q,−}, and 2π(q+) = π(q−)_(a), a =
min<BK{b : ∀r ∈ 2Q(q,−) \ {q−_(−1)} 2π(r) <BK

2π(q−)_(b)};
(d) if d = 2 and q = (q, P, ~p) /∈ desc(2Q), then dom(Q+) \ dom(Q) =
{(2, q+)}, q+ = q_(max<BK

2Q+{q}), 2π+(q+) = 2π(q)_(a), a =
min<BK{b : ∀c ∈ 2Q{q} 2π(q_(c)) <BK

2π(q)_(b)}.
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Then πTsup(γ) = (π+)T ◦ jQ,Q+

sup (γ).

If π factors finite level ≤ 2 trees (Q, T ) and π is discontinuous at (d,q),
then pred(π, T, (d,q)) is a node in dom(T ) defined as follows:

1. If d = 1, then pred(π, T, (d,q)) = (1, pred≺1T (1π(q))).

2. If d = 2 and q = (∅, ∅, ((0))), then pred(π, T, (d,q)) = (1,max<BK
1T ).

3. If d = 2 and q = (q, P, ~p) ∈ desc(Q), q 6= ∅, then pred(π, T, (d,q)) =
(2,max<BK

2T{2π(q),−}).

4. If d = 2 and q = (q, P, ~p) /∈ desc(Q), q 6= ∅, then pred(π, T, (d,q)) =
(2, q_(a)), a = max<BK

2T{2π(q)}.

If (2,q) = (2, (q, P, ~p)) ∈ desc(Q) then put pred(π, T, (2, q)) = pred(π, T, (2,q)).
The next lemma is the level-2 version of Lemma 3.5, whose proof is similar.

Lemma 4.41. Suppose (Q−, (d, q, P )) is a partial level ≤ 2 tree, T is a finite
level ≤ 2 tree, π factors (Q, T ), and π is discontinuous at (d, q). Let τ factor
(Q, T ) where τ and π agree on dom(Q)\{(d, q)}, τ(d, q) = pred(π, T, (d, q)).

Suppose cf
L
δ1
3
[jQ
−

(T2)]
(γ) = seedQ

−

ucf(Q−,(d,q,P )). Then

πT ◦ jQ−,Qsup (γ) = τTsup ◦ jQ
−,Q(γ).

The level-2 version of Lemma 3.6 is similarly proved.

Lemma 4.42. Suppose (Q, (d, q, P )) is a partial level ≤ 2 tree, ucf(Q, (d, q, P )) =
(d∗,q∗), T is a finite level ≤ 2 tree, π factors (Q, T ), and π is discontin-
uous at (d∗,q∗). Let Q+ be a completion of (Q, (d, q, P )) and let τ fac-
tor (Q+, T ) so that τ extends π, τ(d, q) = pred(π, T, (d∗,q∗)). Suppose

cf
L
δ1
3
[jQ(T2)]

(γ) = seedQ(d∗,q∗). Then

πT (γ) = τTsup ◦ jQ,Q
+

(γ).

Note that in Lemma 4.42, the completionQ+ is decided by pred(π, T, (d∗,q∗)).
There is no freedom in choosing Q+.

In the same spirit as Lemmas 3.15-3.20 we will obtain a concrete way of
deciding whether a tuple ~γ respects a level-3 tree R.

Suppose E is a club in ω1. For a partial level ≤ 2 tree (Q, (d, q, P )),
put ~α = (eαt)(e,t)∈dom(Q,(d,q,P )) ∈ [E](Q,(d,q,P ))↑ iff ~α respects (Q, (d, q, P )),
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(eαt)(e,t)∈dom(Q) ∈ [E]Q↑, and d = 1 → 1αq ∈ E, d = 2 → 2αq ∈ jP (E). For a
level-3 tree R, put

rep(R)�E ={~β ⊕R r : r ∈ dom(R), ~β ∈ [E]Rtree(r)↑}
∪ {~β ⊕R r_(−1) : r ∈ dom(R), ~β ∈ [E]R(r)↑}.

Then rep(R)�E is a closed subset of rep(R) (in the order topology of <R).

Lemma 4.43. Suppose R is a finite level-3 tree, B ∈ Lδ1
3
[T2] is a closed set

of ordinals. Then ~γ ∈ [B]R↑ iff there is F ∈ (δ1
3)R↑ and E ∈ µL such that

~γ = [F ]R and for any r ∈ dom(R), for any ~β ∈ [E]R(r)↑, Fr(~β) is a limit
point of B.

Proof. The nontrivial direction is⇐. Suppose F ∈ (δ1
3)R↑ and E ∈ µL are as

given. For r ∈ dom(R), let R(r) = (Qr, (dr, qr, Pr)), and let r∗ be the <BK-
greatest member of R{r,−}. In parallel to Claim 3.16, by Theorem 4.38 and
cofinality considerations in Lδ1

3
[jQr(T2)], we have

Claim 4.44. There is E ′ ∈ µL such that E ′ ⊆ E and for any r ∈ dom(R),

for any ~β ∈ [E ′]Pq↑,

1. if dr = 1 then B ∩ (Fr∗(~β), Fr(~β)) has order type 1βq−r ;

2. if dr = 2, ucf(R[r]) = (2,qr,∗), qr,∗ = (qr,∗, Pr,∗, ~pr,∗), then B∩(Fr∗(~β), Fr(~β))
has order type 2βqr,∗.

The rest proceeds as in the proof of Lemma 3.15.

Lemma 4.45. Suppose R is a finite level-3 tree, R[r] = (Qr, (dr, qr, Pr)) for
r ∈ dom(R), E ∈ µL is a club. Suppose f : rep(R)�E → δ1

3 satisfies

1. if r ∈ dom(R), then the Qr-potential partial level ≤ 2 tower induced
by Fr is R[r], the approximation sequence of Fr is (Fr�i)1≤i≤lh(q), and
the uniform cofinality of Fr on [E]Qr↑ is witnessed by Fr_(−1), i.e., if
~β ∈ [E]Qr↑, then Fr(~β) = sup{Fr_(−1)(~β

_(γ)) : ~β_(γ) ∈ rep(R) �E},
and the map ~β 7→ Fr_(−1)(~β

_(γ)) is continuous, order preserving.

2. if Rtree(r
_(a)) = Rtree(r

_(b)), and a <BK b, then [Fr_(a)]µQr_(a) <

[Fr_(b)]µQr_(b) .

Then there is E ′ ∈ µL such that E ′ ⊆ E and f � (rep(R) � E ′) is order
preserving.
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Proof. Put ucf(R[r]) = (dr,qr,∗), and if dr = 2 then qr,∗ = (qr,∗, Pr,∗, ~pr,∗).

We know by assumption that for µQr -a.e. ~β, Fr(~β) = sup{Fr_(a)(~β
_(γ)) :

r_(a) ∈ dom(R), γ < drβqr,∗}. Fix for the moment r such that dr 6= 0.
Similarly to the proof of Lemma 3.17, we need a club E ′ ∈ µL such that for
any ~β ∈ [E ′]Qr↑, for any γ < γ′ both in jPr(E ′), if Rtree(r

_(a)) = Rtree(r
_(b))

then Fr_(a)(~β
_(γ)) < Fr_(b)(β

_(γ′)).

If ~β respects Qr and ~β_(γ) respects R(r), let g(~β_(γ)) be the least γ′ sat-

isfying that whenever r_(a), r_(b) ∈ dom(R), δ ≤ γ, δ′ ≥ γ′, ~β_(δ) respects

R(r_(a)), ~β_(δ′) respectsR(r_(b)), we have Fr_(a)(~β
_(δ)) < Fr_(b)(~β

_(δ′)).

If Q+ is a completion of R(r), then for µQ
+

-a.e. ~ξ, g(~ξ) < drξqr,∗ . By

Lemma 4.31, there is hQ
+

: ω1 → ω1 and EQ+ ∈ µL such that h ∈ L
and for any ~ξ ∈ [EQ+

]Q
+↑, g(~ξ) < jPr(hQ

+
)(drξqr). There are only finitely

many completions of R(r). Let h : ω1 → ω1 where h(α) = sup{hQ+
(α) : Q+

is a completion of R(r)}. Let E ′ = ∩{EQ+
: Q+ is a completion of R(r)}.

Let η ∈ E ′′ iff h′′(η ∩ E ′) ⊆ η. E ′′ is as desired.

As corollaries of Lemmas 4.43 and 4.45, we obtain:

Lemma 4.46. Suppose that R is a level-3 tree and ~γ = (γr)r∈dom(R) is a
tuple of ordinals in δ1

3. Then ~γ respects R iff the following holds:

1. For any r ∈ dom(R), the Rtree(r)-potential partial level ≤ 2 tower
induced by γr is R[r], and the Rtree(r)-approximation sequence of γr is
(γr�l)1≤l≤lh(r).

2. If Rtree(r
_(a)) = Rtree(r

_(b)) and a <BK b then γr_(a) < γr_(b).

Moreover, if B ∈ Lδ1
3
[T2] is a closed set, B′ is the set of limit points of B,

then ~γ ∈ [B]R↑ iff ~γ respects R and for each r ∈ dom(R), γr ∈ jRtree(r)(B′).

In particular, if ~γ respects R, then cf
L
δ1
3
[T2]

(γ) = ucf(R(r)) for r ∈ dom(R),
where u0 = ω.

Lemma 4.47. Suppose R and R′ are level-3 trees with the same domain.
Suppose ~γ respects both R and R′. Then R = R′.

4.6 Factoring maps between level-2 trees

Definition 4.48. Suppose I < ω. Suppose for each i < I, J̄i ≤ Ji < ω and
Ai = (ai,j)J̄i≤j<Ji is a finite sequence of sets. Then the contraction of (Ai)i<I
is (bk)k<K such that

1. {ai,j : i < I, J̄i < j < Ji} = {bk : k < K}.
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2. For each k < K, letting (ik, jk) be the <BK-least (i, j) such that ai,j =
bk, then the map k 7→ (ik, jk) is order preserving with respect to < and
<BK .

Definition 4.49. Suppose T,Q are level ≤ 2 trees. A (T,Q,−1)-description
is of the form

C = (1, (t, ∅))

such that t ∈ 1T . Suppose (W, ~w) is a potential partial level ≤ 1 tower
of discontinuous type, ~w = (wi)i≤m. If w = 0, the only (T,Q, (W, ~w))-
description is (2, ((∅, ∅, ∅), τ)), where τ factors (∅, Q, ∅), which is called the
constant (T,Q, ∗)-description. If w > 0, a (T,Q, (W, ~w))-description is of the
form

C = (2, (t, τ))

such that

1. t ∈ desc(2T ) and t 6= (∅, ∅, ∅). Let t = (t, S, ~s), lh(t) = k, ~s = (si)i<lh(~s).

2. τ factors (S,Q,W ).

3. The contraction of (sign1(τ(si)))i<k is (wi)i<m.

4. If t is of continuous type and wm−1 does not appear in the contraction
of (sign1(τ(si)))i<k−1 then τ(sk−1) is of level-1 discontinuous type.

5. Either ucf(S,~s) = wm = −1 or ucf1(τ(ucf(S,~s))) = ucf(W, ~w).

A (T,Q, ∗)-description is either a (T,Q,−1)-description or a (T,Q, (W ′, ~w′))-
description for some potential partial level ≤ 1 tower (W ′, ~w′) of discontinu-
ous type. For a level-1 tree W , a (T,Q,W )-description is a (T,Q, (W, ~w′))-
description for some ~w′. desc(T,Q,−1), desc(T,Q, (W, ~w)), desc(T,Q, ∗),
desc(T,Q,W ) denote the sets of relevant descriptions. We sometimes abbre-
viate (d, t, τ) for (d, (t, τ)) ∈ desc(T,Q, ∗) without confusion.

Recalling our notation ofQ⊗W , we may regard desc(T,Q,−1) ⊆ desc(T, ∅),
desc(T,Q,W ) ⊆ desc(T,Q⊗W ). T ⊗ (Q⊗W ) is also a “level-1 tree”, whose
nodes consist of non-constant (T,Q ⊗W )-descriptions, so that desc(T,Q ⊗
W ) = desc(T ⊗ (Q ⊗ W )). Every non-constant (T,Q,W )-description is a
member of T ⊗ (Q⊗W ). The constant (T,Q, ∗)-description C0 is regarded

as the constant T ⊗ (Q⊗W )-description, to make sense of seed
T⊗(Q⊗W )
C0

. The
degree of (d, t, τ) ∈ desc(T,Q, ∗) is d. In fact, if C ∈ desc(T,Q, ∗) is of degree
2, then there is a unique potential partial level ≤ 1 tower (W, ~w) for which
C ∈ desc(T,Q, (W, ~w)).
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Suppose now C = (d, t, τ) ∈ desc(T,Q, ∗), and if d = 2, then C ∈
desc(T,Q, (W, ~w)), t = (t, S, ~s), lh(t) = k, ~s = (si)i<lh(~s), ~w = (wi)i≤m. The
level-2 signature of C is

sign2(C) =

{
∅ if d = 1,

the contraction of (signW2 (τ(si)))i<k if d = 2.

C is of level-2 continuous type iff d = 2, t is of continuous type, and τ(sk−1)
is of level-2 W -continuous type; C is of level-2 discontinuous type otherwise.
The level-2 uniform cofinality of C = (d, t, τ) is

ucf2(C)

defined as follows. If d = 1, then ucf2(C) = (0,−1). If d = 2 then

1. if ucf(S,~s) = −1, then ucf2(C) = (0,−1);

2. if ucf(S,~s) = s∗ 6= −1, then ucf2(C) = ucfW2 (τ(s∗)).

If wm 6= −1, C is said to be of level-2+ discontinuous type, and put

ucf+
2 (C) = ucfW

+

2 (τ(ucf(S,~s))),

where W+ is the completion of (W,wm). The level-2∗ signature of C is

sign2∗(C) =


((1, t)) if d = 1,

((2, t� i))1≤i≤k−1 if d = 2, t is of continuous type,

((2, t� i))1≤i≤k if d = 2, t is of discontinuous type.

C is of level-2∗ Q-continuous type iff d = 2 and if ucf(S,~s) 6= −1∧τ(ucf(S,~s)) 6=
min(≺Q,W )), then pred≺Q,W (τ(ucf(S,~s))) ∈ ran(τ). Otherwise, C is of level-
2∗ Q-discontinuous type. The level-2∗ Q-uniform cofinality of C is

ucfQ2∗(C)

defined as follows. If d = 1, then ucfQ2∗(C) = (1, t). If d = 2, t is of continuous
type,

1. if C is of Q-continuous type, then ucfQ2∗(C) = (2, (t−, S \ {sk−1}, ~s));

2. if C is of Q-discontinuous type, then ucfQ2∗(C) = (2, (t−, S, ~s)).

If d = 2, t is of discontinuous type,

1. if C is of Q-continuous type, then ucfQ2∗(C) = (2, t);
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2. if C is of Q-discontinuous type, then ucfQ2∗(C) = (2, (t, S ∪ {sk}, ~s)).

For h ∈ ωT↑1 , if C = (1, t, ∅) is a (T,Q,−1)-description, then

hQC : [ω1]Q↑ → ω1

is the function sending ~α to 1[h]Tt if min(~α) > 1[h]Tt , sending ~α to ‖(1, t)‖<T
otherwise; if W is a (possibly empty) level-1 tree, C = (2, t, τ) is a (T,Q,W )-
description, t = (t, S, ~s), then

hQC : [ω1]Q↑ → jW (ω1).

is the function that sends [g]Q to [2ht ◦ gWτ ]µW . Note here that 2ht ◦ gWτ
has signature sign(W, ~w), is essentially discontinuous, and has uniform co-
finality ucf(W, ~w). In either case, when Q is finite, we have the following:
the signature of hQC is sign2(C); hQC is essentially continuous iff C is of level-2
continuous type; the uniform cofinality of hQC is ucf2(C). If W+ is the comple-
tion of (W,wm), then jW,W

+ ◦ hQC is of discontinuous type and has cofinality
ucf+

2 (C). Moreover, ran(hQC) ⊆ ran(h) if d = 1, ran(hQC) ⊆ jW (ran(h)) if
d = 2. When T,Q are both finite, C = (d, t, τ) ∈ desc(T,Q, ∗),

idT,QC

is the function [h]T 7→ [hQC]µQ , or equivalently, ~ξ 7→ 1ξt when d = 1, ~ξ 7→
τQ,W (2ξt) when d = 2 and C ∈ desc(T,Q,W ). The signature of idT,QC is
signQ2 (C); idT,QC is essentially continuous iff C is of level-2∗ Q-continuous
type; the uniform cofinality of idT,QC is ucfQ2∗(C).

seedT,QC ∈ Lδ1
3
[jT ◦ jQ(T2)]

is the element represented modulo µT by idT,QC . Using  Loś, it is clear that
if d = 1, then for any A ∈ µL, seedT,QC ∈ jT ◦ jQ(A); if d = 2, then for
any A ∈ µ(W,~w), seedT,QC ∈ jT ◦ jQ(A). Using Lemma 4.32, we can see that
seedT,QC ∈ {un : n < ω}, and seedT,QC can be computed in the following
concrete way:

• If d = 1, then seedT,QC = seedT,∅C = seedT⊗∅C .

• If d = 2 and C ∈ desc(T,Q,W ), then seedT,QC = seedT,Q⊗WC = seed
T⊗(Q⊗W )
C .

If C = (1, t, ∅), let

CT,Q : Lδ1
3
[jµL(T2)]→ Lδ1

3
[jT ◦ jQ(T2)]
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where CT,Q(jµL(h)(ω1)) = jT ◦ jQ(seedT,QC ). If C = (2, t, τ), let

CT,Q : Lδ1
3
[j(W,~w)(T2)]→ Lδ1

3
[jT ◦ jQ(T2)]

where CT,Q(j(W,~w)(h)(seed(W,~w))) = jT ◦ jQ(seedT,QC ).

Suppose ( ~W, ~w) = (Wi, wi)i≤m is a potential partial level-1 tower. If
C = (2, t, τ) ∈ desc(T,Q, (Wm, ~w)), t = (t, S, ~s), define lh(C) = m. If
m̄ < m, then

C�m̄ ∈ desc(T,Q, (Wl, (wi)i≤l))

is defined by the following: letting l be the least such that τ(sl) /∈ desc(Q,Wm̄),
and D ∈ desc(Q,Wm̄) be such that D CQ,Wm̄

1 τ(sl), then

1. if D 6= τ(s−l ), then C � m̄ = (2, t � l_(−1), τ̄), where τ̄ and τ agree on
2Ttree(t� l), τ̄(sl) = D;

2. if D = τ(s−l ), then C�m̄ = (2, t� l, τ � 2Ttree(t� l)).

Define
C C C′

iff C = C′ � m̄ for some m̄ < lh(C′). Define ≺T,Q=≺� desc(T,Q, ∗). As a
corollary to Lemma 4.27, CT,Q inherits the following continuity property.

Lemma 4.50. Suppose T,Q are finite level ≤ 2 trees, W is a level-1 proper
subtree of W ′. Suppose E ∈ µL is a club, E ′ is the set of limit points of
E. Suppose C = (2, t, τ) ∈ desc(T,Q,W ), C′ = (2, t′, τ ′) ∈ desc(T,Q,W ′),
C CT,Q C′. Then for any h ∈ ωT↑1 , for any g ∈ ωQ↑1 , for any ~α ∈ [E ′]W↑,

ht ◦ gWτ (~α) = sup{ht′ ◦ gW
′

τ ′ (~β) : ~β ∈ [E]W
′↑, ~β extends ~α}.

Hence, the signature and approximation sequence of ht◦gWτ are proper initial
segments of those of ht′ ◦ gW

′

τ ′ respectively.

Let

〈C〉 =

{
(1, t) if d = 1,

(2, τ ⊕ t) if d = 2.

Define
C ≺ C′

iff 〈C〉 <BK 〈C′〉, the ordering on subcoordinates in desc(Q, ∗) ∪ desc(Q′, ∗)
according to ≺ acting on desc(Q, ∗) ∪ desc(Q′, ∗). The constant (T,Q, ∗)-
description, C0, is the ≺-greatest, and we have 〈C0〉 = (2, ∅). Define ≺T,Q=≺
� desc(T,Q, ∗). ≺T,Q inherits the following ordering property as a corollary
to Lemma 4.25.
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Lemma 4.51. Suppose ( ~W, ~w) = (Wi, wi)i≤m is a partial level ≤ 1 tower.
Suppose C = (2, t, τ) ∈ desc(T,Q,Wk), C′ = (2, t′, τ ′) ∈ desc(T,Q,Wk′),
k ≤ m, k′ ≤ m, C ≺T,Q C′. Then for any h ∈ ωT↑1 , for any g ∈ ωQ↑1 , for any
~α ∈ ωWm↑

1 , ht ◦ gWm
τ (~α) < ht′ ◦ gWm

τ ′ (~α).

Definition 4.52. SupposeX,T,Q are level≤ 2 trees. Suppose π : dom(X)→
desc(T,Q, ∗) is a function. π is said to factor (X,T,Q) iff

1. If (1, x) ∈ dom(X), then π(1, x) ∈ desc(T,Q,−1) ∪ desc(T,Q, 2X[∅]).

2. If (2, x) ∈ dom(X), then π(2, x) ∈ desc(T,Q, 2X[x]).

3. π(2, ∅) is the constant (T,Q, ∗)-description.

4. For any (d, x), (d′, x′) ∈ dom(X), if (d, x) <BK (d′, x′) then π(d, x) ≺T,Q
π(d′, x′).

5. For any x ∈ dom(2X) \ {∅}, π(2, x−) CT,Q π(2, x).

π is said to factor (X,T, ∗) iff π factors (X,T,Q′) for some level ≤ 2 tree Q′.

Suppose T is a level ≤ 2 tree.

idT,∗

factors (T, T,Q0) where idT,∗(1, t) = (1, t, ∅), idT,∗(2, t) = (2, (t, S, ~s), id∗,S)
when 2T [t] = (S,~s).

id∗,T

factors (T,Q0, T ) where id∗,T (1, t) = (2,q0, τ
1
t ), q0 = ((−1), {(0)}, ((0))), τ 1

t

factors ({(0)}, T, ∅), τ 1
t ((0)) = (1, t, ∅), τ∗,T (2, t) = (2,q0, τ

2
t ) when 2T [t] =

(S,~s), τ 2
t factors ({(0)}, T, S), τ 2

t ((0)) = (2, (t, S, ~s), idS).
If π 6= ∅ factors (X,T,Q), T is Π1

2-wellfounded and h ∈ ωT↑1 , let

hQπ : [ω1]Q↑ → [ω1]X↑

be the function that sends ~β to (hQπ(d,x)(
~β))(d,x)∈dom(X). The fact that hQπ (~β) ∈

[ω1]X↑ follows from Lemmas 3.18, 4.51-4.50. Moreover, for any ~β ∈ [ω1]Q↑,

hQπ (~β) ∈ [ran(h)]X↑. In particular, if Q = X then hQid∗,X is the identity

function on [ω1]X↑. If T is finite, let

idT,Qπ

be the function [h]T 7→ [hQπ ]µQ , or equivalently, ~ξ 7→ (idT,Qπ(d,x)(
~ξ))(d,x)∈dom(X).

Let
seedT,Qπ = [idT,Qπ ]µT .
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By  Loś and Lemmas 3.18, 4.51-4.50, it is clear that for any A ∈ µX , seedT,Qπ ∈
jT ◦ jQ(A). Define

πT,Q : Lδ1
3
[jX(T2)]→ Lδ1

3
[jT ◦ jQ(T2)]

by sending jX(h)(seedX) to jT ◦ jQ(h)(seedT,Qπ ).
Suppose T,Q are both level ≤ 2 trees. A representation of T ⊗ Q is a

pair (X, π) such that

1. X is a level ≤ 2 tree;

2. π factors (X,T,Q);

3. ran(π) = desc(T,Q, ∗);

4. (d, x) <BK (d′, x′) iff π(d, x) ≺T,Q π(d′, x′).

Representations of T ⊗Q are clearly mutually isomorphic. We shall regard

T ⊗Q

itself as a “level ≤ 2 tree” whose level-d component is (t, τ) for which
(d, (t, τ)) ∈ desc(T,Q, ∗), and whose level-2 component sends (t, τ) to (W,wm)
if (2, (t, τ)) ∈ desc(T,Q, (W, (wi)i≤m)). In this way, π is a “level ≤ 2 tree
isomorphism” between X and T ⊗Q. All the relevant terminologies of level
≤ 2 trees carry over to T ⊗ Q in the obvious ways. In particular, if W is a
finite level-1 tree, a (T ⊗Q,W )-description takes one of the following forms
(recall that (d, t, τ) is simply an abbreviation of (d, (t, τ))):

1. (1, (t, ∅), ∅) for (1, t, ∅) ∈ desc(T,Q,−1);

2. (2, ((t, τ), Z, ~z), ψ) for (2, t, τ) ∈ desc(T,Q, (Z, ~z)) and ψ factoring (Z,W );

3. (2, ((t, τ)_(−1), Z+, ~z), ψ) for (2, t, τ) ∈ desc(T,Q, (Z, ~z)), ~z = (zi)i≤l,
Z+ = Z ∪ {zl} and ψ factoring (Z+,W ).

(T ⊗ Q) ⊗ W is thus regarded as a “level-1 tree” whose nodes consists of
non-constant (T ⊗Q,W )-descriptions. There is a natural isomorphism

ιT,Q,W

between “level-1 trees” (T ⊗Q)⊗W and T ⊗ (Q⊗W ), defined as follows.

1. ιT,Q,W (1, (t, ∅), ∅) = (1, t, ∅).
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2. If (2, t, τ) ∈ desc(T,Q, (Z, ~z)), t = (t, S, ~s), ψ factors (Z,W ), define
ιT,Q,W (2, ((t, τ), Z, ~z), ψ) = (2, t, (Q⊗ ψ) ◦ τ).

3. If (2, t, τ) ∈ desc(T,Q, (Z, ~z)), t = (t, S, ~s), ~z = (zi)i≤l, ~s = (si)i≤k,
Z+ = Z ∪ {zl}, ψ factors (Z+,W ),

(a) if t is of discontinuous type, define ιT,Q,W (2, ((t, τ), Z+, ~z), ψ) =
(2, t_(−1), ψ∗0 τ), where ψ∗0 τ factors (S∪{sk}, Q,W ), ψ∗0 τ ex-
tends (Q⊗ψ)◦τ , ψ∗0τ(sk) = (2, (q0, σ)), q0 = ((−1), {(0)}, ((0))),
σ((0)) = ψ(zl);

(b) if t is of continuous type, define ιT,Q,W (2, ((t, τ), Z+, ~z), ψ) = (2, t, ψ∗1

τ), where ψ ∗1 τ factors (S,Q,W ), ψ ∗1 τ extends (Q ⊗ ψ) ◦ (τ �
(S \ {sk})), ψ ∗1 τ(sk) = (2,q_(−1), σ+) where τ(sk) = (2,q, σ),
q = (q, P, (pi)i≤m), σ+ extends σ, σ+(pm) = ψ(zl).

The reason why ιT,Q,W is a surjection is the following. Suppose C ∈ T ⊗
(Q ⊗ W ) is of degree 2. Put C = (2, t, τ), t = (t, S, ~s), ~s = (si)i<lh(~s),
k = lh(t). Let (wi)i<m be the contraction of (sign1(τ(si)))i<k. Then w0 is the
<BK-maximum of {wi : i < k}. Let (Z, ~z) = (Z, (zi)i<m) be the potential
partial level ≤ 1 tower of continuous type and ψ : Z → W be the level-1
tree isomorphism such that ψ(zi) = wi for any i < m. If t is of continuous
type, τ(sk−1) is of level-1 continuous type, but wm−1 does not appear in the
contraction of (sign1(τ(si)))i<k−1, then

C = ιT,Q,W (2, ((t, τ)_(−1), Z, ~z), ψ).

Otherwise,
C = ιT,Q,W (2, ((t, τ), Z, ~z_(z∗)), ψ),

where (Z, z∗) is a partial level ≤ 1 tree, z∗ = −1 if ucf(S,~s) = −1, z−∗ =
ucf1(τ(ucf(S,~s))) if ucf(S,~s) 6= −1. ιT,Q,W justifies the associativity of the
⊗ operator acting on level (≤ 2,≤ 2, 1)-trees.

The identity function idT⊗Q factors (T ⊗ Q, T,Q). By definitions and
Lemmas 4.32, 3.11,

(idT⊗Q)T,Q(seed
(T⊗Q)⊗W
C∗ ) = seed

T⊗(Q⊗W )
ιT,Q,W (C∗)

for any C∗ ∈ (T ⊗ Q)⊗W . Hence, (idT⊗Q)T,Q(un) = un for any n < ω. As
(idT⊗Q)T,Q is elementary from Lκx3 [jT⊗Q(T2), x] to Lκx3 [jT ◦ jQ(T2), x] for any
x ∈ R, (idT⊗Q)T,Q is the identity map on Lδ1

3
[T2].

Suppose π factors level ≤ 2 trees (X,T ) and Q is another level ≤ 2 tree.

• π ⊗ Q factors (X ⊗ Q, T ⊗ Q), defined as follows: π ⊗ Q(d,x, τ) =
(d, dπ(x), τ).
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• Q ⊗ π factors (Q ⊗ X,Q ⊗ T ), defined as follows: Q ⊗ π(d,q, τ) =
(d,q, (π ⊗W ) ◦ τ), where τ factors (P,X ⊗W ).

We effectively obtain the following lemma which reduces finite iterations
of level ≤ 2 ultrapowers to a single level ≤ 2 ultrapower. The proof is in
parallel to Lemma 4.34.

Lemma 4.53. Suppose X,T,Q are finite level ≤ 2 trees. Then

1. jT ◦ jQ = jT⊗Q.

2. π factors (X,T,Q) iff π factors (X,T ⊗Q). If π factors (X,T,Q) then
πT,Q = πT⊗Q.

3. If π factors X,T , then

(a) jQ(πT �a) = (Q⊗ π)Q⊗T �jQ(a) for any a ∈ Lδ1
3
[T2];

(b) πT �Lδ1
3
[jX⊗Q(T2)] = (π ⊗Q)T⊗Q.

Suppose T,Q, U are level ≤ 2 trees. There is a natural “level ≤ 2 tree
isomorphism”

ιT,Q,U

between (T ⊗ Q) ⊗ U and T ⊗ (Q ⊗ U) defined as follows. Suppose B ∈
desc(T ⊗Q,U, ∗).

1. If B = (1, (t, ∅), ∅), C = (1, t, ∅) ∈ desc(T,Q,−1), then C ∈ desc(T,Q⊗
U,−1) and ιT,Q,U(B) = C.

2. If B = (2, ((t, τ), Z, ~z), ψ) ∈ desc(T⊗Q,U,W ), C = (2, t, τ) ∈ desc(T,Q, (Z, ~z)),
t = (t, S, ~s), ψ factors (Z,U,W ), then ιT,Q,U(B) = (2, t, ι−1

Q,U,W ◦ (Q ⊗
ψ) ◦ τ).

3. If B = (2, ((t, τ)_(−1), Z+, ~z), ψ) ∈ desc(T ⊗Q,U,W ), C = (2, t, τ) ∈
desc(T,Q, (Z, ~z)), t = (t, S, (si)i≤k), ~z = (zi)i≤l,

(a) if t is of discontinuous type, then ιT,Q,U(B) = (2, t_(−1), ψ ∗0 τ),
where ψ ∗0 τ factors (S ∪ {sk}, Q⊗U,W ), ψ ∗0 τ extends ι−1

Q,U,W ◦
(Q⊗ψ)◦ τ , ψ ∗0 τ(sk) = ι−1

Q,U,W (2,q0, σ), q0 = ((−1), {(0)}, ((0))),
σ((0)) = ψ(zl).

(b) if t is of continuous type, then ιT,Q,U(B) = (2, t, ψ∗1τ), where ψ∗1τ
factors (S,Q⊗U,W ), ψ∗1τ extends ι−1

Q,U,W ◦(Q⊗ψ)◦(τ �(S\{sk})),
ψ ∗1 τ(sk) = ι−1

Q,U,W (2,q_(−1), σ+) where τ(sk) = (2,q, σ), q =
(q, P, (pi)i≤m), σ+ extends σ, σ+(pm) = ψ(zl).
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ιT,Q,U justifies the associativity of the ⊗ operator acting on level (≤ 2,≤ 2,≤
2) trees.

Lemma 4.54. Suppose X,T are level ≤ 2 trees, θ : rep(X) → rep(T ) is a
function in L, order-preserving and continuous. Then there exists a triple

(Q, π,~γ)

such that Q is a level ≤ 2 tree, π factors (X,T,Q), ~γ respects Q, and

∀h ∈ ωT↑1 hT,Qπ (~γ) = [h ◦ θ]X .

Proof. For d ∈ {1, 2}, let Ad = {x ∈ 1X : θ(1, (x)) ∈ {d} × rep(dT )}. By
order preservation and continuity of θ, A1 is a ≺1X-initial segment of 1X. For
x ∈ A1, let t1x ∈ 1T be such that

θ(1, (x)) = (1, (t1x)).

The existence of t1x follows from the fact that (1, (x)) has cofinality ω in
rep(X). For x ∈ A2, let t2

x = (t2x, S
2
x, ~s

2
x) ∈ desc(2T ), ~s2

x = (s2
x,i)i<lh(~s2x) and

~β2
x = (β2

x,s)s∈S2
x∪{∅} be such that

θ(1, (x)) = (2, ~β2
x ⊕2T t

2
x).

For x ∈ dom(2X), let 2X(x) = (Wx, wx). By order preservation and continuity
of θ, we can find tx = (tx, Sx, ~sx) ∈ desc(T ) and θx ∈ L such that for µWx-a.e.
~α,

θ(2, ~α⊕2X x) = (2, θx(~α)⊕2T tx).

Let ~sx = (sx,i)i<lh(~sx), sx = sx,lh(~sx)−1. Let [θx]µWx = ~βx = (βx,s)s∈Sx∪{∅},
θx(~α) = (θx,s(~α))s∈Sx∪{∅}, so that βx,s = [θx,s]µWx . In particular, t∅ = ∅,
β∅,∅ = ω1, and tx 6= ∅ when x 6= ∅. Fixing x, the map s 7→ βx,s is order
preserving with respect to ≺Sx and <. Let

Bx = {s ∈ Sx : βx,s < ω1}.

So Bx is closed under ≺Sx . For s ∈ Sx\Bx, let (Px,s, ~px,s) be the potential par-
tial level ≤ 1 tower induced by βx,s, ~px,s = (px,s,i)i<lh(~px,s), px,s = px,s,lh(~px,s−1),

let (seedWx
wx,s,i

)i<vx,s be the signature of βx,s, let (γx,s,i)i≤vx,s be the approxi-

mation sequence of βx,s, and let cfL(βx,s) = seedWx
wx,s if cfL(βx,s) > ω. Let σx,s

factor (Px,s,Wx), where σx,s(px,s,i) = wx,s,i for i < vx,s. Let

Dx = {s ∈ Sx \Bx : βx,s is essentially continuous},
Ex = Sx \ (Bx ∪Dx).
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Thus, vx,s = card(Px,s). For s ∈ Dx, vx,s = lh(~px,s); for s ∈ Ex, vx,s =
lh(~px,s)− 1.

By order preservation and continuity of θ, we can see that for x ∈
dom(2X),

1. If tx is of continuous type, then θx,sx has uniform cofinality ucf(2X[x]).

2. If tx is of continuous type and x = ∅∨wx− does not appear in sign(θx,s)
for any s ∈ Sx \ {sx}, then θx,sx is essentially discontinuous and thus
sx ∈ Ex.

3. If tx is of discontinuous type then

(a) if wx = −1, then sx = −1;

(b) if wx 6= −1, then sx 6= −1, θx,s−x has uniform cofinality w−x , and
thus wx,s−x = w−x .

Claim 4.55. Suppose x, x′ ∈ dom(2X), x = (x′)−, tx is of continuous type,
and the contraction of ((wx,sx,j ,i)i<vx,sx,j )j<lh(tx) is (wx�i)i<lh(x). Then

1. tx = tx′.

2. For any s ∈ Sx \ {sx}, βx,s = βx′,s.

3. (wx,sx,i, γx,sx,i)i<vx,sx is a proper initial segment of (wx′,sx,i, γx′,sx,i)i<vx′,sx .
Hence, Px,sx is a proper subtree of Px′,sx and ~px,sx is an initial segment
of ~px′,sx.

4. σx′,sx(px,sx) = wx. In particular, the contraction of ((wx′,sx′,j ,i)i<vx′,sx′,j
)j<lh(tx)

is (wx�i)i≤lh(x).

Proof. By order preservation and continuity of θ, tx = tx′ and for µWx-a.e.
~α,

1. for any s ∈ Sx \{sx}, if ~α′ ∈ [ω1]Wx′↑ extends ~α then θx,s(~α) = θx′,s(~α
′);

2. θx,sx(~α) = sup{θx′,sx(~α′) : ~α′ ∈ [ω1]Wx′↑ extends ~α}.

Thus, βx,s = βx′,s for any s ∈ Sx \ {sx}, and j
Wx,Wx′
sup (βx,sx) ≤ βx′,sx <

jWx,Wx′ (βx,sx). As tx = tx′ is of continuous type and wx does not appear in
sign(θx′,s) for any s ∈ Sx′ \ {sx′}, θx′,sx is essentially discontinuous, giving

j
Wx,Wx′
sup (βx,sx) 6= βx′,sx . We can then apply Lemma 3.14 to show that the

partial finite level ≤ 1 tower induced by βx,sx is a proper initial segment of
that induced by βx′,sx , and wx′,sx,vx,s = wx.

82



Claim 4.56. Suppose x, x′ ∈ dom(2X), x = (x′)−, tx is of discontinuous
type, and the contraction of ((wx,sx,j ,i)i<vx,sx,j )j<lh(tx) is (wx�i)i<lh(x). Then

1. tx ( tx′.

2. for any s ∈ Sx, βx,s = βx′,s.

3. (wx,s−x ,i, γx,s−x ,i)i<vx,s−x
is a proper initial segment of (wx′,sx,i, γx′,sx,i)i<vx′,sx .

Hence, Px,s−x is a proper subtree of Px′,sx and ~px,s−x is an initial segment
of ~px′,sx.

4. σx′,sx(px,s−x ) = wx. In particular, the contraction of ((wx′,sx′,j ,i)i<vx′,sx′,j
)j<lh(tx′ )

is (wx�i)i≤lh(x).

Proof. By order preservation and continuity of θ, tx ( tx′ and for µWx-a.e.
~α,

1. for any s ∈ Sx, if ~α′ extends ~α then θx,s(~α) = θx′,s(~α
′);

2. θx,s−x (~α) = sup{θx′,sx(~α) : ~α′ extends ~α}.

The rest is similar to the proof of Claim 4.55.

Let

φ1 : {β2
x,s : x ∈ A2, s ∈ S2

x} ∪ {βx,s : x ∈ dom(2X), s ∈ Bx} → Z1

be a bijection such that Z1 is a level-1 tree and v < v′ ↔ φ1(v) ≺Z1
φ1(v′).

Let

φ2 : {(wx,s,i, γx,s,i)i<l : x ∈ dom(2X), s ∈ Dx ∪ Ex, l < lh(~px,s)} → Z2 ∪ {∅}

be a bijection such that Z2 is a level-1 tree and v ⊆ v′ ↔ φ2(v) ⊆ φ2(v′),
v <BK v′ ↔ φ2(v) <BK φ2(v′). Let

Q = (1Q, 2Q),

where 1Q = Z1, 2Q is a level-2 tree, dom(2Q) = Z2,

2Q[φ2((wx,s,i, γx,s,i)i<lh(~px,s)−1)_(−1)] = (Px,s, ~px,s) for s ∈ Dx,
2Q[φ2((wx,s,i, γx,s,i)i<lh(~px,s)−1)] = (Px,s, ~px,s) for s ∈ Ex.

Let
~γ = (dγq)(d,q)∈dom(Q)
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where 1γq = (φ1)−1(q), 2γ∅ = ω1, 2γq = γx,s,l when q = φ2((wx,s,i, γx,s,i)i≤l).
For x ∈ A1, let

π(1, x) = (1, t1x, ∅).
For x ∈ A2, let

π(1, x) = (2, t2
x, τ

2
x),

where τ 2
x factors (S2

x, Q, ∅), τ 2
x(1, s) = (1, φ1(β2

x,s), ∅). For x ∈ dom(2X), let

π(2, x) = (2, tx, τx),

where τx factors (Sx, Q,Wx), defined as follows:

τx(s) =


(1, φ1(βx,s), ∅) if s ∈ Bx,

(2, (φ2((wx,s,i, γx,s,i)i<lh(~px,s)−1)_(−1), Px,s, ~px,s), σx,s) if s ∈ Dx,

(2, (φ2((wx,s,i, γx,s,i)i<lh(~px,s)−1), Px,s, ~px,s), σx,s) if s ∈ Ex.

It is easy to check that (Q, π,~γ) works for the lemma.

Note that if π factors Π1
2-wellfounded trees (X,T ), then Jd, xKX ≤ Jπ(d, x)KT

for any (d, x) ∈ dom(X). We say that π minimally factors (X,T ) iff π fac-
tors (X,T ), X,T are both Π1

2-wellfounded and Jd, xKX = Jπ(d, x)KT for any
(d, x) ∈ dom(X). In particular, if T,Q are both Π1

2-wellfounded, then idT,∗
minimally factors (T, T ⊗Q). In the assumption of Lemma 4.54, if X,T are
Π1

2-wellfounded and the map θ is a bijection between rep(X) and rep(T ),
its proof constructs π which minimally factors (X,T ⊗ Q). This entails the
comparison theorem between Π1

2-wellfounded trees.

Theorem 4.57. Suppose X, T are Π1
2-wellfounded level ≤ 2 trees. Then

there exists (Q, π) such that Q is Π1
2-wellfounded and π minimally factors

(X,T ⊗Q).

We shall see in Section 5 that the minimally of factoring maps between
Π1

2-wellfounded trees corresponds exactly to the Dodd-Jensen property of
iterations of mice.

Suppose Q,Q′ are finite level ≤ 2 trees, Q is a proper subtree of Q′,
(Wi, wi)i≤m′ is a partial level≤ 1 tower, m ≤ m′, C ∈ desc(T,Q, (Wm, (wi)i≤m)),
C′ ∈ desc(T,Q′, (Wm′ , (wi)i≤m′)) \ desc(T,Q, (Wm, (wi)i≤m)). Define

C CT,Q2 C′

iff C′ ≺ C and
⋃
m≤k≤m′{C∗ ∈ desc(T,Q, (Wk, (wi)i≤k)) : C′ ≺ C∗ ≺ C} =

∅. A purely combinatorial argument shows that C CT,Q2 C′ iff C and C′

are both of degree 2 and putting C = (2, t, τ), C′ = (2, t′, τ ′), t = (t, S, ~s),
~s = (si)i<lh(~s), t′ = (t′, S ′, ~s′), k = lh(t), then either
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1. t is of continuous type, t � k − 1 = t′ � k − 1, τ � (S \ {sk−1}) ⊆ τ ′,
τ(sk−1) CQ,Wm

2 τ ′(sk−1), or

2. t is of discontinuous type, C C C′, τ(s−k ) CQ,Wm

2 τ(sk).

As a corollary to Lemma 4.26 and Lemma 4.29, CT,Q2 inherits the following
continuity property.

Lemma 4.58. Suppose Q,Q′,W,W ′ are finite, Q is a level ≤ 2 proper sub-
tree of Q′, W is a (not necessarily proper) level-1 subtree of W ′. Suppose
C = (2, t, τ) ∈ desc(T,Q,W ), C′ = (2, t′, τ ′) ∈ desc(T,Q′,W ′), C CT,Q2 C′.
Suppose E ∈ µL is a club, η ∈ E ′ iff η ∈ E and E ∩η has order type η. Then
for any h ∈ ωT↑1 , for any ~β ∈ [E ′]Q↑,

jW,W
′ ◦ hQC(~β) = sup{hQ

′

C′(~γ) : ~γ ∈ [E]Q
′↑, ~γ extends ~β}.

4.7 Level-3 description analysis

Definition 4.59. Suppose R is a level-3 tree. The constant R-description is

∅. AnR-description is either the constantR-description or a triple (r,Q,
−−−−−→
(d, q, P ))

such that either r ∈ dom(R) ∧ (Q,
−−−−−→
(d, q, P )) = R[r] or r = r−_(−1) ∧ r− ∈

dom(R) ∧ Q is a completion of R(r−) ∧ (Q,
−−−−−→
(d, q, P )) = R[r,Q]. desc(R)

is the set of R-descriptions. (r,Q,
−−−−−→
(d, q, P )) is of discontinuous type if r ∈

dom(R), of continuous type otherwise. An extended R-description is either

an R-description or a triple (r,Q,
−−−−−→
(d, q, P )) such that (r_(−1), Q,

−−−−−→
(d, q, P ))

is an R-description of continuous type. desc∗(R) is the set of extended R-
descriptions. An extended R-description r is regular iff either r ∈ desc(R)
of discontinuous type or r /∈ desc(R). A generalized R-description is either
(∅, ∅, ∅) or of the form

A = (r, π, T )

so that r = (r,Q,
−−−−−→
(d, q, P )) ∈ desc(R) \ {∅}, T is a finite level ≤ 2 tree, π

factors (Q, T ). desc∗∗(R) is the set of generalized R-descriptions.

Suppose (Q, (d, q, P )) is a partial level ≤ 2 tree. We define

ucf∗(Q, (d, q, P )) =


(0,−1, ∅) if ucf(Q, (d, q, P )) = (0,−1),

(1, q∗, ∅) if ucf(Q, (d, q, P )) = (1, q∗),

(2,q∗, id2Qtree(q∗)) if ucf(Q, (d, q, P )) = (2,q∗),

q∗ = (q∗, P ∗, ~p∗).
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Thus, ucf∗(Q, (d, q, P )) ∈ {(0,−1, ∅)} ∪ desc(Q,P ), and cf(Q, (d, q, P )) = 1
iff ucf∗(Q, (d, q, P )) = min(≺Q,P ). If cf(Q, (d, q, P )) = 2, let

ucf−(Q, (d, q, P )) = pred≺Q,P (ucf∗(Q, (d, q, P ))).

ucf−(Q, (d, q, P )) can be computed in the following concrete way. If d = 1,
then ucf−(Q, (1, q, ∅)) = (1, pred≺1Q∪{q}(q), ∅); if d = 2, then ucf−(Q, (2, q, P )) =
(2,q′, idP ), where q′ = (q′, P, ~p) ∈ desc(Q), q′ is the <BK-maximum of
2Q{q,−}. If Q∗ is a completion of (Q, (d, q, P )) and D = (1, q, ∅) if d = 1,
D = (2, (q, P, ~p), idP ) if d = 2 ∧ 2Q∗[q] = (P, ~p), then

D = pred≺Q∗,P (ucf∗(Q, (d, q, P )))

and
ucf−(Q, (d, q, P )) = pred≺Q∗,P (D).

Suppose r = (r,Q,
−−−−−→
(d, q, P )) ∈ desc∗(R), lh(r) = k,

−−−−−→
(d, q, P ) = (di, qi, Pi)1≤i≤lh(~q).

For F ∈ (δ1
3)R↑, define Fr to be a function on ωQ↑1 : if r ∈ desc(R), then

Fr = Fr; if r /∈ desc(R), then Fr(~β) = Fr(~β �Rtree(r)). If ~γ = (γr)r∈dom(R) ∈
[δ1

3]R↑, put γr = [Fr]µQ . If r ∈ desc(R) and A = (r, π, T ) ∈ desc∗∗(R), put
γA = πT (γr). Put γ∅ = γ(∅,∅,∅) = δ1

3. Thus, if r ∈ desc(R) is of discontinuous
type, then γr = γr; if r /∈ desc(R), then γr = jRtree(r),Q(γr) = γ(r,idRtree(r),Q).
The next lemma computes the remaining case when r ∈ desc(R) is of con-
tinuous type, justifying that γr does not depend on the choice of F .

Lemma 4.60. Suppose R is a level-3 tree, ~γ ∈ [δ1
3]R↑, r = (r,Q,

−−−−−→
(d, q, P )) ∈

desc(R) is of continuous type. Then γr = j
Rtree(r−),Q
sup (γr−).

Proof. Suppose ~γ = [F ]R, F ∈ (δ1
3)R↑. Put lh(r) = k + 1,

−−−−−→
(d, q, P ) =

(di, qi, Pi)1≤i≤k. We prove the case when cf(R(r−)) = 2, the other case being
similar. Put R(r−) = (Q−, (d, q, P )), π− = π � dom(Q−), so that Q is a
completion of R(r−), (d, q, P ) = (dk, qk, Pk). Put ucf(R(r−)) = (d∗,q∗),
ucf−(R(r−)) = (e, z, idP ).

We firstly show the ≥ direction. Suppose δ = [G]µQ− < γr− , G ∈ Lδ1
3
[T2].

By  Loś, for µQ
−

-a.e. ~β, G(~β) < Fr−(~β) = supξ<d∗βq∗ Fr(
~β_(ξ)), where ~β_(ξ)

is a tuple extending ~β whose entry indexed by (d, q) is ξ. Let H(~β) be the

least ξ < dβq∗ satisfying G(~β) < Fr(~β
_(ξ)). By Lemmas 4.31 and 4.25, there

is h : ω1 → ω1 such that h ∈ L and for µQ
−

-a.e. ~β, H(~β) < jP (h)(eβz) <
dβq.

Thus, for µQ-a.e. ~β, G(~β �dom(Q−)) < Fr(~β). Thus, jQ
−,Q(δ) < [Fr]µQ .

We secondly show the ≤ direction. Suppose δ = [G]µQ < [Fr]µQ , G ∈
Lδ1

3
[T2]. Then for µQ-a.e. ~β, G(~β) < Fr(~β) = supξ<dβq Fr(

~β �dom(Q−)_(ξ)).
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Let H(~β) be the least ξ < 2βv satisfying G(~β) < Fr(~β � dom(Q−)_(ξ)). By
Lemmas 4.32 and 4.25 again, there is h : ω1 → ω1 such that h ∈ L and for
µQ-a.e. ~β, H(~β) < jP (h)(eβz) <

dβq. Thus, for µQ-a.e. ~β, G(~β) < jQ
−,Q(η),

where η is represented modulo µQ
−

by the function ~β 7→ Fr(~β
_jP (h)(eβz)).

Since η < γr− , we have δ < jQ
−,Q

sup (γr−).

Define

C∗ = {ξ < δ1
3 : for any finite level ≤ 2 tree Q, jQsup(ξ) = ξ}.

Assuming ∆1
2-determinacy, Lemma 4.37 implies that C∗ ∩ κx3 has order type

κx3 , and hence C∗ has order type δ1
3. A tuple ~γ is said to strongly respect R

iff ~γ ∈ [C∗]R↑. In most applications, we are only concerned with ~γ strongly
respecting R. In that case, the techniques in Section 4.6 helps to decide
the ordering of γr for different r ∈ desc∗(R). The results are in parallel to
Lemma 3.22.

Define 〈(∅, ∅, ∅)〉 = 〈∅〉 = ∅. For A = (r, π, T ) ∈ desc∗∗(R), r =

(r,Q,
−−−−−→
(d, q, P )), lh(r) = k, define

〈A〉 =



(r(0), Jπ(d1, q1)KT , r(1), . . . , Jπ(dk−2, qk−2)KT , r(k − 2),−1)

if r is of continuous type, π is continuous at (dk−1, qk−1),

(r(0), Jπ(d1, q1)KT , r(1), . . . , Jπ(dk−2, qk−2)KT , r(k − 2), Jpred(π, T, (dk−1, qk−1))KT )

if r is of continuous type, π is discontinuous at (dk−1, qk−1),

(r(0), Jπ(d1, q1)KT , r(1), . . . , Jπ(dk−1, qk−1)KT , r(k − 1),−1)

if r is of discontinuous type, π is continuous at ucf(R(r)),

(r(0), Jπ(d1, q1)KT , r(1), . . . , Jπ(dk−1, qk−1)KT , r(k − 1), Jpred(π, T, ucf(R(r)))KT )

if r is of discontinuous type, π is discontinuous at ucf(R(r)).

and define 〈r〉 = 〈(r, Q, idQ)〉. If r is of discontinuous type and Q+ is a

completion of Q, define 〈(r,Q+,
−−−−−→
(d, q, P ))〉 = 〈(r, Q+, idQ)〉. For A,A′ ∈

desc∗∗(R), define
A ≺ A′

iff 〈A〉 <BK 〈A′〉; define
A ∼ A′

iff 〈A〉 = 〈A′〉. For r, r′ ∈ desc∗(R), define

r ≺ r′

iff 〈r〉 <BK 〈r′〉; define
r ∼ r′
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iff 〈r〉 = 〈r′〉. All relations are effective. Define ≺R∗=≺� desc∗∗(R), ∼R∗=∼
� desc∗∗(R) ≺R=≺� desc∗(R), ∼R=∼� desc∗(R). For r, r′ ∈ dom(R), define
r ≺R r′ iff (r)_R[r] ≺ (r′)_R[r′].

Lemma 4.61. Suppose R is a level-3 tree, A,A′ ∈ desc∗(R), ~γ strongly
respects R. Then A ≺R A′ iff γA < γA′; A ∼R A′ iff γA = γA′.

Proof. Put A = (r, T, π), A′ = (r′, T ′, π′). Recall our convention that
γ(∅,∅,∅) = δ1

3. The lemma is trivial if r = ∅ or r′ = ∅. Assume now

r, r′ 6= ∅. Put r = (r,Q,
−−−−−→
(d, q, P )),

−−−−−→
(d, q, P ) = (di, qi, Pi)1≤i≤lh(~q), k = lh(r),

r′ = (r′, Q′,
−−−−−−→
(d′, q′, P ′)),

−−−−−−→
(d′, q′, P ′) = (d′i, q

′
i, P

′
i )1≤i≤lh(~q′), k

′ = lh(r′). Assume
~γ = [F ]R, F ∈ (C∗)R↑.

Firstly, we prove that A ∼ A′ implies γA = γA′ .
Case 1: r = r′ is of continuous type.
Put Q− = Rtree(r

−).
Subcase 1.1: π is continuous at (dk−1, qk−1).
Then Jπ(d, q)KT = Jπ′(d, q)KT ′ for any (d, q) ∈ dom(Q−). Put τ = π �

dom(Q−), τ ′ = π′ � dom(Q−). By Lemma 4.60, γA = πTsup(γr) = τTsup(γr−)

and γA′ = (τ ′)T
′

sup(γr−). Given δ = [G]µQ− < γr− , we need to show that

τT (δ) < γA′ . By Theorem 4.57, there exist X and ψ minimally factoring
(T, T ′ ⊗ X). So ψ ◦ π(d, q) = idT ′,∗ ◦π′(d, q) for any (d, q) ∈ dom(Q−). We
shall actually show that ψT

′,X ◦ τT (δ) < γA′ , i.e., (ψ ◦ τ)T
′,X(δ) < γA′ . By

 Loś, it suffices to show that for µT
′
-a.e. ~β, jX(G)(idT

′,X
ψ◦τ (~β)) < Fr′(~βτ ′). The

minimality of ψ implies that idT
′,X

ψ◦τ (~β) = jX(~βτ ). It suffices to show that for

µT
′
-a.e. ~β, jX(G(~βτ )) < Fr′(~βτ ′). Hence, it suffices to show that µQ

−
-a.e.

~β, jX(G(~β)) < Fr′(~β). As Fr′(~β) ∈ C∗, this inequality is a consequence of

G(~β) < Fr′(~β), which holds true for µQ
−

-a.e. ~β by assumption.
Subcase 1.2: π is discontinuous at (dk−1, qk−1).
Then Jπ(d, q)KT = Jπ′(d, q)KT ′ for any (d, q) ∈ dom(Q). Let τ factor

(Q, T ) where τ and π agree on dom(Q−) and τ(dk−1, qk−1) = pred(π, T, (dk−1, qk−1)),
and likewise define τ ′ which factors (Q′, T ). By Lemma 4.41, γA = τTsup ◦
jQ
−,Q(γr−) and γA′ = (τ ′)Tsup ◦ jQ

−,Q(γr−). Work with X and ψ minimally
factoring (T, T ′ ⊗X) and argue similarly to Subcase 1.1.

Case 2: r = r′ is of discontinuous type.
Subcase 2.1: π is continuous at ucf(R(r)).
Then Jπ(d, q)KT = Jπ′(d, q)KT ′ for any (d, q) ∈ dom(Q) and γA = πTsup(γr),

γA′ = (π′)Tsup(γr). Argue similarly to Case 1.
Subcase 2.2: π is discontinuous at ucf(R(r)).
Let Q+ be a completion of R(r) and let τ factor (Q+, T ) so that τ ex-

tends π, τ(dk, qk) = pred(π, T, (dk, qk)), and likewise define τ ′ which fac-
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tors (Q+, T ). Then Jτ(d, q)KT = Jτ ′(d, q)KT ′ for any (d, q) ∈ dom(Q+). By
Lemma 4.42, γA = τTsup ◦ jQ,Q

+
(γr) and γA′ = (τ ′)T

′
sup ◦ jQ,Q

+
(γr). Argue

similarly to Case 1.
Case 3: r 6= r′. Assume r = r′_(−1).
Subcase 3.1: π is continuous at (dk−1, qk−1).
It follows from Subcase 1.1 and Subcase 2.1 that γA = πTsup(γr′) and

γA′ = (π′)T
′

sup(γr′). Argue similarly as before.
Subcase 3.2: π is discontinuous at (dk−1, qk−1).
Use a combination of Subcase 1.2 and Subcase 2.2.
Secondly, we prove that A ≺ A′ implies γA < γA′ .
Case 1: 〈A′〉 is a proper initial segment of 〈A〉.
Then 〈A′〉 does not end with −1. We prove the typical case when r′ is

of discontinuous type. So r′ ( r. Let (Q′)+ be a completion of R(r′) and let
τ ′ factor ((Q′)+, T ′) so that τ ′ extends π′, τ ′(dk, qk) = pred(π, T, ucf(R(r′))).
Then (Q′)+ = Rtree(r �k′). We get ψ minimally factoring (T, T ′⊗X) so that
ψ ◦ π(d, q) = idT ′,∗ ◦τ ′(d, q) for any (d, q) ∈ dom((Q′)+). We shall actually

show that ψT
′,X(γA) < γA′ . By  Loś, it suffices to show that for µT

′
-a.e. ~β,

jX(Fr)(id
T ′,X
ψ◦π (~β)) < Fr′(~βπ′). The minimality of ψ implies that idT

′,X
ψ◦π (~β)

agrees with jX(~βτ ′) on dom((Q′)+). It suffices to show that for µQ-a.e. ~β,

jX(Fr(~β)) < Fr′(~β �dom(Q′)). As ran(F ) ⊆ C∗, this would be a consequence

of Fr(~β) < Fr′(~β �dom(Q′)), which follows from order preservation of F .
Case 2: 〈A′〉 is not a proper initial segment of 〈A〉.
Similar to Case 1, using the following fact: Suppose X,X ′ are level ≤ 2

trees and Jdi, xiKX = Jd′i, x′iKX′ for 1 ≤ i < n, Jdn, xnKX < Jd′n, x′nKX′ . Then
there exist U and ψ minimally factoring (X,X ′ ⊗U), which implies that for

any ~β ∈ [ω1]X↑, if idX
′,U

ψ (~β) = ~δ, then δ and jU(~β) agree on {(di, xi) : 1 ≤
i < n} and dnδxn < jU(d

′
nβx′n).

4.8 Factoring maps between level-3 trees

Put π ⊕ ∅ = ∅. Suppose Y is a level-3 tree, y = (y,X,
−−−−−→
(e, x,W )) ∈ desc(Y ),

lh(y) = k,
−−−−−→
(e, x,W ) = (ei, xi,Wi)1≤i≤lh(~y), π is a function whose domain

contains dom(X), we put

π ⊕ y = π ⊕Y y = (y(0), π(e1, x1), y(1), . . . , π(ek−1, xk−1), y(k − 1)).

If l < lh(y), then y � l = (y � l, Ytree(y � l), (ei, xi,Wi)1≤i≤l).

Definition 4.62. Suppose Y is a level-3 tree, T is a level ≤ 2 tree. The
only (Y, T, ∅)-description is (∅, ∅), which is called the constant (Y, T, ∗)-
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description. Suppose (Q,
−−−−−→
(d, q, P )) = (Q, (di, qi, Pi))1≤i≤k is a potential par-

tial level ≤ 2 tower of discontinuous type. A (Y, T, (Q,
−−−−−→
(d, q, P )))-description

is of the form
B = (y, π)

with the following properties:

1. y ∈ desc(Y ) \ {∅}. Put y = (y,X,
−−−−−→
(e, x,W )), lh(y) = l,

−−−−−→
(e, x,W ) =

(ei, xi,Wi)1≤i≤lh(~x).

2. π factors (X,T,Q).

3. The contraction of (sign2(π(ei, xi)))1≤i<l is ((di, qi))1≤i<k.

4. If y is of continuous type and (el−1, xl−1) does not appear in the contrac-
tion of (sign2(π(ei, xi)))1≤i<l, then π(xl−1) is of level-2 discontinuous
type.

5. Put ucf(X,
−−−−−→
(e, x,W )) = (e∗,x∗).

(a) If e∗ = 0 then dk = 0.

(b) If e∗ = 1 then ucf2(π(1,x∗)) = ucf(Q,
−−−−−→
(d, q, P )).

(c) If e∗ = 2, x∗ = (x∗,W∗, ~w∗) ∈ desc(X), then ucf2(π(2, x∗)) =

ucf(Q,
−−−−−→
(d, q, P )).

(d) If e∗ = 2, x∗ = (x∗,W∗, ~w∗) /∈ desc(X), then ucf+
2 (π(2, x∗)) =

ucf(Q,
−−−−−→
(d, q, P )).

A (Y, T,Q)-description is a (Y, T, (Q,
−−−−−−→
(d′, q′, P ′)))-description for some poten-

tial partial level ≤ 2 tower (Q,
−−−−−−→
(d′, q′, P ′)) of discontinuous type. A (Y, T, ∗)-

description is a (Y, T,Q′)-description for some level ≤ 2 tree Q′ or Q′ = ∅.
desc(Y, T, (Q,

−−−−−→
(d, q, P ))), desc(Y, T,Q), desc(Y, T, ∗) denote the sets of rele-

vant descriptions.

Similarly to Definition 4.49, if B ∈ desc(Y, T,Q), then there is at most

one (Q,
−−−−−→
(d, q, P )) for which B ∈ desc(Y, T, (Q,

−−−−−→
(d, q, P ))). Suppose that B =

(y, π) is a (Y, T, (Q,
−−−−−→
(d, q, P )))-description, F ∈ (δ1

3)Y ↑. Then

F T
B : [ω1]T↑ → δ1

3

is the function that sends [h]T to [Fy ◦ hQπ ]µQ . Note that Fy ◦ hQπ has signa-

ture sign(Q,
−−−−−→
(d, q, P )), is essentially discontinuous, and has uniform cofinality

ucf(Q,
−−−−−→
(d, q, P )). Of course, F T

B is meaningful only when T is Π1
2-wellfounded.
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Assuming Π1
3-determinacy, the L[T3]-measure µY will be defined, and

[F ]Y → [F T
B ]µT will represent an element in L[jY (T3)] modulo µY . Such kind

of results related to level-3 ultrapowers are parallel to Section 4.6. They will
be handled in Section 6.

Suppose ( ~Q,
−−−−−→
(d, q, P )) = (Qi, (di, qi, Pi))1≤i≤k is a potential partial level

≤ 2 tower and B = (y, π) ∈ desc(Y, T, (Qk,
−−−−−→
(d, q, P ))). Define lh(B) = k.

B � 0 is the constant (Y, T, ∗)-description. Suppose y = (y,X,
−−−−−→
(e, x,W )),

0 < k̄ < k. Then

B� k̄ ∈ desc(Y, T, (Qk̄, (di, qi, Pi)1≤i≤k̄))

is defined by the following: letting l be the least such that π(el, xl) /∈
desc(T,Qk̄, ∗), C ∈ desc(T,Qk̄, ∗) be such that C CT,Qk̄2 π(el, xl), then

1. if C 6= π(el, xl), then B � k̄ = (y � l_(−1), π̄), where π̄ and π agree on
Ytree(y � l), π̄(el, xl) = C;

2. if C = π(el, xl), then B� k̄ = (y � l, π �Ytree(y � l)).

Define
B C B′

iff B = B′ � k̄ for some k̄ < lh(B′). Define CY,T=C� desc(Y, T, ∗). As a
corollary to Lemma 4.58, CY,T inherits the following continuity property.

Lemma 4.63. Suppose Y is a level-3 tree, T is a level ≤ 2 tree, Q is a
level ≤ 2 proper subtree of Q′. Suppose B = (y, π) ∈ desc(Y, T,Q) and
B′ = (y′, π′) ∈ desc(Y, T,Q′), B CY,T B′. Suppose E ∈ µL is a club, η ∈ E ′
iff η ∈ E and E ∩ η has order type η. Then for any F ∈ (δ1

3)Y ↑, for any

h ∈ ωT↑1 , for any ~β ∈ [E ′]Q↑,

Fy ◦ hQπ (~β) = sup{Fy′ ◦ hQ
′

π′ (~γ) : ~γ ∈ [E]Q
′↑, ~γ extends ~β}.

Hence, the signature and approximation sequence of Fy◦hQπ are proper initial

segments of those of Fy′ ◦ hQ
′

π′ respectively.

Given a (Y, T, ∗)-description B = (y, π), define

〈B〉 = π ⊕ y.

Define
B ≺ B′

iff 〈B〉 <BK 〈B′〉, the ordering on coordinates in desc(T,Q, ∗) for some T,Q
again according to ≺. The constant (Y, T, ∗)-description B0 is the ≺-greatest,
and we have 〈B0〉 = ∅. Define ≺Y,T=≺� desc(Y, T, ∗). As a corollary to
Lemma 4.51, ≺Y,T inherits the following ordering property on F T

B .
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Lemma 4.64. Suppose (Qi, (di, qi, Pi))1≤i≤m is a partial level ≤ 2 tower,
B ∈ desc(Y, T,Qk), B′ ∈ desc(Y, T,Qk′), k ≤ m, k′ ≤ m, B ≺Y,T B′. Then

for any F ∈ (δ1
3)Y ↑, for any ~β ∈ [ω1]T↑, jQk,Qm ◦ F T

B(~β) < jQk′ ,Qm ◦ F T
B′(

~β).

Definition 4.65. Suppose R, Y are level-3 trees, T is a level ≤ 2 tree. Sup-
pose ρ : dom(R) ∪ {∅} → desc(Y, T, ∗) is a function. ρ factors (R, Y, T )
iff

1. ρ(∅) is the constant (Y, T, ∗)-description.

2. For any r ∈ dom(R), ρ(r) ∈ desc(Y, T,R[r]).

3. For any r_(a), r_(b) ∈ dom(R), if a <BK b andRtree(r
_(a)) = Rtree(r

_(b))
then ρ(r_(a)) ≺ ρ(r_(b)).

4. For any r ∈ dom(R), ρ(r−) CY,T ρ(r).

If Y is a level-3 tree, then
idY,∗

factors (Y, Y,Q0) where idY,∗(y) = ((y,X,
−−−−−→
(e, x,W )), id∗,X) for Y [y] = (X,

−−−−−→
(e, x,W )).

For level-3 trees R, Y , we say that ρ : dom(R)→ dom(Y ) factors (R, Y )
iff

1. If r ∈ dom(R) then R(r) = Y (ρ(r)).

2. If r, r′ ∈ dom(R) and r ⊆ r′, then ρ(r) ⊆ ρ(r′).

3. If Rtree(r
_(a)) = Rtree(r

_(b)) and a <BK b, then ρ(r_(a)) <BK

ρ(r_(b)).

If in addition, ρ is onto dom(Y ), then ρ is called a level-3 tree isomorphism
between R and Y . If ρ factors (R, Y ) and ~γ = (γy)y∈dom(Y ) ∈ [δ1

3]Y ↑, let
~γρ = (γρ,r)r∈dom(R) ∈ [δ1

3]R↑ where γρ,r = γρ(r).
If ρ factors (R, Y, T ) and F ∈ (δ1

3)Y ↑, let

F T
ρ : [ω1]T↑ → [δ1

3]R↑

be the function that sends ~ξ to (F T
ρ(r)(

~ξ))r∈dom(R). The fact that F T
ρ (~ξ) ∈

[δ1
3]R↑ follows from Lemmas 4.64-4.63.

Suppose Y is a level-3 tree, T is a level ≤ 2 tree. A representation of
Y ⊗ T is a pair (R, ρ) such that

1. R is a level-3 tree;
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2. ρ factors (R, Y, T );

3. ran(ρ) = desc(Y, T, ∗);

4. IfRtree(r
_(a)) = Rtree(r

_(b)), then a <BK b iff π(r_(a)) ≺Y,T π(r_(b)).

Representations of Y ⊗ T are clearly mutually isomorphic. As before, we
shall regard

Y ⊗ T

itself as a “level-3 tree” whose domain is the set of non-constant (Y, T, ∗)-
descriptions and sends B ∈ desc(Y, T, (Q, (di, qi, Pi)1≤i≤k)) to (Q, (dk, qk, Pk)).
If Q is a level ≤ 2 tree, then (Y ⊗ T ) ⊗ Q is a “level-3 tree” whose domain
consists of non-constant (Y ⊗ T,Q, ∗)-descriptions. There is a natural iso-
morphism

ιY,T,Q

between “level-3 trees” (Y ⊗ T )⊗Q and Y ⊗ (T ⊗Q), defined as follows:

1. If A = ((B, Z,
−−−−−→
(d, z,N)), ψ) ∈ desc(Y⊗T,Q, U), B = (y, π) ∈ desc(Y, T, (Z,

−−−−−→
(d, z,N))),

y = (y,X,
−−−−−→
(e, x,W )), then ιY,T,Q(A) = (y, ι−1

T,Q,U ◦ (T ⊗ ψ) ◦ π).

2. If A = ((B_(−1), Z+,
−−−−−→
(d, z,N)), ψ) ∈ desc(Y ⊗ T,Q, U),

−−−−−→
(d, z,N) =

(di, zi, Ni)1≤i≤l, B = (y, π) ∈ desc(Y, T, (Z,
−−−−−→
(d, z,N))), y = (y,X, (ei, xi,Wi)1≤i≤k),

then

(a) if y is of discontinuous type, then ιY,T,Q(A) = (y_(−1), ψ ∗0

π), where ψ ∗0 π factors (X+, T ⊗ Q,U), X+ is a completion of
(X, (ei, xi)), ψ ∗0 π extends ι−1

T,Q,U ◦ (T ⊗ ψ) ◦ π, ψ ∗0 π(ek, xk) =

ι−1
T,Q,U(2, t0, τ), t0 = ((−1), {(0)}, ((0))), τ((0)) = ψ(dl, zl);

(b) if y is of continuous type, then ιY,T,Q(A) = (y, ψ ∗1 π), where
ψ ∗1 π factors (X,T ⊗Q,U), ψ ∗1 π extends ι−1

T,Q,U ◦ (T ⊗ ψ) ◦ π �
(dom(X)\{(ek, xk)}), ψ∗1π(ek, xk) = ι−1

T,Q,U(2, t_(−1), τ+), where
π(ek, xk) = (2, t, τ), t = (t, S, (si)i≤m), τ+ extends τ , τ+(sm) =
ψ(dl, zl).

ιY,T,Q justifies the associativity of the ⊗ operator acting on level (3,≤ 2,≤ 2)
trees.

The identity map idY⊗T factors (Y ⊗ T, Y, T ). ρ factors (R, Y, T ) iff ρ

factors (R, Y ⊗ T ). If y ∈ dom(Y ), y = (y,X,
−−−−−→
(e, x,W )) ∈ desc(Y ),

Y ⊗y T
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is the level-3 subtree of Y ⊗ T whose domain is dom(Y ⊗ Q0) plus all the
(Y, T, ∗)-descriptions of the form (y, τ). If π factors level ≤ 2 trees (T,Q),
then

Y ⊗ π

factors (Y ⊗ T, Y ⊗ Q), where Y ⊗ π(y, ψ) = (y, (π ⊗ U) ◦ ψ) for (y, ψ) ∈
desc(Y, T, U).

If ρ factors finite trees (R, Y, T ), then ρ induces

ρ̃T : desc∗∗(R)→ desc∗∗(Y )

as follows:

1. If A = (∅, ∅, ∅), then ρ̃T (A) = A.

2. If A = (r, ψ, U), r = (r,Q,
−−−−−→
(d, q, P )) is of discontinuous type, ρ(r) =

(y, π), then ρ̃T (A) = (y, (T ⊗ ψ) ◦ π).

3. If A = (r, ψ, U), r = (r,Q,
−−−−−→
(d, q, P )) is of continuous type,

−−−−−→
(d, q, P ) =

(di, qi, Pi)1≤i≤l, ρ(r−) = (y, π), y = (y,X, (ei, xi,Wi)1≤i≤k),

(a) if y is of discontinuous type, then ρ̃T (A) = (y_(−1), ψ∗0π), where
ψ∗0π factors (X+, T⊗U), ψ∗0π extends (T⊗ψ)◦π, ψ∗0π(ek, xk) =
(2, t0, τ), t0 = ((−1), {(0)}, ((0))), τ((0)) = ψ(dl, pl);

(b) if y is of continuous type, then ρ̃T (A) = (y, ψ ∗1 π), where ψ ∗1 π
factors (X,T⊗U), ψ∗1π extends (T⊗ψ)◦(π �dom(X)\{(ek, xk)}),
ψ ∗1 π(ek, xk) = (2, t_(−1), τ+), where π(ek, xk) = (2, t, τ), t =
(t, S, (si)i≤m), τ+ extends τ , τ+(sm) = ψ(dl, pl).

A ≺R∗ A′ iff ρ̃T (A) ≺Y∗ ρ̃T (A′); A ∼R∗ A′ iff ρ̃T (A) ∼Y∗ ρ̃T (A′). A purely
combinatorial argument shows that if R = Y ⊗T , then for any B ∈ desc∗∗(Y )
there is A ∈ desc∗∗(R) such that ρ̃T (A) ∼Y∗ B.

Lemma 4.66. Suppose Q is a finite level ≤ 2 tree, W is a finite level-1 tree,
θ : [ω1]Q↑ → jW (ω1) is a function in Lδ1

3
[T2]. Suppose cfL([θ]µQ) = seedQ,WD ,

D = (d,q, σ) ∈ desc(Q,W ).

1. The uniform cofinality of θ is ucfW2 (D).

2. ucf1(D) = −1 iff cfL(θ(~ξ)) = ω for µQ-a.e. ~ξ.

3. Fix w ∈ W . Then ucf1(D) = w iff cfL(θ(~ξ)) = seedWw for µQ-a.e. ~ξ.
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Proof. Let g ∈ L be a strictly increasing function from seedQ,WD to [θ]µQ cofi-

nally. Find G ∈ L such that [G]µQ = g. We have [θ]µQ = sup [G]µQ
′′ seedQ,WD .

By  Loś, for µQ-a.e. ~ξ, θ(~ξ) = supG(~ξ)′′(σW (dξq)). (Recall our convention that

∅W = jW .) This shows part 1. Also, for µQ-a.e. ~ξ, cfL(θ(~ξ)) = cfL(σW (dξq)),
which equals to ω when ucf1(D) = −1, equals to seedWucf1(D) otherwise. This
shows parts 2-3.

Lemma 4.67. Suppose R, Y are level-3 trees, θ : rep(R) → rep(Y ) is con-
tinuous and order preserving, θ ∈ Lδ1

3
[T2]. Then there exists a triple

(T, ρ, ~δ)

such that T is a level ≤ 2 tree, ρ factors (R, Y, T ), ~δ respects T , and

∀F ∈ (δ1
3)Y ↑ F T

ρ (~δ) = [F ◦ θ]R.

Proof. For r ∈ dom(R), let R(r) = (Qr, (dr, qr, Pr)). For q ∈ dom(2Qr), let
2Qr(q) = (Pr,q, pr,q). Thus, when dr = 2, Pr is the completion of (Pr,q−r , pr,q−r ).

Let E ∈ µL, yr = (yr, Xr,
−−−−−−−→
(er, xr,Wr)) ∈ desc(Y ) and θr ∈ Lδ1

3
[T2] be such

that for any ~β ∈ [E]Qr↑, θr(~β) ∈ [ω1]Xr↑ and

θ(~β ⊕R r) = θr(~β)⊕Y yr.

Let
−−−−−−−→
(er, xr,Wr) = (er,i, xr,i,Wr,i)1≤i≤lh(~xr). For x ∈ dom(2Xr), let 2Xr(x) =

(Wr,x, wr,x). Thus, when er,i = 2, Wr,i is the completion of (Wr,x−r
, wr,x−r ).

Let [θr]µQr = ~γr = (eγr,x)(e,x)∈dom(Xr), θr(
~β) = (eθr,x(~β))(e,x)∈dom(Xr). So eγr,x =

[eθr,x]µQr . For e ∈ {1, 2}, let

Be
x = {x ∈ dom(eXr) : eγr,x < ω1}.

So B1
r is closed under ≺1Xr and B2

x = ∅. For x ∈ eXr\Be
r , let (Ser,x, ~s

e
r,x) be the

potential partial level ≤ 1 tower induced by eγr,x, ~s
e
r,x = (ser,x,i)i<lh(~ser,x), s

e
r,x =

ser,x,lh(~ser,x)−1, let (seed
Qr,Wr,x

De
r,x,i

)i<ver,x be the signature of eγr,x, let (δer,x,i)i≤ver,x

be the approximation sequence of eγr,x, and let cfL(eγr,x) = seed
Qr,Wr,x

De
r,x

if

cfL(eγr,x) > ω. The existence of (qer,x,i)i<ver,x and qer,x follows from Lemma 4.32.
Let De

r,x,i = (cer,x,i,q
e
r,x,i, σ

e
r,x,i), De

r,x = (cer,x, q
e
r,x, σ

e
r,x). Let

τ er,x

factor (Ser,x, Qr, ∗), where τ er,x(s
e
r,x,i) = De

r,x,i for i < ver,x. Let

De
r = {x ∈ eXr \Be

r : eγr,x is essentially continuous},
Ee
r = dom(eXr) \ (Be

r ∪De
r).
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Thus, ver,x = card(Ser,x). For x ∈ De
r, v

e
r,x = lh(~ser,x); for x ∈ Ee

r , v
e
r,x =

lh(~ser,x)− 1.
Put ucf(R[r]) = (d∗r,q

∗
r), ucf(Y [yr]) = (e∗r,x

∗
r), if e∗r = 2 then put x∗r =

(x∗r,W
∗
r , ~w

∗
r).

By order preservation and continuity of θ, we can see that for r ∈ dom(R),

1. if yr is of continuous type, then erθr,xr has uniform cofinality ucf(R[r]);

2. if yr is of continuous type and lh(r) = 1∨ (dr− , qr−) does not appear in
the contraction of (signQr2 (eθr,x)) for any (e, x) ∈ dom(Xr) \ {(er, xr)},
then erθr,xr is essentially discontinuous;

3. if yr is of discontinuous type,

(a) if d∗r = 0, then e∗r = 0;

(b) if d∗r = 1, then e∗r = 1, 1θr,x∗r has uniform cofinality (1,q∗r), and
thus by Lemma 4.66, D1

r,x∗r
= (1,q∗r, ∅);

(c) if d∗r = 2 and q∗r ∈ desc(2Qr), then e∗r = 2 and x∗r ∈ desc(2Xr),
2θr,x∗r has uniform cofinality (2,q∗r), and thus by Lemma 4.66,

ucf
W ∗r
2 (D2

r,x∗r
) = (2,q∗r);

(d) if d∗r = 2 and q∗r /∈ desc(2Qr), then e∗r = 2 and x∗r ∈ desc(2Xr),
jWr,x∗r ,W

∗
r (2θr,x∗r) has uniform cofinality (2,q∗r), and thus by Lemma 4.66,

ucf
W ∗r
2 (D2

r,x∗r
) = (2,q∗r).

Claim 4.68. Suppose r ∈ dom(R), x, x′ ∈ dom(2Xr), x = (x′)−. Suppose
the contraction of (sign1(D2

r,x,i))i<v2
r,x

is (wr,x�i)i<lh(x). Then

1. For any i < v2
r,x, δ2

r,x,i = δ2
r,x′,i.

2. (D2
r,x,i, δ

2
r,x,i)i<v2

r,x
is a proper initial segment of (D2

r,x′,i, δ
2
r,x′,i)i<v2

r,x′
. Hence,

S2
r,x is a proper subtree of S2

r,x′ and ~s2
r,x is an initial segment of ~s2

r,x′.

3. sign1(D2
r,x′,v2

r,x
) = wr,x. In particular, the contraction of (sign1(D2

r,x′,i))i<v2
r,x′

is (wr,x�i)i≤lh(x).

4. D2
r,x C

Qr,Wr,x

1 D2
r,x′.

5. If x ∈ D2
r ∪ E2

r , x_(c), x_(d) ∈ dom(2X), c <BK d, then δ2
r,x_(c),v2

r,x
<

δ2
r,x_(d),v2

r,x
.

6. If x ∈ D2
r ∪ E2

r , [h]
µS

2
r,x

= δ2
r,x,v2

r,x
, then for any g ∈ EQr↑,

[h ◦ gQr,Wr,x

τ2
r,x

]µWr,x = θr([g]Qr).

96



Proof. By Lemma 4.34, jQr(jWr,x,Wr,x′ � jWr,x(ω1 + 1)) = jQr⊗Wr,x,Qr⊗Wr,x′ �

jQr⊗Wr,x(ω1 + 1) and jQrsup(jWr,x,Wr,x′ � jWr,x(ω1 + 1)) = j
Qr⊗Wr,x,Qr⊗Wr,x′
sup �

jQr⊗Wr,x(ω1 + 1). Since θr takes values in [ω1]Xr↑ on a µQr -measure one

set, for µQr -a.e. ~ξ, we have

jWr,x,Wr,x′ (2θr,x(~ξ)) <
2θr,x′(~ξ) < jWr,x,Wr,x′ (2θr,x(~ξ))

and
cfL(2θr,x(~ξ)) = seed

Wr,x

w−r,x
.

Hence by  Loś,

j
Qr⊗Wr,x,Qr⊗Wr,x′
sup (2γr,x) <

2γr,x′ < jQr⊗Wr,x,Qr⊗Wr,x′ (2γr,x)

and by Lemma 4.66,
ucf1(Dr,x) = w−r,x.

We are in a position to apply Lemma 3.14 with

A = {l : ∃D ∈ desc(Qr,Wr,x) ul = seed
Qr,Wr,x′

D },

leading to parts 1-4. Part 5 also follows from Lemma 3.14, using the fact that
γr,x_(c) < γr,x_(d). We now prove part 6. Note that τ 2

r,x factors (S2
r,x, Qr ⊗

Wr,x) and in fact, (τ 2
r,x)

Qr⊗Wr,x(δ2
r,x,vr,x) = γ2

r,x. Suppose we are given h with

[h]
µS

2
r,x

= δ2
r,x,v2

r,x
. Define h∗ on [E]Qr↑ by h∗([g]Qr) = [h ◦ gQr,Wr,x

τ2
r,x

]µWr,x . By

 Loś, it suffices to show that [h∗]µQr = γ2
r,x. But this follows from Lemma 4.32.

This finishes the proof of Claim 4.68.

In parallel to Claim 4.55, we have

Claim 4.69. Suppose r, r′ ∈ dom(R), r = (r′)−, yr is of continuous type,
and the contraction of ((sign2(D

er,j
r,xr,j ,i

))
i<v

er,j
r,xr,j

)1≤j<lh(xr) is ((dr�i, qr�i))1≤i<lh(r).

Then

1. yr = yr′.

2. For any (e, x) ∈ dom(Xr) \ {(er, xr)}, eγr,x = eγr′,x.

3. (Der
r,xr,i

, δerr,xr,i)i<verr,xr is a proper initial segment of (Der
r′,xr,i

, δerr′,xr,i)i<verr′,xr
.

Hence Sr,xr is a proper subtree of Sr′,xr , and ~sr,xr is an initial segment
of ~sr′,xr .

4. The level-2 signature of τ err′,xr(sr,xr) is ((1, qr)) if dr = 1, ((2, qr�i))1≤i≤lh(qr)

if dr = 2. In particular, the contraction of ((sign2(D
er′,j
r′,xr′,j ,i

))
i<v

er′,j
r′,xr′,j

)1≤j<lh(xr)

is ((dr�i, qr�i))1≤i≤lh(r).
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Proof. By order preservation and continuity of θ, yr = yr′ and for µQr -a.e. ~β,

1. for any (e, x) ∈ dom(Xr) \ {(er, xr)}, if ~β′ extends ~β then eθr,x(~β) =
eθr′,x(~β

′);

2. erθr,xr(~β) = sup{erθr′,xr(~β′) : ~β′ extends ~β}.

Thus, eγr,x = eγr′,x for any (e, x) ∈ dom(Xr) \ {(er, xr)}, and j
Qr,Qr′
sup (eγr,x) ≤

eγr′,x < jQr,Qr′ (eγr,x). As tx = tx′ is of continuous type and (dr, qr) does not
appear in sign(eθr′,x) for any (e, x) ∈ dom(Xr′)\{(er′ , xr′)}, θr′,xr is essentially

discontinuous, giving j
Qr,Qr′
sup (eγr,x) 6= eγr′,x. With the help of Lemma 4.32

again, we can find level-1 trees Mr,Mr′ such that Mr is a subtree of Mr′

and j
Mr,Mr′
sup (eγr,x) < eγr′,x < jMr,Mr′ (eγr,x). The claim then follows from

Lemma 3.14.

In parallel to Claim 4.56, we have

Claim 4.70. Suppose r, r′ ∈ dom(R), r = (r′)−, yr is of discontinuous type,
and the contraction of ((sign2(D

er,j
r,xr,j ,i

))
i<v

er,j
r,xr,j

)1≤j<lh(xr) is ((dr�i, qr�i))1≤i<lh(r).

Put x∗r = x−r if ucf(R(r)) /∈ desc(Qr), x∗r = x−r
_((xr(lh(xr) − 1))−) if

ucf(R(r)) ∈ desc(Qr). Then

1. yr ( yr′.

2. For any (e, x) ∈ dom(Xr), eγr,x = eγr′,x.

3. (Der
r,xr,i

, δerr,xr,i)i<verr,xr is a proper initial segment of (Der
r′,x∗r ,i

, δerr′,x∗r ,i)i<v
er
r′,x∗r

.

The signature and approximation sequence of erγr,x∗r are proper initial
segments of those of erγr′,xr . Hence Sr,x∗r is a proper subtree of Sr′,xr ,
and ~sr,x∗r is an initial segment of ~sr′,xr .

4. The level-2 signature of τ err′,xr(sr,xr) is ((1, qr)) if dr = 1, ((2, qr�i))1≤i≤lh(qr)

if dr = 2. In particular, the contraction of ((sign2(D
er′,j
r′,xr′,j ,i

))
i<v

er′,j
r′,xr′,j

)1≤j<lh(xr′ )

is ((dr�i, qr�i))1≤i≤lh(r).

Proof. By order preservation and continuity of θ, yr ( yr′ and for µQr -a.e. ~β,

1. for any (e, x) ∈ dom(Xr), if ~β′ extends ~β then eθr,x(~β) = eθr′,x(~β
′);

2. if ucf(R(r)) /∈ desc(Qr) then jXr,X
∗
r (erθr,x∗r(

~β)) = sup{erθr′,xr(~β′) : ~β′ extends ~β},
where X∗r = Ytree(yr′ � lh(yr) + 1);

3. if ucf(R(r)) ∈ desc(Qr) then erθr,x∗r(
~β) = sup{erθr′,xr(~β′) : ~β′ extends ~β}.
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The rest is similar to the proof of Claim 4.69.

Let
φ1 : {1γr,x : r ∈ dom(R), x ∈ B1

r} → Z1

be a bijection such that Z1 is a level-1 tree and v < v′ ↔ φ1(v) ≺Z1
φ1(v′).

Let

φ2 : {(De
r,x,i, δ

e
r,x,i)i<l : r ∈ dom(R), e ∈ {1, 2}, x ∈ De

x∪Ee
x, l < lh(~sr,x)} → Z2∪{∅}

be a bijection such that Z2 is a level-1 tree and v ⊆ v′ ↔ φ2(v) ⊆ φ2(v′),
v <BK v′ iff φ2(v) <BK φ2(v), where the ordering of subcoordinates De

r,x,i is
according to ≺. Let

T = (1T, 2T )

where 1T = Z1, 2T is a level-2 tree, dom(2T ) = Z2,

2T [φ2((De
r,x,i, δ

e
r,x,i)i<lh(~sr,x)−1)_(−1)] = (Sx,r, ~sx,r) for x ∈ De

r,
2T [φ2((De

r,x,i, δ
e
r,x,i)i<lh(~sr,x)−1)] = (Sx,r, ~sx,r) for x ∈ Ee

r .

Let
~δ = (cδt)(c,t)∈dom(T )

where 1δt = (φ1)−1(t), 2δ∅ = ω1, 2δt = δer,x,l where t = φ2((De
r,x,i, δ

e
r,x,i)i≤l). For

r ∈ dom(R), let
ρ(r) = (yr, πr)

where πr factors (Xr, T,Qr), defined as follows:

πr(e, x) =


(1, φ1(γer,x), ∅) if x ∈ Be

r ,

(2, (φ2((De
r,x,i, δ

e
r,x,i)i<lh(~sr,x)−1)_(−1), Ser,x, ~s

e
r,x), τ

e
r,x) if x ∈ De

r,

(2, (φ2((De
r,x,i, δ

e
r,x,i)i<lh(~sr,x)−1), Ser,x, ~s

e
r,x), τ

e
r,x) if x ∈ Ee

r .

It is easy to check that (T, ρ, ~δ) works for the lemma.

Put J∅KR = o.t.(<R). For r = (r,Q,
−−−−−→
(d, q, P )) ∈ desc∗(R), put

JrKR = [~β 7→ ‖~β ⊕R r‖<R ]µQ .

If r ∈ desc(R) is of discontinuous type, put JrKR = JrKR. Note that if ρ
factors Π1

3-wellfounded trees (R, Y ), then JrKR ≤ Jρ(r)KY for any r ∈ dom(R).
We say that ρ minimally factors (R, Y ) iff ρ factors (R, Y ), R, Y are both
Π1

3-wellfounded and JrKR = Jρ(r)KY for any r ∈ dom(R). In particular, if
Y is Π1

3-wellfounded and T is Π1
2-wellfounded, then idY,∗ minimally factors

(Y, Y ⊗ T ). In the assumption of Lemma 4.67, if R, Y are Π1
3-wellfounded

and ran(θ) is a <Y -initial segment of rep(Y ), its proof constructs ρ which
minimally factors (R, Y ⊗ T ). This entails the comparison theorem between
Π1

3-wellfounded trees.
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Theorem 4.71. Suppose R, Y are Π1
3-wellfounded level-3 trees and J∅KR ≤

J∅KY . Then there exists (T, ρ) such that T is Π1
2-wellfounded and ρ minimally

factors (R, Y ⊗ T ). Furthermore, if J∅KR < J∅KY , we further obtain B ∈
dom(Y ⊗ T ) such that lh(B) = 1 and J∅KR = JBKY⊗T .

4.9 Representations of ordinals in δ1
3

We introduce a coding system for ordinals in δ1
3 which is the higher level

analog of WO. The coding system is guided by Corollary 2.12. Identifying
uω with (Vω ∪ uω)<ω, we shall assume X is a ∆1

3 subset of R × (Vω ∪ uω)<ω

so that the map v 7→ Xv is a surjection from R onto P((Vω ∪ uω)<ω).

For a finite level-3 tree R and a tuple ~β ⊕R t ∈ rep(R), put

v ∈ LOR
~β⊕Rt

iff for each ~γ ⊕R s ≤R ~β ⊕R t,

(Xv)~γ⊕Rs =DEF {(ξ, η) : (v,~γ ⊕R s, ξ, η) ∈ Xv}

is a linear ordering on uω. Put

v ∈ LOR

iff v ∈ LOR
~β⊕Rt

for all ~β ⊕R t ∈ rep(R). The relations “v ∈ LOR
~β⊕Rt

” and

“v ∈ LOR” are ∆1
3. Put

v ∈WOR↑
~β⊕Rt

iff for each ~γ ⊕R s ≤R ~β ⊕R t, (Xv)~γ⊕Rs is a wellordering on uω, and the map

~γ⊕R s 7→ o.t.((Xv)~γ⊕Rs) is continuous, order preserving for ~γ⊕R s ≤R ~β⊕R t.
Put

v ∈WOR↑

iff v ∈ WOR↑
~β⊕Rt

for all ~β ⊕R t ∈ rep(R). The relations “v ∈ WOR↑
~β⊕Rt

” and

“R is a finite level-3 tree ∧ v ∈WOR↑” are Π1
3. If (Xv)~β⊕Rt is a wellordering

on uω, its order type is denoted by ‖v‖~β⊕Rt. A member v ∈ WOR↑ codes a

tuple of ordinals [v]R that respects R:

[v]R = [~β ⊕R t 7→ ‖v‖~β⊕Rt]
R.

Clearly, if v ∈ WOR↑, then [v]R ∈ Lκv,R3
[T2, v, R] and is ∆1-definable in

Lκv,R3
[T2, v, R] from {T2, v, R}. Put [v]R = ([v]Rt )t∈dom(R). So [v]Rt = [~β 7→

‖v‖R~β⊕Rt]µRtree(t) .
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Observe the simple fact that for any finite level-1 tree W , for any ~α =
(αw)w∈W respecting W , there is a Π1

1-wellfounded level-1 tree W ′ extending
W such that αw = ‖(w)‖<W ′ for any w ∈ W . Intuitively, W ′ “represents” ~α

in the sense that ~α extends to a tuple ~α′ respecting W ′ and if ~β respects W ′,
then ∀w ∈ W αw ≤ βw. It is implicitly used in proving that 0# is the unique
wellfounded remarkable EM blueprint. Likewise, its higher level analog will
be an ingredient in the level-3 EM blueprint formulation of 03#. The goal
of the remaining of this section is to prove Lemma 4.79, which states that
every ~γ respecting a finite level-3 tree R is “representable”. Lemma 4.79 will
essentially be a strengthening of [13, Theorem 5.3].

The next lemma is an easy corollary of Lemma 3.18. In its statement,
(T,~γ) is the “amalgamation” of (Q, ~β) and (Q′, ~β′).

Lemma 4.72. Suppose Q,Q′ are level ≤ 2 trees, ~β = (dβq)(d,q)∈dom(Q) respects

Q, ~β′ = (dβ′q)(d,q)∈dom(Q′) respects Q′. Then there are a level ≤ 2 tree T , a
tuple ~γ = (dγt)(d,t)∈dom(T ) and maps π, π′ factoring (Q, T ), (Q′, T ) respectively
such that dom(T ) = ran(π) ∪ ran(π′), dγdπ(q) = dβq for any (d, q) ∈ dom(Q),
dγdπ′(q) = dβ′q for any (d, q) ∈ dom(Q′).

Amalgamation of level-3 trees is similar, using Lemma 4.46 instead.

Lemma 4.73. Suppose R,R′ are level-3 trees, ~γ = (γr)r∈dom(R) respects R,

~γ′ = (γ′r)r∈dom(R′) respects R′. Then there are a level-3 tree Y , a tuple ~δ =
(δy)y∈dom(Y ) and maps ρ, ρ′ factoring (R, Y ), (R′, Y ) respectively such that
dom(Y ) = ran(ρ) ∪ ran(ρ′), δρ(r) = γr for any r ∈ dom(R), δρ′(r) = γ′r for
any r ∈ dom(R′).

Lemma 4.74. For any a ∈ ω<ω, {J2, (a)KQ : Q is a Π1
2-wellfounded level ≤ 2

tree, (a) ∈ dom(Q)} is a cofinal subset of u2.

Proof. Note that u2 = δ1
2 is the sup of ranks of Σ1

2 wellfounded relations
on R. Given <∗, a Σ1

2 wellfounded on R, we need to find a Π1
2-wellfounded

level ≤ 2 tree Q such that rank(<∗) ≤ J2, ((0))KQ. This suffices for the
Lemma by rearranging the nodes in a level ≤ 2 tree in a suitable way. Put
x <∗ x′ ↔ ∃y x ⊕ x′ ⊕ y ∈ A, where A is Π1

1. Let (Ps)s∈ω<ω be a regular
level-1 system such that Px⊕x′⊕y is Π1

1-wellfounded iff x⊕ x′⊕ y ∈ A. Fix an
effective bijection φ : ω<ω ↔ (ω<ω)<ω. If (Wn)n<ω is a sequence of nonempty
level-1 trees, their join is ⊕n<ωWn = {(n)_w : w ∈ Wn}. Let Q∗ be an
infinite level-2 tree whose domain is {((0))_q : q ∈ (ω<ω)<ω}, and for any
real v, ∪n<ωQ∗tree(((0))_φ(v � n)) = ⊕n<ωP(v)2n+2⊕(v)2n⊕(v)2n+1 . Then Q∗ is
Π1

2-wellfounded. Let Q = (∅, Q∗). The proof of Kunen-Martin shows that
rank(<∗) ≤ J2, ((0))KQ.
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Lemma 4.75. Suppose Q is a Π1
2-wellfounded level ≤ 2 tree, q∗ ∈ dom(2Q),

P ∗ is the completion of 2Q(q∗). Then {J2, q′KQ′ : Q′ is Π1
2-wellfounded,

J2, q∗KQ = J2, (q′)−KQ′, 2Q′tree(q
′) = P ∗} is a cofinal subset of j

2Qtree(q∗),P ∗(J2, q∗KQ).

Proof. If q∗ = ∅, we are reduced to Lemma 4.74. Suppose now q∗ 6= ∅. Put
2Q(q∗) = (P−, p∗), so P ∗ is the completion of (P−, p∗).

Let p∗∗ = pred≺P∗ (p
∗). By remarkability of the level-1 sharps, letting

f(β) = [~α 7→ ‖(2, ~α � P−_g(αp∗) ⊕2Q q
∗_(−1))‖<Q ]µP− for β = [g]µL < u2,

then sup f ′′u2 = jP
−,P ∗(J2, q∗KQ). Fix β = [g]µL < u2, and we try to find

Q′, q′ such that 2Q′[(q′)−] = 2Q[q∗], 2Q′tree(q
′) = P ∗, and f(β) < J2, q′KQ′ .

Let U be a Π1
2-wellfounded level ≤ 2 tree obtained by Lemma 4.74 such that

β < J2, ((0))KU . Let (X, π) be a representation of Q⊗U , and let θ : rep(X)→
rep(Q) be the order preserving bijection. Let C = (2,q, τ) ∈ desc(Q,U, ∗),
where q = (q∗_(−1), P ∗, ~p), τ extends id∗,P− , τ(p∗) = (2, ((0), {(0)}, ((0))), σ),
σ((0)) = p∗∗. Let (2, x) = π−1(C). Then for µP -a.e. ~α, θ(2, ~α ⊕2X x) =
(2, ~α�P−_(g(αp∗))⊕2Qq

∗_(−1)). Therefore, J2, xKQ = f(J2, ((0))KU) > f(β).
(X, x) plays the role of the desired (Q′, q′).

Suppose Q is a level ≤ 2 tree and ~ε = (dεt)(d,t)∈dom(Q) is a tuple of ordinals
indexed by dom(Q). We say that ~ε is represented by Q′ iff Q is a subtree of
Q′, Q′ is Π1

2-wellfounded and ~ε = (Jd, tKQ′)(d,t)∈dom(Q′).

Lemma 4.76. Suppose Q is a finite level ≤ 2 tree and ~β = (dβq)(d,q)∈dom(Q)

respects Q. Then ~β is represented by some level ≤ 2 tree Q′.

Proof. By rearranging the nodes in dom(Q′) in a suitable way, it suffices to
produce a level ≤ 2 tree Q′ and a map π factoring (Q,Q′) such that for any
(d, q) ∈ dom(Q), dβq = Jπ(d, q)KQ′ . By a repeated application of Lemma 4.72,
it suffices to show that for any (d∗, q∗_(a)) ∈ dom(Q),

1. if d∗ = 1, then there is a Π1
2-wellfounded level ≤ 2 tree Q′ and q′ ∈ 1Q′

such that 1βq∗_(a) = J1, q′KQ′ .

2. if d∗ = 2 and P ∗ = 2Qtree(q
∗_(a)), then there is a Π1

2-wellfounded
level ≤ 2 tree Q′ and q′ ∈ dom(2Q′) such that 2βq∗_(a) = J2, q′KQ′ ,
2Q′[(q′)−] = 2Q[q∗], 2Q′tree(q

′) = P ∗.

The case d∗ = 1 is obvious. We assume now d∗ = 2.
Lemma 4.75 gives us a Π1

2-wellfounded level ≤ 2 tree T and t ∈ dom(2T )
such that J2, tKT ≥ 2βq∗_(a),

2T [t−] = 2Q[q∗], 2Ttree(t) = P ∗. Minimizing
J2, tKT , we may further assume that for any Π1

2-wellfounded T ′ and any t′

such that J2, t′KT ′ ≥ 2βq∗_(a),
2T ′[(t′)−] = 2Q[q∗], 2T ′tree(t

′) = P ∗, we have
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J2, t′KT ′ ≥ J2, q∗_(a)KT . We claim that J2, tKT = 2βq∗_(a). Suppose otherwise.
Put p∗ = 2Tnode(t).

Case 1: cfT (2, t) = 0.
If 2T{t,−} has a <BK-maximum t′, then J2, tKT = J2, t′KT + ω. So

2βq∗_(a) ≤ J2, t′KT < J2, tKT , contradicting the minimization assumption.
If 2T{t,−} has <BK-limit order type, then J2, tKT = sup{J2, t′KT : t′ ∈
2T{t,−}}, so there is t′ satisfying 2βq∗_(a) ≤ J2, t′KT < J2, tKT , contradiction
again.

Case 2: cfT (2, t) = 1.
For β = ω1, put f(β) = [~α 7→ ‖(2, ~α_(β) ⊕2T t

_(−1))‖<T ]µP∗ . Then
J2, tKT = sup{f(β) : β < ω1}. For each limit β < ω1, we shall find a
Π1

2-wellfounded T ′ and a node t′ such that J2, t′KT ′ = f(β), 2T ′[(t′)−] =
2Q[q∗], 2T ′tree(t

′) = P ∗, contradicting to the minimization assumption. Fix
a limit ordinal β < ω1. Let U be a Π1

2-wellfounded level ≤ 2 tree such
that J1, (0)KU = β. Let (X, π) be a representation of T ⊗ U and let θ :
rep(X) → rep(T ) be the order preserving bijection. Let C = (2, t, τ) ∈
desc(T, U, ∗), t = (t_(−1), S, ~s), τ extends id∗,S, τ(slh(~s)−1) = (1, (0), ∅). Let
(2, x) = π−1(C). Then for µP

∗
-a.e. ~α, θ(2, ~α⊕2X x) = (2, ~α_(β)⊕2T t

_(−1)).
Therefore, J2, xKX = f(β). (X, x) plays the role of the desired (T ′, t′).

Case 3: cfT (2, t) = 2.
Let p∗∗ be the <BK�P ∗ ∪ {p∗}-predecessor of p∗. For β = [g]µL < u2, put

f(β) = [~α 7→ ‖(2, ~α_g(αp∗∗)⊕2T t
_(−1))‖<T ]µP∗ . Then J2, tKT = sup{f(β) :

β < u2}. For each limit ω1 < β < u2, we shall find a Π1
2-wellfounded T ′ and

a node t′ such that J2, t′KT ′ = f(β), 2T ′[(t′)−] = 2Q[q∗], 2T ′tree(t
′) = P ∗. Fix

a limit ordinal ω1 < β < u2. By Case 1 and Case 2 of this lemma applied
to (2, ((0))) in place of (d∗, q∗_(a)), we can find a Π1

2-wellfounded level ≤ 2
tree U such that J2, (0)KU = β. Let (X, π) be a representation of T ⊗ U and
let θ : rep(X)→ rep(T ) be the order preserving bijection. Let C = (2, t, τ),
t = (t_(−1), S, ~s), τ extends id∗,S, τ(slh(~s)−1) = (2, ((0), {(0)}, ((0))), σ),
σ((0)) = p∗∗. Let (2, x) = π−1(C). (X, x) plays the role of the desired
(T ′, t′).

The level-3 version of Lemmas 4.74-4.76 are similarly proved.

Lemma 4.77. For any a ∈ ω<ω, {J(a)KR : R is a Π1
3-wellfounded level-3

tree, (a) ∈ dom(R)} is a cofinal subset of δ1
3.

Proof. It is possible to imitate the proof of Lemma 4.74. We give an alter-
native proof using the prewellordering property of the pointclass Π1

3. Let G
be a good universal Π1

3-set and let (Rs)s∈ω<ω be an effective level-3 system
satisfying x ∈ G iff Rx =DEF ∪n<ωRx�n is Π1

3-wellfounded. G is equipped
with the Π1

3-norm ϕ(x) = J∅KRx , the complexity from Theorem 2.1. By
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Moschovakis [36, 4C.14], o.t.(ran(ϕ)) = δ1
3. The rest of the proof is sim-

ple.

Lemma 4.78. Suppose R is a Π1
3-wellfounded level-3 tree, r∗ ∈ dom(R), Q∗

is a completion of R(r∗). Then {Jr′KR′ : R′ is Π1
3-wellfounded, R′[(r′)−] =

R[r∗], R′tree(r
′) = Q∗} is a cofinal subset of jRtree(r∗),Q∗(Jr∗KR).

Proof. Put R(r∗) = (Q−, (d∗, q∗, P ∗)), R[r∗] = (Q−,
−−−−−→
(d, q, P )).

Case 1: cf(R(r∗)) = 1.

By Lemma 4.31, letting f(ξ) = [~β 7→ ‖~β_(ξ) ⊕R r∗‖<R ]µQ− for ξ < ω1,

then sup f ′′ω1 = jQ
−,Q∗(Jr∗KR). Fix β < ω1, and we try to find R′ and

r′ such that R′[(r′)−] = R[r∗], R′(r′) = Q∗, and f(β) < Jr′KR′ . Let U be
a Π1

2-wellfounded level ≤ 2 tree such that β < J1, (0)KU . Let (Z, ρ) be a
representation of R⊗U , and let θ : rep(Z)→ rep(U) be the order preserving

bijection. Let B = (r, π) ∈ desc(R,U, ∗), where r = (r∗_(−1), Q∗,
−−−−−→
(d, q, P )),

π extends id∗,Q− , π(d∗, q∗) = (1, (0), ∅). Let z = ρ−1(B). Similarly to Case 1
of the proof of Lemma 4.75, (Z, z) plays the role of the desired (R′, r′).

Case 2: cf(R(r∗)) = 2.
Put E = (e, z, idP ∗) = ucf−(R(r∗)). By Lemma 4.31, letting f(ξ) =

[~β 7→ ‖~β_(jP
∗
(g)(eβz)) ⊕R r∗‖<R ]µQ− for ξ = [g]µL < u2, then sup f ′′u2 =

jQ
−,Q∗(Jr∗KR). Fix β < u2 and we try to find R′, r′ as in Case 1. Let U

be a Π1
2-wellfounded level ≤ 2 tree such that β < J2, (0)KU , obtained by

Lemma 4.74. Let (Z, ρ, θ) be as in Case 1. Let B = (r, π) ∈ desc(R,U, ∗),
where r = (r∗_(−1), Q∗,

−−−−−→
(d, q, P )), π extends id∗,Q− , π(d∗, q∗) = (2, ((0), {(0)}, ((0))), τ),

τ(0) = E. Let z = ρ−1(B). (Z, z) plays the role of the desired (R′, r′).

Lemma 4.79. Suppose R is a finite level-3 tree and ~γ = (γr)r∈dom(R) respects
R. Then there is a Π1

3-wellfounded level-3 tree R′ such that R ⊆ R′ and for
any r ∈ dom(R), γr = JrKR′.

Proof. It suffices to produce a level-3 tree R′ and a map ρ factoring (R,R′)
such that for any r ∈ dom(R), γr = JrKR′ . By Lemma 4.73, it suffices to
show that for any r∗_(a) ∈ dom(R), letting Q∗ = Rtree(r

∗_(a)), there is
a Π1

3-wellfounded level-3 tree R′ and r′ ∈ dom(R′) such that γr = Jr′KR′ ,
R′[(r′)−] = R[r∗], Rtree(r

′) = Q∗.
Lemma 4.75 gives us a Π1

3-wellfounded level-3 tree Y and y ∈ dom(Y )
such that JyKY ≥ γr∗_(a), Y [y−] = R[r∗], Ytree(y) = Q∗. Minimizing JyKY ,
we may further assume that for any Π1

2-wellfounded Y ′ and any y′ such
that Jy′KY ′ ≥ γr∗_(a), Y

′[(y′)−] = R[r∗], Y ′tree(y
′) = Q∗, we have Jy′KT ′ ≥

Jr∗_(a)KY . We claim that JtKY = γr∗_(a). Suppose otherwise. Put Y (y) =
(Q∗, (d∗, q∗, P ∗)).
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Case 1: cf(Y (y)) = 0.
Argue as in Case 1 in the proof of Lemma 4.76 to obtain a contradiction.
Case 2: cf(Y (y)) = 1.
For β < ω1, put f(β) = [~α 7→ ‖~α_(β) ⊕2Q∗ y

_(−1)‖<Y ]µQ∗ . So JtKY =
sup{f(β) : β < ω1}. For each limit ordinal β < ω1, we shall find a Π1

3-
wellfounded Y ′ and a node y′ ∈ dom(Y ′) such that Jy′KY ′ = f(β), contra-
dicting to the minimization assumption. Fix a limit ordinal β < ω1. Let U
be a Π1

2-wellfounded level ≤ 2 tree such that J1, (0)KU = β. Let (Z, ρ) be a
representation of Y ⊗U and let θ : rep(Z)→ rep(Y ) be the order preserving

bijection. Let B = (y, π) ∈ desc(Y, U, ∗), y = (y_(−1), X,
−−−−−→
(e, x,W )), π ex-

tends id∗,X , π(elh(~x), xlh(~x)) = (1, (0), ∅). Let z = ρ−1(B). Similarly to Case 2
of the proof of Lemma 4.76, (Z, z) constitutes a counterexample.

Case 3: cf(Y (y)) = 2.
Let E = (e, z, idP ∗) = ucf−(Y (y)). For β = [g]µL < u2, put f(β) = [~α 7→

‖~α_jP ∗(g)(eαz) ⊕2Q∗ y
_(−1)‖<Y ]µQ∗ . So JtKY = sup{f(β) : β < u2}. For

each limit ordinal ω1 < β < u2, we shall find a Π1
3-wellfounded Y ′ and a

node y′ ∈ dom(Y ′) such that Jy′KY ′ = f(β). Let U be a Π1
2-wellfounded level

≤ 2 tree such that J2, ((0))KU = β. Let Z, ρ, θ be as in Case 2. Let B =

(y, π), where y = (y_(−1), X,
−−−−−→
(e, x,W )), π extends id∗,X , π(elh(~x), xlh(~x)) =

(2, ((0), {(0)}, ((0))), τ), τ((0)) = E. Let z = ρ−1(B). Similarly to Case 3 of
the proof of Lemma 4.76, (Z, z) constitutes a counterexample.

5 The lightface level-3 sharp

Sections 5.1-5.3 defines a Π1
4 singleton 03# which is many-one equivalent to

M#
2 , under boldface Π1

3-determinacy. The assumption of Π1
3-determinacy

is very likely not optimal. Section 5.4 formulates the existence of 03# as a
purely syntactical large cardinal axiom based on the weaker assumption of
∆1

2-determinacy.
Recall that L[T3] =

⋃
x∈R L[T3, x], Lδ1

3
[T3] =

⋃
x∈R Lδ1

3
[T3, x]. By Steel,

Lδ1
3
[T3] = Vδ1

3
∩ L[T3].

Lemma 5.1. Assume Π1
3-determinacy.

1. Lδ1
3
[T2] = Lδ1

3
[T3].

2. Every subset of δ1
3 in Lδ1

3
[T3] is definable over M−

2,∞(x) from {x} for
some x ∈ R.

Proof. 1. T2 is a ∆1
3 subset of uω, and of course a Σ1

4 subset of δ1
3, and hence

T2 ∈ L[T3] by Becker-Kechris [3]. This gives the ⊆ inclusion.

105



If A ∈ Lδ1
3
[T3, x], by Theorem 2.18, there must be ξ < δ1

3 such that
A ∈ Lξ[T3 � ξ, x]. Pick y ≥T x such that κy3 > ξ. Then A ∈ Lκy3 [T2, y] by
Lemma 4.37. This gives the ⊇ inclusion.

2. By Theorem 2.18, every subset of δ1
3 in Lδ1

3
[T3] is in M#

2,∞(x) for some

x ∈ R. If A ⊆ δ1
3 is definable over M#

2,∞(x) from {γ, x}, γ < δ1
3, letting

y ≥T M#
2 (x) such that γ is definable over Lκy3 [T2, y], then A is definable over

M−
2,∞(y) from {y}.

Caution that Lemma 5.1 does not give a real x for which T3 ∈ L[T2, x].
Lκx3 [T2, x] computes a proper initial segment of T3, and by varying x, these
proper initial segments are cofinal in T3. However, there is not a single x
with T3 ∈ L[T2, x].

5.1 Level-3 boundedness

Recall in Corollary 2.10 that the rank of a Σ1
3(<uω, x) wellfounded relation is

bounded by κx3 . We would like to strengthen this fact by allowing a suitable
code for an arbitrary ordinal in δ1

3. The strengthening is based on an inner
model theoretic characterization of uω in L[T3, x]. We say that

δ is an L-Woodin cardinal

iff L(Vδ) |= δ is Woodin.

Theorem 5.2 (Woodin, [41, Theorem 3.21]). Assume Π1
3-determinacy. Let

κ = uω. For x ∈ R, M−
2,∞(x) |= κ is the least L-Woodin cardinal.

Corollary 5.3 (Level-3 boundedness). Assume Π1
3-determinacy. Suppose

x ∈ R, N ∈ F2,x, η is a cardinal and strong cutpoint of N , ξ = πN ,∞(η).
Suppose g is Coll(ω, η)-generic over N , r ∈ R ∩ N [g]. Let λ be the least L-
Woodin cardinal in M−

2,∞(x) above ξ. Suppose G is a Π1
3(r,<uω) set equipped

with a regular Π1
3(r,<uω) norm ϕ. Suppose A is a Σ1

3(r,<uω) subset of G.
Then

sup{ϕ(y) : y ∈ A} < (λ+)M2,∞(x).

Proof. Put x = 0 for simplicity. Put

GN ,η2 = {P ∈ F2 : P is a nondropping iterate of N above η}.

GN ,η2 is a subsystem of F2. Let MN ,η,#
2,∞ be the direct limit of GN ,η2 . The

inclusion map of direct systems induces an embedding between direct limits

πN ,ηx : MN ,η,#
2,∞ →M#

2,∞.
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Let rg ∈ R be the real coding (g,N|η). Every mouse P ∈ GN ,η2 corresponds
to an rg-mouse P [g] ∈ F2,rg (converted into an rg-mouse in the obvious way,
cf. [42]). So in the direct limit,

MN ,η,#
2,∞ [g] = M#

2,∞(rg).

By Corollary 2.10,
sup{ϕ(y) : y ∈ A} < κr3,

which in turn is smaller than the successor of uω in M#
2,∞(rg), as {T2, r} ∈

M#
2,∞(rg). By Theorem 5.2, uω is the least L-Woodin cardinal of M#

2,∞(rg),

hence the least L-Woodin cardinal of MN ,η,#
2,∞ above η. By elementarity,

πN ,ηx (uω) = λ. So πN ,ηx (κr3) < (λ+)M2,∞ . This finishes the proof.

We also need to code ordinals in δ1
3 by direct limits of iterations of Π1

3-
iterable mice. Suppose x ∈ R and z codes a Π1

3-iterable x-mouse Pz. Then

πPz ,∞ : Pz → (Pz)∞

is the direct limit map of all the nondropping iterates of Pz. o((Pz)∞) is the
length of a ∆1

3(z)-prewellordering, namely the one induced by iterations of
Pz. By Corollary 2.15, πPz ,∞ and (Pz)∞ are both in L

κ
M

#
1 (z)

3

[T2,M
#
1 (z)] and

∆1-definable over L
κ
M

#
1 (z)

3

[T2,M
#
1 (z)] from {T2,M

#
1 (z)}.

5.2 Putative level-3 indiscernibles

The higher level analog of the type of L with n indiscernibles is the type
of M−

2,∞ realized by an appropriate [F ]R, where F ∈ (δ1
3)R↑. Such functions

F are coded by subsets of uω in Lδ1
3
[T2]. The coding system is provided by

Corollary 2.12.
L = {∈} is the language of set theory. For a level-3 tree R, LR is the

expansion of L which consists of additional constant symbols cr for each
r ∈ dom(R). For a level-3 tree R and a tuple of ordinals ~γ = (γr)r∈dom(R),
the L-structure M−

2,∞ expands to the LR-structure

(M−
2,∞;~γ)

whose constant cr is interpreted as γr.

Definition 5.4. C ⊆ δ1
3 is said to be firm iff every member of C is additively

closed, the set {ξ : ξ = o.t.(C ∩ ξ)} has order type δ1
3 and C ∩ ξ ∈ Lδ1

3
[T2] for

all ξ < δ1
3.
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Definition 5.5. C ⊆ δ1
3 is called a set of potential level-3 indiscernibles for

M−
2,∞ iff for any level-3 tree R, for any F,G ∈ CR↑ ∩ Lδ1

3
[T2],

(M−
2,∞; [F ]R) ≡ (M−

2,∞; [G]R).

A firm set of potential level-3 indiscernibles for M−
2,∞ is the higher level

analog of a set of order indiscernibles for L. Note that the successor elements
of C don’t really play a part in computing [F ]R = ([Fr]µRtree(r))r∈dom(R), as the

relevant ultrapowers µRtree(r) concentrate on tuples of limit ordinals, hence
the prefix “potential”.

Lemma 5.6. Assume Π1
3-determinacy. Then there is a firm set of potential

level-3 indiscernibles for M−
2,∞.

Proof. Suppose R is a finite level-3 tree. Let ϕ be an LR-sentence. Consider
the game GR;ϕ where I produces reals v, x, c and a natural number p, II pro-
duces reals v′, x′, c′ and a natural number p′. The payoff is decided according
to the following priority list:

1. I and II must take turns to ensure that v ∈ WOR↑ and v′ ∈ WOR↑.
If one of them fails to do so, and w ∈ rep(R) is <R-least for which
v /∈ WOR↑

w ∨ v′ /∈ WOR↑
w , then I loses iff v /∈ WOR↑

w , and II loses iff
v ∈WOR↑

w .

2. If 1 is satisfied, put ~γ = (γr)r∈dom(R), where γr = max([v]Rr , [v
′]Rr ). I

must ensure

(a) x codes a 2-small premouse Px which satisfies “I am closed under
the M#

1 -operator”;

(b) c codes a strictly increasing, cofinal-in-o(Px) sequence of ordinals
(cn)n<ω relative to x such that each cn is a cardinal cutpoint of
Px;

(c) Px|c1 is a Π1
3-iterable mouse;

(d) p codes a tuple of ordinals ~α = (αr)r∈dom(R) in Px|c0 relative to x;

(e) For each r ∈ dom(R), πPx|c0,∞(αr) = γr;

(f) (Px; ~α) |= ϕ.

Otherwise he loses.

3. If 1-2 are satisfied, II must ensure 2(a)-(f) with (x, c, (cn)n<ω, p, ~α, ϕ)
replaced by (x′, c′, (c′n)n<ω, p

′, ~α′,¬ϕ), otherwise he loses.
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4. If 1-3 are satisfied, I and II must take turns to ensure for all 2 ≤ n < ω,

(a) Px|cn is a Π1
3-iterable mouse and Px′|c′n−1 <DJ Px|cn;

(b) Px′|c′n is a Π1
3-iterable mouse and Px|cn <DJ Px′ |c′n.

If one of them fails to do so, and n is least for which (a) or (b) fails at
n, then I loses iff (a) fails at n, and II loses iff (a) holds at n.

5. It is impossible that both players obey all the rules, due to a successful
comparison between Px and Px′ . The definition of GR;ϕ is finished.

The payoff of GR;ϕ has complexity (J∅KR + ω)-Π1
3 for both players. The

nontrivial part about the complexity is that 2(e) is ∆1
3, shown as follows.

According to rules 2(a)-(c), Px|c1 is Π1
3-iterable and closed under the (gen-

uine) M#
1 -operator, c0 < c1, and therefore M#

1 (Px|c0) is canonically coded
in x. πPx|c0,∞(αs) is the length of a ∆1

3(Px|c0) prewellordering, induced by it-
erations. By Corollary 2.15, πPx|c0,∞(αs) is ∆1-definable over Lκx3 [T2, x] from
{T2, x}. ~γ is clearly ∆1-definable over Lκv3 [T2, v] from {T2, v}. So 2(e) is
expressed into a ∆1 statement over Lκv,x3

[T2, v, x] from {T2, v, x, c}, or equiv-
alently, ∆1

3(v, x, c) by Theorem 2.1.
Hence GR;ϕ is determined. Suppose for definiteness II has a winning

strategy σ in GR;ϕ. Let C be the set of L-Woodin cardinal cutpoints of
M−

2,∞(σ) and their limits. We show that

∀F ∈ CR↑ (M−
2,∞; [F ]R) |= ¬ϕ

Suppose towards a contradiction that F ∈ CR↑ but (M−
2,∞; [F ]R) |= ϕ. As δ1

3

is inaccessible in M#
2,∞, there is a club D ∈M#

2,∞ in δ1
3 so that M−

2,∞|λ ≺M−
2,∞

for any λ ∈ D. There is thus a continuous, order preserving G : ω + 1 →
C \ sup ran(F ) for which (M−

2,∞|G(ω); [F ]R) |= ϕ. Pick P ∈ F2 and ordinals
(cn)n<ω, (αr)r∈dom(R) in P such that πP,∞(cn) = G(n) for any n < ω and
πP,∞(αr) = [F ]Rr for any r ∈ dom(R). Thus, (P| supn<ω cn; ~α) |= ϕ. Let
Player I play (v, x, c, p), where v ∈WOR↑, ‖v‖Rw = F (w) for any w ∈ rep(R),
x codes P| supn<ω cn, c codes (cn)n<ω relative to x, p codes (αr)r∈dom(R). The
response according to σ is denoted by (v′, x′, c′, p′) = (v, x, c, p) ∗ σ. We
shall derive a contraction by showing neither player breaks the rules, using
Σ1

3-boundedness.
As σ is a winning strategy, Player II is not the first person to break the

rules. So v ∈WOR↑ implies v′ ∈WOR↑. For each w ∈ rep(R) which is either
the <R-minimum or a <R-successor, if N ∈ F2,σ, η ∈ N , πN ,∞(η) = F (w),
g is Coll(ω, η)-generic over N , rg ∈ R being the real coding (g,N|η), then
(v′, x′, c′, p′) belongs to the set

Aw = {(v̄, x̄, c̄, p̄) ∗ σ : v̄ ∈WOR↑
w �ξ}
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which is Σ1
3(M#

1 (rg), <uω) by Corollary 2.15 and Theorem 2.1. Since σ is a
winning strategy, Aw is a subset of

Bw = {(v̄′, x̄′, c̄′, p̄′) : v̄′ ∈WOR↑
w }

Bw is a Π1
3(<uω) set, equipped with the Π1

3(<uω) prewellordering (v̄′, x̄′, c̄′, p̄′) 7→
‖v̄′‖Rw. By Corollary 5.3, ‖v′‖Rw < min(C \ (F (w) + 1)). By continuity, if w
has <R-limit order type, then ‖v′‖Rw ≤ ‖v‖Rw. Consequently, for r ∈ dom(R),
[v′]Rr ≤ [v]Rr , so if ~γ is defined from v, v′ as in Rule 2, then γr = [v]Rr .

By our choice of F andG, Rule 2 is satisfied. Let Px, (cn)n<ω, ~α,Px′ , (c′n)n<ω, ~α
′

be defined as in Rules 2 and 3. For each 1 ≤ n < ω, using the Π1
3-

prewellordering on codes of Π1
3-iterable mice, a similar boundedness argument

shows that ‖Px′|c′n‖<DJ < min(C\(G(n)+1)), and hence Px′|c′n <DJ Px|cn+1.
So Rule 4 is satisfied. This is impossible.

Definition 5.7. Assume Π1
3-determinacy. Let C be a firm set of potential

level-3 indiscernibles for M−
2,∞. Then

03#

is a map sending a level-3 tree R to the complete consistent LR-theory
03#(R), where pϕq ∈ 03#(R) iff ϕ is an LR-formula and for all ~γ ∈ [C]R↑,

(M−
2,∞;~γ) |= ϕ.

03# is the higher level analog of 0#. Each individual 03#(R) is the higher
level analog of the n-type that is realized in L by n indiscernibles. As with
the level-1 sharps, we shall give a Π1

4 axiomatization of 03# in Section 5.4.
The proof of Lemma 5.6 shows

Lemma 5.8. Assume Π1
3-determinacy. For a finite level-3 tree R, 03#(R)

is a a(J∅KR + ω)-Π1
3) real.

In fact, the complexity of 03#(R) relies only on J∅KR.

Lemma 5.9. If Q is a finite level ≤ 2 tree, then jQ(M−
2,∞), jQ �M−

2,∞ are
definable over M−

2,∞, uniformly in Q. If X is another finite level ≤ 2 trees
and π factors (X,Q), then πQ � jX(M−

2,∞) is definable over M−
2,∞, uniformly

in (π,X,Q).

Proof. By Theorem 2.18, jQ(M−
2,∞) = L[jQ(T3)], and every Σ1

4 subset of δ1
3

is definable over M−
2,∞. It suffices to show that jQ(T3), jQ �δ1

3, πQ �δ1
3 are all

Σ1
4 in the codes.
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Let G be a good universal Π1
3 set and let ϕ : G → δ1

3 be a regular Π1
3

norm. Then x ∈ G ∧ y ∈ G ∧ jQ(ϕ(x)) = ϕ(y) iff there exists z ∈ R such
that z = M#

1 (x, y) and Lκz3 [T2, z] |= jQ(ϕ(x)) = ϕ(y). Here, the statement
jQ(ϕ(x)) = ϕ(y) is ∆1 over Lκz3 [T2, z] from {T2, z} by Corollary 2.15 and
Lemma 4.37. Similarly, using Lemma 4.35, πQ � κx3 and jQ(T3) � κx3 are ∆1-
definable over Lκx3 [T2, x] from {T2, x}, uniformly in x. So πQ �δ1

3 and jQ(T3)
are Σ1

4 using similar arguments.

Based on Theorem 2.18 and Σ1
4-absoluteness of iterates of M#

2 , a Σ1
4 set

A ⊆ δ1
3 has the following alternative definition: α ∈ A iff M−

2,∞ satisfies that

for any ξ > α cardinal cutpoint, in the Coll(ω, ξ)-generic exten-
sion, πK|ξ,∞(α) ∈ A.

We introduce the following informal symbols arising from the proof of
Lemma 5.9 that will occur in L-formulas or LR-formulas for a level-3 tree R:

1. If Q is a finite level ≤ 2 tree, jQ is the informal symbol so that jQ(a) = b
iff for any ξ cardinal cutpoint such that {a, b} ∈ K|ξ, the Coll(ω, ξ)-
generic extension satisfies jQ(πK|ξ,∞(a)) = πK|ξ,∞(b).

2. If π factors finite level ≤ 2 trees (X,T ), πT is the informal symbol so
that πT (a) = b iff iff for any ξ cardinal cutpoint such that {a, b} ∈ K|ξ,
the Coll(ω, ξ)-generic extension satisfies πT (πK|ξ,∞(a)) = πK|ξ,∞(b).

3. If Q is a level ≤ 2 subtree of Q′, Q′ is finite, then jQ,Q
′

= (idQ)Q,Q
′
,

where idQ factors (Q,Q′), idQ(d, q) = (d, q).

4. Corresponding to items 1-3, jQsup, π
T
sup, j

Q,Q′
sup stand for functions on or-

dinals that send α to sup(jQ)′′α, sup(πT )′′α, sup(jQ,Q
′
)′′α respectively.

5. S3 is the informal symbol such that (∅, ∅) ∈ S3 and ((Ri)i≤n, (αi)i≤n) ∈
S3 iff ~R is a finite regular level-3 tower and letting ri ∈ dom(Ri+1) \
dom(Ri), then rk = (rl)

− → αk < j(Rn)tree(rk),(Rn)tree(rl)(αl).

6. For 1 ≤ n ≤ ω, un is the symbol so that for any ξ > un cardinal
cutpoint, the Coll(ω, ξ)-generic extension satisfies πK|ξ,∞(un) = un.

7. Suppose T is a finite level ≤ 2 tree. If D ∈ desc(T, U), ‖D‖≺T,U = n,

then seedT,UD = un+1. If (1, t) ∈ dom(T ), then seedT(1,t) = seedT,∅(1,t,∅). If

(2, t) ∈ dom(T ), and 2Ttree[t] = (S,~s), then seedT(2,t) = seedT,S(2,(t,S,~s),idS).

seedT = (seedT(d,t))(d,t)∈dom(T ).
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8. If k is a definable class function and W is a definable class, then k(W ) =⋃
{k(W ∩ Vα) : α ∈ Ord}.

9. If X,T, T ′ are finite level ≤ 2 trees, T is a subtree of T ′, a ∈ jX(V ),
d ∈ {1, 2}, then

(a) BT
X,a = {πT⊗Q(a) : Q finite level ≤ 2 tree, π factors (X,T ⊗Q)};

(b) HT
X,a is the transitive collapse of the Skolem hull of BT

X,a∪ ran(jT )

in jT (V ) and φTX,a : HT
X,a → jT (V ) is the associated elementary

embedding;

(c) jTX,a = (φTX,a)
−1 ◦ jT ;

(d) jT,T
′

X,a = (φT
′

X,a)
−1 ◦ jT,T ′ ◦ φTX,a;

(e) BT
1,a = BT

Q0,a ∪BT
Q1,a, B

T
2,a = BT

Q0,a ∪BT
Q20,a ∪BT

Q21,a;

(f) HT
d,a is the transitive collapse of the Skolem hull of BT

d,a ∪ ran(jT )

in jT (V ) and φTd,a : HT
d,a → jT (V ) is the associated elementary

embedding;

(g) jTd,a = (φTd,a)
−1 ◦ jT ;

(h) jT,T
′

d,a = (φT
′

d,a)
−1 ◦ jT,T ′ ◦ φTd,a.

10. Suppose R is a level-3 tree.

(a) If r = (r,Q,
−−−−−→
(d, q, P )) ∈ desc∗(R), cr is the informal LR-symbol

whose interpretation is

cr =


j
Rtree(r−),Q
sup (cr−) if r ∈ desc(R) of continuous type,

cr if r ∈ desc(R) of discontinuous type,

jRtree(r),Q(cr) if r /∈ desc(R).

(b) If T, U are finite level ≤ 2 trees and B = (r, π) ∈ desc(R, T, U),
r 6= ∅, then cTB is the informal LR-symbol which stands for πT,U(cr).

(c) If A = (r, π, T ) ∈ desc∗∗(R), r 6= ∅, then cA is the informal LR-
symbol which stands for πT (cr).

Put Lx = {∈, x}; for a level-3 tree R, put LR,x = LR ∪ {x}, where x is
a constant symbol. All of the above informal symbols work in Lx or LR,x,
which are intended to be interpreted in M−

2,∞(x) for x ∈ R. In particular, for
x ∈ R,

(L[S3])M
−
2,∞(x) = M−

2,∞.
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Lemma 5.10. Assume Π1
3-determinacy. Suppose R, Y are finite level-3

trees, T is a finite level ≤ 2 tree, ρ factors (R, Y, T ). Then

pϕ(cr1 , . . . , crn)q ∈ 03#(R)

iff
pjT (V ) |= ϕ(cTρ(r1), . . . , c

T
ρ(rn))q ∈ 03#(Y ).

Proof. Put ρ(r) = (yr, πr). Put Rtree(r) = Qr. Suppose ϕ(v1, . . . , vn) is an
L-formula, r1, . . . , rn ∈ dom(R), and

pϕ(cr1 , . . . , crn)q ∈ 03#(R).

Let C be a firm set of potential level-3 indiscernibles. Suppose F ∈ CY ↑.
By Lemma 4.46, F T

ρ is a function from ωT↑1 to [C]R↑. Recall that F T
ρ (~δ) =

(F T
ρ(r)(

~δ))r∈dom(R). Hence for any ~δ ∈ ωT↑1 ,

M−
2,∞ |= ϕ(F T

ρ(r1)(
~δ), . . . , F T

ρ(rn)(
~δ)).

For each r ∈ dom(R), by definition of πr
T,Qr , πr

T,Qr([F ]Yyr) = [F T
ρ(r)]µT . Hence

by  Loś,

jT (M−
2,∞) |= ϕ(πr1

T,Qr1 ([F ]Yyr1 ), . . . , πrn
T,Qrn ([F ]Yyrn )).

Finally, by Lemma 4.60, for y = (y,X) ∈ desc(Y ), if y is of discontinuous

type then [F ]Yy = [F ]Yy ; if y is of continuous type then [F ]Yy = j
Ytree(y−),X
sup ([F ]Yy−).

Hence,
pjT (V ) |= ϕ(cTρ(r1), . . . , c

T
ρ(rn))q ∈ 03#(Y ).

As a corollary to Lemma 5.10, Lemma 5.9 and Theorem 4.71, we obtain:

Corollary 5.11. Assume Π1
3-determinacy. Suppose R and Y are finite level-

3 trees and J∅KR = J∅KY . Then 03#(R) ≡m 03#(Y ).

5.3 The equivalence of x3# and M#
2 (x)

For the other direction of the reduction, we want to compute a(<uω-Π1
3)

truth using 03# as an oracle.

Lemma 5.12. Assume Π1
3-determinacy. For a finite level-3 tree R, the

universal a(J∅KR-Π1
3) real is many-one reducible to 03#(R), uniformly in R.
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Proof. Let B ⊆ J∅KR × R be Π1
3. Let θ be a Σ1 formula such that

(ξ, x) ∈ B ↔ Lκx3 [T2, x] |= θ(ξ, x).

G is the game with output Diff B. We need to decide the winner of G from
03#(R). B is equipped with the Π1

3-norm

ψ(ξ, x) = the least α < κx3 such that Lα[T2, x] |= θ(ξ, x).

If E ∈ µL is a club, let ρE : J∅KR → rep(R) � E be the order preserving
bijection. For ~γ respecting R, let θI(~γ) be the following formula:

There exist H ∈ (δ1
3)R↑ and a strategy τ for Player I such that

[H]R = ~γ and for any club E ∈ µL, if x is an infinite run according
to τ , then for any even α < J∅KR, ∀β < α((β, x) ∈ B ∧ ψ(β, x) <
H(ρE(β + 1))) implies (α, x) ∈ B ∧ ψ(α, x) < H(ρE(α+ 1)), and
there is α < J∅KR such that (α, x) /∈ B.

Let θII(~γ) be the following formula:

There exist K ∈ (δ1
3)R↑ and a strategy σ for Player II such that

[K]R = ~γ and for any club E ∈ µL, if x is an infinite run according
to σ, then for any odd α < J∅KR, ∀β < α((β, x) ∈ B ∧ ψ(β, x) <
K(ρE(β + 1))) implies (α, x) ∈ B ∧ ψ(α, x) < K(ρE(α + 1)).

Let C be a firm set of level-3 indiscernibles for M−
2,∞. Suppose firstly

Player I has a winning strategy τ in G. Let D be the subset of C consisting
of L-Woodin cardinals in M2,∞(σ) and their limits. By Corollary 5.3, if x
is a consistent run according to σ, then (0, x) ∈ B ∧ ψ(0, x) < min(D),
for any odd α < J∅KR, (α, x) ∈ B implies (α + 1, x) ∈ B ∧ ψ(α + 1, x) <
min(D \ (ψ(α, x) + 1)), and there is α < J∅KR such that (α, x) /∈ B. Let
H ∈ DR↑. Then (H, τ) witnesses θI([H]R). Let P ∈ F2 and ~η ∈ P such that
πP,∞(~η) = [H]R. Let ξ~η be the least successor cardinal cutpoint of P above
max(~η) and let g be Coll(ω, ξ)-generic over P . Let rg,~η be the real coding
(g, ~η). Then θI([H]R) is equivalent to a Σ1

4(rg,~η) statement θ̄I(rg,~η), hence
true in P [g]. Hence,

PColl(ω,ξ~η) |= θ̄I(ṙg,~η)

By elementarity,
(M−

2,∞)Coll(ω,ξ~γ) |= θ̄I(ṙg,[H]R).

By Lemma 5.6, for any ~γ ∈ [C]R↑,

(M−
2,∞)Coll(ω,ξ~γ) |= θ̄I(ṙg,~γ).
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By a symmetrical argument, if Player II has a winning strategy in G, then
for any ~γ ∈ [C]R↑,

(M−
2,∞)Coll(ω,ξ~γ) |= θ̄II(ṙg,~γ).

Finally, there does not exist ~γ such that

(M−
2,∞)Coll(ω,ξ~γ) |= θ̄I(ṙg,~γ) ∧ θ̄II(ṙg,~γ).

Otherwise, by absoluteness, θI(~γ) ∧ θII(~γ) holds. Let (H, τ) witness θI(~γ)
and let (K, σ) witness θII(~γ). Let E ∈ µL be a club such that H � (rep(R) �
E) = K � (rep(R) �E). Let x be the infinite run according to both τ and σ.
Then inductively we can see that for any α < J∅KR, (α, x) ∈ B ∧ ψ(α, x) <
H(ρE(α+1)), but there is α < J∅KR such that (α, x) /∈ B, which is impossible.

In conclusion, Player I has a winning strategy in B iff for any ~γ ∈ [C]R↑,
(M−

2,∞)Coll(ω,ξ~γ) |= θ̄I(ṙg,~γ).

For a real x, x3# is the obvious relativization of 03#. Combining Lem-
mas 5.8 and 5.12, Theorem 4.5 and Neeman [37,38], we obtain the equivalence
of x3# and M#

2 (x).

Theorem 5.13. Assume Π1
3-determinacy. For x ∈ R, x3# is many-one

equivalent to M#
2 (x), the many-one reduction being independent of x.

By Theorem 5.13 and Moschovakis third periodicity, the winner of the
game in the proof of Lemma 5.6 has a winning strategy recursive in 03#.
Hence, the set of L-Woodin cardinals in M−

2,∞(03#) and their limits form a
firm set of potential level-3 indiscernibles for M−

2,∞.

5.4 Syntactical properties of 03#

Suppose M,N are countable Π1
3-iterable mice. A map π : M → N is

essentially an iteration map iff there are P and iteration maps ψM :M→ P ,
ψN : N → P such that ψM = ψN ◦ π. For α ∈ M, β ∈ N , say that
(M, α) <DJ (N , β) iff eitherM <DJ N or there exist P and iteration maps
ψM :M→ P , ψN : N → P such that ψM(α) < ψN (β).

Definition 5.14 (Level-3 EM blueprint). A pre-level-3 EM blueprint is a
function Γ sending any finite level-3 tree Y to a complete consistent LY -
theory Γ(Y ) which contains all of the following additional axioms:

1. ZFC + there is no inner model with two Woodin cardinals +V = K+
there is no strong cardinal +V is closed under the M#

1 -operator.

2. Suppose X,T,Q, Z are finite level ≤ 2 trees, π factors (X,T ), ψ factors
(T, Z).
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(a) jT : V → jT (V ) is L-elementary. jQ
0

is the identity map on V .

(b) πT : jX(V ) → jT (V ) is L-elementary. jQ
0,T = jT . jT,T is the

identity map on jT (V ).

(c) (ψ ◦ π)Z = ψZ ◦ πT .

(d) jT ◦ jQ = jT⊗Q.

(e) jQ(πT ) = (Q⊗ π)Q⊗T .

(f) πT �jX⊗Q(V ) = (π ⊗Q)T⊗Q.

3. If ξ is a cardinal and strong cutpoint, then V Coll(ω,ξ) satisfies the follow-
ing: If U is a Π1

2-wellfounded level ≤ 2 tree, then K|ξ and (jU)K(K|ξ)
are countable Π1

3-iterable mice and (jU)K � (K|ξ) is essentially an iter-

ation map from K|ξ to (jU)K(K|ξ). Here (jU)K stands for the direct

limit map of (jZ,Z
′
)K for Z,Z ′ finite subtrees of U , Z a finite subtree

of Z ′.

4. For any y ∈ dom(Y ), “cy ∈ Ord” is an axiom.

5. If y ≺Y y′, then “cy < cy′” is an axiom; if y ∼Y y′, then “cy = cy′” is
an axiom.

A level-3 EM blueprint is a pre-level-3 EM blueprint satisfying the coherency
property : if R, Y, T are finite, ρ factors (R, Y, T ), then for each L-formula
ϕ(v1, . . . , vn), for each r1, . . . , rn ∈ dom(R),

pϕ(cr1 , . . . , crn)q ∈ Γ(R)

iff
pjT (V ) |= ϕ(cTρ(r1), . . . , c

T
ρ(rn))q ∈ Γ(Y ).

In particular, if Γ is a level-3 EM blueprint, ρ0 factors (R, Y ), then
idY,∗ ◦ρ0 factors (R, Y,Q0), so by coherency, pϕ(cr1 , . . .)q ∈ Γ(R) iff pϕ(cρ0(r1), . . .)q ∈
Γ(Y ). This degenerates to the usual indiscernability of the (level-1) EM
blueprint.

Lemma 5.15. Assume Π1
3-determinacy. Then 03# is a level-3 EM blueprint.

Proof. We verify Axioms 1-5 in Definition 5.14. Axiom 1 follows from The-
orem 2.18. Axiom 2 follows from Lemma 4.53. Axioms 4-5 follow from
Lemma 4.61.
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Axiom 3 is shown as follows. Let ξ be a cardinal strong cutpoint of
M−

2,∞. Let P ∈ F2 and η ∈ P such that πP,∞(η) = ξ. Let g be Coll(ω, η)-
generic over P . Suppose T is a Π1

2-wellfounded tree in P [g]. The direct limit
of jT is wellfounded by Proposition 4.19. We need to show that in P [g],
(jT )P(P|η) : P|η → (jT )P(P|η) is essentially an iteration map, where (jT )P

is the direct limit map of (jT
′
)P for finite subtrees T ′ of T . Since P [g] is

Σ1
4-correct, we need to show the same fact in V .

Note that M−
2,∞ is definable over M−

2,∞(g). In fact, M−
2,∞ = (L[S3])M

−
2,∞(g).

Let Q ∈ F2,g and ν so that πQ,∞(ν) = ξ. The maps from P to π−1
Q,∞(M−

2,∞|ξ)
and from π−1

Q,∞(M−
2,∞|ξ) to Lξ[S3] plus Dodd-Jensen implies that P|η ∼DJ

π−1
Q,∞(M−

2,∞|ξ). By Σ1
4-correctness of set-generic extensions of Q, Q thinks

that “P|η ∼DJ Lν [S3]”. By elementarity, (jT (V ))Q thinks “P|η ∼DJ jT (Lν [S3])”.

We claim that (jT (V ))Q is also Σ1
3-correct in set-generic extensions. To see

this, it suffices to show p[(jT (S3))Q] ⊆ p[S3]. We know that (jT (S3))Q embeds

into jT (S3), so p[(jT (S3))Q] ⊆ p[jT (S3)]. But x ∈ p[jT (S3)] implies x ∈ p[S3]

by absoluteness of wellfoundedness and elementarity of jT acting on L[S3, x].
Hence, in reality we have P|η ∼DJ (jT (Lν [S3]))Q. But (jT )P(P|η) embeds

into (jT (Lν [S3]))Q, implying that (jT )P(P|η) ≤DJ P|η.

Of course, P|η ≤DJ (jT )P(P|η). So P ∼DJ (jT )P(P|η). A similar argu-

ment shows that for any α ∈ P , (P , α) ∼DJ ((jT )P(P|η), (jT )P(α)). This
finishes verifying Axiom 3 of Definition 5.14.

Finally, the coherency property of 03# is a consequence of Lemma 5.10.

We say that the upward closure of A ⊆ (ω<ω)<ω is

{r ∈ (ω<ω)<ω : ∃a ∈ A(r ⊆ a)}.

The upward closure does not apply to subcoordinates of a ∈ A. For instance,
b ( a(lh(a) − 1) does not imply that a−_(b) is in the upward closure of A.
For a level-3 tree R and nodes s1, . . . , sn, s

′
1, . . . , s

′
n in dom(R),

~s′ is an R-shift of ~s

iff there are a level-3 tree S and maps ρ, ρ′ factoring (S,R) such that ran(ρ)
is the upward closure of ~s, ran(ρ′) is the upward closure of ~s′, and ρ−1(si) =
(ρ′)−1(s′i) for any i.

Lemma 5.16 (Level-3 indiscernability). Suppose Γ is a level-3 EM blueprint.
Suppose R is a level-3 tree and s1, . . . , sn, s

′
1, . . . , s

′
n are nodes in dom(R).
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Suppose that ~s′ is a shift of ~s with respect to R. Then for each formula ϕ,
Γ(R) contains the formula

ϕ(cs1 , . . . , csn)↔ ϕ(cs′1 , . . . , cs′n).

Proof. Let S be a level-3 tree and ρ, ρ′ both factor (S,R) such that ran(ρ) is
upward closure of {s1, . . . , sn}, ran(ρ′) is the upward closure of {s′1, . . . , s′n}.
Let ρ−1(si) = ti = (ρ′)−1(s′i). Applying coherency of Γ to ρ, ρ′,

pϕ(cs1 , . . . , csn)q ∈ Γ(R)↔ pϕ(ct1 , . . . , ctn)q ∈ Γ(S)

↔ pϕ(cs′1 , . . . , cs′n)q ∈ Γ(R).

Of course, there is extra information in the coherency property beyond
Lemma 5.16.

As with the usual treatment of 0#, a level-3 EM blueprint Γ admits an L-
Skolemized conservative extension. That means, since ZFC +V = K is a part
of the axioms, so is “there is a ΣL1 -definable wellordering of the universe”.
Thus, to each L-formula ϕ(v, w1, . . . , wn) we may attach a definable L-Skolem
term τϕ(w1, . . . , wn) so that the formula ∀w1 . . . wn (∃v ϕ(v, w1, . . . , wn) →
ϕ(τϕ(w1, . . . , wn), w1, . . . , wn)) belongs to Γ(R), for any R.

If Y is an infinite level-3 tree, put

Γ(Y ) =
⋃
{Γ(R) : R is a finite level-3 subtree of Y }.

By coherency, Γ(R) ⊆ Γ(R′) whenever R ⊆ R′ are finite. Hence by com-
pactness, Γ(Y ) is a complete consistent LY -theory. The usual argument of
EM models with order indiscernibles carries over to obtain a unique up to
isomorphism LY -structure

MΓ,Y = (M ;∈M , ctM : t ∈ dom(Y )).

such that MΓ,Y is L-Skolem generated by {ctM : t ∈ dom(Y )}, and

MΓ,Y |= Γ(Y ).

MΓ,Y is called the EM model associated to Γ and Y . When ∈MΓ,Y is well-
founded, MΓ,Y is identified with its transitive collapse. Since MΓ,Y is a
model of V = K, the extender sequence on KMΓ,Y is definable over MΓ,Y ,
this allows us to sometimes treat MΓ,Y as a structure in the language of
premice.

If L∗ is a first-order language expanding L, N is an L∗-structure satisfying
axioms 1-3 in Definition 5.14, we make the following notations:
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1. If T is a finite level ≤ 2 tree, then jTN = (jT )N , N T = (jT (V ))N is an

L∗-structure so that jTN : N → N T is L∗-elementary.

2. If π factors finite level ≤ 2 trees (X,T ), then πTN = (πT )N . If T, T ′ are

finite level ≤ 2 trees, T is a subtree of T ′, then jT,T
′

N = (jT,T
′
)N .

3. If T is a level≤ 2 tree, thenN T is the direct limit of (N T ′ , jT
′,T ′′

N : T ′, T ′′

finite subtrees of T , T ′ a finite subtree of T ′′) and jTN : N → N T is the

direct limit map; if T ′ is a finite subtree of T , then jT
′,T
N : N T ′ → N T is

the tail of the direct limit map. The wellfounded part of N T is always
assumed to be transitive.

4. If π factors level ≤ 2 trees (X,T ), then πTN : NX → N T is the factor
map between direct limits.

5. If X is a finite level ≤ 2 tree, a ∈ NX , d ∈ {1, 2}

(a) if T, T ′ are finite level ≤ 2 trees, T is a subtree of T ′, then

N T
X,a = (HT

X,a)
N , jTX,a,N = (jTX,a)

N , φTX,a,N = (φTX,a)
N , jT,T

′

X,a,N =

(jT,T
′

X,a )N , N T
d,a = (HT

d,a)
N , jTd,a,N = (jTd,a)

N , φTd,a,N = (φTd,a)
N ,

jT,T
′

d,a,N = (jT,T
′

d,a )N ;

(b) if T is a level ≤ 2 tree, then N T
X,a is the natural direct limit,

jTX,a,N : N → N T
X,a is the direct limit map, φTX,a,N : N T

X,a → N T

is the natural factoring map between direct limits; if T ′ is a finite
subtree of T , then jT

′,T
X,a,N : N T ′

X,a → N T
X,a is the tail of the direct

limit map; similarly define N T
d,a, j

T
d,a,N , φTd,a,N , jT

′,T
d,a,N .

If Γ is a level-3 EM blueprint and R is Π1
3-wellfounded, we make further

notations:

1. If T is a level ≤ 2 tree, then MT
Γ,Y = (MΓ,Y )T , jTΓ,Y = jTMΓ,Y

.

2. If T is a finite subtree of T ′, then jT,T
′

Γ,Y = jT,T
′

MΓ,Y
.

3. If π factors (X,T ), then πTΓ,Y = πTMΓ,Y
.

4. If T is a finite subtree of T ′, y ∈ dom(Y ), X = Ytree(y), d ∈ {1, 2},
then cΓ,Y,y = (cy)

MΓ,Y , MT
Γ,Y,y = (MΓ,Y )TX,cΓ,Y,y , j

T
Γ,Y,y = jTX,cΓ,Y,y ,MΓ,Y

,

φTΓ,Y,y = φTX,cΓ,Y,y ,MΓ,Y
, jT,T

′

Γ,Y,y = jT,T
′

X,cΓ,Y,y ,MΓ,Y
,MT

Γ,Rd,∗ = (MΓ,Rd)
T
d,c

Γ,Rd,((0))
,

jT
Γ,Rd,∗ = jTd,c

Γ,Rd,((0))
,M

Γ,Rd
, φT

Γ,Rd,∗ = φTd,c
Γ,Rd,((0))

,M
Γ,Rd

, jT,T
′

Γ,Rd,∗ = jT,T
′

d,c
Γ,Rd,((0))

,M
Γ,Rd

.
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5. If B ∈ desc(Y, T ′, ∗) and T ′ is a finite subtree of T , then cTΓ,Y,B =

jT
′,T

Γ,Y (cT
′

B )MΓ,Y .

By coherency, if ρ factors (R, Y, T ), then ρ induces an elementary embed-
ding

ρY,TΓ :MΓ,R →MT
Γ,Y

where
ρY,TΓ (τMΓ,R(cΓ,R,r1 , . . .)) = τM

T
Γ,Y (cTΓ,Y,ρ(r1), . . .).

If ρ factors (R, Y ), then ρ induces

ρYΓ :MΓ,R →MΓ,Y

where ρYΓ (τMΓ,R(cΓ,R,r1 , . . .)) = τMΓ,Y (cΓ,Y,ρ(r1), . . .).
Recall that wellfoundedness of a (level-1) EM blueprint is a Π1

2 condition,
stating that for every countable ordinal α, the EM model generated by order
indiscernibles of order type α is wellfounded. Its higher level analog is called
iterability, which is a Π1

4 condition.

Definition 5.17. Let Γ be a level-3 EM blueprint. Γ is iterable iff for any
Π1

3-wellfounded level-3 tree Y , MΓ,Y is a Π1
3-iterable mouse.

Lemma 5.18. Assume Π1
3-determinacy. Then 03# is iterable.

Proof. Let Y be any Π1
3-wellfounded level-3 tree. Let F ∈ [C]Y ↑, where

C is a firm set of potential level-3 indiscernibles for M−
2,∞. Then M03#,Y

elementarily embeds into M−
2,∞, the map being generated by c03#,Y,s 7→ [F ]Ys .

Therefore, M03#,Y is iterable.

Lemma 5.19. Assume ∆1
2-determinacy.

1. Suppose N is a countable Π1
3-iterable mouse satisfying Axioms 1-3 in

Definition 5.14.

(a) If T is a Π1
2-wellfounded level ≤ 2 tree, then N T is a Π1

3-iterable
mouse and jTN : N → N T is essentially an iteration map.

(b) If ψ minimally factors level ≤ 2 trees (T,X), then ψXN : N T → NX

is essentially an iteration map.

2. Suppose Γ is an iterable level-3 EM blueprint and Y is a Π1
3-wellfounded

level-3 tree. If ψ minimally factors level-3 trees (Y,R) and J∅KY = J∅KR,
then ψRΓ :MΓ,Y →MΓ,R is essentially an iteration map.
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Proof. 1(a). By Axiom 1 in Definition 5.14, there are cofinally many cardinal
strong cutpoints in N . jTN is cofinal in N T by definition and a direct limit
argument. By Dodd-Jensen, it suffices to show that for any cardinal strong
cutpoint ξ of N , jTN (N|ξ) is Π1

3-iterable and jTN �(N|ξ) is essentially an itera-
tion map from N|ξ to N T |jTN (ξ). Fix such ξ. Let g be Coll(ω, ξ)-generic over
N . The statement “for any Π1

2-wellfounded level ≤ 2 tree T ′, jT
′
N (N|ξ) is a

Π1
3-iterable mouse, and jT

′
N �(N|ξ) is essentially an iteration map from N|ξ to

jT
′
N (N|ξ)” is Π1

3 in a real z ∈ N [g] coding (N|ξ, jT ′N �(N|ξ))T ′ finite level ≤ 2 tree.
This statement is true in N [g] by Level ≤ 2 ultrapower invariance axiom
in Definition 5.14. It suffices to show N [g] ≺Σ1

3
V . But by Axiom 1 in

Definition 5.14, N |=“I am closed under the M#
1 -operator”. Since N is a Π1

3-
iterable mouse, the M#

1 -operators are correctly computed in N . Using gener-
icity iterations [51], M#

1 -operators figure out Σ1
3-truth. Hence, N [g] ≺Σ1

3
V .

1(b). By Theorem 4.57, there is a Π1
2-wellfounded Q and π minimally

factoring (X,T ⊗ Q). So idT,∗ = π ◦ ψ. By Axiom 2 in Definition 5.14,

jQNT = πT⊗QN ◦ ψXN , which is essentially an iteration from N T to N T⊗Q by
part 1(a). By Dodd-Jensen, ψXN is essentially an iteration map.

2. By Theorem 4.71, there is a Π1
2-wellfounded T and ρ minimally fac-

toring (R, Y ⊗ T ). So idY,∗ = ρ ◦ ψ. By Axiom 2 in Definition 5.14 and

part 1, jTΓ,Y = ρY,TΓ ◦ ψRΓ is essentially an iteration from MΓ,Y to MT
Γ,Y . By

Dodd-Jensen, ψRΓ is essentially an iteration map.

We start to introduce the remarkability property of a level-3 EM blueprint.
For r, s ∈ ω<ω, define r <0 s iff r(0) <BK s(0), r ≤R0 s iff r(0) ≤BK s(0).

If ~r = (ri)1≤i≤n is a tuple of nodes in ω<ω, define ~r <0 s iff ri <0 s for any i.
Similarly define ~r ≤0 s, ~r <0 ~s, etc.

Definition 5.20 (Unboundedness). A level-3 EM blueprint Γ is unbounded
iff for any level-3 tree R, if τ is an L-Skolem term, {t, r1, . . . , rm} ⊆ dom(R),
~r <0 t, then Γ(R) contains the formula

τ(cr1 , . . . , crm) ∈ Ord→ τ(cr1 , . . . , crm) < ct.

Lemma 5.21. Assume Π1
3-determinacy. Then 03# is unbounded.

Proof. Let C be a firm club of potential level-3 indiscernibles for M−
2,∞. Let

η ∈ D iff C ∩ η has order type uωξ for some ordinal ξ.
We may further assume that dom(R) is the upward closure of ~r∪{t} and

R− =DEF R � (the upward closure of ~r) is a level-3 subtree of R. The reason
is because we can find level-3 trees S−, S , ρ− factoring (S−, R), ρ factoring
(S,R) so that S− is a subtree of S, ρ− = ρ � S−, ran(ρ−) is the upward
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closure of ~r, ran(ρ) is the upward closure of ~r ∪ {t}. We then work with S
and ρ−1(~r, t) instead, and finally apply the coherency of 03#.

Suppose Γ(R) contains the formula “τ(cr1 , . . . , crm) ∈ Ord”. Then for
any ~γ ∈ [C]R↑,

τM
−
2,∞(x)(γr1 , . . . , γm) < δ1

3.

Our assumption ~r <0 t ensures the existence of ~δ ∈ [D]R↑ extending ~γ �
dom(R−) such that

τM
−
2,∞(γr1 , . . . , γrm) < δt.

Hence, Γ(R) contains the formula “τ(cr1 , . . . , crm) < ct”.

Definition 5.22 (Weak remarkability). A level-3 EM blueprint Γ is weakly
remarkable iff Γ is unbounded and for any level-3 tree R, if τ is an L-Skolem
term, ~r ∪ ~s ∪ ~s′ ∪ {t} ⊆ dom(R), ~r <0 t ≤0 ~s ≤0

~s′, ~s′ is an R-shift of ~s,
lh(t) = 1, then Γ(R) contains the formula

τ(cr1 , . . . , crm , cs1 , . . . , csn) < ct →
τ(cr1 , . . . , crm , cs1 , . . . , csn) = τ(cr1 , . . . , crm , cs′1 , . . . , cs′n).

Lemma 5.23. Assume Π1
3-determinacy. Then 03# is weakly remarkable.

Proof. Again, we may assume that dom(R) is the upward closure of ~r ∪ ~s ∪
~s′ ∪ {t}.

Suppose 03#(R) contains the formula “τ(cr1 , . . . , cs1 , . . .) < ct”. We need

to show that 03#(R) contains the formula “τ(cr1 , . . . , cs1 , . . .) = τ(cr1 , . . . , cs′1 , . . .)”.

By Axiom 5 in Definition 5.14, we may further assume that t is in the upward
closure of ~s. Let S be a level-3 tree and ρ, ρ′ both factor (S,R) such that
ran(ρ) is the upward closure of ~r ∪ ~s, ran(ρ′) is the upward closure of ~r ∪ ~s′.
Put ρ−1(ri, sj, t) = (r̄i, s̄j, t̄) = (ρ′)−1(r′i, s

′
j, t
′).

Let C be a firm set of potential level-3 indiscernibles for M−
2,∞. Let C =⋃

ξ<δ1
3
Cξ be a disjoint partition of C such that for any ξ < δ1

3, o.t.(Cξ) = uω,

and for any ξ < η < δ1
3, any member of Cξ is smaller than any member of

Cη. Let D be a club in δ1
3 where ν ∈ D iff sup

⋃
ξ<ν Cξ = ν. As C is firm, D

has order type δ1
3.

If X, Y are subsets of ordinals, define X v Y iff X ⊆ Y and X = Y ∩ α
for some α. For each 0 < ξ < δ1

3, let F ξ ∈ DS↑ so that (F ξ)′′ rep(U) v C0,
(F ξ)′′(rep(S) \ rep(U)) v Cξ. Define ~γξ = (γξx)x∈dom(S) = [F ξ]S. Define

εξ = τM
−
2,∞(γξr̄1 , . . . , γ

ξ
s̄1 , . . . ).

Hence,
εξ < min(C1).
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For 0 < η < ξ < δ1
3, define ~γηξ = (γηξy )y∈dom(R) where γηξρ(x) = γηx and

γηξρ′(x) = γξx for any x ∈ dom(S). By Lemma 4.46, γηξ ∈ [D]R↑. Suppose
towards a contradiction.

Case 1: 03#(R) contains the formula “ τ(cr1 , . . . , cs1 , . . .) > τ(cr1 , . . . , cs′1 , . . .)”.

Then ~γξη witnesses that εη > εξ whenever 0 < η < ξ < δ1
3. This is an

infinite descending chain of ordinals.
Case 2: 03#(R) contains the formula “ τ(cr1 , . . . , cs1 , . . .) < τ(cr1 , . . . , cs′1 , . . .)”.

Then εη < εξ whenever 0 < η < ξ < δ1
3, contradicting to εξ < min(C1).

If R is a level-3 tree, t ∈ dom(R), lh(t) = 1, let

R� t = R�{r ∈ dom(R) : r <0 t}.

Lemma 5.24. Suppose Γ is a weakly remarkable level-3 EM blueprint. Sup-
pose R is a level-3 tree, t ∈ dom(R), lh(t) = 1.

1. If τ is an L-Skolem term, ~r ∪ ~s ∪ ~s′ ∪ {t} ⊆ dom(R), ~r <0 t ≤0 ~s
_~s′,

~s′ is an R-shift of ~s, then Γ(R) contains the formula

τ(cr1 , . . . , crm , cs1 , . . . , csn) < ct →
τ(cr1 , . . . , crm , cs1 , . . . , csn) = τ(cr1 , . . . , crm , cs′1 , . . . , cs′n).

2. Γ(R) contains the scheme “K|ct ≺ V ”. In particular, Γ(R) contains
the formula “ct is inaccessible and there are cofinally many cardinal
strong cutpoints below ct”.

Proof. 1. Assume without loss of generality that dom(R) is the upward clo-
sure of ~r∪~s∪~s′∪{t}. Suppose Γ(R) contains the formula “τ(cr1 , . . . , cs1 , . . .) <
ct”. Expand R to the level-3 tree S where dom(S) is the upward clo-

sure of dom(R) ∪ {s′′i : 1 ≤ i ≤ n}, each s′′i /∈ dom(R), ~s′′ is an R-shift
of ~s, ~s <0

~s′′. By coherency and weak remarkability, Γ(S) contains the
formula τ(cr1 , . . . , cs1 , . . .) = τ(cr1 , . . . , cs′′1 , . . .). But ~r_~s_ ~s′′ is a shift of

~r_~s′_ ~s′′. By indiscernability, Γ(S) contains the formula τ(cr1 , . . . , cs′1 , . . .) =

τ(cr1 , . . . , cs′′1 , . . .). Hence, Γ(S) contains the formula τ(cr1 , . . . , cs1 , . . .) =

τ(cr1 , . . . , cs′1 , . . .).

2. Put N = MΓ,R. By coherency of Γ, we may assume that A = {s ∈
dom(R) : s <0 t} has <BK-limit order type. By Tarski’s criterion, we need
to show that if w = τN (z1, . . . , zk) ∈ Ord, z1, . . . , zk < ct

N , then w < ct
N .

To save notations, let k = 1, z1 = σN (cr1
N , . . . , cs1

N , . . . ) < ct
N , ~r <0 t ≤0 ~s.
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Pick t∗ of length 1 such that ~r <0 t
∗ <0 t. Build a level-3 tree S that extends

R in which there are nodes t′, ~s′ ∈ dom(S) such that ~r <0 (t′)_~s′ <0 r
∗ and

(t′)_~s′ is an S-shift of (t)_~s. Put P =MΓ,S. By weakly remarkability,

σP(cr1
P , . . . , cs1

P) = σP(cr1
P , . . . , cs′1

P , . . . ).

By unboundedness of Γ,

τP(σP(cr1
P , . . . , cs′1

P , . . . )) < ct∗
P .

By coherency of Γ, w < ct∗
N . By Axiom 5 in Definition 5.14, cr∗

N < ct
N .

A level-3 tree R is said to be universal above t iff t ∈ dom(R), lh(t) =
1, and for any level-3 tree S, if S � t′ is isomorphic to R � t via π and
dom(S) \ dom(S � t′) is finite, then there is a map ρ factoring (S,R) that
extends π. Clearly, for any R, there is (R′, t) such that R′ � t is isomorphic
to R and R′ is universal above t. If R is Π1

3-wellfounded, we may further
demand that R′ is Π1

3-wellfounded.

Lemma 5.25. Suppose Γ is a weakly remarkable level-3 EM blueprint, R is
universal above t, R′ is universal above t′, R� t is isomorphic to R′ � t′. Then

(K|ct)MΓ,R ∼= (K|ct′)MΓ,R′ .

Proof. To begin with, we build an isomorphism ψ : (ct)
MΓ,R → (ct′)

MΓ,R′

which preserves membership relations in the respective EM models. Given
a ∈ MΓ,R such that MΓ,R |= a < ct, find a Skolem term τ and nodes ~r, ~s
such that ~r ≺R t �R ~s and

a = (τ(cr1 , . . . , cs1 , . . .))
MΓ,R .

Let S be a level-3 tree and ρ factor (S,R) such that ran(S) is the upward
closure of dom(R� t)∪~s∪{t}. By universality, pick ρ′ factoring (S,R′) which
extends π. By coherency of Γ, (τ(cπ(r1), . . . , cρ′◦ρ−1(s1), . . .))

MΓ,R′ <MΓ,R′ ct′ .

Define
ψ(a) = (τ(cπ(r1), . . . , cρ′◦ρ−1(s1), . . .))

MΓ,R′ .

ψ is well-defined and preserves membership. For this, we firstly show
that ψ(a) does not depend on the choice of ρ′. Suppose ρ′′ is another candi-
date for ρ′. Then ρ′′ ◦ ρ−1(~s) is an R′-shift of ρ′ ◦ ρ−1(~s). By Lemma 5.24,
MΓ,R′ |= τ(cπ(r1), . . . , cρ′◦ρ−1(s1), . . .) = τ(cπ(r1), . . . , cρ′′◦ρ−1(s1), . . .). Secondly,

the reason why ψ(a) does not depend on the choice of τ and ~r, ~s is because
of coherency of Γ. In the same spirit, we can show that ψ preserves member-
ship. A completely symmetrical argument gives ψ′ : (ct′)

MΓ,R′ → (ct)
MΓ,R .
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By Lemma 5.16, ψ ◦ ψ′ and ψ′ ◦ ψ are both identity functions. So ψ is an
isomorphism between (ct)

MΓ,R and (ct′)
MΓ,R′ .

MΓ,R is a model of V = K. Working in MΓ,R, K|ct has a canoni-
cal wellordering of order type ωct, and similarly for MΓ,R′ . ψ extends to
ψ∗, acting on (K|ct)MΓ,R according to these canonical wellorderings. Us-
ing the same argument as before, ψ∗ is an isomorphism from (K|ct)MΓ,R to
(K|ct′)MΓ,R′ .

A level-3 tree R is universal based on Y iff there is t ∈ dom(R) such that
lh(t) = 1, R is universal above t and R � t is isomorphic to Y . Suppose Γ
is a weakly remarkable level-3 EM blueprint. For a level-3 tree Y , if R is
universal based on Y , t ∈ dom(R), lh(t) = 1, R� t is isomorphic to Y , put

M∗
Γ,Y = (K|ct)MΓ,R .

M∗
Γ,Y is well-defined up to an isomorphism. Its wellfounded part is transi-

tivized. By Lemma 5.24, there are cofinally many cardinal strong cutpoints
in M∗

Γ,Y . Similarly, for a level ≤ 2 tree T , define

M∗,T
Γ,Y = (K|ct)M

T
Γ,R .

Hence, M∗,T
Γ,Y = (M∗

Γ,Y )T . If ρ factors (Y, Y ′), R′ is universal above R, then

ρ∗,Y
′

Γ = ρR
′

Γ �M∗
Γ,Y . If ρ factors (Y, Y ′, T ), R′ is universal above R, then

ρ∗,Y
′,T

Γ = ρY
′,T

Γ �M∗
Γ,Y .

A Π1
3-iterable mouse P is full iff for any strong cutpoint η of P , for any

Π1
3-iterable mouse Q extending P|η which is sound and projects to η, Q E P .

Lemma 5.26. Assume ∆1
2-determinacy. Suppose Γ is an iterable, weakly

remarkable level-3 EM blueprint.

1. Suppose Y, Y ′ are Π1
3-wellfounded level-3 trees. Then J∅KY = J∅KY ′ iff

MΓ,Y ∼DJ MΓ,Y ′; J∅KY < J∅KY ′ iff MΓ,Y <DJ MΓ,Y ′.

2. Suppose Y is a Π1
3-wellfounded level-3 tree. Then M∗

Γ,Y is full.

3. Suppose Y, Y ′ are Π1
3-wellfounded level-3 trees. Then J∅KY = J∅KY ′ iff

M∗
Γ,Y ∼DJ M∗

Γ,Y ′; J∅KY < J∅KY ′ iff M∗
Γ,Y <DJ M∗

Γ,Y ′.

Proof. 1. If J∅KY ≤ J∅KY ′ , by Theorem 4.71, there exist a Π1
3-wellfounded

Z and ρ minimally factoring (Y, Z), ρ′ minimally factoring (Y ′, Z) so that
J∅KY = J∅KZ . By Lemma 5.19, MΓ,Y ≤DJ MΓ,Z ∼DJ MΓ,Y ′ .

If J∅KY < J∅KY ′ , we further obtain t ∈ dom(R) so that lh(t) = 1 and

J∅KY = JtKZ . By unboundedness of Γ, ran(ρY
′,T

Γ ) ⊆ MΓ,Z |cΓ,Z,t. Hence, ρY,TΓ

is Σ1-elementary from MΓ,Y into MΓ,Z |cΓ,Z,t. Hence MΓ,Y <DJ MΓ,Z .
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2. Recall that there are cofinally many cardinal strong cutpoints inM∗
Γ,Y .

Suppose η is a strong cutpoint of M∗
Γ,Y and M∗

Γ,Y |η C P , P is a sound Π1
3-

iterable mouse, ρω(P) ≤ η. Let Y ′ be a Π1
3-wellfounded level-3 tree such that

‖P‖DJ < J∅KY ′ and Y ′ is universal based on Y . By part 2, P <DJ MΓ,Y ′ .
Since M∗

Γ,Y |η CMΓ,Y ′ and η is a strong cutpoint of MΓ,Y ′ , the comparison
between P and MΓ,Y ′ is above η. It follows that P C MΓ,Y ′ . Hence P C
M∗

Γ,Y .
3. By parts 1-2 and remarkability of Γ.

Assume ∆1
2-determinacy. Suppose Γ is an iterable, weakly remarkable

level-3 EM blueprint. Suppose Y is a Π1
3-wellfounded level-3 tree.

For s ∈ dom(Y ), let
c∗Γ,Y,s = cs

M∗Γ,Y

and
cΓ,Y,s,∞ = πM∗Γ,Y ,∞(c∗Γ,Y,s).

In fact, cΓ,Y,s,∞ depends only on (JsKY , Ytree(s)), shown as follows. Suppose Y ′

is another Π1
3-wellfounded level-3 tree and (JsKY , Ytree(s)) = (Js′KY ′ , Y ′tree(s

′)).
By Lemma 4.47, Y [s] = Y ′[s′]. By Theorem 4.71, we can find Π1

3-wellfounded
level-3 trees R,R′ which are universal based on Y, Y ′ respectively, a Π1

3-
wellfounded Z and ρ minimally factoring (R,Z), ρ′ minimally factoring
(R′, Z). In particular, ρ(s) = ρ′(s′). By Lemma 5.19, ρZΓ :MΓ,R →MΓ,Z is
essentially an iteration map, sending c∗Γ,Y,s to cΓ,Z,ρ(s), and similarly on the
ρ′-side. Hence cΓ,Y,s,∞ = cΓ,Y ′,s′,∞. We can safely define

cΓ,Q,γ = cΓ,Y,s,∞

for Ytree(s) = Q and γ = JsKY .

If (Q,
−−−−−→
(d, q, P )) = (Q, (di, qi, Pi)1≤i≤k) is a potential partial level ≤ 2

tower, let F ∈ B(Q,
−−−−→
(d,q,P ))↑ iff F : [ω1]Q↑ → B is an order preserving function

and

1. if (Q,
−−−−−→
(d, q, P )) is of continuous type, then the signature of F is (di, qi)1≤i≤k,

F is essentially continuous;

2. if (Q,
−−−−−→
(d, q, P )) is of discontinuous type, then the signature of F is

(di, qi)1≤i<k, F is essentially discontinuous, F has uniform cofinality

ucf(Q,
−−−−−→
(d, q, P )).

Let γ ∈ [B](Q,
−−−−→
(d,q,P ))↑ iff γ = [F ]µQ for some F ∈ B(Q,

−−−−→
(d,q,P ))↑. γ is said to

respect (Q,
−−−−−→
(d, q, P )) iff γ ∈ (δ1

3)(Q,
−−−−→
(d,q,P ))↑. γ is said to respect Q if γ respects

126



some potential partial level ≤ 2 tower (Q,
−−−−−−→
(d′, q′, P ′)). By Lemma 4.79, γ

respects Q iff there is a Π1
3-wellfounded Y and s such that Ytree(s) = Q

and γ = JsKY . Hence, cΓ,Q,γ is defined whenever γ respects Q and the map
γ 7→ cΓ,Q,γ is order preserving. Define

cΓ,γ = cΓ,Q0,γ.

cΓ,γ is defined whenever γ < δ1
3 is a limit ordinal. Remarkability will ensure

that the map γ 7→ cΓ,γ is continuous. Assuming ∆1
3-determinacy, define

c
(3)
Q,γ = c03#,Q,γ,

c(3)
γ = c03#,γ,

I(3) = {c(3)
Q,γ : γ respects Q}.

I(3) is the higher analog of Silver indiscernibles for L.

Lemma 5.27. Assume Π1
3-determinacy. Then there is a club C ⊆ δ1

3 such

that C ∈ L[T3, 0
3#] and for any potential partial level ≤ 2 tree (Q,

−−−−−→
(d, q, P )),

for any γ ∈ [C](Q,
−−−−→
(d,q,P ))↑,

γ = c
(3)
Q,γ.

Proof. Let D be a firm set of potential level-3 indiscernibles for M−
2,∞ and

let η ∈ C iff η ∈ D and D ∩ η has order type η. C works for the lemma.

Recall Definition 4.23 for the definition of Rd. An ordinal α < ω1 is
ω1-represented by T iff (1, (0)) ∈ dom(T ) and J1, (0)KT = α. α < u2 is
u2-represented by T iff (2, ((0))) ∈ dom(T ) and J2, ((0))KT = α.

Definition 5.28 (Remarkability). A weakly remarkable level-3 EM blueprint
Γ is remarkable iff

1. Γ(R0) contains the axiom “c((0)) is not measurable”.

2. Γ(R1) contains the following axiom: if ξ is a cardinal and strong cut-

point, c = c((0)), b = (φQ
1

1,c)
−1(c), then V Coll(ω,ξ) satisfies the following:

(a) If α is ω1-represented by both T and T ′, then ((jT1,c)
K(K|ξ), (jQ

1,T
1,c (b)) ∼DJ

((jT
′

1,c)
K(K|ξ), (jQ

1,T ′

1,c (b)). Here (jU1,c)
K stands for the direct limit

of (jZ,Z
′

1,c )K for Z,Z ′ finite subtrees of U , Z a finite subtree of

Z ′, and (jQ
1,U

1,c )K stands for the tail of the direct limit map from

(jQ
1

1,c )
K(K) to (jU1,c)

K(K).
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(b) Let F (α) = π(jT1,c)
K(K|ξ),∞((jQ

1,T
1,c )K(b)) for α represented by T .

Then supα<ω1
F (α) = πK|ξ,∞(c).

3. Γ(R2) contains the following axiom: if ξ is a cardinal and strong cut-

point, e ∈ {0, 1}, c = c((0)), b = (φQ
2e

1,c )−1(c), then V Coll(ω,ξ) satisfies the

following:

(a) If α is u2-represented by both T and T ′, then ((jT2,c)
K(K|ξ), (jQ

2e,T
2,c (b)) ∼DJ

((jT
′

2,c)
K(K|ξ), (jQ

2e,T ′

2,c (b)). Here (jU2,c)
K stands for the direct limit

of (jZ,Z
′

2,c )K for Z,Z ′ finite subtrees of U , Z a finite subtree of

Z ′, and (jQ
2e,U

2,c )K stands for the tail of the direct limit map from

(jQ
2e

2,c )K(K) to (jU2,c)
K(K).

(b) Let F (α) = π(jT2,c)
K(K|ξ),∞((jQ

2e,T
2,c )K(b)) for α represented by T .

Then supα<u2
F (α) = πK|ξ,∞(c).

In the next lemma, we denote y1 = (((0),−1), Q1, ((1, (0), ∅))) ∈ desc(R1),
B1 = (y1, idQ1,∗) ∈ desc(R1, Q1, Q0), y2e = (((0),−1), Q2e, ((2, ((0)), {(0)}))) ∈
desc(R2), B2e = (y2e, idQ2e,∗) ∈ desc(R2, Q2e, Q0) for e ∈ {1, 2}. Note that if
Γ is a level-3 EM blueprint, d ∈ {0, 1}, then Γ(R1) contains the axiom

c((0)) = cy1 = cQ
1

B1

and Γ(R2) contains the axiom

c((0)) = cy20 = cy21 = cQ
20

B20 = cQ
21

B21 .

Lemma 5.29. Suppose Γ is a level-3 EM blueprint. Suppose d ∈ {1, 2}, T
is a finite level ≤ 2 tree.

1. MT
Γ,Rd,∗ =MΓ,Rd⊗T , φT

Γ,Rd,∗ = (idRd⊗T )R
d,T

Γ .

2. If Q1 is a subtree of T , then jQ
1,T

Γ,R1 ◦ (φQ
1

Γ,R1,∗)
−1(cΓ,R1,((0))) = cΓ,R1⊗T,B1.

3. For e ∈ {1, 2}, if Q2e is a subtree of T , then jQ
2e,T

Γ,R2 ◦(φQ
2e

Γ,R2,∗)
−1(cΓ,R2,((0))) =

cΓ,R2⊗T,B2e.

Proof. 1. Put Y = Rd, c = cΓ,Y,((0)), R = Y ⊗ T , ρ = idR factoring (R, Y, T ),
ψ = idY,∗ factoring (Y,R). We only prove the typical case when d = 2. Put

y = (((0)), Q0,
−−−−−→
(e, x,W )) ∈ desc(Y ). We have to show that

ran(φTΓ,Y,∗) = ran(ρY,TΓ ).
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The ⊆ direction: If a ∈MΓ,Y , then jTΓ,Y (a) = ρY,TΓ ◦ ψRΓ (a). If Q is finite,
π factors (Q0, T ⊗ Q), then π′ =DEF idT⊗Q,∗ ◦π factors (Q0, (T ⊗ Q) ⊗ Q0)
and (y, π′) ∈ dom(Y ⊗ (T ⊗Q)). Hence,

(πT⊗Q(c((0))))
MΓ,Y = cΓ,Y,(y,π′) = ρY,TΓ (cΓ,R,ι−1

Y,T,Q(y,π′)).

If π factors (Q2e, T⊗Q), e ∈ {0, 1}, then π′ =DEF idT⊗Q,∗ ◦π factors (Q2e, (T⊗
Q)⊗Q2e) and (y2e, π′) ∈ dom(Y ⊗ (T ⊗Q)). Argue similarly.

The ⊇ direction: By definition.
2,3. Simple computation.

Lemma 5.30. Assume ∆1
2-determinacy. Suppose Γ is an iterable, weakly

remarkable level-3 EM blueprint. The following are equivalent:

1. Γ is remarkable.

2. The map γ 7→ cΓ,γ is continuous.

3. There exist γ0, γ1, γ2 such that for d ∈ {0, 1, 2}, cf
L
δ1
3
[T2]

(γd) = ud and

cΓ,γd = {cΓ,β : β < γd}.

In particular, if Π1
3-determinacy holds, then 03# is remarkable, and hence

the map γ 7→ c
(3)
γ is continuous.

Proof. 1 ⇒ 2: Suppose γ < δ1
3 is a limit of limit ordinals. By Lemma 4.79,

there exists a Π1
3-wellfounded tree Y such that γ = J((0))KY .

Case 1: cf
L
δ1
3
[T2]

(γ) = ω.
Then R0 is a subtree of Y and A =DEF {a ∈ ω<ω : a <BK ((0)), (a) ∈

dom(Y )} has limit order type. By indiscernability, c∗Γ,Y,((0)) = supa∈A c
∗
Γ,Y,(a).

By weak remarkability, for a ∈ A, M∗
Γ,Y �c

∗
Γ,Y,(a) =M∗

Γ,Y�(a). By remarkabil-
ity, πM∗Γ,Y ,∞ is continuous at c∗Γ,Y,((0)). It follows that cΓ,γ = supβ<γ cΓ,β.

Case 2: cf
L
δ1
3
[T2]

(γ) = ud, d ∈ {1, 2}.
Then Rd is a subtree of Y . Let F (α) = JB1KY⊗T for α < ud represented by

T . Then supα<ud F (α) = γ. By remarkability, Lemma 5.29 and absoluteness,
supα<ud cΓ,F (α) = cγ.

2 ⇒ 3: Trivial.
3 ⇒ 1: By Lemma 4.79, there exist Π1

3-wellfounded trees Y d for d ∈
{0, 1, 2} such that γd = J((0))KY . Reverse the argument in 1 ⇒ 2.
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Definition 5.31 (Level ≤ 2 correctness). A level-3 EM blueprint Γ is level
≤ 2 correct iff for each finite level-3 tree Y , for each y ∈ dom(Y ), putting
X = Ytree(y), Γ(Y ) contains the following axiom:

If c = cy, b = (φXX,c)
−1(c), ξ > c is a cardinal and strong cutpoint, then

V Coll(ω,ξ) satisfies the following:

1. If ~α = (dαx)(d,x)∈dom(X) is represented by both T and T ′, then ((jTX,c)
K(K|ξ),

(jX,TX,c )K(b)) ∼DJ ((jT
′

X,c)
K(K|ξ), (jX,T

′

X,c )K(b)). Here (jUX,c)
K stands for

the direct limit of (jZ,Z
′

X,c )K for Z,Z ′ finite subtrees of U , Z a finite sub-

tree of Z ′, and (jX,UX,c )K stands for the tail of the direct limit map from

(jXX,c)
K(K) to (jUX,c)

K(K).

2. Let F (~α) = π(jTX,c)
K(K|ξ),∞((jX,TX,c )K(b)) for ~α represented by T . Then

[F ]µX = πK|ξ,∞(c).

Lemma 5.32. Suppose Γ is a level-3 EM blueprint, Y is a finite level-3 tree,

T is a finite level ≤ 2 tree, y ∈ dom(Y ), y = (y,X,
−−−−−→
(e, x,W )) ∈ desc(Y ),

B = (y, idX,∗) ∈ desc(Y,X,Q0). Then

1. MT
Γ,Y,y = MΓ,Y⊗yT , φTΓ,Y,y = (idY⊗yT )Y,TΓ , where idY⊗yT factors (Y ⊗y

T, Y, T ).

2. If X is a subtree of T , then jX,TΓ,Y ◦ (φXΓ,Y,y)
−1(cΓ,Y,y) = cΓ,Y⊗yX,B.

Proof. 1. Put c = cΓ,Y,y, R = Y ⊗y T , ρ = idR, ψ = idY,∗ factoring (Y,R),

Y [y] = (X,
−−−−−→
(e, x,W )), y = (y,X,

−−−−−→
(e, x,W )). We have to show that

ran(φTΓ,Y,y) = ran(ρY,TΓ ).

The ⊆ direction: If a ∈MΓ,Y , then jTΓ,Y (a) = ρY,TΓ ◦ ψRΓ (a). If Q is finite,
π factors (X,T ⊗ Q), then π′ =DEF idT⊗Q,∗ ◦π factors (X, (T ⊗ Q) ⊗ X)
and (y, π′) ∈ dom(Y ⊗ (T ⊗ Q)). ι−1

Y,T,Q(y, π′) is of the form (B, τ) where
B = (y, ϕ) ∈ dom(Y ⊗y T ). Hence,

(πT⊗Q(cy))
MΓ,Y = cΓ,Y,(y,π′) = ρY,TΓ (cΓ,R,(B,τ)).

The ⊇ direction: If B ∈ dom(Y ⊗Q0), then cTΓ,Y,B = jTΓ,Y (cΓ,Y,ψ−1(B)). If
B = (y, π) ∈ dom(R), then cTΓ,Y,B ∈ ran(φTΓ,Y,y) by definition.

2. Set X = T in part 1.

It is straightforward to compute that if Y, y,y,B are as in the assumption
of Lemma 5.32, then
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1. if ~α = (dαx)(d,x)∈dom(X) is represented by both T and T ′, then JBKY⊗yT =
JBKY⊗yT ′ ;

2. letting G(~α) = JBKY⊗yT for ~α represented by T , then JyKY = [G]µX .

From Lemmas 5.32, 5.27 and absoluteness, we conclude:

Lemma 5.33. Assume ∆1
2-determinacy. Suppose Γ is an iterable level-3 EM

blueprint. Then the following are equivalent.

1. Γ is level ≤ 2 correct.

2. For any potential partial level ≤ 2 tower (X,
−−−−−→
(e, x,W )) of continuous

type, if F ∈ (δ1
3)(X,

−−−−−→
(e,x,W ))↑, then

cΓ,X,[F ]
µX

= [~α 7→ cΓ,F (~α)]µX .

3. For any potential partial level ≤ 2 tower (X,
−−−−−→
(e, x,W )) of continuous

type, there exists F ∈ (δ1
3)(X,

−−−−−→
(e,x,W ))↑ satisfying

cΓ,X,[F ]
µX

= [~α 7→ cΓ,F (~α)]µX .

In particular, if Π1
3-determinacy holds, then 03# is level ≤ 2 correct, and

hence, if F ∈ (δ1
3)(X,

−−−−−→
(e,X,W ))↑, then

c
(3)
X,[F ]

µX
= [~α 7→ c

(3)
F (~α)]µX .

Theorem 5.34. Assume Π1
3-determinacy. Then 03# is the unique iterable,

remarkable, level ≤ 2 correct level-3 EM blueprint.

Proof. It remains to show uniqueness. Suppose Γ,Γ′ are both iterable re-
markable level-3 EM blueprints. We carry out a “comparison” between Γ
and Γ′. By Corollary 2.15, the function γ 7→ (cΓ,γ, cΓ′,γ) is Σ1

4(Γ,Γ′) in the
codes, and hence belongs to L[T3,Γ,Γ

′]. By Lemma 5.30, there is a club
C ∈ L[T3,Γ,Γ

′] such that γ = cΓ,γ = cΓ′,γ for any γ ∈ C. By Lemma 5.33, if
γ ∈ [C](Q,(d,q,P ))↑, then γ = cΓ,Q,γ = cΓ′,Q,γ.

Suppose R is a finite level-3 tree. Let ~γ ∈ [C]R↑. By Lemma 4.79, we
can find a Π1

3-wellfounded Y extending R so that J∅KY ∈ C and for any

r ∈ dom(R), γr = JrKY . Then (M∗
Γ,Y )∞ = (M∗

Γ′,Y )∞ = M−
2,∞|c

(3)
J∅KY +ω and for

any r ∈ dom(R), πM∗Γ,Y ,∞(c∗Γ,Y,r) = πM∗
Γ′,Y ,∞

(c∗Γ′,Y,r) = γr. This ensures that

(M∗
Γ,Y ; (c∗Γ,Y,r)r∈dom(R)) is elementarily equivalent to (M∗

Γ′,Y ; (c∗Γ′,Y,r)r∈dom(R)).
Hence, Γ(R) = Γ′(R).
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The existence of an iterable, remarkable, level ≤ 2 correct level-3 EM
blueprint is a purely syntactical definition of a large cardinal. The minimum
background assumption to make sense of it is ∆1

2-determinacy. However,
its existence and uniqueness is proved under boldface Π1

3-determinacy. It is
unclear if the assumption of boldface Π1

3-determinacy can be weakened, at
least to ∆1

3-determinacy+Π1
3-determinacy. To draw a complete analogy with

the level-1 sharp, one would naturally ask

Question 5.35. Assume ∆1
2-determinacy. Are the following equivalent?

1. There is an iterable, remarkable, level ≤ 2 correct level-3 EM blueprint.

2. There is an (ω1, ω1)-iterable M#
2 .

3. Π1
3-determinacy.

Theorem 5.36. Assume ∆1
2-determinacy. If there is an iterable, remark-

able, level ≤ 2 correct level-3 EM blueprint, then Π1
3-determinacy holds.

Proof. Let Γ be an iterable, remarkable, level≤ 2 correct level-3 EM blueprint.
Suppose A ⊆ R is Π1

3 and G is the game on ω with payoff set A. Let (Rs)s∈ω<ω
be an effective regular level-3 system such that x ∈ A↔ Rx =DEF ∪n<ωRx�n is
Π1

3-wellfounded. By iterability of Γ, M∗
Γ,R0 is a Π1

3-iterable mouse. Working
inM∗

Γ,R0 , define the auxiliary game H(c((0))) where in rounds 2n and 2n+ 1,

I plays x(2n) ∈ ω, γn ∈ c((0)), II plays x(2n+ 1). Player I is said to follow the

rules at stage k iff letting rn ∈ dom(Rx�n+1) \ dom(Rx�n) for n < k, then for
any n < m < k, rn = (rm)− → γm < j(Rx�n+1)tree(rn),(Rx�m+1)tree(rm)(γn). Players
I wins H(c((0))) iff he follows the rules at every finite stage k. H(c((0))) is a

closed game for Player I, hence determined in M∗
Γ,R0 .

Case 1: M∗
Γ,R0 |=“σ is a winning strategy for Player I in H(c((0)))”.

Let σ∗ be the strategy for Player I in G obtained by following σ and
ignoring the auxiliary moves γn. If x is (in V ) a complete run according

to σ∗, then Rx ∈ p[S3
M∗

Γ,R0 ]. By Σ1
4-correctness of set-generic extensions of

M∗
Γ,Y , p[S3

M∗
Γ,R0 ] ⊆ p[S3]. Hence x ∈ A. This shows σ∗ is winning for Player

I.
Case 2: M∗

Γ,R0 |=“σ is a winning strategy for Player II in H(c((0)))”.

We define a strategy σ∗ for II in G as follows: if lh(s) = 2n + 1, then
σ(s) = a iff the formula

σ((s(0), cr1), s(1), . . . , (s(2n), crn)) = a

belongs to Γ(Rs�n+1), where rk ∈ dom(Rs�k+1) \ dom(Rs�k). We claim that σ∗

is a winning strategy for Player II. Suppose otherwise and x is a complete
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run according to σ∗ but x ∈ A. Then Rx is Π1
3-wellfounded. Let N =

M∗(Γ, R+
x ), where R+

x extends Rx, dom(R+
x ) = dom(Rx) ∪ {((1))}, R+

x ((1))
has degree 0. By iterability of Γ, N is a Π1

3-iterable mouse. By coherency
of Γ, N |=“σ is a winning strategy for Player II in (H(c((1))))

N”. However,

x ⊕ (crk
N )k<ω is a complete run according to σ which is legal according to

the rules of (H(c((1))))
N . In V , the tree of attempts of building a complete

run according to σ which is legal according to the rules of (H(c((1))))
N is

illfounded. By absoluteness of wellfoundedness, N can see such a complete
run. Contradiction.

Theorem 5.36 is a generalization of Martin’s theorem that 0# implies
Π1

1-determinacy. It proves 1 ⇒ 3 in Question 5.35. For a real x, a level-3
EM blueprint over x is the obvious generalization of Definition 5.14, i.e., a
function Γ that sends R to Γ(R), a complete consistent Lx,R-theory contain-
ing the additional axioms “x ∈ R” and “x(i) = j” when x(i) = j. Assume
Π1

3-determinacy, x3# is the unique iterable, remarkable, level ≤ 2 correct
level-3 EM blueprint over x. Thus, in combination with Neeman [37, 38]
and Woodin [43], we reach an affirmative answer to the boldface version of
Question 5.35.

Theorem 5.37. Assume ∆1
2-determinacy. The following are equivalent.

1. For all x ∈ R, there is an iterable, remarkable, level ≤ 2 correct level-3
EM blueprint over x.

2. For all x ∈ R, there is an (ω1, ω1)-iterable M#
2 (x).

3. Π1
3-determinacy.

Recall the basic fact that L is the Skolem hull of the class of Silver indis-
cernibles. We exploit its higher level analog. Clearly, M−

2,∞ is not the Skolem

hull of {c(3)
X,α : α respects X}, as by remarkability, the Skolem hull contains

only countably many ordinals below c
(3)
ω . The missing part will be generated

by ordinals below uω in a specific way.

Lemma 5.38. Suppose N is Π1
3-iterable and satisfies 03#(∅). Then for any

limit ordinal α ∈ N ,

πN ,∞(α) = sup{πNT ,∞(β) : T is Π1
2-wellfounded, β < jTN (α)}.

Proof. Let the universality of level ≤ 2 ultrapowers axiom be the following:
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If α is a limit ordinal and ξ > α is a cardinal and cutpoint,
then V Coll(ω,ξ) satisfies πK|ξ,∞(α) = sup{π(jT )K(K|ξ),∞(β) : T is

Π1
2-wellfounded, β < (jT )K(α)}, where (jT )K denotes the direct

limit of (jT
′
)K for T ′ a finite subtree of T .

By elementarity and absoluteness, it suffices to show that M−
2,∞ is a model

of this axiom. Fix α < δ1
3.

Case 1: cf
L
δ1
3
[T2]

(α) = ω.
ThenM−

2,∞ |= “ cf(α) is not measurable”. So when α < ξ < δ1
3, (M−

2,∞)Coll(ω,ξ) |=
“πK|ξ,∞ is continuous at α”.

Case 2: cf
L
δ1
3
[T2]

(α) = u1.
Let F : u1 → α be order preserving and cofinal, F ∈ Lδ1

3
[T2]. Let z ∈ R

so that F is ∆1-definable over Lκz3 [T2, z] from {T2, z}. Let P ∈ F2,z and
ᾱ, F̄ ∈ P so that πP,∞(ᾱ, F̄ ) = (α, F ). Let Q = (L[S3])P . So for any

Π1
2-wellfounded T , QT = (L[S3])P

T
and jTQ = jTP �QT . By absoluteness, it

suffices to show that

α = sup{πPT ,∞(β) : T is Π1
2-wellfounded, β < jTP(α)}.

This would follow from

u1 = sup{πPT ,∞(β) : T is Π1
2-wellfounded, β < (u1)P

T }.

The last equality is because {πPT ,∞◦jT
′,T
P ((seedT

′

(1,(0)))
P) : T is Π1

2-wellfounded,

T ′ is a finite subtree of T , (0) ∈ 1T ′} is a subset of the right hand side and
has order type ω1.

Case 3: cf
L
δ1
3
[T2]

(α) = u2.
Similar to Case 2.

Definition 5.39. If N is a structure that satisfies Axioms 1-3 in Defini-
tion 5.14 and the universality of level ≤ 2 ultrapowers axiom, then

GN

is the direct system consisting of models N T for which T is a Π1
2-wellfounded

level ≤ 2 tree and maps πT,T
′

N : N T → N T ′ for π minimally factoring T, T ′.
Define

N∞ = dirlimGN ,
πNT ,N∞ : N T → N∞ is tail of the direct limit map.
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If in addition, N is countable Π1
3-iterable mouse, then GN is a subsystem

of IN . By Lemma 5.38, GN is dense in IN , so there is no ambiguity in the
notation N∞:

Lemma 5.40. Suppose N is a countable Π1
3-iterable mouse and satisfies

Axioms 1-3 in Definition 5.14 and the universality of level ≤ 2 ultrapowers
axiom. If π : N → P is an iteration map, then there exist a Π1

2-wellfounded
T and ψ : P → N T such that ψ ◦ π = jTN and ψ is essentially an iteration
map.

The direct system GN is useful even when N is not Π1
3-iterable. In the

proof of the level-4 Kechris-Martin theorem in Section 7, we will inevitably
have to deal with partially iterable level-3 EM blueprints. The structure N
will be the EM model built from a partially iterable level-3 EM blueprint.
The advantage of the (possibly illfounded) direct limit N∞ is that the order
type of its ordinals is easily codable by a subset of uω. If X is a finite level
≤ 2 tree, a ∈ N , ~β = (dβx)(d,x)∈dom(X) is represented by both T and T ′, then

πNT ,∞ ◦ jX,TN (a) = πNT ′ ,∞ ◦ j
X,T ′

N (a). We can define

πN ,X,~β,∞(a) = πNT ,∞ ◦ jX,TN (a)

for ~β represented by T . So

N∞ = {πN ,X,~β,∞(a) : a ∈ N , X finite level ≤ 2 tree, ~β ∈ [ω1]X↑}.

Essentially, the inner model theoretic comparison between mice is replaced
by the comparison between Π1

2-wellfounded level ≤ 2 trees in Theorem 4.57.
A level ≤ 3 code for an ordinal in δ1

3 is of the form

(R,~γ,X, ~β, pσq)

such that R is a finite level-3 tree, ~γ respects R, X is a finite level ≤ 2 tree, ~β
respects X, and σ is an LR-Skolem term for an ordinal. It codes the ordinal∣∣∣(R,~γ,X, ~β, pσq)∣∣∣ = πM∗

03#,R
,X,~β,∞(σ

M∗
03#,R((cr)r∈dom(R))).

By Lemmas 5.40, every ordinal in δ1
3 has a level ≤ 3 code. The evaluation

function on level ≤ 3 codes is Σ1
4(03#), and hence definable over M−

2,∞(03#).

5.5 Level-3 indiscernibles

If ~γ respects a level-3 tree R, define

c~γ = (c
(3)
Rtree(r),γr

)r∈dom(R)
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which strongly respects R. Combined with Lemma 4.61, this leads to the
order of level-3 indiscernibles for M−

2,∞: c
(3)
Q,γ < c

(3)
Q′,γ′ iff letting (γi)1≤i≤k be

the Q-approximation sequence of γ and (γ′i)1≤i≤k′ be the Q′-approximation
sequence of γ′, then (γi)1≤i≤k

_(−1) <BK (γ′i)1≤i≤k′
_(−1). We prove the

general remarkability property of 03# based on this order.

Lemma 5.41 (General remarkability). Suppose ~γ and ~γ′ both respect a finite
level-3 tree R. Suppose r ∈ dom(R) and for any s ≺R r, γs = γ′s. Then for
any L-Skolem term τ ,

M−
2,∞ |= τ(c~γ) < c

(3)
Rtree(r),γr

→ τ(c~γ) = τ(c~γ′).

Proof. Assume τM
−
2,∞(c~γ) < c

(3)
Rtree(r),γr

. If s ∈ dom(R) and r �R s let l(s) be

the largest l so that 〈r � l〉R = 〈s� l〉R. It is easy to find ~γl ∈ [δ1
3]R↑ for l ≤ lh(r)

so that ~γ0 = ~γ, ~γlh(r) = ~γ′ and γls 6= γl+1
s → (r �R s ∧ l(s) = l). Thus, we

may assume a fixed l0 so that γs 6= γ′s implies l(s) = l0. The case l0 = 0 is
just Lemma 5.24. Assume now l0 > 0. Note that l(s) = l0 also implies that
Rtree(s� l0) = Rtree(r � l0). A sliding argument similar to Lemma 5.24 reduces
to the special case that (lh(s) = lh(s′) = l0 +1∧ l(s) = l(s′) = l0)→ γs < γs′ .
Let (Y, ρ, ρ′) be the amalgamation obtained by Lemma 4.73 so that ρ, ρ′

both factor (R, Y ) and if ~δ, ~δ′ ∈ [δ1
3]R↑ and (lh(s) = lh(s′) = l0 + 1 ∧ l(s) =

l(s′) = l0) → δs < δs′ , then ~δ ⊕ ~δ′ ∈ [δ1
3]Y ↑, where ~δ ⊕ ~δ′ = ~ε, ερ(r) = δr,

ερ′(r) = δ′r. Put η ∈ D iff c
(3)
η = η. By indiscernability, we may assume that

~γ,~γ′ ∈ [D]R↑, so that c~γ = ~γ, c~γ′ = ~γ′. It is easy to construct ~δξ ∈ [δ1
3]R↑

for ξ < γr so that ~γ ⊕ ~δξ ∈ [δ1
3]Y ↑ and η < ξ < γr → ~δη ⊕ ~δξ ∈ [δ1

3]Y ↑. Put

εξ = τM
−
2,∞(c~δξ). By indiscernability, it suffices to show that εη = εξ for some

(or equivalently, for any) η < ξ < γr. Suppose otherwise. By indiscernability
again, either η < ξ < γr → εη > εξ or η < ξ < γr → εη < εξ. The former

gives a descending chain of ordinals. The latter implies that γr ≤ τM
−
2,∞(c~γ),

contracting to our assumption.

Recall that if c < c′ are consecutive L[x]-indiscernibles, then L[x#] |=
c′ < c+. The level-3 version is similar.

Lemma 5.42. Assume Π1
3-determinacy. For any c

(3)
ω < ξ ∈ I(3), there is an

L-Skolem term τ such that M−
2,∞(03#) |= “τ(sup(I(3) ∩ ξ), ·) is a surjection

from sup(I(3) ∩ ξ) onto ξ”.

Proof. The evaluation function on level ≤ 3 codes is Σ1
4(03#), and hence is

definable over M−
2,∞(03#). If (R,~γ,X, ~β, pσq) and (R,~γ′, X, ~β, pσq) are both

level ≤ 3 codes an ordinal below ξ and ∀r (γr < ξ → γr = γ′r), then by
Lemma 5.41 they must code the same ordinal. This easily defines a surjection
from sup(I(3) ∩ ξ) onto ξ in M−

2,∞(03#).
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By Lemma 4.61, for any finite level-3 tree R, if A ≺ A′ then “cA < cA′” is
true in 03#(R), if A ∼ A′ then “cA = cA′” is true in 03#(R). For notational
convenience, if X is a finite level ≤ 2 tree and γ = [F ]µX is a limit ordinal,

define c
(3)
X,γ = [~α 7→ c

(3)
F (~α)]µX ; define c

(3)

∅,δ1
3

= δ1
3. Ordinals of the form c

(3)
X,γ when

X 6= ∅ are definable from elements in I(3) over M−
2,∞: If the X-approximation

sequence of γ is (γi)1≤i≤k, (Q, (di, qi, Pi)i<lh(~q)) is the X-potential partial level
≤ 2 tower induced by γ, π : Q → X is the induced level-2 factoring map,
then

1. if γ is of X-discontinuous type, then c
(3)
X,γ = πX(c

(3)
Q,γk

);

2. if γ is of X-continuous type, Q− is the subtree of Q obtained by re-
moving (dk, qk), then c

(3)
X,γ = πX ◦ jQ−,Qsup (c

(3)
Q,γk−1

).

Define Ī(3) =the closure of I(3) under the order topology. Every ordinal
in Ī(3) is of the form c

(3)
X,γ where X is finite and γ < δ1

3 is a limit. Thus, if

A = (r, π, T ) ∈ desc∗∗(R) and ~γ strongly respects R, then c
(3)
T,γA
∈ Ī(3) and is

a limit point of I(3).
Given γ0, . . . , γn, γ

′
0, . . . γ

′
n ∈ I(3), ~γ is a shift of ~γ′ iff there exist a level-3

tree R, nodes r0, . . . , rn ∈ dom(R), ~δ, ~δ′ both respecting R such that γi =

c
(3)
Rtree(ri),δi

, γ′i = c
(3)

Rtree(ri),δ′i
for any i ≤ n. By indiscernability, if ~γ is a shift of

~γ′, then for any L-formula ϕ,

M−
2,∞ |= ϕ(~γ)↔ ϕ(~γ′).

Lemma 5.43. Suppose R is a finite level-3 tree, τ is an L-Skolem term, ~γ
strongly respects R. Suppose A = (r, π, T ) ∈ desc∗∗(R). Then

τM
−
2,∞(c~γ) < c

(3)
T,γA
→

τM
−
2,∞(c

(3)
~γ ) < min(I(3) \ sup{c(3)

T ′,γA′
: A′ = (r′, π′, T ′) ≺R∗ A}).

Proof. Suppose τM
−
2,∞(c~γ) < c

(3)
T,γA

. Let δ = min(I(3) \ sup{c(3)
T ′,γA′

: A′ =

(r′, π′, T ′) ≺R∗ A}). We shall show that {δ′ : c~γ
_(δ′) is a shift of c~γ

_(δ)} is

cofinal in γA. From this and indiscernability, τM
−
2,∞(c~γ) < δ.

If r = ∅, then δ = c
(3)
γ(a)+ω

where a = max<BK R{∅}. So {δ′ : c~γ
_(δ′) is a

shift of c~γ
_(δ)} is cofinal in γA = δ1

3.

Suppose now r = (r,Q,
−−−−−→
(d, q, P )) 6= ∅, lh(r) = k, ucf(R(r)) = (d∗,q∗),

and if d∗ = 1 put q∗ = q∗, if d∗ = 2 put q∗ = (q∗, P ∗, ~p∗).
Case 1: r is of discontinuous type, 〈A〉 ends with −1.
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Let s = max<BK R{r,−} and s = (s,Q,
−−−−−→
(d, q, P )). Then δ = c

(3)

T,πT (γs)+ω
.

It is easy to compute that {δ′ : c~γ_(δ′) is a shift of c~γ
_(δ)} is cofinal in γA.

Case 2: r is of discontinuous type, 〈A〉 ends with an ordinal.
If either dk = 1 or dk = d∗ = 2∧q∗ ∈ desc(2Q), let τ factor (Q, T ) so that

τ agrees with π on dom(Q) \{(d∗, q∗)}, τ(d∗, q∗) = pred(π, T, (d∗,q∗)). Then

δ = c
(3)

T,τT (γr)+ω
. Otherwise, let U be the subtree of T obtained by removing

pred(π, T, (d∗,q∗)) from its domain. Then δ = c
(3)

U,πU (γr)+ω
. In either case,

{δ′ : c~γ_(δ′) is a shift of c~γ
_(δ)} is cofinal in γA.

Case 3: r is of continuous type.
Similar to Cases 1 and 2.

Lemma 5.44. Suppose R is a finite level-3 tree and A = (r, π, T ) ∈ desc∗∗(R),

r 6= ∅, ~γ strongly respects R. Then c
(3)
T,γA

is a cardinal in M−
2,∞.

Proof. Otherwise, τM
−
2,∞(c~γ) is a wellordering on α =DEF cardM

−
2,∞(c

(3)
T,γA

) of

order type c
(3)
T,γA

and α < c
(3)
T,γA

. Put β = min(I(3) \ sup{c(3)
T ′,γA′

: A′ =

(r′, π′, T ′) ≺R∗ A}). By Lemma 5.43, α < β. By Lemma 5.41, if ~δ respects R

and ∀s (δs < β → δs = γs), then τM
−
2,∞(c~γ) = τM

−
2,∞(c~δ), and hence γA = δA.

However, it is easy to find such ~δ satisfying δA > γA.

6 The boldface level-3 sharp

From now on, we assume Π1
3-determinacy. Recall that L[T3] =

⋃
x∈R L[T3, x].

Every subset of δ1
3 in L[T3] is definable over M−

2,∞(x) for some x ∈ R. All the
results in Section 5 relativize to any given real x. If R is a Π1

3-wellfounded
level-3 tree, Mx3#,R is the EM model built from x3#(R). M∗

x3#,R
, M∗,T

x3#,R
,

c
(3)
x,Q,γ, c

(3)
x,γ, cx,~γ, I

(3)
x , Ī

(3)
x have obvious meanings. Fixing x, the function

(Q, γ) 7→ c
(3)
x,Q,γ is Σ1

4(x3#) in the codes and hence is definable over M−
2,∞(x3#).

6.1 Homogeneity properties of S3

A level ≤ 3 tree is of the form R = (0R, 1R, 2R, 3R) so that ≤2R =DEF

(0R, 1R, 2R) is a level ≤ 2 tree and 3R is a level-3 tree. If T is a level ≤ 2 tree
and Y is a level-3 tree then T ⊕ Y denotes the level ≤ 3 tree (0T, 1T, 2T, Y ).
R is Π1

3-wellfounded iff ≤2R is Π1
2-wellfounded and 3R is Π1

3-wellfounded.
Suppose R is a level ≤ 3-tree. Define dom(R) = ∪d{d} × dom(dR),

desc(R) = ∪d{d} × desc(dR). If ~β respects ≤2R and ~γ respects 3R, define
~β ⊕ ~γ = ~δ = (dδt)(d,r)∈dom(R) where dδr = dβr for (d, r) ∈ dom(≤2R) and
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3δr = γr for r ∈ dom(3R). Define A ⊕ B = {~β ⊕ ~γ : ~β ∈ A,~γ ∈ B}. If

E ⊆ ω1 and C ⊆ δ1
3, define [E,C]R↑ = [E]

≤2R↑ ⊕ [C]
3R↑. ~δ respects R iff

~δ ∈ [ω1, δ
1
3]R↑. A finite level ≤ 3 tree R induces a filter µR on finite tuples in

δ1
3, originated from the weak partition property of δ1

3 under AD. µR is the
higher level analog of the n-fold product of the club filter on ω1.

Definition 6.1. Assume Π1
3-determinacy. Let R be a finite level ≤ 3 tree.

We say
A ∈ µR

iff there are clubs E ⊆ ω1, C ⊆ δ1
3 such that E,C ∈ L[T3] and

[E,C]R↑ ⊆ A.

If Y is a finite level-3 tree, put A ∈ µY iff [ω1]Q
0↑ ⊕ A ∈ µQ0⊕Y .

µR is an L[T3]-measure, the reason being as follows. Every A ∈ L[T3]
is definable over M−

2,∞(x) from {x} for some real x. By indiscernability

and remarkability, the section A∗ =DEF {~β : ~β ⊕ c
(3)
x,~γ ∈ A} is invariant

in ~γ ∈ [δ1
3]R↑. So C = {c(3)

x,ξ : ξ < δ1
3} and some E deciding the µ

≤2R-

measure of A∗ works. µR is the product measure on L[T3] of µ
≤2R and µ

3R.

Let jR = jµ
R

L[T3] be the ultrapower map from L[T3] to L[jR(T3)]. For any

x ∈ R, jR is elementary from L[T3, x] to L[jR(T3), x]. By indiscernability
and remarkability again, if α < δ1

3 and F : [ω1, δ
1
3]R↑ → α, F ∈ L[T3],

then there is x ∈ R and G ∈ Lδ1
3
[T2] such that for any ~γ ∈ [δ1

3]
3R↑, for any

~β ∈ [ω1]
≤2R↑, F (~β ⊕ ~γ) = G(~β). Therefore,

jR �δ1
3 = j

≤2R �δ1
3.

For (d, r) ∈ dom(R) ∪ {(3, ∅)}, let

seedR(d,r)

be the element represented modulo µR by the projection map ~γ 7→ dγr. If R
is Π1

3-wellfounded, the direct limit of jR
′,R′′ for R′ a finite subtree of R′′ and

R′′ a finite subtree of R is wellfounded, and we let jR : L[T3]→ L[jR(T3)] be
the direct limit map; if R′ is a finite subtree of R then jR

′,R : L[jR
′
(T3)] →

L[jR(T3)] is the tail of the direct limit map. If (d, r) ∈ dom(R′), R′ is a finite
subtree of R, then seedR(d,r) = jR

′,R(seedR
′

(d,r)). Let

seedR = (seedR(d,r))(d,r)∈dom(R).
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If Y is a Π1
3-wellfounded level-3 tree, then jY = jQ

0⊕Y , seedYy = seedQ
0⊕Y

(3,y) ,

seedY = (seedYy )y∈dom(Y ).

In particular, seedR(3,∅) = jR(δ1
3), seedR(d,r) = seed

≤2R
(d,r) when d ≤ 2. If A ∈

desc∗∗(3R′), r ∈ desc∗(3R′), R′ finite subtree of R, let seedR(3,A) = jR
′,R([~γ 7→

3γA]µR′ ), seedR(3,r) = jR
′,R([~γ 7→ 3γr]µR′ ). By Lemma 4.61, seedR(3,A) < seedR(3,A′)

iff A ≺ A′; seedR(3,A) = seedR(3,A′) iff A ∼ A′. seedR(3,A) for finite R is the higher
level analog of uniform indiscernibles. If Y is a Π1

3-wellfounded level-3 tree

and A ∈ desc∗∗(Y ), y ∈ desc∗(Y ), let seedYA = seedQ
0⊕Y

(3,A) , seedYy = seedQ
0⊕Y

(3,y) .

We will show in Section 6.2 that seedR(3,A) = seed
3R
A for A ∈ desc∗∗(R).

Under full AD, the set of seedR(3,∅) for finite R is exactly {ℵξ+1 : ω ≤ ξ <

ωω
ω} by Martin [13, Theorem 4.17] and Jackson [12]. The set of seedR(3,∅)

for finite R and their limit points will be level-3 indiscernibles. The rest of
this paper will contain a thorough analysis of the structure of level-3 uniform
indiscernibles.

6.2 Level-3 uniform indiscernibles

Definition 6.2. If R is a finite level ≤ 3 tree, α is an R-uniform indiscernible
iff α ∈

⋂
x∈R j

R(Ī
(3)
x ).

By Lemma 5.43, the set of R-uniform indiscernibles is the closure of
{seedR(3,A) : A ∈ desc∗∗(3R)}, which has order type ξ + 1 if J∅K3R = ξ̂. By

Lemmas 5.42-5.44, α is an R-uniform indiscernible iff α ≥ δ1
3 is a cardinal in

L[jR(T3)]. In particular, the least R-uniform indiscernible is δ1
3.

Recall that if R is a level-3 tree, s ∈ dom(R), then R � s the subtree of
R whose domain consists of r for which 〈r〉 <BK 〈s〉. If R is a level-3 tree
and A ∈ desc∗∗(R), we let R �A be the subtree of R whose domain consists
of r for which 〈r〉 <BK 〈A〉. If R is a level ≤ 3 tree and A ∈ desc∗∗(3R),
s ∈ dom(R), let R�(3,A) = ≤2R⊕ (3R�A), R�(3, s) = ≤2R⊕ (3R�s).

Lemma 6.3. Assume Π1
3-determinacy. Suppose R is Π1

3-wellfounded level ≤
3 tree and A ∈ desc∗∗(3R). Then jR�(3,A),R is the identity on LjR�(3,A)(δ1

3)[j
R�(3,A)(T3)].

Furthermore, if s ∈ dom(3R) and lh(s) = 1, then jR�(3,s)(δ1
3) = seedR(3,s).

Proof. Using a direct limit argument, it suffices to prove the case when R
is finite. We prove that jR�(3,A)(δ1

3) is contained in the range of jR�(3,A),R.
Suppose α = [G]µR < seedR(3,A), x ∈ R, τ is an L-Skolem term such that

G(~γ) = τM
−
2,∞(x)(x,~γ) for any ~γ ∈ [ω1, δ

1
3]R↑ and G(~γ) < 3γA for µR-a.e.

~γ. By Lemma 5.41, if ~β respects ≤2R, ~δ and ~δ′ both strongly respects 3R

and ∀r ((3, r) ∈ dom(R � (3,A)) → 3δr = 3δ′r), then τM
−
2,∞(x)(x, ~β ⊕ c(3)

x,~δ
) =
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τM
−
2,∞(x)(x, ~β ⊕ c

(3)

x,~δ′
). Using the fact that (Q, γ) 7→ c

(3)
x,Q,γ is definable over

M−
2,∞(x3#), we can find an L-Skolem term σ such that for µR-a.e. ~γ,

G(~γ) = σM
−
2,∞(x3#)(x3#, (dγr)(d,r)∈dom(R�(3,A))).

Hence, α = jR�(3,A),A(β) where β = σj
R�(3,A)(M−2,∞(x3#))(x3#, seedR�(3,A)). This

also implies that jR�(3,A)(δ1
3) ≥ seedR(3,A). The “furthermore” part is due to

unboundedness of level-3 sharps.

Suppose Y is a level ≤ 3 tree, T is a level ≤ 2 tree. A (Y, T, ∗)-description
is of the form B = (d, (y, π)) so that either d = 3 ∧ (y, π) ∈ desc(3Y, T, ∗) or
d ≤ 2 ∧ (d, (y, π)) ∈ desc(≤2Y, T, ∗). As usual, B = (d, (y, π)) is abbreviated
by (d,y, π). If Q is a finite level ≤ 2 tree, a (Y, T,Q)-description is (3, (y, π))
so that (y, π) ∈ desc(3Y, T,Q). If P is a finite level-1 tree, a (Y, T, P )-
description is (2, (y, π)) so that (2, (y, π)) ∈ desc(≤2Y, T, P ). A (Y, T,−1)-
description is (1, (y, ∅)) so that y ∈ dom(1Y ). desc(Y, T, ∗), desc(Y, T,Q),
etc. denote the sets of relevant descriptions. If Y, T are finite,

seedY,TB ∈ L(jY ◦ jT (T3))

is the element represented modulo µY by idY,TB .
Suppose that R, Y are level ≤ 3 trees and T is a level ≤ 2 tree. ρ

factors (R, Y, T ) if ρ is a function on dom(R), ≤2ρ =DEF ρ�dom(≤2R) factors
(≤2R, ≤2Y, T ) and 3ρ =DEF ρ �dom(3R) factors (3R, 3Y, T ). ρ factors (R, Y ) iff
≤2ρ factors (≤2R, ≤2Y ) and 3ρ factors (3R, 3Y ). Suppose that ρ factors (R, Y, T ).
If F ∈ (ω1, δ

1
3)Y ↑, then

F T
ρ : [ω1]T↑ → [ω1, δ

1
3]R↑

is the function that sends ~ξ to F T
≤2ρ

(~ξ)⊕ F T
3ρ(~ξ). If T is finite,

idY,Tρ

is the function [F ]Y 7→ [F T
ρ ]µT . If Y is also finite,

seedY,Tρ = [idY,Tρ ]µY ∈ L(jY ◦ jT (T3)).

By  Loś and Lemmas 4.50,4.51,4.63,4.64,3.18,4.46, for any A ∈ µR, seedY,Tρ ∈
jY ◦ jT (A). We can unambiguously define

ρY,T : L(jR(T3))→ L(jY ◦ jT (T3))
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by sending jR(F )(seedR) to jY ◦ jT (F )(seedY,Tρ ). In general, if Y, T are Π1
3-

wellfounded and T is Π1
2-wellfounded, then ρY,T ◦ jR′,R = jY

′,Y ◦ j(Y,(T ′,T )) ◦
(ρ′)Y

′,T ′ for R′, Y ′, T ′ finite subtrees of R, Y, T respectively and ρ′ = ρ �
dom(R′) factoring (R′, Y ′, T ′), where j(Y,(T ′,T )) = ∪x∈RjY (jT

′,T �L[jT
′
(T3), x]).

In particular, ρY,T◦jR(δ1
3) = jY (δ1

3). If A ∈ desc∗∗(3R), then ρY,T (seedR(3,A)) =

seedY(3,ρ̃T (A)).
If Y is a level ≤ 3 tree and T is a level ≤ 2 tree, then

Y ⊗ T = (≤2Y ⊗ T )⊕ (3Y ⊗ T )

is (modulo an isomorphism) a level ≤ 3 tree. The domain of Y ⊗T consists of
B = (d, (y, π)) ∈ desc(Y, T, ∗). So ρ factors (R, Y, T ) iff ρ factors (R, Y ⊗T ).
The identity map idY⊗T : B 7→ B factors (Y ⊗ T, Y, T ).

Lemma 6.4. Suppose Y is a Π1
3-wellfounded level ≤ 3 tree and T is a Π1

2-
wellfounded level ≤ 2 tree. Then LjY⊗T (δ1

3)[j
Y⊗T (T3)] = LjY (δ1

3)[j
Y ◦ jT (T3)]

and (idY⊗T )Y,T is the identity map on LjY⊗T (δ1
3)[j

Y⊗T (T3)].

Proof. Assume without loss of generality that Y, T are finite. Put R =
Y ⊗ T and ρ = idY⊗T . Then ρY,T (uR(3,A)) = uY(3,ρ̃T (A)) for any A ∈ desc∗∗(3R)

and ∀B ∈ desc∗∗(Y ) ∃A ∈ desc∗∗(R) ρ̃T (A) ∼Y∗ B. Recall that the set
of L[jR(T3)]-cardinals in the interval [δ1

3, j
R(δ1

3)] is exactly {uR(3,A) : A ∈
desc∗∗(3R)}. For any x ∈ R, ρY,T �L[jR(T3), x] is elementary from L[jR(T3), x]
to L[jY ◦jT (T3), x]. Hence, it suffices to show that ρY,T �δ1

3 is the identity and
whenever ‖A‖≺3R

∗
is a successor cardinal, then ρY,T is continuous at uR(3,A).

By Lemma 4.53 and Corollary 4.15, jR �δ1
3 = j

≤2R �δ1
3 = j

≤2Y ◦ jT �δ1
3 =

jY ◦ jT �δ1
3. By indiscernability and remarkability, ρY,T �δ1

3 = ≤2ρ
≤2Y,T �δ1

3 is
the identity map.

Suppose ‖A‖≺3R
∗

is a successor cardinal and we prove that ρY,T is contin-

uous at seedR(3,A). Suppose α < seedY(3,ρ̃T (A)). There is x ∈ R such that

α < min(jY (Ī(3)
x ) \ sup{uY(3,B) : B ≺Y∗ ρ̃T (A)}).

Let β = min(jR(I
(3)
x ) \ sup{seedR(3,B) : B ≺Y∗ A}). Then β < seedR(3,A) and by

induction and elementarity,

ρY,T (β) = min(jY ◦ jT (Ī(3)
x ) \ sup{uY(3,B) : B ≺Y∗ ρ̃T (A)}) ≥ α,

the last inequality from jT (Ī
(3)
x ) ⊆ Ī

(3)
x and elementarity of jY .

Lemma 6.5. Suppose Y, Y ′ are Π1
3-wellfounded level ≤ 3 trees. Then J∅K3Y =

J∅K3Y ′ iff jY (δ1
3) = jY

′
(δ1

3), J∅K3Y < J∅K3Y ′ iff jY (δ1
3) < jY

′
(δ1

3).
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Proof. If J∅K3Y ≤ J∅K3Y ′ then by Theorems 4.57 and 4.71, there exist a finite
T and ρ that factors (Y, Y ′, T ). So ρY

′,T ◦jY (δ1
3) = jY

′
(δ1

3), yielding jY (δ1
3) ≤

jY
′
(δ1

3). So J∅K3Y = J∅K3Y ′ implies jY (δ1
3) = jY

′
(δ1

3). If J∅K3Y < J∅K3Y ′ , we
further obtain B ∈ desc(3Y ′, T, ∗) such that lh(B) = 1 and JBK3Y ′⊗T = J∅K3Y .
Put Z = (Y ′ ⊗ T ) � (3,B). Then ρ factors (Y, Z). Hence jY (δ1

3) ≤ jZ(δ1
3).

By Lemma 6.3, the factor map jZ,Y
′⊗T is the identity on LjZ(δ1

3)[j
Z(δ1

3)] and

jZ(δ1
3) = seedY

′⊗T
(3,B) . By Lemma 6.4, seedY

′⊗T
(3,B) < jY

′ ◦ jT (δ1
3) = jY

′
(δ1

3).

Lemma 6.6. Suppose Y is a finite level ≤ 3 tree and A ∈ desc∗∗(3Y ). Sup-

pose ‖A‖≺3Y
∗

= ξ and R is a finite level ≤ 3 tree such that J∅K3R = ξ̂. Then

seedY(3,A) = jR(δ1
3).

Proof. If A = (∅, ∅, ∅), this is exactly Lemma 6.5. Suppose A 6= (∅, ∅, ∅).
Let T be a finite level ≤ 2 tree and let ρ minimally factor (R, Y, T ). Let

B ∈ desc(3Y, T, ∗) such that lh(B) = 1 and JBK3Y⊗T = ξ̂. Put B =
(y, π) ∈ desc(3Y, T,Q). A routine computation gives A ∼3Y

∗ (y, π, T ⊗ Q).
So seedY⊗T(3,B) = seedY⊗T(3,A). Put Z = Y ⊗ T � (3,B). Then J∅K3Z = J∅K3R. By

Lemma 6.3, jZ(δ1
3) = seedY⊗T(3,B). By Lemma 6.5, jR(δ1

3) = jZ(δ1
3), and we are

done.

Definition 6.7. In view of Lemma 6.6, we define the level-3 uniform indis-
cernibles :

1. u
(3)
ξ+1 = jR(δ1

3) when ξ < ωω
ω
, R is a Π1

3-wellfounded level ≤ 3 tree and

J∅K3R = ξ̂.

2. If 0 < ξ ≤ ωω
ω

is a limit, then u
(3)
ξ = supη<ξ u

(3)
η .

If R is a finite level ≤ 3 tree and J∅K3R = ξ̂, then the set of R-uniform

indiscernibles is {u(3)
η : 0 < η ≤ ξ + 1} and we have seedR(3,A) = u

(3)
η+1 for

‖A‖≺3R
∗

= η.

The next lemma is the higher level analog of δ1
2 = u2.

Lemma 6.8. Assume Π1
3-determinacy. Then δ1

4 = u
(3)
2 .

Proof. If W is a Σ1
4(x) wellfounded relation on R, then W is δ1

3-Suslin
via a tree in L[T3, x], so by Kunen-Martin and Lemma 5.42, rank(W ) <

((δ1
3)+)L[T3,x] < min(jR

0
(I

(3)

x3#)\ (δ1
3 +1)) < u

(3)
2 as J∅KR0 = ω = 1̂. If α < u

(3)
2 ,

pick x such that α < min(jR
0
(I

(3)
x )\ (δ1

3 +1)). Lemma 5.42 gives a surjection
f : δ1

3 � α which is definable over jR
0
(M−

2,∞(x)) from {δ1
3, x}. From f we

can define a ∆1
4(x3#) prewellordering of length α.
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6.3 The level-4 Martin-Solovay tree

Let R∞ be the unique (up to an isomorphism) level-3 tree such that

1. for any finite level-3 tree Y , there exists ρ which minimally factors
(Y,R);

2. if r ∈ dom(R∞) then there exist a finite Y and ρ which minimally
factors (Y,R) such that r ∈ dom(ρ).

In other words, R∞ is the minimum Π1
3-wellfounded level-3 tree that is univer-

sal for finite level-3 tree in terms of minimal factorings. We fix the following
representation of R∞, whose domain consists of finite tuples of ordinals in
ωω

ω
:

1. (ξ1) ∈ dom(R∞) iff 0 < ξ1 < ωω
ω
. R∞((ξ1)) is the Q0-partial level ≤ 2

tree induced by ξ̂1.

2. If r = (ξ1, . . . , ξk−1) ∈ dom(R∞), then r_(ξk) ∈ dom(R∞) iff ξk <
ωω

ω
and there exists a completion Q+ of R∞(r) such that the Q+-

approximation sequence of ξ̂k is (ξ̂i)1≤i≤k; if r_(ξk) ∈ dom(R∞) and
Q+ is the unique such completion, then R∞(r_(ξk)) is the Q+-partial

level ≤ 2 tree induced by ξ̂k.

Therefore, J∅KR = uω and if r = (ξ1, . . . , ξk) ∈ dom(R∞), then JrKR = ξ̂k. If
Y is a finite level-3 tree, then the map y 7→ ry minimally factors (Y,R), where

if (Jy � iKY )1≤i≤lh(y) = (ξ̂1, . . . , ξ̂lh(y)) then ry = (ξ1, . . . , ξlh(y)). If 0 < ξ < ωω
ω
,

let R∞ξ = R∞ � (ξ). By Lemma 6.3, if 0 < ξ ≤ ωω
ω
, then the factoring map

jR
∞
ξ ,R

∞
is the identity on L

j
R∞
ξ (δ1

3)
[jR

∞
ξ (T3)] and jR

∞
ξ (δ1

3) = seedR
∞

(ξ) = u
(3)
ξ .

In particular, jR
∞

(δ1
3) = u

(3)

ωωω
.

R∞ will be the tree based on which level-3 sharp codes for ordinals below
u

(3)

ωωω
are defined.

LO(3) is the set of v ∈ R such that Xv is a linear ordering of uω, where v 7→
Xv is the ∆1

3 surjection from R onto P((Vω∪uω)<ω), defined in Corollary 2.12

and renamed in the beginning of Section 4.9. WO(3) = WO
(3)
0 is the set of

v ∈ LO(3) such that Xv is a wellordering of uω. WO
(3)
0 is Π1

3. For v ∈WO(3),
put ‖v‖ = o.t.(Xv). Every ordinal in δ1

3 is of the form ‖v‖ for some v ∈
WO(3).

A level-3 sharp code is a pair 〈pτq, x3#〉 where τ is an Lx,R∞-Skolem term

for an ordinal without free variables. For 0 < ξ ≤ ωω
ω
, WO

(3)
ξ is the set of
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level-3 sharp codes 〈pτq, x3#〉 such that τ is an Lx,R∞ξ -Skolem term. WO
(3)
ξ is

Π1
4 for 0 < ξ ≤ ωω

ω
. The ordinal coded by 〈pτq, x3#〉 is∣∣〈pτq, x3#〉

∣∣ = τ (jR
∞

(M−2,∞);seedR
∞

).

For each ξ, WO
(3)
ξ is Π1

4. By Lemma 6.3, if 〈pτq, x3#〉 ∈ WO
(3)
ξ and τ =

σ(x, cr1 , . . . ), σ is an L-Skolem term, then

∣∣〈pτq, x3#〉
∣∣ = σj

R∞ξ (M−2,∞)(x, seed
R∞ξ
r1 , . . . ).

Lemma 6.9. The relations v, w ∈ WO
(3)

ωω
ω ∧ |v| = |w| and v, w ∈ WO

(3)

ωω
ω ∧

|v| < |w| are both ∆1
5.

Proof.
∣∣〈pτq, x3#〉

∣∣ =
∣∣〈pτ ′q, (x′)3#〉

∣∣ iff τ = σ(x, cr1 , . . . , crn), τ ′ = σ′(x, cr′1 , . . . , cr′n′ ),

σ, σ′ are L-Skolem terms, and for some finite level-3 tree Y and some ρ factor-
ing (Y,R∞) such that ~r_~r′ ⊆ ran(ρ), “σ((x)left, cρ−1(r1), . . . ) = σ′((x)right, cρ−1(r′1), . . . )”

is true in (x⊕ x′)3#(Y ).

Recall that WOω is the set of (level-1) sharp codes for ordinals below uω.
The connection between level-3 sharp codes and level-1 sharp codes or WO
is also ∆1

5. For instance, the relation “v ∈ WO
(3)

ωωω
∧ w ∈ WOω ∧ |v| = |w|”

is ∆1
5.

If Γ is a pointclass, say that A ⊆ u
(3)

ωωω
× R is in Γ iff {(v, x) : v ∈

WO
(3)

ωωω
∧ (|v| , x) ∈ A} is in Γ. Γ acting on subsets of product spaces is

defined in the obvious way.

Lemma 6.10. 1. Suppose that ξ ≤ η < ωω
ω

and ρ factors (R∞ξ , R
∞
η ).

Then ρR
∞
η �u(3)

ξ is ∆1
5, uniformly in (ξ, η, ρ).

2. Suppose that ξ < ωω
ω

and Q,Q′ are finite level ≤ 2 trees, Q is a subtree
of Q′. Then j(R∞ξ ,(Q,Q

′)) �u(3)
ξ is ∆1

5, uniformly in (ξ,Q,Q′).

Proof. 1. α < u
(3)
ξ ∧ρR

∞
η (α) = β iff there exist x ∈ R, an L-Skolem term τ and

r1, . . . , rn such that ri ∈ dom(R∞ξ ) for any i and α = 〈pτ(x, cr1 , . . . , crn)q, x3#〉,
β = 〈pτ(x, cρ(r1), . . . , cρ(rn))q, x3#〉.

2. α < u
(3)
ξ ∧j

(R∞ξ ,(Q,Q
′))(α) = β iff there exist x ∈ R, an L-Skolem term τ

and r1, . . . , rn such that ri ∈ dom(R∞ξ ) for any i and α = 〈pτ(x, cr1 , . . . , crn)q, x3#〉,
β = 〈pjQ,Q′(τ(x, c(r1), . . . , c(rn)))q, x3#〉.
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By Lemma 5.42, the set of uncountable L[jR
∞

(T3)]-cardinals ≤ u
(3)

ωωω
is

the closure of

{un : 1 ≤ n < ω} ∪ {seedR
∞

A : A ∈ desc∗∗(R∞)}.

By Lemma 6.4, if A = (r, π, T ) ∈ desc∗∗(R∞), r = (r,Q,
−−−−−→
(d, q, P )), r =

(ξi)1≤i≤k and seedR
∞

A > δ1
3 is a successor cardinal in L[jR

∞
(T3)], then r is of

discontinuous type, ξk is a successor ordinal, and letting r′ = (ξi)1≤i<k
_(ξk−

1), r′ = (r′, Q,
−−−−−→
(d, q, P )), A′ = (r′, π, T ), then

{〈x3#, pτ j
T (V )(x, cA′)q〉 : x ∈ R, τ is an L-Skolem term for an ordinal}

is a cofinal subset of seedR
∞

A .
A level-3 EM blueprint over a real Γ is completely decided by Γ(R∞).

Γ is coded into the real zΓ ∈ 2ω where z(k) = 0 ↔ k ∈ Γ(R∞). We shall
identify Γ with zΓ when no confusion occurs. We define the level-4 Martin
Solovay tree T4 which projects to {x3# : x ∈ R}. T4 will be ∆1

5 as a subset

of (ω × u(3)

ωωω
)<ω, the complexity based on Lemma 6.10.

Let T be a recursive tree so that z ∈ [T ] iff z is a remarkable level-3 EM
blueprint over a real. Let (ri)1≤i<ω be an effective enumeration of dom(R∞)
and let (τk)k<ω be an effective enumeration of all the L-Skolem terms for an

ordinal, where τk is f(k) + 1-ary. T4 is the tree on 2× u(3)

ωωω
where

(t, ~α) ∈ T4

iff t ∈ T and

1. if ξ ≤ η < ωω
ω
, r1, . . . , rf(k) ∈ dom(R∞ξ ), r1, . . . , rf(l) ∈ dom(R∞η ), ρ

factors (R∞ξ , R
∞
η ),

(a) if “τk(x, cρ(r1), . . . , cρ(rf(k))) = τl(x, cr1 , . . . , crf(l)
)” is true in t, then

ρR
∞
η (αk) = αl;

(b) if “τk(x, cρ(r1), . . . , cρ(rf(k))) < τl(x, cr1 , . . . , crf(l)
)” is true in t, then

ρR
∞
η (αk) < αl;

2. if ξ < ωω
ω
, r1, . . . , rmax(f(k),f(l)) ∈ dom(R∞ �ξ), Q,Q′ are finite level ≤ 2

trees, Q is a subtree ofQ′, “jQ,Q
′
(τk(x, cr1 , . . . , crf(k)

)) = τl(x, cr1 , . . . , crf(l)
)”

is true in t, then j(R∞ξ ,(Q,Q
′))(αk) = αl.

Theorem 6.11. p[T4] = {x3# : x ∈ R}. Furthermore, for any x ∈ R,

(τ
(jR
∞

(M−2,∞(x)))

k (x, seedR
∞

r1
, . . . , seedR

∞

rf(k)
))k<ω is the honest leftmost branch of

(T4)x3#.

146



Proof. By definition, for any x, (x3#, (τ
(jR
∞

(M−2,∞(x)))

k (x, seedR
∞

r1
, . . . , seedR

∞

rf(k)
))k<ω) ∈

[T4]. Suppose now (z, ~β) ∈ p[T4]. Let x be a real so that z codes a remarkable
level-3 EM blueprint Γ over x. We need to show that z is iterable and for

any k, τ
(jR
∞

(M−2,∞(x)))

k (z, seedR
∞

r1
, . . . , seedR

∞

rf(k)
) ≤ βk. For each k, pick a finite

subtree Yk of R∞ and Fk : [δ1
3]Yk↑ → δ1

3 such that {r1, . . . , rf(k)} ⊆ dom(Yk),
Fk ∈ L[T3] and jYk,R

∞
([Fk]µYk ) = βk. By L[T3]-countable completeness of the

club filter on δ1
3, we can find a club C in δ1

3 such that C ∈ L[T3] and

1. if ξ ≤ η < ωω
ω
, Yk is a subtree of R∞ξ , Yl is a subtree of R∞η , ρ factors

(R∞ξ , R
∞
η ),

(a) if “τk(x, cρ(r1), . . . , cρ(rf(k))) = τl(x, cr1 , . . . , crf(l)
)” is true in Γ(R∞),

~γ ∈ [C]R
∞
η ↑, then Fk(~γρ �dom(Yk)) = Fl(~γ �dom(Yl));

(b) if “τk(x, cρ(r1), . . . , cρ(rf(k))) < τl(x, cr1 , . . . , crf(l)
)” is true in Γ(R∞),

~γ ∈ [C]R
∞
η ↑, then Fk(~γρ �dom(Yk)) < Fl(~γ �dom(Yl)).

2. if ξ < ωω
ω
, Yk, Yl are subtrees of R∞ξ , Q,Q′ are finite level ≤ 2 trees,

Q is a subtree of Q′, “jQ,Q
′
(τk(x, cr1 , . . . , crf(k)

)) = τl(x, cr1 , . . . , crf(l)
)”

is true in Γ(R∞), ~γ ∈ [C]R
∞
ξ ↑, then jQ,Q

′
(Fk(~γ � dom(Yk))) = Fl(~γ �

dom(Yl)).

Suppose S is a Π1
3-wellfounded level-3 tree. We show that MΓ,S is a Π1

3-
iterable x-mouse. Put N = MΓ,S. Put η ∈ C0 iff C ∩ η has order type η,
η ∈ D iff C0 ∩ η has order type η. Fix ~γ ∈ [D]S↑. We define an embedding

θ : OrdN → δ1
3

as follows. If σ is an L-Skolem term, s1, . . . , sn ∈ dom(R), R is a finite subtree
of S, a = (σ(cs1 , . . . , csn))N , ρ factors (R, Yk), τk(cr1 , . . . , crf(k)

) is logically

equivalent to σ(cρ(s1), . . . , cρ(sn)), ~δ ∈ [C0]Yk↑, δρ(s) = γs for any s ∈ dom(R),
we put

θ(a) = Fk(~δ).

θ is well defined: Suppose σ′ is another L-Skolem term, s′1, . . . , s
′
n′ ∈ dom(R′),

R′ is a finite subtree of S, “σ(x, cs1 , . . . , csn) = σ′(x, cs′1 , . . . , cs′n′ )” is true

in Γ(S), ρ′ factors (R′, Yk′), τk′(x, cr1 , . . . , crf(k′)
) is logically equivalent to

σ′(x, cρ′(s′1), . . . , cρ′(s′
n′ )

), ~δ′ ∈ [C0]Yk′↑, δρ′(s) = γs for any s ∈ dom(R′). Pick

ξ, ξ′ < ωω
ω

such that Yk is a subtree of R∞ξ , Yk′ is a subtree of R∞ξ′ . Let

(Y ∗, ψ, ψ′,~ε) be the amalgamation of (Yk, ~δ) and (Yk′ , ~δ
′), obtained by Lemma 4.73.
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That is, Y ∗ is a finite level-3 tree, ψ factors (Yk, Y
∗), ψ′ factors (Yk′ , Y

∗),
~ε ∈ [C0]Y

∗↑, εψ(y) = δy for y ∈ dom(Yk), εψ′(y) = δ′y for y ∈ dom(Yk′). So
“σ(x, cψ◦ρ(s1), . . . ) = σ′(x, cψ′◦ρ′(s′1), . . . )” is true in Γ(Y ∗). Pick η < ωω

ω

large enough so that there exist φ, φ′ factoring (R∞ξ , R
∞
η ), (R∞ξ′ , R

∞
η ) re-

spectively and φ∗ factoring (Y ∗, R∞η ) such that φ∗ ◦ ψ = φ � dom(Yk),
φ∗ ◦ ψ′ = φ′ � dom(Yk′). So “σ(x, cφ◦ρ(s1), . . . ) = σ′(x, cφ′◦ρ′(s′1), . . . )” is true

in Γ(R∞). Let τl(x, cr1 , . . . , crf(l)
) be logically equivalent to σ(x, cφ◦ρ(s1), . . . ).

So “τk(x, cφ(r1), . . . ) = τl(x, cr1 , . . . )” and “τk′(x, cφ′(r1), . . . ) = τl(x, cr1 , . . . )”

are both true in Γ(R∞). We can find ~α ∈ [C]R
∞
η ↑ so that αφ∗(y) = εy for any

y ∈ dom(Y ∗). By assumption, Fk(~δ) = Fl(~α) = Fk′(~δ
′).

Similar arguments show that θ is order preserving and θ′′((S3)N ) ⊆ S3. So
N is wellfounded and p[(S3)N ] ⊆ p[S3]. We then show that N is Π1

3-iterable.
By Lemma 5.24, N has cofinally many cardinal strong cutpoints. For each
cardinal strong cutpoint ξ of N , by definition of S3, NColl(ω,ξ) |=“N|ξ is
Π1

3-iterable ∧ S3 projects to the set of Π1
3-wellfounded level-3 towers”. The

fact that p[(S3)N ] ⊆ p[S3] implies that NColl(ω,ξ) is Σ1
3-correct. So N|ξ is

genuinely Π1
3-iterable. By varying ξ, N is Π1

3-iterable.

Next, we show that for any k, τ
(jR
∞

(M−2,∞(x));seedR
∞

)

k ≤ βk. We define an
embedding

θ : {τ (M−2,∞(x);~γ)

k : ~γ ∈ [D]R
∞↑, k < ω} → δ1

3

by θ(τ
(M−2,∞(x);~γ)

k ) = Fk(~γ �dom(Yk)). A similar argument shows that θ is well

defined and order preserving. In particular, for any ~γ ∈ [D]R
∞↑, τ

(M−2,∞(x);~γ)

k ≤
Fk(~γ �dom(Yk)). Hence, τ

(jR
∞

(M−2,∞(x));seedR
∞

)

k ≤ βk.

7 The level-4 sharp

7.1 The level-4 Kechris-Martin theorem

For a countable structure P in the language of premice that satisfies Ax-
ioms 1-3 in Definition 5.14 and the universality of level ≤ 2 ultrapowers
axiom, the direct limit P∞ is defined in Definition 5.39. The wellfounded
part P∞ is always transitive. Recall that every ordinal in P∞ is of the form
πP,X,~β,∞(a) where a ∈ OrdN , X is a finite level ≤ 2 tree, ~β ∈ [ω1]X↑. The

relation “v ∈ LO(3) codes the order type of OrdP∞” is uniformly ∆1
3 in the

code of P .
For x ∈ R, a putative x-3-sharp is a remarkable level-3 EM blueprint over

x that satisfies the universality of level ≤ 2 ultrapowers axiom. Suppose x∗
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is a putative x-3-sharp. For any limit ordinal α < δ1
3, we can build an EM

model
M∗

x∗,α

as follows. Let R be a level-3 tree such that J∅KR = α. Then M∗
x∗,α =

(M∗
x∗,R)∞. This definition is independent of the choice of R. Suppose R′ is

another level-3 tree and J∅KR′ = α, and suppose without loss of generality that

ρ minimally factors (R,R′) by Theorem 4.71. Then ρ∗,R
′

x∗ :M∗
x∗,R →M∗

x∗,R′

induces a canonical embedding φ : (M∗
x∗,R)∞ → (M∗

x∗,R′)∞. Let T be Π1
2-

wellfounded and let ψ minimally factor (R′, R⊗T ). Then ψ∗,R,Tx∗ :M∗
x∗,R′ →

M∗,T
x∗,R induces a canonical embedding φ′ : (M∗

x∗,R′)∞ → (M∗
x∗,R)∞. By

coherency, φ′ ◦ φ = id and hence φ = φ′ = id. We say that x∗ is α-iterable iff
α is in the wellfounded part of M∗

x∗,α.
A putative level-3 sharp code for an increasing function is w = 〈pτq, x∗〉

such that x∗ is a putative x-3-sharp, τ is a unary Lx-Skolem term and

“∀v, v′((v, v′ ∈ Ord∧v < v′)→ (τ(v) ∈ Ord∧τ(v) < τ(v′)))”

is true in x∗(∅). The statement “ 〈pτq, x∗〉 is a putative level-3 sharp code for
an increasing function, x∗ is α-iterable, r codes the order type of τMx∗,α(α)”
about (〈pτq, x∗〉, r) is Σ1

3 in the code of α. In addition, when x∗ = x3#,
〈pτq, x∗〉 is called a (true) level-3 sharp code for an increasing function.

Lemma 7.1. Assume ∆1
4-determinacy. Suppose κ ≤ u

(3)

ωωω
is an uncountable

cardinal in L[jR
∞

(T3)]. If A is a Σ1
5(x) subset of κ and supA < κ, then

∃w ∈ ∆1
5(x) ∩WO

(3)

ωωω
(supA < |w| < κ).

Proof. Let x = 0. The lemma is trivial if κ is a limit cardinal in L[jR
∞

(T3)].
Suppose now κ is a successor cardinal in L[jR

∞
(T3)]. Let B be Π1

4 such that

w ∈WO
(3)

ωωω
∧ |w| ∈ A iff ∃y (w, y) ∈ B.

Case 1: ω1 ≤ κ < uω.
The lower level proof in [23] carries over almost verbatim, except the

game becomes Σ1
4 for the winner and hence a ∆1

5 winning strategy can be
found by Moschovakis third periodicity [36].

Case 2: κ = δ1
3 = u

(3)
1 .

Suppose A ⊆ δ1
3 is Σ1

5 and supA < δ1
3. Let B be Π1

4 such that w ∈
WO

(3)

ωωω
∧ |w| ∈ A iff ∃y (w, y) ∈ B. Consider the game in which I produces

v, II produces (w, y). II wins either v /∈ WO(3) or v, w ∈ WO(3) ∧ ‖v‖ <
‖w‖∧ (w, y) ∈ B. I has a winning strategy, and so has a ∆1

5 winning strategy
τ by Moschovakis third periodicity. By boundedness, {‖τ ∗ x‖ : x ∈ R} has
a ∆1

3(τ) bound, hence has a ∆1
5 bound.
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Case 3: κ = seedR
∞

A > δ1
3, A ∈ desc∗∗(R∞).

Put A = (r, π, T ), r = (r,Q,
−−−−−→
(d, q, P )), r = (ξi)1≤i≤k. Then r is of

discontinuous type and ξk is a successor ordinal. Put r′ = (ξi)1≤i<k
_(ξk−1),

r′ = (r′, Q,
−−−−−→
(d, q, P )), A′ = (r′, π, T ).

Consider the game in which I produces 〈pτq, a∗〉, II produces (〈pσq, b∗〉, y).
II wins iff

1. If 〈pτq, a∗〉 is a putative level-3 sharp code for an increasing function,
then so is 〈pσq, b∗〉. Moreover, for any η < δ1

3, if

a∗ is η-iterable ∧ τMa∗,η(η) ∈ wfp(Ma∗,η)

then

b∗ is η-iterable ∧ σMb∗,η(η) ∈ wfp(Mb∗,η) ∧ τMa∗,η(η) < σMb∗,η(η).

2. If 〈pτq, a∗〉 is a true level-3 sharp code for an increasing function, a∗ =

a3#, then (〈pσjT (V )(cA′)q, b∗〉, y) ∈ B.

This game is Σ1
4 for Player I. Player I has a winning strategy, and so has

a ∆1
5 winning strategy f . Let σ be the Lx,R∞-Skolem term for c

(3)

y,T,πT (cr′ )+ω

where x = y3#. Let
w = 〈pσq, (τ 3#)3#〉

So w ∈ WO
(3)

ωωω
is ∆1

5 and |w| < seedRA. We show that supA < |w| using a

boundedness argument. For each η < δ1
3, Let Zη be the set of r ∈ LO(3) such

that there are putative level-3 sharp codes for increasing function on ordinals
〈pτq, a∗〉, 〈pσq, b∗〉 and an ordinal β ≤ η such that

1. 〈pτq, a∗〉 = f ∗ 〈pσq, b∗〉;

2. for any β̄ < β, b∗ is β̄-iterable, σMb∗,η(~β)(β̄) ∈ wfp(Mb∗,η), σ
Mb∗,η(β̄) ≤

η;

3. a∗ is β-iterable, τMa∗,η(β) has order type coded in r.

Zη is a Σ1
3 set in the code of η. Since f is a winning strategy for I, Zη ⊆WO(3).

By Corollary 5.3, {‖r‖ : r ∈ Zη} is bounded by c
(3)
f,η+ω. Hence, if 〈pσq, b∗〉 is a

true level-3 sharp code for an increasing function g and 〈pτq, a∗〉 = f∗〈pσq, b∗〉,
then 〈pτq, a∗〉 is a true level-3 sharp code for an increasing function h and for

any η < δ1
3 such that g′′η ⊆ η, h(η) < c

(3)
f,η+ω. Let η ∈ C iff g′′η ⊆ η. By

Lemma 5.33, for any γ ∈ jT (C), jT (h)(γ) < c
(3)
f,T,γ+ω. Hence, supA < |w|.
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Based on Lemma 7.1, the proof of the following theorem is completely
in parallel to the level-2 Kechris-Martin theorem in [23] or [39]. It is proved
by induction on the L[jR

∞
(T3)]-cardinality of sup(A). A key step uses the

following observation: by Lemma 5.42, if |w| < seedR
∞

A and A = succ≺R∞∗ (B)

then there is a ∆1
5(w) surjection from seedR

∞

B onto |w|.

Theorem 7.2. Assume ∆1
4-determinacy. If A is a nonempty Π1

5(x) subset

of u
(3)

ωωω
, then ∃w ∈ ∆1

5(x) (|w| ∈ A). So the pointclass Π1
5 is closed under

quantification over u
(3)

ωωω
.

Definition 7.3. κx5 is the least (T4, x)-admissible ordinal.

Using Theorem 7.2, we obtain the level-4 version of Theorem 2.1. The
proof is parallel to [23] and [3], using Moschovakis set induction in one di-
rection and the Becker-Kechris game in the other direction.

Theorem 7.4. Assume ∆1
4-determinacy. Then for each A ⊆ u

(3)

ωωω
× R, the

following are equivalent.

1. A is Π1
5.

2. There is a Σ1 formula ϕ such that (α, x) ∈ A iff Lκx5 [T4, x] |= ϕ(T4, α, x).

The ordinal κx5 is defined in a different way in [27]:

λx5 = sup{|W | : W is a ∆1
5(x) prewellordering on R},

κx5 = sup{λx,y5 : M#
3 (x) �∆1

5
(x, y)}.

In parallel to [23], these two definitions are equivalent, and in fact,

λx5 = sup{ξ < κx5 : ξ is ∆1-definable over Lκx5 [T4, x] from {T4, x}},
κx5 = sup{o.t.(W ) : W is a ∆1

5(x,<u
(3)

ωωω
) wellordering on R}.

Moreover,

∀α < u
(3)

ωωω
∃w ∈WO

(3)

ωωω
(|w| = α ∧ λx,w5 < κx5).

7.2 The equivalence of x4# and M#
3 (x)

Suppose x is a real and β ≤ u
(3)

ωωω
. A subset A ⊆ R is β-Π1

5(x) iff there is a

Π1
5(x) set B ⊆ u

(3)

ωωω
× R such that A = Diff B. β-Π1

5(x) acting on product
spaces of ω and R is defined in the obvious way. Lightface β-Π1

5 and boldface
β-Π1

5 have the obvious meanings.
In parallel to the proof of Lemma 4.2, we have
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Lemma 7.5. Assume ∆1
4-determinacy. Suppose ξ < ωω

ω
and m < ω. If A

is (u
(3)
ξ+1)m-Π1

5(x), then A is a2((ξ̂ + 1)-Π1
3(x)).

If S is a finite regular level-3 tree, let S+ be the level-3 tree extending
S where dom(S+) = dom(S) ∪ {((1))} and cf(S((1))) = 0. Thus, J∅KS+ =

J∅KS + ω. If ~ξ = (ξs)s∈dom(S+) respects S+, put ~ξ− = (ξs)s∈dom(S).
If x ∈ R and α < δ1

3, let Nα,∞(x) = P∞ where ‖P‖<DJ(x)
= α. In

particular, N
c
(3)
x,α,∞

(x) =M−
2,∞(x)|c(3)

x,α.

Lemma 7.6. Assume ∆1
4-determinacy. Let ξ < ωω

ω
. If A is a2(ξ̂-Π1

3(x)),

then A is u
(3)
ξ+2-Π1

5(x).

Proof. Let S be a regular level-3 tree such that J∅KS = ξ̂. By Lemma 5.12,

if (y, r) ∈ R2, C ⊆ R is ξ̂-Π1
3(y, r), then we can effectively find a formula ϕ

such that Player I has a winning strategy in G(C) iff

pϕ(y, r)q ∈ (y, r)3#(S).

Suppose A = aB, where B ⊆ R2 is a(ξ̂-Π1
3). Suppose ϕ is an L-formula such

that
(y, r) ∈ B ↔ pϕ(y, r, (cs)s∈dom(S))q ∈ (y, r)3#(S).

For ordinals ~ξ respecting S+, say thatM is a Kechris-Woodin non-determined
set with respect to (y, ~ξ) iff

1. M is a countable subset of R.

2. M is closed under join and Turing reducibility.

3. ∀σ ∈M ∃v ∈M Nξ((1)),∞(y, σ ⊗ v) |= ¬ϕ(y, σ ⊗ v, ~ξ−).

4. ∀σ ∈M ∃v ∈M Nξ((1)),∞(y, v ⊗ σ) |= ϕ(y, v ⊗ σ, ~ξ−).

Say that z is (y, ~ξ)-stable iff z is not contained in any Kechris-Woodin non-

determined set with respect to (y, ~ξ). z is y-stable iff z is (y, ~ξ)-stable for all
~ξ respecting S+. The set of (y, z) such that z is y-stable is Π1

4. By the proof
of Kechris-Woodin [29], for all y ∈ R, there is z ∈ R which is y-stable. Let

<
~ξ
y be the following wellfounded relation on the set of z which is (y, ~ξ)-stable:

z′ <
~ξ
y z ↔ z is (y, ~ξ)-stable ∧ z ≤T z′∧

∀σ ≤T z ∃v ≤T z′ Nξ((1)),∞(y, σ ⊗ v) |= ¬ϕ(y, σ ⊗ v, ~ξ−)

∀σ ≤T z ∃v ≤T z′ Nξ((1)),∞(y, v ⊗ σ) |= ϕ(y, v ⊗ σ, ~ξ−).
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If z is y-stable, let f zy be the function that sends ~ξ to the rank of z in <
~ξ
y. Then

f zy is a function into δ1
3. By Σ1

4-absoluteness between V and NColl(ω,η), where

N ∈ F2,∞(y, z) and πN ,∞(η) = ξ((1)), we can see f zy � {~ξ ∈ [δ1
3]S↑ : ξ((1)) is

a cardinal cutpoint of M−
2,∞(y, z)} is definable over M−

2,∞(y, z) in a uniform
way, so there is a LS-Skolem term τ such that for all (y, z) ∈ R2, if z is

y-stable, ~ξ respects S, ξ((1)) is a cardinal cutpoint of M−
2,∞(y, z), then

f zy (~ξ) = τM
−
2,∞(y,z)(y, z, ~ξ).

Let
βzy = τ j

S+
(M−2,∞(y,z))(y, z, seedR

+

).

The function
(y, z) 7→ βzy

is ∆1
5 in the level-3 sharp codes. The rest is in parallel to the proof of

Lemma 4.3.

Lemma 7.5 and Lemma 7.6 are concluded in a simple equality between
pointclasses.

Theorem 7.7. Assume ∆1
4-determinacy. Then for x ∈ R,

a2(<uω-Π1
3(x)) =<u

(3)

ωωω
-Π1

5(x).

Hence by Theorem 4.5,

a4(<ω2-Π1
1(x)) =<u

(3)

ωωω
-Π1

5(x).

The level-4 sharp is defined in parallel to the end of Section 4.1.

Definition 7.8.

OT4,x = {(pϕq, α) : ϕ is a Σ1-formula, α < u
(3)

ωω
ω , Lκx5 [T4, x] |= ϕ(T4, x, α).}

Definition 7.9.

x4#
ξ = {(pϕq, pψq) : ∃α < u

(3)
ξ ((pϕq, α) /∈ OT4,x ∧ ∀η < α(pψq, η) ∈ OT4,x)}.

x4# = {(n, pϕq, pψq) : n < ω ∧ (pϕq, pψq) ∈ x4#

ωωn
}.

Applying Theorem 7.7 to the space ω, in combination with Theorem 7.4,
we reach the equivalence between x4# and M#

3 (x).

Theorem 7.10. Assume ∆1
4-determinacy. Then x4# is many-one equivalent

to M#
3 (x), the many-one reductions being independent of x.
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