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Abstract

We establish the descriptive set theoretic representation of the
mouse M . which is called 0(**D#_ This part deals with the case
n <3.

1 Introduction

The collection of projective subsets of R is the minimum one which contains
all the Borel sets and is closed under both complements and continuous
images. Despite its natural-looking definition, many fundamental problems
about projective sets are undecidable in ZFC, for instance, if all projective
sets are Lebesgue measurable. The axiom of Projective Determinacy (PD)
is the most satisfactory axiom that settles these problems by producing a
rich structural theory of the projective sets. PD implies certain regularity
properties of projective sets: all projects of reals are Lebesgue measurable
(Myecielski, Swierczkowski), have the Baire property (Banach, Mazur) and are
either countable or have a perfect subset (Davis) (cf. [36]). The structural
theory of the projective sets are centered at good Suslin representations of
projective sets. Moschovakis [36] shows that PD implies the scale property
of the pointclasses ITy,, . ; and ¥, ,. It follows that there is a nicely behaved
tree Th,41 that projects to the good universal 33, ., set. So the analysis of
E%n 4o sets is reduced to that of the tree T, 1, the canonical model L[T5, 1]
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and its relativizations. The canonicity of L[T3,.1] is justified by Becker-
Kechris 3] in the sense that L[T5, 1] does not depend on the choice of T, .
The model L[T5,1] turns out to have many analogies with L = L[T}]. These
analogies support the generalizations of classical results on X3 sets to X3, 42
sets.

The validity of PD is further justified by Martin-Steel [34]. They show
that PD is a consequence of large cardinals: if there are n Woodin cardinals
below a measurable cardinal, then II, , sets are determined. Inner model
quickly developed into the region of Woodin cardinals. M# the least active
mouse with n Woodin cardinals, turns out to have its particular meaning in
descriptive set theory. Martin [33] (for n = 0) and Neeman [37,38] (for n > 1)
show that M7 is many-one equivalent to the good universal 0" (< w?-11})
real. Steel [49] shows that L[Ty,1] = L[Mjfwowénﬂ] where M;;ioo is the
direct limit of all the countable iterates of M;i, and that &y, 41 1s the least
cardinal that is strong up to the least Woodin of Mﬁ’oo. This precisely
explains the analogy between L[T%,41] and L. The mechanism of inner model
theory is therefore applicable towards understanding the structure L[T%,41].

In this paper and its sequel, we generalize the Silver indiscernibles for L
to the level-(2n + 1) indiscernibles of L[Ty,1]. The theory of L[T5, 1] with
the level-(2n + 1) indiscernibles will be called 0®"*Y# which is many-one
equivalent to Mj; At the level of mice with an odd number of Woodins,
M, is the optimal real with the basis result for ¥} L1 sets (cf. |51, Section
7.2]): Every nonempty X3, ., set has a member recursive in Mzﬁfl. The
basis result for ¥}, ., was originally investigated in [27], with the intention
of generalizing Kleene’s basis theorem: Every nonempty X1 set of real has a
member recursive in Kleene’s O. The real yo,, 11, defined [27], turns out Al 1
equivalent to M;i_l. In this paper and its sequel, we define the canonical tree
Ty, that projects to a good universal IT3 set. It is the natural generalization
of the Martin-Solovay tree Tb that projects a good universal T} set. We
show that L, ., [T5,], the minimum admissible set over T5,, shares most of
the standard properties of ngm, in particular, the higher level analog of the

Kechris-Martin theorem [21,23]. We define 02™# as the set of truth values
in L [T5,] for formulas of complexity slightly higher than ;. 0Z™# is

many-one equivalent to both M;ﬁl +1 and ¥, 41. Summing up, we have

Ran+1

0n+O#* = M.

We start to give a detailed explanation of the influence of the higher sharp
in the structural theory of projective sets and in inner model theory. The
set theoretic structures tied to II} sets are L,cx and its relativizations. The

classical results on II} sets and Lex include:
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1. (Model theoretic representation of I1}) A C R is IT} iff there is a X
formula ¢ such that x € A < L.s[7] = o(z).

2. (Mouse set) € RN Lo iff 2 is A iff 2 is Af in a countable ordinal.
3. (The transcendental real over L,ox) O is the ¥-theory of L cx.

4. (O}-coding of ordinals below w;) x € WO iff z codes a wellordering of
a subset of w. Every ordinal below w; is coded by a member of WO.
WO is I1}.

¥} sets are w;-Suslin via the Shoenfield tree 7). The complexity of T is
essentially that of WO, or ITj. The set-theoretic structures in our attention
are L = L[T}] and its relativizations. Assuming every real has a sharp, the
classical results related to L include:

1. (Model theoretic representation of 1) A C R is X! iff there is a X
formula ¢ such that z € A <> L[z] = ¢(z).

2. (Mouse set) z € RN L iff x is A} in a countable ordinal.

3. (The transcendental real over L) 0% is the theory of L with Silver
indiscernibles, or equivalently, the least active sound mouse projecting
to w.

4. (A}-coding of ordinals below u,,) WO, is the set of sharp codes. Every
ordinal o < u,, has a sharp code (77, 2#) so that o = 75 (z, uy, ... uy).
The comparison of sharp codes is Al.

Inner model theory start to participate at this level. Based on the theory
of sharps for reals, the Martin-Solovay tree T3 is defined. T5 is essentially a
tree on u,,. The complexity of Ty is A} via the sharp coding of ordinals.

¥} sets are u,-Suslin via the Martin-Solovay tree Ty. The structures tied
to IT} sets are L,,[T] and its relativizations. The theory at this level is in
parallel to II} sets and L,cx:

1. (Model theoretic representation of I1}, [21,23]) A C R is I1} iff there is
a ¥ formula ¢ such that © € A <> L= [Ty, x] = o(T3, z).

3
2. (Mouse set, [21,23,27,47]) x € RN L,,[Ty] iff z is Al in a countable
ordinal iff z € RN M.

3. (The transcendental real over L,,[T3]|, Theorem M =, 02#.



4. (IIi-coding of ordinals below 83, essentially by Kunen in [46]) WO® is
the set of reals that naturally code a wellordering of u,,. WO® is I3

In general, if I' is a pointclass, « is an ordinal, and f : R — « is a surjection,
then Code(f) = {(z,y) : f(x) < f(y)} and f is in I" iff Code(f) is in I'; «v is
['-wellordered cardinal iff there is a surjection f : R — « such that fisin I’
but there is no f < « and surjections g : R — 3, h : f§ — «a such that both
g and {(x,y) : f(x) =hog(y)}isin I'. The above list can be continued:

5. The uncountable A} wellordered cardinals are (u; : 1 < k < w).

The heart of the new knowledge is the equality of pointclass in Theorem
0%(<w?-11}) =< u,-I1}. Philosophically speaking, as ©*I1} = II}, this equality
reduces the “non-linear” part 02 to the “linear” part <u,. Based on this
equality, 0?# is defined to be the set of truth of L,,[Ty] for formulas of
complexity slightly larger than ¥, cf. Definitions |4.614.71 0% is essentially
y3, defined in [27]. Tt is a good universal < u,-II} subset of w. The many-
one equivalence M{" =,, 0°# is thus obtained using Neeman [37,38]. Under
AD, we have u;, = Ny, and [25] summarizes the further structural theory at
this level. The expression of 0% opens the possibility of running recursion-
theoretic arguments in L, [T] that generalize those in L cx.

The Moschovakis tree Ty, 11 projects to the good universal X33, ,, set. The
structures tied to X3, , sets are L[Th,1] and its relativizations. L[Ty,41] is
the higher level analog of L:

1. (Model theoretic representation of 3, .,) A C Ris X3, ., iff there is a
¥, formula ¢ such that x € A <> L[Ton i1, 2] E o(Toni1, x).

2. (Mouse set, [47]) © € RN L[Tap40] iff z is A}, ., in a countable ordinal
iff 2 € RN MJ,.

3. (The transcendental real over L[T5, 2|, Theorem forn =1) M¥ =,
0@n+1)#.

4. (A}, 5-coding of ordinals below w2ty ) WO%”H) is the set of level-

: ( E(2n+1) (2n+1)
(2n + 1) sharp codes for ordinals in ugéﬁl) The comparison of level-
(

2n + 1) sharp codes is A} .

0@n+D# is the theory of L[Ty, ] with level-(2n+1) indiscernibles. The struc-
ture of the level-(2n + 1) indiscernibles is more complicated than their order,
as opposed to the order indiscernibles for L. The level-(2n+ 1) indiscernibles
form a tree structure, and the type realized in L[T5,1] by finitely many of
them depends only on the finite tree structure that relates them. This tree
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structure resembles the structure of measures (under AD) witnessing the ho-
mogeneity of Sy,.11, a tree on w X 6; that projects to the good universal
I}, ., set. We give a purely syntactical definition of 0n+D# as the unique
iterable, remarkable, level < 2n correct level-(2n + 1) EM blueprint. This
is the higher level analog of 0% as the unique wellfounded remarkable EM
blueprint. The “iterability” part takes the form V*(I13,,,, — II3, ), making

the complexity of the whole definition IT}, ,,. The ordinal ugggi)l) is a level-
(2n + 1) uniform indiscernible. It will be discussed in the next paragraph.
When n =0, “551()1) = Uy,.

The structure tied to arbitrary I3, ; sets are defined. By induction,
we have level-(2n — 1) indiscernibles for Lgy ~ [T5,-1] and the real 0@2n=1)#,

Based on the EM blueprint formulation of 0?»~D# we define the level-2n
Martin-Solovay tree T5,. It is the higher level analog of T5. This is the
most canonical tree that enables the correct generalization of the structural
theory related to II3,, ; sets. The structures in our attention are L Ton,
the least admissible set over T5,, and its relativizations:

K2n+1 [

1. (Model theoretic representation of II3, ., Theorem for n = 2)
A C R is I}, iff there is a ¥y formula ¢ such that © € A <

Lﬁ’gn-‘—l [T2n7 ZL‘] ): SO(TQna ZL’)

2. (Mouse set, [47]) z € RN Ly,, ., [Ton+1] iff 2 is A} ., in a countable
ordinal iff x € M;i_l.

3. (The transcendental real over Lys  [T5,, ], Theorem for n = 2)
Mjfl_l =, 0@#

4. (M3, ,-coding of ordinals below &, ;) WO®@"+D is the set of reals that

naturally code a wellordering of ugé;?l) WO s 18 .

5. The uncountable Aj, 41 wellordered cardinals are (uy : 1 < k < w),
(w1 < €< EE), ..., @1 << E@n— 1), where
E(0) =1, E(i +1) = wF® via ordinal exponentiation.

The equivalence Mzﬁq =,, 0@V# is based on the equality of pointclasses
(Theorem [7.7| for n = 2): O*(<w?-I1}) = <ugzl2;1_)1)—ﬂén+1. {u?”_l) 1<
¢ < E(2n — 1)} is the set of level-(2n — 1) uniform indiscernibles. It is the
higher level analog of the first w + 1 uniform indiscernibles {u, : 1 < n < w}.
Under full AD, the uncountable A}, ., wellordered cardinals enumerate all
the uncountable cardinals below 5;n+1: up = N for 1 < k < w, u?”l) =
Np(2i-1)4¢ for 1 <& < E(2i41). Assume AD for the moment. The equation
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éénﬂ = Np(2n—1)41 is originally proved by Jackson in [12,/15]. Jackson shows
that every successor cardinal in the interval [63, |, N B(2n—1)) is the image of
d5, , via an ultrapower map induced by a measure on &5, ;. [16] goes on to
show that for a certain collection of measures y on 83, every description leads
to a canonical function representing a cardinal modulo u. [16,/17] compute
the cofinality of the cardinals below &.. In this paper and its sequel, we
demonstrate the greater importance of the set theoretic structures tied to
these cardinals over their order type. It is the inner model L[T3, 1] and its
images via different ultrapower maps that give birth to the uncanny order
type E(2n — 1) + 1. The level-(2n — 1) uniform indiscernibles (u?n*l) 1<
¢ < E(2n — 1)) are defined under this circumstance. Recall that the first
w uniform indiscernibles can be generated by j*"(Ly,) = Ly,.,, where p"
is the n-fold product of the club measure on wq; if 1 < 7 < n+ 1, then
u; is represented modulo p” by a projection map; every ordinal below 1
is in the Skolem hull of {z,us,...,u,} over L[z] for some x € R. This
scenario is generalized by the level-(2n — 1) uniform indiscernibles. As a
by-product, we simplify the arguments in [12,[15H17], show in full generality
that any description represents a cardinal modulo any measure on &5, , and
establish the effective version of the cofinality computations.

The whole argument is inductive. Assume AD for simplicity. In the com-
putation of &3, 1 in [12[15], the strong partition property of 5, 41 1s proved
and used inductively in the process. Our argument reproves the strong par-
tition property of 85, ., using the EM blueprint formulation of 02" *1#. The
definition of 02"+1# is based on the analysis of level-(2n + 1) indiscernibles,
whose existence depend on the homogeneous Suslin representations of I},
sets, which in turn follow from the strong partition property of 8, . Just
as the main ideas of the computation of d;,., boil down to that of &3, this
paper defines 0%#,0%# 0% which contains all the key ideas in a general in-
ductive step. The sequel to this paper will deal with the general inductive
step. It will be merely a technical manifestation.

A deeper insight into the interaction between inner model theory and
Jackson’s computation of projective ordinals in [12,/15] is the concrete infor-
mation on the direct system of countable iterates of M. Put n = 1 and
assume AD for simplicity sake. Put M, = Lg1[T3]. We define (cég) €< 8,
a continuous sequence in Jé that generates the set of level-3 indiscernibles
for M, .. Each M, oo|cé?’) is the direct limit of IT3-iterable mice whose Dodd-

Jensen order is cég). We define an alternative direct limit system indexed by
ordinals in u, which is dense in the system leading to M, oo|c§3). The advan-

tage of this dense subsystem is that it leads to a good coding of M, oo\cg’) by



a subset of u,. The indexing ordinals are represented by wellorderings on w;
of order type w; + 1 modulo measures on w; arising from the strong partition
property on wi. Any order-preserving injection between two such wellorder-
ings corresponds to an elementary embedding between models of this new
direct limit. This injection is an isomorphism just in case its corresponding
elementary embedding is essentially an iteration map, i.e., commutes with
the comparison maps. The new direct system is then guided by isomor-
phisms between wellorderings on w; of order type w; + 1. In this regard,
the Dodd-Jensen property of mice corresponds to the simple fact that if f is
an order preserving map between ordinals, then o« < f(«) pointwise. This
observation is not surprising at all, as the Dodd-Jensen property on iterates
of 07 is originated from this simple fact. This viewpoint might be a prelude
to understanding the combinatorial nature of iteration trees on mice with
finitely many Woodin cardinals.

A key step in computing the upper bound of &5 in [12] is the (level-
3) Martin tree. For the reader familiar with the Martin tree and the purely
descriptive set theoretical proof of the Kechris-Martin theorem in |13, Section
4.4], the level-1 version of the Martin tree is essentially an analysis of partially
iterable sharps. The level-3 Martin tree is therefore replaced by an analysis
of partially iterable level-3 sharps in this paper. The aforementioned new
direct limit system indexed by ordinals in u,, applies to any partially iterable
mouse, so that its possibly illfounded direct limit is naturally coded by a
subset of u,. This is yet another incidence that descriptive set theory and
inner model theory are two sides of the same coin.

Apart from inner model theory, the pure computational component in
[12,/15] has a major simplification. Under AD, a successor cardinal in the
interval [83, N .« ) is represented by a measure y on &3 and a description. The
original definition of description involves a finite iteration of ultrapowers on
u,. The “finite iteration of ultrapowers” part is now simplified to a single
ultrapower, due to Lemma

As Ly,, ., [T5,] is the correct structure tied to II3,,, sets, it is natural
to investigate its intrinsic structure. However, little is known at this very
step. The closest result is on the full model L[T5,]. The uniqueness of
L[T3,] is proved by Hjorth [9] for n = 1 and Atmai [2] for general n. Here,
uniqueness means that if 77 is the tree of another A} ., -scale on a good
universal T} set, then L[T5,] = L[T"]. Atmai-Sargsyan [2] goes on to show
that the full model L[Tb,] is just L[M. | ], where M, is the direct

2n—1,00 2n—1,00
limit of all the countable iterates of Mﬁ_l. A test question that separates
L,,[T5] from L[T3] is the inner model theoretic characterization of Cs, the
largest countable IT} set: if x € Cs, must x be Al-equivalent to a master code



in My? (cf. [50, p.13]) Section sets up a good preparation for tackling
this problem.

Looking higher up, the technique in this paper and its sequel should gen-
eralize to arbitrary projective-like pointclasses in L(R) and beyond. The
descriptive set theory counterpart of larger mice should enhance our un-
derstanding of large cardinals. Typical open questions in the higher level
include:

1. (cf. [1, Problem 19]) Assume AD. Let T' be a IT;-like scaled pointclass
(i.e., closed under V¥, continuous preimages and non-self-dual) and Let
A=TNTI", § =sup{|<| :< is a prewellordering in A}. Is I" closed
under unions of length < 87

2. Assume AD. Let T, § be as in 1. Must d have the strong partition
property?

3. Assume AD. If k < X are cardinals, must cf(k™1) < cf(ATH)?

We now switch to some immediate applications on the theory of higher
level indiscernibles. Our belief is that any result in set theory that involves
sharp and Silver indiscernibles should generalize to arbitrary projective levels.

Woodin [43] proves that boldface IT3, 41-determinacy is equivalent to “for
any real x, there is an (w,w;)-iterable M (2)”. The lightface scenario is
tricky however. Neeman [37,/38] proves that the existence of an wi-iterable
M?# implies boldface H,ll-determinacy and lightface I1} 41-determinacy.

Question 1.1 (cf. [4, #9]). Assume II, -determinacy and I1}_ ;-determinacy.
Must there exist an ws-iterable M#?

Note that the assumption of boldface IT:-determinacy in Question is
necessary, as Al-determinacy alone is enough to imply that there is a model of
OD-determinacy (Kechris-Solovay [2§]). The cases n € {0, 1} in Question [1.1]
are solved positively by Harrington in [8] and by Woodin in [48]. The proof
of the n = 1 case heavily relies on the theory of Silver indiscernibles for L.
The theory of level-3 indiscernibles for L [T3] is thus involved in proving the
general case when n is odd.

Theorem 1.2. Assume I1,, -determinacy and 113, ,-determinacy. Then
there exists an (w,w)-iterable M3, .

The proof of Theorem [1.2| will appear in further publications. The case
n > 2 even in Question remains open.

Another application is the d-ordinal of intermediate pointclasses between
I}, and A71’n+1‘ If T is a pointclass, §(I") is the supremum of the lengths of

8



I-prewellorderings on R. A C R is ', ,(2) iff for some formula 1) we have = €
A My alz, 2] |E Yz, 2,Rq, ..., 8,). AisT,,, iff AisT, ,,(2) for some real
z. Hjorth [11] proves that §(T,,) = u,» under Aj-determinacy. Sargsyan
[41] proves that under AD, sup,,.,, d(Tox+1,) is the cardinal predecessor of
35 +3- The exact value of (I'11,,) remains unknown. Based on the theory
of higher level indiscernibles, we can define the pointclasses Agyy1¢ for 0 <
¢ < E(2k+1). For the moment we need the notations in this paper. A C R
is Agerq(2) iff for some level-3 tree R such that [§]z = &, for some £25-
formula 1) we have z € A <> " € (z,2)* (R). When ¢ is a limit, Az¢(z) =
Uy Asn(2). Ads Age iff Ads Age(z) for some real 2.

Theorem 1.3. Assume Aj-determinacy and 0 < & < w*”. If€ is a successor
ordinal, then §(As¢) = ugl If € is a limit ordinal, then §(As¢) = ué?’).

The proof of Theorem [1.3|and its higher level analog will appear in further
publications. The question on the value of §(I's,,) is then reduced to the
relative position of I's,, in the hierarchy (Azg¢ : 0 < & < w“"). The results of
this paper combined with Neeman [37,38] yields the following estimate:

A3’wwn g ]__‘37,,1 g A3,w“’n+1+1'

We conjecture that A3’wwn+1 CTIy, C A37wwn+l+1 and 0(I's,,) = uij?nﬂﬂ.

We try to make this paper as self-contained as possible. The reader is
assumed to have some minimum background knowledge in descriptive set
theory and inner model theory. On the descriptive set theory side, we as-
sume basic knowledge of determinacy, scale and its tree representation, ho-
mogeneous tree and its ultrapower representation, and at least the results of
Moschovakis periodicity theorems. We will briefly recall them in Section
Theorem [2.1| by Becker-Kechris [3] and Kechris-Martin [21,23] will basically
be treated as a black box. Knowing its proof would help, though not nec-
essary. On the inner model theory side, we assume basic knowledge of mice
and iteration trees in the region of finitely many Woodin cardinals, especially
Theorem 6.10 in [51]. The level-wise projective complexity associated to mice
will be recalled in Section [2.5| Theorem by Steel [49] will be treated as
a black box. In particular, we require absolutely no knowledge of Jackson’s
analysis in |12,|15].

This paper is structured as follows. Section [2| fixes notations and briefly
reviews the background knowledge. Section [3|is basically a review of sharps
and the Martin-Solovay tree, expressed in a form that is easy to general-
ize. Section W] proves the many-one equivalence of 0?# and Ml# , generalizes
Jackson’s level-2 and level-3 analysis, and establishes useful properties of the



coding system for ordinals in d3. Built on these results, Section [5| defines
the level-3 indiscernibles for Lg[T5], proves the many-one equivalence of 0°#

and M}, and gives a II}-axiomatization of the real 03#. Section @ defines the
uniform level-3 indiscernibles and the level-4 Martin-Solovay tree. Section
proves the level-4 Kechris-Martin theorem and the many-one equivalence of
0% and Mf (x), which prepares for the induction into the next level.

2 Backgrounds and preliminaries

Following the usual treatment in descriptive set theory, R = w® is the Baire
space, which is homeomorphic to the irrationals of the real line. If A C Rx X,
then y € A Iz e R (2,y) € A, y e VRAiff V2 e R (z,y) € A, y € OA
iff Player I has a winning strategy in the game with output A, =pgr {7 :
(z,y) € A}. 0" A =D(0"(A)) when A is a subset of an appropriate product
space. A pointclass is a collection of subsets of Polish spaces (typically finite
products of w and R). If " is a pointclass, then I*T = {F®A : 4 € T'}, and
similarly for VEI', OI", O"I". ¢ = ! is the pointclass of open sets. X = £}
is the pointclass of effectively open sets. II. ., = VEX! X! = JII),
I, = V&S, 2L, = 3805
If o is an ordinal and A C o x X, then

re€DIf A+ Ji<a(aisodd AVj <i((j,z) € A) A (i,z) ¢ A).

If @ < w8 then A C X is a-I1} iff A = Diff B for some I} BC ax X. Ais
<a-II4 iff A is -I1; for some 3 < . Martin [33] proves that ITj-determinacy
implies <w?-IT}-determinacy.

A tree on X is a subset of X <% closed under initial segments. If T is a
tree on X, [T is the set of infinite branches of T', i.e., x € T iff Vn (z [n) € T.
If T is a tree on A, A is an ordinal, [T] # 0, the leftmost branch is x € [T
such that for any y € [T, (2(0),z(1),...) is lexicographically smaller than or
equal to (y(0),y(1),...). In addition, if € [T] and for any y € [T] we have
Vn z(n) < y(n), then x is the honest leftmost branch of 7. A tree T' on w x X
is identified with a subset of w<“x X <“ consisting of (s, t) so that lh(s) = 1h(¢)
and ((5(7),t(7)))icm(s) € T. If T'is a tree on w x X, [T] C w<¥ x X<¢ is the
set of infinite branches of T. p[T]| = {z : Jy (x,y) € [T]} is the projection of
T. If T is a tree on w x A and p[T] # (), then x is the leftmost real of T iff
3d (x,d) is the leftmost branch of T'.

Suppose A C R. A norm on A is a function ¢ : A — Ord. ¢ is regular iff
ran(p) is an ordinal. A scale on A is a sequence of norms @ = (¢, )<, on A
such that if (z;);<», C A, ; — z(i — o0) in the Baire topology, and for all n,
©n(x;) = A (i — 00) in the discrete topology, then z € A and Vn ¢, (z) < \,.
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@ is regular iff each ¢, is regular. If A = p[T], T is a tree on w X A, the
A-scale associated to T is () n<w Where o, (z) = (a2, ..., a®), ("), <, is the
leftmost branch of T, =pgr {8 : (z,53) € [T]}, (...) : A»*' — Ord is order
preserving with respect to the lexicographic order and is onto an ordinal.
Suppose I' is a pointclass. If ¢ is a norm on A, then ¢ is a '-norm iff the

relations

r<,ycreAN(yeA— o) <o),
r<,yeorr€AN(YE A= px) <o)

are both in I'. ¢ = (¢, )n<w is a '-scale iff the relations = <, y and z <, y
in (z,y,n) are both in I". T has the prewellordering property iff every set in
I' has a [-norm. I' has the scale property iff every set in I' has a I'-scale.
Assuming PD, Moschovakis [36] shows that the pointclasses IT3, 1, II,, 4,
Y3ntas DI 4o have the scale property.

For a nonempty finite tuple ¢t = (aq, ..., ax), put t~ = (ag, ..., ax_1). This
notation will be followed throughout this paper. If <; is a linear ordering on

A; fori < w, then <§?i is the Brouwer-Kleene order on | J _, (IT;<,A;) where

n<w
(ag,...,a,) <§?i (bo, - .., by ) iff either (ao, ..., a,) is a proper lengthening of
(bo, - . ., by) or there exists k& < min(m, n) such that Vi < k a; = b; Aay, <y, by.

In our applications, these orderings <; will be apparent enough so that (<;);
can be omitted from the superscript without confusion.

Put L = U, Lz}, Lo = Uyer Lalz]. If A is a set, put L[A] =
U,er LA, #], Lo[A] = U, g La[A, x]. L and L[A] are in general not models
of ZF. Nonetheless, cardinality and cofinality in LL[A] are well defined. So
for example, cf“™ (o) = min{cf?™(a) : 2 € R}.

If R is a wellfounded relation, ||z| g denotes the R-rank of z, i.e., ||z| g =
sup{||ly|llr + 1 : yRz}. If < is a linear order, then pred_(a), succ<(a) denote
the <-predecessor and <-successor of a respectively, if exists.

We recall the basic theory of the first w + 1 uniform indiscernibles. -~y
is a uniform indiscernible iff for every = € R, v is an z-indiscernible. The
uniform indiscernibles form a club in Ord, which are listed wuy, us, ... in the
increasing order. In particular, u; = w; and u,, = sup,,,, .

2.1 The Martin-Solovay tree and ()-theory

In Sections 2.3, we assume Aj-determinacy.

The set {z# : z € R} is 1. WO = WO is the set of codes for countable
ordinals. For 1 < m < w, WO, is the set of (7, z#) where 7 is an (m+1)-
ary Skolem term for an ordinal in the language of set theory and z € R. The
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ordinal coded by w = (77, 2%) € WO,,; 1 is
lw| = 75 (2w, ).

Every ordinal in w,,,1 is of the form |w| for some w € WO,, ;. For each
1<m<w,
{TL[I](x,um) (T, %) € WO, )}

is a cofinal subset of u,,.1. WO, = U1<m<w WO,,. WO is II}, and WO,,,;,
is 113 for 1 <m < w.

If X is a Polish space, A C X x u,, and I' is a pointclass, say that A is in
I iff

A" ={(z,w) : x € WO, A (,|w]) € A}

isin I'. T" acting on product spaces are similarly defined.

T, refers to the Martin-Solovay tree on w x u,, that projects to {z# : z €
R}, giving the scale

SOFTT(x#> = TL[:E} (f[}, U,y ... ,UkT),

where 7' is the Godel number of 7, 7 is k. + 1-ary. Details can be found
in [31] or [3l23], or in Section [3.2of this paper. T5 is a A} subset of (w xu,,)<*.
From 75 one can compute a tree fg on w X u,, that projects to a good universal
IT; set. The definition of 75 will be recalled in Section

For x € R, Ly [T3, 2] is the minimum admissible set containing (7%, ).
The fact that the fg projects to a good universal I} set implies for every IT}
set of reals A, there is a 3;-formula ¢ such that » € Aiff L [Ts, 2] | (T3, 1);
¢ can be effectively computed from the definition of A. Becker-Kechris in [3]
strengthens this fact by allowing a parameter in u,. The converse direction
is shown by Kechris-Martin in [21,23]. The back-and-forth conversion is

concluded in [3].

Theorem 2.1 (Becker-Kechris, Kechris-Martin). Assume Aj-determinacy.
Then for each A C u,, X R, the following are equivalent.

1. A is II3.
2. Thereis a Xy formula p such that (o, x) € A iff Lz [To, ] = (T, o, ).

The conversion between the T} definition of A and the ¥;-formula ¢ are
effective. The original proof of 2 = 1 in Theorem [2.1]is based on Theorem
and Corollary [2.3]

Theorem 2.2 (Kechris-Martin, [21,23]). Assume Aj-determinacy. Let x €
R. If A is a nonempty Ii(z) subset of u,,, then Fw € AL(x)N WO, (|w| € A).

12



Corollary 2.3 (Kechris-Martin, [21,23]). Assume Al-determinacy. Then
I1} is closed under quantifications over u,, i.e., if A C (uy)? x R is 113, then
so are

B ={(a,z): 36 <uy, (B,a,z) € A},
C={(a,z): VB <uy, (B,a,z) € A}.

Suppose X is a Polish space. For z € R and o < u,,, A C X is Xi(x, )
iff there is a ¥3(x) set B C u, x X such that y € A iff (o,y) € B. Or
equivalently, A is ¥3(z, o) iff there is a ¥1(x) set B C R x X such that y € A
iff 3w € WO,, (Juw| = a A (w,a) € B). Ais [I§(z,«a) iff X\ Ais Xi(x,a).
Ais Ai(z,a) iff Ais both Xi(z, @) and IIi(z, o). 3i(z, <) means 3i(z, o)
for some o < 3. Similarly define IT}(z, < 3) and Al(z, <3).

In the proof of Theorem , the prewellordering property for IT} subsets
of w X uy, originally proved by Solovay, is used.

Theorem 2.4 (Solovay, [24, Theorem 3.1]). Assume Aj-determinacy. Sup-
pose A C u, x R is TIi(z,a), where x € R, o < u,,. Then there is a I13(z, o)
norm ¢ : A — Ord, i.e., the relations

(B,y) <5 (v:.2) < (Byy) € AN ((7,2) € A= 0(By) < (7, 2))
(B,y) <5 (v:2) < (B,y) € AN ((7,2) € A= 0(B,y) < 0(7,2))

are 11 (x, a).

Corollary 2.5 (Reduction). Assume Aj-determinacy. Suppose A, B C u,, X
R are both T}(z,a), where v € R, o < u,,. Then there exist T}(z,a) sets
A, B Cu, xR such that A CA, B C B, AUB=AUB and ANB = 0.

Corollary 2.6 (Easy uniformization). Assume A}-determinacy. Suppose
A C (u, x R) X uy, is Ii(z,a), where z € R, a < u,. Then A can be
uniformized by a TL(z, ) function, i.e., there is a IIi(x, ) function f such
that dom(f) ={(B,y) : Iy ((B.y),7) € A} and that ((5,y), f(B.,y)) € A for
all (B,y) € dom(f).

The II3 coding system for A} sets (e.g., |7, Theorem 3.3.1]) applies to the
larger pointclass Al(<u,,). The proof is similar.

Corollary 2.7 (ITi-codes for Al(<u,)). Assume Aj-determinacy. Then
there is a I} set C' C u,, and sets P, S C u, x R in I}, X} respectively such
that for any a € C,

Po =S4 =prr Da

and
{Dy:a€C={ACR: Ais A}(<u,)}.
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Proof. Let U C w x R? be a good universal IT} set. Define

((n, @), (m,B),z) € A+ Yw e WO, (Jw|=a— (n,w,z) € U)
((n,a),(m,pB),z) € B+ VYw € WO, (lw] =8 — (m,w,z) € U)

Then A, B are II} subsets of (w X u,)? Reduce them to A’, B" according to
Corollary 2.5 Define

((n, @), (m, B)) € C < (A)ma)ms) Y (B)ma)mp =R

C is a IT} subset of (wxu,)? Let P = A, S = (wxu,)* xR\ B’. Identifying
(w X uy,)?* with u,, with the Godel pairing function, C, P, S are as desired. [

Theorem [2.1| provides a model-theoretic view of Q-theory [27] at the level
of (Y3-degrees. We give an exposition of these results, probably with simple
strengthenings thereof.

The higher level analog of the hyperarithmetic reducibility on reals is (3
reducibility. Qs-degrees are coarser than Al-degrees. y € Q3(x) iff y is Al(x)
in a countable ordinal, i.e., there is @ < wy such that Vw € WO(|lw| = a —
y € Al(z). yis Al(z) in an ordinal < w, iff there is @ < wu, such that
Vw € WO, (Ju] = a = y € Aj(2)). y <a1 v iff y € Aj(x). y =5 o iff
y<arr<ay y<qriff y € Qs(x). y=q, viff y <g, z<q, ¥
Proposition 2.8 ( [20,21,123,27,47]). 1. Letx,y € R. Theny € Ly [Ts, x]

iff y € M7 (z) iff y is AL(z) in a countable ordinal iff y is AL(z) in an
ordinal < uy,.

2. The relation y € Ly [Th, 2] is 113, where x,y ranges over R,

3. The relation y € AL(x) is I3, where z,y ranges over R.

x5 is the higher level analog of w{, the least x-admissible. It is defined in
a different way in [27), Section 14]. As in [23,[27], we define

M = sup{|W|: W is a A(x) prewellordering on R}
= sup{{ < w3 : § is Aj-definable over L,z [Ty, z] from {T5, z}}.

The equivalence of these two definitions of % is proved in [23]:
ks = sup{o.t.(W) : W is a Aj(x, <u,) wellordering on R}
= sup{A\5" : M{"(x) £ay (z,9)}-

Moreover,
Va < u, 3w € WO, (Jw| =a Ay < KY).

14



#
Note that xj < )\éwl =) < 83, as proved in [27, Lemma 14.2].

The Kunen-Martin theorem implies that 3 is a bound on the rank of any
¥i(x, <u,) wellfounded relation.

Theorem 2.9 (Kunen-Martin, [36, 2G.2]). Suppose W is a wellfounded re-
lation on R. Suppose 7y is an ordinal and T is a tree on (w X w) X 7y such that
W = p[T]. Let L[T] be the least admissible set containing T as an element.
Then the rank of W is smaller than

sup{{ < k : € is Ay-definable over Ly[T) from {T'}}.

Corollary 2.10. Suppose W is a Yi(x,<u,) wellfounded relation on R.
Then the rank of W is smaller than k3.

2.2 A Al coding of subsets of v, in L1 [T5]

As a corollary to Theorem , every subset of u, in L1 [T5] is A:. The proof
of Theorem [2.1] gives a better definability estimate of P(u,) N L [T3].

For x € R, A putative z-sharp is a remarkable EM blueprint over x.
Suppose z* is a putative z-sharp. For any ordinal o, M- , is the EM model
built from z* and indiscernibles of order type a. The wellfounded part of
M- o is transitive. For any limit ordinal o < 3, M+, is a rank initial
segment of M- 3. Say that 2* is a-wellfounded iff & € wip(M,-,). A
putative sharp code for an increasing function is w = ("7, 2*) such that z*
is a putative z-sharp, 7 is a {€, z}-unary Skolem term for an ordinal and

“You,v'((v,0" € Ord Av < V') = (7(v) € Ord AT(v) < 7(v')))”

is a true formula in z*. The statement “("7' z*) is a putative sharp code
for an increasing function, z* is a-wellfounded, r codes the order type of
TMara()” about ({7, 2*),7) is X} in the code of a. In addition, when
x* =¥ (7, 2%) is called a (true) sharp code for an increasing function.

A subset A C u, is coded by Code,(A) = {w € WO, : |w| € A}.

Lemma 2.11. Assume Aj-determinacy. Suppose n < w, A C u, and A €
Lsi[To]. Then Code,,(A) is in O(w(n + 1)-I1}).

Proof. By Kechris-Woodin [29], O(<w?I1}) sets are determined. We prove
by induction on n the following claim:

Suppose A C u,. Suppose B,C C R are IT; subsets of R? such
that (w € WO, A |w| € A) iff 3z((w, z) € B) iff =3z((w, 2) € C).
Then there is x € R such that

Vo € WO,, 3w € WO,,NL[v, z] (Jv| = |[w|AL[v, z] | 3z((w, z) € BUC)).
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By Shoenfield absoluteness, this claim gives a uniform definition of the rela-
tion |v| € A over L[v,z] from parameters in {ui,...,u,}. In the definition,
the parameters uq, ..., u, are used to decide whether or not |v| = |w]| for
v, w € WO,,. Combined with the fact from Theorem that every subset of
Uy, in Lgy [T5] is Al the lemma will follow from our claim.

We start the induction with n = 1. Consider the game G(B, C,0), where
I produces v, IT produces (w,y). 1T wins iff either v ¢ WO or

v,w e WO A |v| < |w|A
Va < v I(w,2) <ry (we WOA|w|=aA (w,z) e BUC).

This game is IT} for Player II, hence determined. I does not have a winning
strategy by 31-boundedness. So II has a winning strategy g. ¢ plays the role
of z in the claim, verifying the n = 1 case.

Suppose the claim holds for n and we want to prove for n + 1. Consider
the game G(B, C,n+1), where I produces ("7, a*), II produces (("o', b*), y).
IT wins iff

1. If ("7, a*) is a putative sharp code for an increasing function, then so
is ("o, b*). Moreover, for any n < wy, if

a* is n-wellfounded A 7Me*1(n) € wip(M- )

then

b* is p-wellfounded A o (n) € wip(My- )
A M () < oM ().

2. If ("7, a*) is a true sharp code for an increasing function, a* = a*,
then

Vo € WO,41 (o] < 789 (u,) — (@, 2) € Llv, y]
(W € WO,41 A 0| = |v| A (w,2) € BUC)).

This game is O(w(n + 1)-IT}), hence determined. If Player I has a winning
strategy f, then for each 7, let X, be the set of r € R such that there are
putative sharp codes for increasing functions on ordinals ("7, a*), ("o, b*)
and an ordinal # < 7 such that

L (" a%) = f* (o, b);
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2. forany 3 < B3, b* is B-wellfounded, o1 (3) € wip(My- ), oMe*n(B) <
Uk
3. a* is B-wellfounded, 7™« (3) has order type coded in 7.

X, is a 31 set in the code of 1. Since f is a winning strategy for I, X, C
WO. Let C' be the set of countable f-admissibles and their limits. By
Y 1-boundedness, if ("o, b#) is a true sharp code for an increasing function,
such that V3 < w; oM(B) € C, then (77, a*) =pgr f * ("o, b7) is a true
sharp code for an increasing function, and for any n € C' such that V3 <
n o tl(B) < n, 7H(n) < min(C \ n + 1), and in particular, 7519 (u,) <the
least f-admissible above u,. Let £ be the least f-admissible above u,. In
L[f], there is a bijection 7 : uw,, — &, definable from {u,}. AN G is thus
identified with (771)”(A N B), as a subset of u,. 7 induces a A(f) map
7. such that for any v € WO,,, m.(v) € WO,,1;1 and |m.(v)| = 7(Jv]). Let
7(v) = w iff Iz(v,w, 2z) € D, where D is II3(f).

Let (v,2) € B iff v € WO,, (v,(2)o,(2)1) € D, and ((2)o, (2)2) € B.
Similarly define C’. Then |v| € (#71)"(ANB) iff 3z (v, 2) € B iff =3z (v, 2) €
C'. B',C" are II3. By induction hypothesis, there is a real 2* such that

Vo € WO,,.3w € WO,, N L{v, z*|(Jv| = |w| A L[v, z*] E 3z((w, 2) € B'U "))

In G(B, C,n+1), Il defeats f by playing (("o*7, f#), f®@x*), where (¢*)*1(3)
is the S-th f-admissible. This is a contradiction.

Thus, II has a winning strategy ¢ in G(B,C,n+ 1). g plays the role of
in the claim, verifying the inductive case. [

As a corollary to Lemma [2.11] we obtain a A} coding of subsets of u,,
that lie in Ly [T3]. The Al coding was first established by Kunen under AD
in a less effective way in [46].

Corollary 2.12. Assume A)-determinacy. There is A} set X C R xu,, such
that {X, : v € R} = P(uy,) NLg[To]. Here X, = {a <wu,: (z,a) € X}.

Proof. It v = (k,"¢",2), k < w, z € R, (p, 2) defines a IT}(z) subset A, of
wk x R? put X, = O(Diff A,). Put X, = Uy, Xwye- X = {(v,0) :
B e X,}. X is clearly Aj. The map v — X, is onto P(u,) N Lg[To] by
Lemma 2171 O

As a corollary, assuming Ajl-determinacy, if A C wi, then A € L iff
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2.3 Silver’s dichotomy on II; equivalence relations

Harrington’s proof [22], [18, Chapter 32] of Silver’s dichotomy [44] on II;
equivalence relations generalizes to I} in a straightforward fashion. This
folklore generalization is stated in |9,/10] in a slightly weaker form.

An equivalence relation E on R is thin iff there is no perfect set P such
that Vz,y € P (xEy — x = y). If " is a pointclass, for equivalence relations
E, F (possibly on different spaces of the form R™ x (u,)™), E is ['-reducible
to F'iff there is a function 7 in I" such that zEy < w(z)Fr(y).

Theorem 2.13 (Folklore). Assume Al-determinacy. Let x € R. If E is a
thin TI3(x) equivalence relation on R, then E is Ai(z) reducible to a 113(z)
equivalence relation on a I13(x) subset of u,.

Proof. For simplicity, let z = 0. The generalization of Harrington’s proof of
Silver’s dichotomy shows that for every y € R, there is a A}(<u,,) set A such
that y € A C [y]g.

Let C, P, S, (D4)acc be the I3 coding system for Al(<u,,) subsets of R,
given by Corollary 2.7 Let o € C' iff &« € C and Vy € D,Vz € Do(yEz). C'
is T13. The set

A={(y,a):a e C'"Ny € D,}

is TI}. By Corollary , A can be uniformized by a II} function 7. Let aF3
iff a € C', e and Vy € D,Vz € Dg(yEz). F is a II} equivalence
relation on C’. 7 is a reduction from F to F. To see that 7 is also X},
apply Corollary and use the fact that 7 is a total function taking values
in uy. ]

The reduction 7 and the target equivalence relation F' in Theorem [2.13
are uniformly definable from the II3(x) definition of E, independent of z. A
similar uniformity applies to the following corollary.

Corollary 2.14. Assume Al-determinacy. Let v € R. If E is a thin A(z)
equivalence relation on R, then E is A(x) reducible to =,,. Here a =, 3

iff a =P < uy.

Proof. Assume x = 0. Proceed as in the proof of Theorem [2.13| until we
reach the set A. We now show that A can be uniformized by a II3 function
7 such that yEz iff m(y) = 7(z2). Indeed, let  be a II}-norm on A, given by
Theorem and let 7(y) = a iff (y,) € A and (p(y, ), ) is lexicograph-
ically minimal among the set {(¢(z, 5),8) : zEy A (z,8) € A}. Similarly to
the proof of Corollary 2.6 7 is II} (we use E € A} here). Again, 7 is X3, 7
is the desired reduction from F to =, . O
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It should be possible to give an alternative proof of Corollary using
the forceless proof of the dichotomy of chromatic numbers of graphs in [35],
but the author has not checked the details.

Corollary 2.15. Assume Aj-determinacy. Let v € R. If <* is a Al(x)
prewellordering on R and A is a X3(x) subset of R, then |<*| and {||z||<- : x €
A} are both in L [Ty, M ()] and A;-definable over L [Ty, M (2)]

¥ ()
K3

from parameters in {Ty, M7 (z)}.

M (2)
K3

Proof. The equivalence relation a =* b <> a <* b <* a is thin. By Corol-
lary [2.14] we get a Al(x)-function 7 : R — wu, such that a =* b iff 7(a) =
7(b). 7 induces a wellordering <** on ran(7) where m(a) <** w(b) iff a <* b.
|<*| is then the order type of <**. ran(w) and <** are X!, hence II;-
definable over L,s (T3, ] from {T3,x} by Theorem Put w = M ().
By [27, Lemma 14.2], k§ < kY. So ran(m) and <** are A;-definable over
Lo [Ty, w] from {T5,w}. By admissibility, [<*| is A;-definable in Ly [T5, w]
from {75, w}. The part concerning {||z|/<~ : © € A} is similar. O

Remark 2.16. We do not know if M7’ (z) can be replaced by z in the
conclusion of Corollary [2.15]

2.4 N-homogeneous trees

As this paper deals with restricted ultrapowers and “restricted homogeneous
trees” over and over again, it is convenient to abstract the relevant properties.
A transitive set or class N is admissibly closed iff

VM € NIM' e N(M' is admissible A M € M)

Suppose N is admissibly closed and X € N. v is an N-filter on X iff there
is a filter »* on X such that v = v* N N. An N-filter v is an N-measure
on X iff v is countably complete and for any A € P(X) N N, either A € v
or X\ A €wv. Ifvisan N-measure on X, then Ult(N,v) is the ultrapower
consisting of equivalence classes of functions f : X — N that liein N. Denote
by j% : N — Ult(V, v) the ultrapower map and [f]%; the v-equivalence class
of fin Ult(N,v). The ultrapower is well-defined by admissible closedness of
N, and is wellfounded by countable completeness of v. The usual Los proof
shows for any transitive M € N containing {X}, for any first order formula
p, for any f; : X — M that belongs to N, 1 <1 <n,

in(M) = e(Al% - faln)
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iff

for v-a.e. a € X, M = o(fi(a),..., fu(a)).
Suppose v is an N-measure on X" and p is an N-measure on X™ m < n. v
projects to p iff for all AC X™ Acpiff {ad:adme A} ev. V= (Vn)n<w
is a tower of N-measures on X iff for each n, v, is an N-measure on X™ and
v, projects to v, for all m < n.

Suppose N is admissibly closed, X € N, and 7/ = ()<, is a tower of N-
measures on X. This naturally induces factor maps j*"" from Ult(N, v,,)
to Ult(N, v,). Wesay 7/ is close to N iff whenever (A, ),<, is a sequence such
that A, € v, NN for all n, there exists (B, )<, € N such that B, C A, and
B, € v, for all n. If 7/ is close to N, we say v is N-countably complete iff
whenever (A,,)n<., is a sequence such that A, € v, NN for all n, there exists
(@p)n<w such that (aq,...,a,) € A, for all n. The usual homogeneous tree
argument shows:

Proposition 2.17. Suppose V = (Vp)n<w 1S close to N. Then U is N-
countably complete iff the direct limit of (j""" Jm<n<w 1S wellfounded.

Proof. The new part is to show N-countable completeness of 7 from well-
foundedness of the direct limit of (jr""")m<n<w. Given (A,)n<, such that
A, € v, N N for all n, suppose towards contradiction that there does not
exist (@p)n<o such that (ai,...,a,) € A, for all n. By closedness of / to
N, let (Bp)n<w € N such that B, C A,, and B, € v, for all n. The tree
T consisting of (ay,...,a,) such that a; € B; for all ¢ is wellfounded. The
ranking function f of T" belongs to N by admissible closedness. From f we
can construct f, : X" — N so that f, € N and [f,],, > [fat1]v,.,, as usual,

contradicting to wellfoundedness of (jx""")m<n<w- O

An N-homogeneous system is a sequence (Vg)se,<w such that for any
z € R, vy =pgr (Van)n<w 18 a tower of N-measures which is close to N. For
X € N,atree T on w x X is N-homogeneous iff there is an N-homogeneous
system (Vs)sew<e such that Ty € v, for all s € w<* and for all x € p[T],
v, is N-countably complete. If 7" is N-homogeneous, by Proposition [2.17]
and standard arguments, x € p[T] iff the direct limit of (55" )men<w is
wellfounded.

2.5 L[T3] as a mouse

The notations concerning inner model theory follow [51]. If M is a premouse,
o(M) denotes OrdNM. In Steel [47], the level-wise projective complexity
associated to mice is discussed in detail. In this paper, we find it more
convenient to work with II} | ,-iterability rather than ITYC-iterability in [47].
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A countable normal iteration tree 7 on a countable premouse is IT}-guided
iff for any limit A < 1h(7), there is € < o(M7) such that MT|¢ = Je[M(T |
a)] and Je 1 [M(T )] E“O(T | @) is not Woodin”. A countable stack of
countable normal iteration trees 7 is [Ti-guided iff every normal component
of T is I'-guided.

r € R codes a II-iterable mouse iff z codes a 1-small premouse P, such
that for any I1!-guided normal iteration trees 7 € HC on P,, either T has a
last wellfounded model or 1h(7) is a limit ordinal and for any £ > o(M(T)),
if J]M(T)] E“0(T | ) is Woodin”, then there is a cofinal branch b through
T such that either JJ[M(T)] < M] or M] < J[M(T)].

[T3-iterability is enough to compare countable 1-small premice that project
to w. A countable normal iteration tree 7 on a countable premouse is IT3-
guided iff for any limit A < 1h(7), there is ¢ < o(M]) such that MT|¢ is
I13-iterable above §(7T|A) and rud(M(T [ «)) E“6(T ) is not Woodin”. A
countable stack of countable normal iteration trees 7T is [1}-guided iff every
normal component of T is [13-guided.

Assume Aj-determinacy. x € R codes a Ili-iterable mouse iff z codes a
countable 2-small premouse P, such that for any v € R coding II3-guided
stack of normal iteration trees T = (T))i<a on Py, either

1. MZ; exists, either as the last model of 7,_; when « is a successor
or as the direct limit of (M] : i < «) when « is a limit, and there
is Q> MZ such that Q € M7 (z,v), Q is Ili-iterable above O(MZZ),
rud(Q) = “there is no Woodin cardinal < O(MOT;)”, or

2. «a is a successor cardinal and there is b € Ml# (z,v) such that b is
a maximal branch through 7,_;, and there is Q> MZ“‘I such that
Q € M¥(x,v), Q is Ii-iterable above O(M,;ra_l), rud(Q) [ “there is no
Woodin cardinal < O(M?’_l)”.

[1}-iterability is a IT3 property by Spector-Gandy. “countable” and “2-small”
are usually omitted from prefixing “II}-iterable mouse”. P is a IIi-iterable
mouse iff there is € R that codes a II}-iterable mouse P = P,. Note that
[1i-iterable mice are genuinely (w;,w;)-iterable. <pj; is the Dodd-Jensen
prewellordering on IT3-iterable mice. M <p; N iff M, N are II3-iterable
mice and in the comparison between M and A, the main branch on the
M-side does not drop. M ~p; N it M <p; N <p; M. M <p; N
iff M <p; N %£p; M. The norm = — ||P,|<,, for z coding a IIj-iterable
mouse P, is I13. For instance, (P, is a [I3-iterable mouse A(P, is a [I}-iterable
mouse — P, <p; P,)) iff P, is a II}-iterable mouse and for any II3-guided
normal iteration trees 7,U on P,, P, respectively, if 7,1 have the common
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last model @ and the main branch of 7 drops, then the main branch of U
also drops.

If N is a IIi-iterable mouse, then Zy is the direct system consisting of
countable nondropping iterates of N, and N, is the direct limit of Zy,
Tar oo i N = N is the direct limit map. o(N,,) < d3 as it is the length of a
Aj-prewellordering.

For a real z, all the iterability notions relativize to z-mice. <pj(.) is the
Dodd-Jensen prewellordering on IT3-iterable z-mice.

Assume IT3-determinacy. F5,. is the direct system consisting of countable
iterates of M (). MZ#OO(z) is the direct limit of 7, .. M, (2) = Mz#oo(z)wé
(Foy M s My o) = (Fa0, M5 (0), M 1o (0)).

Theorem 2.18 (Steel [49]). Assume II3-determinacy. Then for any real z,

1. 83 is the least < 05 »o-strong cardinal of Mfoo(z), where 05 . is the least

2,00
Woodin cardinal of Mfoo(z).

2. My (2) = L[T3, z].

3 The level-1 sharp

The level-1 sharp is the usual sharp, originally published in [45]. We present
the usual arguments of Martin’s proof of IT{-determinacy and the Martin-
Solovay tree on a ITy-complete set in a form that conveniently generalizes to
higher levels.

3.1 The tree S, level-1 description analysis

We are working under ZF + DC.

The technical definition of tree of uniform cofinalities is extracted from
[26], defined in [14], and redefined in our paper in a more convenient way. A
tree of uniform cofinality pinpoints a particular measure that appears in a
homogeneity system for a projective set. A level-1 tree of uniform cofinalities,
or a level-1 tree, is a set P C w<* such that:

1.0 ¢ A

2. If (i1, ...,i441) € T, k> 1, then (iy,...,i) € T and for every j < ij,1,
(il,...,ik7j) el.
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Any countable linear ordering is isomorphic to <pgg| P for some level-1 tree
P. If P, P’ are finite level-1 trees, s ¢ P, P = P U {s}, then the <pg| P’
predecessor of s is s. Level-1 trees are just convenient representations of
countable linear orderings and their extensions.

A level-1 tree P is said to be regular iff (1) ¢ P. In other words, when P
is regular and P # (), (0) must be the <pgx-maximal node of P.

The ordinal representation of P is

rep(P) ={(p) :p€ P} U{(p,n) :p € P.n <w}.
rep(P) is endowed with the ordering
<P=<gxlrep(P).

Thus, for p € P, (p) is the <P-supremum of (p,n) for n < w. If B C w; is in
L, let BT the set of functions f : rep(P) — B which are continuous, order
preserving (with respect to < and <) and belong to L. If f € wfﬁ, let

17 = ([f]; Jver:
where [f]F = f((p)) for p € P. Let [B]FT = {[f] : f € BPT}. P is said to

be H%-we?lfounded iff PU{0} is a wellfounded tree, or equivalently, <! is a
wellordering. IT}-wellfoundedness of a level-1 tree is a II} property in the real
coding the tree. A tuple @ = (a,)pep is said to respect P iff @ € [wy]7T. In
other words, each «, is a countable limit ordinal, and the map p — «,, is an
isomorphism between (P; <ggl P) and ({«, : p € P}; <). In particular, when
P is regular, P # () and & respects P, then o o) > o, whenever p € P\ {(0)}.

A finite level-1 tower is a tuple (F;);<, such that n < w, P; is a level-1
tree of cardinality ¢ for any 4, and ¢ < j — P; C P;. An infinite level-1 tower
is (P;)i<w such that (P;);<y is a finite level-1 tower for any n < w. A level-1

—

system is a sequence P = (P;)sen<w such that for each s € w<*, (Py)i<in(s)

is a finite level-1 tower. P is reqular iff each Pj is regular. Associated to a
IT} set A we can assign a regular level-1 system (P,)sew<w 5o that z € A iff
the infinite regular level-1 tree P, =pgr Up<w P 1S [T}-wellfounded. If A is
lightface IT3, then (P,)sc,<~ can be picked effective.

Definition 3.1. S; is the tree on V,, x w; such that (0,0) € S; and a
nonempty node

(ﬁ, a) = ((B)i<n, (05)i<n) € S1

iff (P;)i<y, is a finite regular level-1 tower and putting p; € P41\ P, By, = i,
then (5,)pep, respects P,.
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Since every tree occurring in S is regular, for a nonempty node (]3, a) €
S1, we must have ap > max(ay, ..., a,).
S projects to the universal I1; set:

plSi] = {P : P is a I!-wellfounded regular level-1 tower}.

The (non-regular) wi-scale associated to S is II}.

Definition 3.2. 1. Suppose P is a level-1 tree. The set of P-descriptions
is desc(P) =pgr P U{0}. The constant P-description is ().

2. p<p iff p,p € desc(P) and p <pg p'.

3. Suppose P,W are level-1 trees. A function o : PU {0} — W U {0} is
said to factor (P,W) iff o() = 0 and o preserves the <gg-order. (o
does not necessarily preserve the tree order.)

4. Suppose P is a level-1 tree. o factors (P,x) iff o factors (P,W) for
some level-1 tree W.

Suppose P,W are IT}-wellfounded. Then o.t.(<?) < o.t.(<") is equiv-
alent to “Jo (o factors (P,W))”. o.t.(<¥) < o.t.(<") is equivalent to
“JoJdw € W (o factors (P,W) AVp € P o(p) <" w)”. The higher level
analog of this simple fact will be established in Section [4.9] which will be an
ingredient in the axiomatization of 03 in Section [5]

3.2 Homogeneity properties of 5;

From now on, we assume IIj-determinacy. This is equivalent to Vz €
R(z# exists) by Martin [32] and Harrington [§].

The first w uniform indiscernibles (u,,),<, can be generated by restricted
ultrapowers of L. Recall that L. = (J, .z L[#], which is admissibly closed.
Then for every subset A C w; in L, there is a real x such that A is ;-
definable over (L, [z]; €, x). Let

ML

be the L-club measure on wy, ie., A € pyp iff A € L and 3C € L (C C
AACis aclubin wy). When P is a finite level-1 tree, u? is the L-measure
on card(P)-tuples in w; given by: A € u” iff there is C' € uy such that
[C]PT C A. So pP is essentially a variant of the card(P)-fold product of juy,
concentrating on tuples whose ordinals are ordered according to the <pg-
order of P. In particular, u? is the principal ultrafilter concentrating on
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{0}. Put ;¥ = j]fP, flr = [f]ﬁp for f € L. Standard arguments show
that Ult(L, uf’) = L, and jF(w;) = Ucard(P)+1- For any real , gP I L[] is
elementary from L[z]| to L[x].

The set of uncountable L-regular cardinals below u,, is {u, : 1 <n < w}.
The relation “4 = cf“(a)” is A} (in the sharp codes). Suppose P is a finite
level-1 tree, p € desc(P). Then

seedf,D e L

is the element represented modulo uf by the projection map sending @
(ap)pep to o if p € P, by the constant function with value w; if p =
We have seed;; = Up|_p+1, Where |pl|<F is the <P-rank of p. In particular,

=

seedéD = Ucard(P)+1 = g (w1). For each p € P, u* projects to py, via the map
a = .

pP L —L
is the induced factoring map that sends j,, (h)(w1) to j (h)(seedf; ). Thus,
pf is the unique map such that for any z € R, p” is elementary from L[z]
to L[z] and p” o j,, = j7, pF(w1) = seedf:. If p is the <P-predecessor of p',

then (pf)"us is a cofinal subset of seedf,. Put
seed” = (seed;;D )pedesc(P)s

So p <P piff seedllj < Seed;;. Every element in L is expressible in the form
§F () (seed”) for some h € L.

If P, P are finite level-1 trees, P is a subtree of P, then p” projects to
p? in the language of Section , i.e., the identity map factors (P, P’). Let

PP’ P’MP/

J I8

=JL L—>L

be the factor map given by Section Thus, for any real z,
"1 Llx) : Ll — Lla]
is elementary and

G (TL[I](seedli, . ,seedfn)) = 717 (seed!”

P/
oo sseed) )

for p1,...,pn € P. If (P,)n<w is an infinite level-1 tower, the associated
measure tower (uf™), . is easily seen close to L.
The proof of IT}-determinacy [32] shows:

Theorem 3.3 (Martin). Assume I{-determinacy. Let (P,),<,, be an infinite
level-1 tower. The following are equivalent.
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1. (Pp)n<w is i -wellfounded.
2. [wl]U{Pn:nQu}T#@.
3. () pew is L-countably complete.

4. The direct limit of (j57™)menew is wellfounded.

Ifo:{1,...,n} = {1,...,n'} is order preserving, let
j° L—1L
where 57 (7Y (uy, .. up)) = TH (upy, - @) Let

o .
jsup FUn41 — Up/+1

where jZ, (8) = sup(j?)”B. So j7 is continuous at 3 iff j7(3) = j7,,(B). The
continuity points of j7 are characterized by their LL-cofinalities:

Lemma 3.4. Suppose o : {1,...,n} — {1,...,n'} is order preserving, <
Uny1. Put 0(0) = 0. Then j°(8) # jo,(B) iff for some k, cf“(B) = uy
and o(k) > o(k — 1) + 1. If cf“(B) = up and o(k) > o(k — 1) + 1, then
Joup(B) = 37 0§k (B), where o = oy o 1, ox(i) = o(i) for 1 < i <k,
op(k) =0k —=1)+1, ox(i) =0(i = 1) fork <i<n+1.

The second half of this lemma states that jg,, acting on points of L-
cofinality uy is factored into the “continuous part” j°* and the “discontin-
uous part” jit . This simple fact about factoring jg,, is essentially part of
effectivized Kunen'’s analysis on u,, in [46].

A partial level < 1 tree is a pair (P,t) such that P is a finite regular
level-1 tree, and either

1. t¢ PAPU({t}is aregular level-1 tree, or
2. P#£(,t=-1.

—1is regarded as the “level-0” component, hence the name “level < 17. (P, )
is of degree 0 if t = —1, of degree 1 otherwise. We put dom(P,t) = P U {t}.
The uniform cofinality of (P,t) is

-1 ift=-1
ucf(P,t) = 1 ’
t—  ift#£ -1
a = (o)sepugey respects (P,t) iff @ P respects P and t = -1 — oy < w,

t #—1 — o < ay-. The cardinality of (P,t) is card(P,t) = card(P) + 1.
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The unique partial level < 1 tree of cardinality 1 is (0, (0)). If (P,¢) is of
degree 1, its completion is P U {t}. (P,—1) has no completion. (P,t) is a
partial subtree of P’ iff the completion of (P,t) exists and is a subtree of P’.

A partial level < 1 tower of discontinuous type is a nonempty finite se-
quence (ﬁ,ﬁ) = (P, pi)i<k such that card(Fy, pp) = 1, each (P;, p;) is a partial
level <1 tree, and Py is the completion of (P}, p;). Its signature is (p;)i<k-
Its uniform cofinality is ucf(Py,px). A partial level < 1 tower of continu-
ous type is (P;, pi)i<t " (P.) such that either k = 0 A P, = 0 or (P, p;)i<k
is a partial level < 1 tower of discontinuous type AP, is the completion of
(Pr—1,pr—1). Its signature is (p;)i<. When k > 0, its uniform cofinality is
pr—1. For notational convenience, the information of a partial level < 1 tower
is compressed into a potential partial level < 1 tower. We say a potential
partial level < 1 tower is (Py,p) = (Ps, (i)i<in() such that for some level-1
tower P = (P,)i<k, either P, = P, A (P,p) is a partial level < 1 tower of
discontinuous type or (]3, )" (P,) is a partial level < 1 tower of continuous
type. The signature, (dis-)continuity type, uniform cofinality of (P,,p) are
defined according to the partial level < 1 tree generating (Px, p).

ucf( Py, p)

denotes the uniform cofinality of (P, p). If (Ps, (p;)i<k) is a potential partial
level < 1 tower of discontinuous type, its completion is the completion of
(Pv pk)

Clearly, a potential partial level < 1 tower (P, p) is of continuous type
iff card(P,) = lh(p), of discontinuous type iff card(P,) = lh(p) — 1.

Suppose P,W are level-1 trees, o factors (P,W). Given a tuple & =
(Q)wew € [w1]WT, define

—

Ay = (Qop)pep € [WI]PT

where @, = Qo). If W is finite, put seed) = (seedzp))pe p, i.e., seed? is
represented modulo "V by the function @ — @,.

If P,W are finite, o factors (P, W), then for any A € u”, for pV-a.e. @,
d, € A. Thus, for any A € u”, seed” € j"(A). Thus, we can unambigu-
ously define

oV :L—L

by " (57 (h)(seed?)) = 5" (h)(seed?). ¢" is the unique map such that for
any z € R, 0" is elementary from L[z] to L[z], " o j¥ = jV and for any
pe P, o op” =0o(p)". Define alf (8) = sup(c")"p.

The next two lemmas compute the “effective uniform cofinality” of the
image of certain ordinals under level-1 tree factoring maps. They will be
useful in the level-2 description analysis in Section 4.4
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Lemma 3.5. Suppose (P~,p) is a partial level < 1 tree whose completion
is P. 0,0’ both factor (P,W). o and o' agree on P~, o'(p) is the <"~
predecessor of o(p). Then for any B < 57 (wy) such that cf™(f) = seedf__,

0" 0 Jaap (B) = () 03" T (B)-

Proof. Note that cf™(;7F(8)) = seed;;. As in Lemma , (o) acting on

sup
points of LL-cofinality seedg, is decomposed into the discontinuous part j” i

and the continuous part (o7)", where P* is the completion of the partial
level < 1 tree (P,p%), (p™)” =p~, ot factors (PT,W), ¢/ and 0" agree on
P, ot (p™) = o(p). Let ¢ factor (P, P™) where « [ P~ = id, «(p) = p™. So
ot o1 = 0. By considering the seed;:: -cofinal sequence in f3, it is not hard
to show that j&I" o j77F(8) = &7 o 5L T(3). Hence,

.Pp— . + .p—

(0w 03" T (B) = (0 0 jizy 037 T(B)
— (@) 0. 0 5,7 (9)

=" o BT (B).

O

Lemma 3.6. Suppose (P,p) is a partial level < 1 tree, o factors (P,W).
Suppose B < ¥ (w1) and either

1. p=—1, Pt =P, 0 =0, cf*(8) =w, or

2. p# —1, Pt is the completion of (P, p), o factors (P*, W), 0 =o' | P,
o' (p) is the <" -predecessor of o(p~), cf“(B) = seedg,.

Then
oV (B) = () 0 37T (B).

Proof. By commutativity of factoring maps, "V (3) = (/)" o 5P (). Note
that cf(j77" (B)) = seedllj,+ when p # —1, (5P (8)) = w when p = —1.
In either case, by Lemma[3.4 (o')W is continuous at 577" (8). O

To conclude this section, we define the Martin-Solovay tree T5 projecting
to {z# : x € R} and its variant T projecting to a good universal 13 set. This
formulation of 75 and T; will generalize to the higher level in Section
Let T C 2<¥ be a recursive tree such that [T] is the set of remarkable EM
blueprints over some real. Here we have fixed in advance an effective Godel
coding of first order formulas in the language {€,z,¢, : n < w}, so that an
infinite string « € 2 represents the theory {¢ : zr» = 0}. Fix an effective list
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of Skolem terms (7% )<, in the language of set theory, where 7 is f(k)+1-ary,
f is effective. T; is defined as a tree on 2 X u, where

(87 (OC(], s 7an—1)) € T2

iff s € T, lh(s) = n, and for any k,l < n, for any order preserving o :

{1,...,f(B)} = {1,..., f(D},

Lo if “mi(z, Corys - - -5 Co(pry)) = Ti(@, €1, - - - cpy)” is truein s, then j7(ay) =
ay; o

2. if “mi(z, coqr), - - - Cogrry)) < (@, €1,y cpy)” i truein s, then 57 (ay) <
Qg; o

3. if “mi(z, co), - - -5 Co(rry)) > (@, c, .., cppy)” IS truein s, then j7(ag) >
Q.

In essence, the second coordinate of T attempts to verify the wellfoundedness
of the EM blueprint coded in the first coordinate. From T we compute
Ty, a tree on w X (w x u,) that projects to a good universal I set. By
Shoenfield absoluteness, if ¢(v) is a I13 formula, effectively from "¢ we can

compute a unary Skolem term 7+, such that Tégx](x) = 0 iff ¢(x) holds.
Define ("' (v), (s,@)) € Ty iff (s,a@) € T and

L. if “z(m) =n” is true in s, then v(m) = n;
2. “mip(x) # 07 is not true in s.

So p[To] = {9 () : p(a)}.

3.3 The tree 5

In this section, we redefine the tree Sy introduced in [26 Section 2] in the
language of trees of uniform cofinalities in [14].

A tree of level-1 trees is a tree T on w<* (i.e., T C (w<¥)<* and closed
under C) and such that for any s € T, {a € w< : s7(a) € T} is a level-1
tree.

A level-2 tree of uniform cofinalities, or level-2 tree, is a function @) such
that dom(Q) is a tree of level-1 trees, ) € dom(Q) and for any ¢ € dom(Q),
(Q(q11))i<in(g) is a partial level < 1 tower of discontinuous type. In particular,
QD) = (@,(0)).

We denote Q(Q) = (Qtree(Q)7Qnode<Q)) and Q[Q] - (Qtree(q)7 (Qnode(q f

[))i<in(g))- So Q[q] is a potential partial level < 1 tower of discontinuous
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type. Denote Q{q} = {a € w=¥ : ¢"(a) € dom(Q)}, which is a level-1 tree.
The cardinality of @ is card(Q) = card(dom(Q)). card(Q) could be finite or
No.

For @ a level-2 tree, Let

dom*(Q) = dom(Q) U {g~(~1) : ¢ € dom(Q)}.

Here —1 is a distinguished element which is <pgg-smaller than any node in
w. So <pgl dom™(Q) extends <pg| dom(Q)) where ¢~ (—1) comes be-
fore any ¢7(s) € dom(Q). If ¢ # 0, denote Q{¢,—} = {¢ (-1} U
{qiﬁ(a) : Qtree(qiﬂ(a)) = Qtree(CD N a <pk Q(lh(CD - 1)}7 Q{Q, +} =

{qi} U {qim(a) : Qtree(qiﬂ<a)) = Qtree(Q) A a >BK Q(lh(Q) - 1)}7 For
q € dom™(Q), q is of discontinuous type if ¢ € dom(Q); ¢ is of continu-

ous type if ¢ € dom™(Q) \ dom(Q). In particular, {0, (—1)} € dom™(Q). Put

Qlg™ (—=1)] = (P, (Quode(q [1))i<in(g)), where P is the completion of Q(g). So
Qg™ (—1)] is a potential partial level < 1 tower of continuous type.

Definition 3.7. Suppose @ is a level-2 tree. A Q)-description is a triple

qa=(q,P,p)

such that ¢ € dom™(Q) and (P, p) = Qlg]. desc(Q) is the set of Q-descriptions.
A @Q-description (g, P, p) is of (dis-)continuous type iff q is of (dis-)continuous
type. The constant Q-description is (0,0, 0).

If q = (¢, P,p) € desc(Q) is of discontinuous type, put q—(—1) =
(¢™(=1), PT,p) where P* is the completion of (P,p). If & = (ap)pen is
a tuple indexed by N, ¢ € dom™(Q), dom(Q(¢~)) C N if g # 0, we put

A Bq q = (0, q(0), .. apy, - a(lh(g) — 1)),

where Di = Qnode(q W)
The ordinal representation of () is the set

rep(Q) ={@ ®¢g ¢ : ¢ € dom(Q), & respects Qirec(q)}
U{d®gq¢ (—1):q € dom(Q),a respects Q(q)}.

rep(@) is endowed with the <pg ordering:
<Q:<BK[rep(Q).

Thus, the <@-greatest element is ) = () &g 0, and the set {(3,—1): 8 < w;}
is <@-cofinal below (). In general, if ¢ € dom(Q) and & respects Qiree(q),
then @ @g ¢ is the <%-sup of @~ (8) ® ¢~ (—1) € rep(Q). The fact that (0)
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is the <pg-maximum node of a nonempty regular level-1 tree implies that if
(¢, P) € desc(Q), ¢ # 0, (op)pep respects P, then oyg is bigger than a, for
any p € P\ {(0)}. Hence, when Q is finite, <@ has order type w; + 1. If
B € L is a subset of wy, we put

iff f € L is an order preserving, continuous function from rep(Q) to BU{w }.
If f € B@, for each ¢ € dom(Q), letting P, = Qiree(q), f; is the function on
[wi]74T that sends @ to f(d &g q), and

[/1° = ([/19) gedom(@)

where [f]g2 = [foura. A tuple 3 respects (Q iff 5 = [f]9 for some f €

w3 weakly respects Q iff By = w, and for any ¢ € dom(Q) \ {0}, By <
three(qi)three(q) (/qu).

If y € [dom(Q)], let Q(y) =pEF Un<wQiree(y [ ) be an infinite level-1 tree.
Q is I -wellfounded iff

1. Vg € dom(Q) Q{q} is I}-wellfounded,
2. Vy € [dom(Q)] Q(y) is not ITj-wellfounded.

In particular, finite level-2 trees are ITi-wellfounded. IT3-wellfoundedness of
a level-2 tree is a ITj property in the real coding the tree.

A level-2 tree @) is a called a subtree of Q)" iff Q is a subfunction of Q'. A
finite level-2 tower is a (possibly empty) sequence (Q;)1<i<n such that Q; is
a level-2 tree for 1 < i <mn, card(Q;) =4 and ¢ < j — @; is a subtree of Q;.
An infinite level-2 tower is a sequence C? = (Qn)1<n<w such that for each n,
(Qi)1<i<n is a finite level-2 tower. A level-2 system is (Qs)sew<w such that
for each s, (Qg)1<i<in(s) is a finite level-2 tower. Associated to a IT} set A
we can assign a level-2 system (Qs)sew<w so that x € A iff the level-2 tower
Qs =pEF (Qun)n<w is Ti-wellfounded. If A is lightface TI3, then (Qg)scu<w
can be picked effective.

In our language, the level-2 tree Sy, originally defined in [26, Section 2],
takes the following form.

Definition 3.8. Assume IT}-determinacy.

1. S5 is the tree on V, x u, such that (,0) € Sy and a nonempty node

(0,0) # (Q,@) = ((Qi)1<i<n, (Q)1zizn) € Sy

iff G is a finite level-2 tower, and putting Qu = 0, ¢ € dom(Qi41) \
dom(Q;), By, = a4, then (B;)gedom(Q,) respects Q.
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2. Sy is the tree on V,, x u,, such that (0, 0)) € Sy and a nonempty node

(0,0) # (@, ) = ((Qi)1<i<n, (ai)1<i<n) € Sy

iff O is a finite level-2 tower, and putting Qo = 0, ¢; € dom(Q;41) \
dom(Q;), By, = i, then (B;)qedom(@,) Weakly respects Q.

By Theorem 3.3,
plSy] = p[Ss] = {Q : U Q is ITi-wellfounded}.

The (non-regular) u,-scale associated to Sy is A} (cf. [26]).

A level < 2 tree is a pair Q = (1Q,%Q) such that 4 is a level-d tree
for d € {1,2}. Its cardinality is card(Q) = >, card(Q)). We follow the
convention that 4Q always stands for the level-d component of a level < 2 tree
Q. Qs a level < 2 subtree of Q' iff Q is a level-d subtree of 4’ for d € {1,2}.
rep(Q) = U, ({d} x rep(Q)). <9=<px] rep(Q). So <¥ is essentially the
concatenation of <@ and <®. dom(Q) = U,({d} x dom(%Q)), dom*(Q) =
Ua({d} x dom* (49), where dom*(Q) = dom () = Q. desc(@) = Uy({d}

desc(4Q)) is the set of Q-descriptions. (d,q) € desc(Q) is of continuous type
iff d = 2 and q is of continuous type; otherwise, (d,q) is of discontinuous
type. Q is I3 -wellfounded iff 'Q is IT}-wellfounded and Q) is TI-wellfounded.
By virtue of the Brower-Kleene ordering, the next proposition is a corollary

of Theorem [3.3|

Proposition 3.9. Let Q be a level < 2 tree. Then Q is Ii-wellfounded iff
<@ is a wellordering on rep(Q).

As a corollary, if @ is IIi-wellfounded, then o.t.(<9) = w; + 1.
If f is a function on rep(Q), let 4 be the function on rep(4Q) that sends
v to f(d,v). If B €L is a subset of w;, we put

iff f € L is an order preserving, continuous function on rep(Q), and 4f € B@t
for d € {1,2}. f represents a card(Q)-tuple of ordinals

1119 = (“If12) (@,0)edom(@)

where [ ]2 = [df];Q. In particular, we must have 2[f](zﬁ2 = wy. Let

[B]" =A{[f?: f € BY}.

The properties of a tuple [f]2 for f € w? are analyzed in [26,46]. We
restate the key results in the effective context.
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Definition 3.10. Suppose @ is a level < 2 tree. An extended Q-description is
either a Q-description or of the form (2, (¢, P, p)) such that (2, (¢ (—1), P, p))
is a @-description of continuous type. desc™(Q)) is the set of extended Q-
descriptions. (d,q) € desc™(Q) is regular iff either (d,q) € desc(Q) of dis-
continuous type or (d,q) ¢ desc(Q).

Suppose (2,q) = (2, (¢, P, 7)) € desc™(Q). If f € w¥", 2f, is the function
on [wy]PT defined as follows: 2fy = 2f, if (2,q) € desc(Q); *fo(@) = ?f, (@]

Quee(@)) 1f (2,q) ¢ desc(Q). If f = (B,)ugedomi@) € [w1]?!, we define
dﬁq for (d,q) € desc*(Q): if d = 2, q = (¢, P, p), put Bq = [*4).r where
3 = [f]° Clearly, By = 2B, if (2,q) € desc(Q) of discontinuous type,
By = jQue@P (28 if (2,q) ¢ desc(Q). The next lemma computes the
remamlng case when q € desc(Q) is of continuous type, justifying that 93,
does not depend on the choice of f.

Lemma 3.11. Suppose Q is a level < 2 tree. Suppose 3 = (%B4) (d,q)edom(Q) €
wi]9T, (2, Q) (2 (¢, P,p)) € desc(Q) is of continuous type, P~ = Quec(q™),
then 25(1 = jsup (2ﬁq )

Proof. Let = [f]9, f € [w1]?". Let v = Pin(g)—1- S0 P is the completion of
Q(q_) = (P_,U).

Suppose v = [g] ,p- < %y, g € L. So for u" -a.e. @, g(d) < *fy- (@) =
SUPeq _ 2f(@7(€)), where @7 () is the extension of @ whose entry indexed
by v is €. Let h(d) be the least £ < a,- such that g(@) < ?f,(@7(£)). Then
h € L. By remarkability of level-1 sharps, we get C' € up, such that for any
a € [C]1, h(d dom(P™)) < a,. Hence for any @ € [C]FT, g(@dom(P™)) <
2f,(@). Hence j¥ P(v) < 28,.

Suppose on the other hand v = [g],» < ?34. Then for p"-a.e. @, g(d) <
*fo(@) = supg_y, *fo(@ [ dom(P~)7(€)). Let h(d) be the least £ < a, such
that g(d) < *f,(@ | dom(P~)"(£)). By remarkablhty, we get C € p and
h' € L such that for any @ € [C]FT, h(@) = W(a | {p : p <F v}). Hence,

g(d) < 2 dom(P-) (& {p:p <" v}) = F(a), where 1 =
fo@ W@ {p:p=<" v}l Clearly,n < 25( Sovy < gyt (Bg-). O

A tuple 3 = (%By) (d.q) edom(Q) respects Q iff § € [w1]9". In particular, if 3
respects Q, then 28y = wy. § weakly respects Q iff ( 18,)qe10 respects 'Q and

(*8,)4e2q weakly respects Q).

The relation of weak respectability is clearly Al. It is essentially shown
in [46] that respectability is also A}. We restate the relevant definitions in a
more applicable fashion.
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Definition 3.12. Suppose W is a finite level-1 tree, @ = (w; )<y, is a distinct
enumeration of a subset of W. Suppose f : [wi]"'T — w; is a function which
lies in IL. The signature of f is w iff there is C' € pug, such that

1. for any @, 3 € [CIW1, if (g, - s Q) <BK (Bugs-- -+ Bw,,_,) then

-,

fla) < f(8);

2. for any @, 5 € [C1V", if (qwgs-- s Qw, ) = (Bugs---»Buw,_,) then
fla@) = ().
In particular, f is constant on a pu"V-measure one set iff the signature of f is
0.

Suppose the signature of f is @ = (w;)j<m. f is essentially continu-
ous iff m > 0 and for pW-a.e. @, f(a) = sup{f(g) 2 (Buwgs -+ Bugyy) <
(Qugy - - -, Qw,, ;) }. Otherwise, f is essentially discontinuous. Put [B]WT~1 =
[B]"" x w. For w € dom(W), put [B]V™ = {(3,7) : § € [B"!,v < Bu}.
For v € {—1} U W, say that the uniform cofinality of f is v iff there is
g : [w1]"™ — w; such that g € L and for pV-a.e. @, F(@) = sup{G(a, 3) :
(@,B) € [w1]"T} and the function 3 +— G(a, 3) is order preserving. It is
essentially shown in [46] that every f : [wi]"T — w; in L has a unique sig-
nature and uniform cofinality. Let (P, p;)i<m ™ (Pn) be the partial level <1
tower of continuous type and let ¢ factor (P, W) such that o(p;) = w; for
each i < m. Note that w; <" wy for 0 < i < m, so each P, is indeed a
regular level-1 tree. P = (P,)i<p, is called the level-1 tower induced by f, and
o is called the factoring map induced by f. Note that o [ P; factors (P;, W)
for each 7. The potential partial level < 1 tower induced by f is

L. (P, (pi)icm), if f is essentially continuous;

2. (P, (pi)iem " (=1)), if f is essentially discontinuous and has uniform
cofinality —1;

3. (Pms (pi)iem ™ (p1)), if f is essentially discontinuous and has uniform
cofinality w, € W, (P,,,p") is a partial level <1 tree, o((p™)”) = w,.

In particular, if w, € W, f(&d) = au,, is the projection map, then the potential
partial level < 1 tower induced by f is (0, (0)). The approxzimation sequence
of fis (fi)icm where dom(f;) = [wi]"T, fo is the constant function with
value wy, fi(@) = sup{f(B): 3 lel]WT, (@wo, . =5wi_1)f (Qpgy -+ p 1) }
for 1 <4 < m. In particular, f,,(8,) = f(B) for u-a.e. S.

Note that all the relevant properties of f depend only on the value of f
on a puV-measure one set. We will thus be free to say the signature, etc. of
f when f is defined on a p"-measure one set.
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Definition 3.13. Suppose w; < 8 < wu,, is a limit ordinal. Suppose W is
a finite level-1 tree, 8 = [f],w < Ucara(w)+1, the signature of f is (w;)icm,
the approximation sequence of f is (fi)i<m, the level-1 tower induced by f
is (P;)i<m, the factoring map induced by f is o. Then the signature of § is
(seed}Z)Km, the approzimation sequence of 3 is ([fil,r: )i<m, B i essentially
continuous iff f is essentially continuous. The uniform cofinality of 5 is w if
f has uniform cofinality —1, seed)! if f has uniform cofinality w, € W U{(}.
The potential partial level < 1 tower induced by [ is the potential partial
level < 1 tower induced by f.

The uniform cofinality of § is exactly c¢f“(3). The signature, approxima-
tion sequence and essential continuity of § are independent of the choice of
(W, f) in Definition , and moreover Al in 8 uniformly.

Suppose the signature of 3 is (uy, );<m, the approximation sequence of /3 is
(Vi)i<m- Fori <m,let 7;,, : {1,...,i+1} = {lo,...,l;} be order preserving.
Fori < k < m, let 7, = Tk_Sn O Tim. A straightforward analysis on the
representative function of 8 yields the following:

1. For i <k <m, jap (i) <y < 57 ().
2. For i <m, jaup' (%) < Ym < 57 (%)

3. For i <m, jii"(vi) = ym iff i = m — 1 and 3 is essentially continuous.

4. B = ().

The next lemma is a version of the “converse direction”. In its statement,
the inequality 57 (v) <" < j7(v) forces 7 to move the signature of v to a
proper initial segment of that of 4/, and forces the approximation sequence of
~ to be a proper initial segment of that of 7/. It will be useful in the analysis
of descriptions and tree factoring maps in Sections [£.44.8] which eventually
justifies the axiomatization of 03# in Section The proof is again based
on an analysis of the representative function of v and +/.

Lemma 3.14. Suppose A is a finite subset of w. Let w: {1,... card(A)} —
A be order preserving. Suppose that ¥ < Ucara(a)+1 and j,,(v) <" < j7 (7).
Let (uy,)k<v, (V& )k<w, (P, P) be the signature, approzimation sequence and po-
tential partial level < 1 tower induced by v respectively. Let (uy; )x<v, (Vo) k<o’
(P',p') be the signature, approrimation sequence and potential partial level
< 1 tower induced by ~' respectively. Let cf(y) = u,. Then

1. v <V, w(lg, ) = (I, 7). v is essentially discontinuous — vy, = Y.
v is essentially continuous— v, < V-
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2. 1. ¢ A forv<k<uv.
3. For any k <wv, I <7(ly) < L <.
4. P is a proper subtree of P' and p' is an initial segment of p'.

Moreover, if v < ~" < j7(v) and (V) )k<v is the approzimation sequence of
V", then v, <7,

The next few lemmas are essentially part of effectivized Kunen’s analysis
[46] of tuples of ordinals in u,. The proofs are rather routine.

Suppose FE is a club in w;. For a partial level < 1 tree (P,t), put @ =
(ap)pepugy € [B]PITff & respects (P,t), (ap)pep € [E]FT, and t # —1 —
ay € E. For a level < 2 tree @, put

rep(’Q) | E ={@ B2 q : ¢ € dom(°Q), d € [E] @1}
U{d @2 ¢ (—1) : ¢ € dom(%Q), & e [E] Q@1

Put 1ep(Q) 1 B = ({1} x 1ep('Q)) U ({2} x rep(*Q) | E). Then 1ep(Q) | E is a
closed subset of rep(Q) (in the order topology of <@).

Lemma 3.15. Suppose Q is a finite level < 2 tree, C' € py, is a club. Then
3 e [C]°F iff there exist f € w¥ and E € pp such that 3 = [f]9 and

for any q € 'Q, f(q) is a limit point of C; for any q € dom(%Q), for any
a € [E])Quee@ 2f (&) is a limit point of C.

Proof. The nontrivial direction is <. Suppose f € w Tand E € [, are
as given. For ¢ € dom(*Q) \ {0}, let Q(q) = ( q,pq) and let ¢* be the

<px-maximum of ‘Q{q, —

Claim 3.16. There is E' € ug, such that E' C E and for any q € dom(*Q) \
{@} for any @ € [E')FY, if p, # —1 then C N (*f(Q),%,(Q)) has order type

O{ —
Pq

Proof of Claim[3.16. Otherwise, there is ¢ € dom(*Q)\ {0} such that p, # —1
and for pf-a.e. d, C'N (*fy(d),%,y(d)) has order type smaller than a,,
However, by assumption, C'N (3f+ (&), *f,(d)) is cofinal in *f, (&), and 2f,~ 1
witnesses that ?f, has uniform cofinality p, - This leads to a function h € ]L
where for pfe-a.e. @, h(d) is a cofinal sequence in - of order type < -

Hence, ch(seedPE) < seediﬁ by Lo$, which is absurd. ]

Pq

Fix E' as in Claim We are able to define f’' : rep
(

@) IE
such that f(1,q) = f'(1,q) for ¢ € 'Q, f(2,d @ q) = f'(2 &@QQ q) for
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q € dom(*Q) \ {0}, @ € [E"]"T. Let 0 : rep(Q) — rep(Q) | £’ be an order
preserving bijection. Let E” € up, where n € E” iff E' Ny has order type 7.
It is easy to see that 0 [ (rep(Q) [ E”) is the identity map. Define g = f" 0 6.
Then g € C9T and [¢]? = [f]9. O

Lemma 3.17. Suppose Q is a finite level < 2 tree, Q(q) = (P, p,) for
q € dom(Q), E € py, is a club. Suppose f :rep(Q)[E — wy + 1 satisfies

1. f1({1} x rep('Q)) is continuous, order preserving;

2. if ¢ € dom(3Q), then the potential partial level < 1 tower induced by
2f, is *Qlq), the approzimation sequence of *f, is (*fgi)i<ing), and the
uniform cofinality of *f, on [E"" is witnessed by *fy~_1y, i.e., if d €
[E]R;T} then 2fq<0_2) = Sup{2fq“(—l)(d;/\(6)) : 62A<5) € I“ep(QQ) TE}; and

the map g»—> quﬁ(_l)(d'“(ﬁ)) 1S continuous, order preserving,
3. if a,b € Q{q} and a <px b, then [fqﬁ(a)]“pqﬂ(a) < [fqm(b)]upqﬁ(b).

Then there is E' € pp, such that E' C E and f | (rep(Q) | E') is order
preserving.

Proof. We know by assumption that for p"7-a.e. @, fo(@) = sup{fy~@) (@~ (8)) :
B < ozp;}. Fix for the moment ¢ such that p, # —1. For & = (op)pep,, put
a = (o), <pp - By remarkability of (level-1) sharps, there is a function
h € L and Ey, € . such that for any & € [E;]™", h(d~) < a,- and for any
B € a,- N Ey, for any a,b € Q{q}, fo@) (@ (B)) < fo-@ (@™ (h(@7))). Let
n € EY iff for any @ € [E}]"", if Vp <px pj, ap < n then (@) < 7. Finally,
let E" = ({E} : py # —1}. E” works for the lemma. O

Lemma 3.18. Suppose that Q) is a finite level < 2 tree and 5 = (dﬂq)(d,q)edom(Q)
s a tuple of ordinals in u,. Then 5 respects Q) iff all of the following holds:

1. (8,)4e1q Tespects Q.

2. For any q € dom(XQ), the potential partial level < 1 tower induced by
Bq s Q[q], and the approzimation sequence of By is (Bg)i<in(q)-

3. If a,b € Q{q} and a <pg b then By~ (o) < By~w).-

Moreover, if C' € ur, is a club, then 5 € [0]9r zﬁB’ respects (Q and letting C’
be the set of limit points of C, then 16, € C" for q € 'Q, 2, € jQuec@(C")
for q € dom(%Q).
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Lemma 3.19. The relation “Q is a finite level < 2 tree N B respects Q7 is
Al

Lemma 3.20. Suppose () and Q' are level < 2 trees with the same domain.
Suppose B respects both Q and Q)'. Then Q = Q'.

Suppose @ is a finite level < 2 tree. Suppose (d,q) € desc*(Q), and if
d = 2 then q = (q, P,p). Put

_ I (@)l <e if d=1,
l(d. e = {[& — [1(2,8 @ )| <olr ifd=2.

To save ink, put [d,q]o = [(d,q)]q- If in addition, d = 2 and q € desc(Q)
of discontinuous type, put [2,¢]o = [2,d]q- It is easy to compute [d,q]qo
only from the syntactics.

Definition 3.21. To every ordinal £ < w*” (ordinal arithmetic), we assign
¢ as follows:

)
I

1. 0.

2.1

W.

B 0<np=w"4+ - +wW"* <wY w>ng > -+ > ng in the Cantor
normal form, then w” = w,, 11 ----- Upy+1-

4. H0<E=wM+ - +wh w’>mn >-- > in the Cantor normal
form, then & = wm + - - - 4 W,

Then

{E: 0<é<w}={[d,q]o: Q finite level < 2 tree, (d,q) € desc*(Q)}

and the relation £ = [d, q]q is effective. The ordering among different [d, q]o
can be computed in the following concrete way. Put (1,q) = (1,q). For

q = (¢, P,p), k =1h(q), p'= (pi)icin), put

((27 HpUH-<P7 q(0)7 SRR Hpk’f?H%Pv Q(k - 2)7 _1)
if q € desc(*Q) of continuous type,
<2 q> _ (27 ||pOH<P7 q<0)7 ) ||pk—1||<P7 Q(k - 1)7 _]->
’ if q € desc(Q) of discontinuous type,
(27 HPOH<P7 Q(O), SR ||pk’—1||—<P7 Q(k - 1)7 Hpk||-<P>
{ if q ¢ desc(Q).
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Define
(d,q) < (d',d)
iff (d,q) <px (d',q’). Define

(d,q) ~ (d',q')

iff (d,q) = (d',q’). Then for any finite level < 2 tree @, [d,q]q < [d,d]¢

iff (d,q) < (d,d); [d,dlq = [d,d]q iff (d,q) ~ (d',q'). In fact, (d,q) ~

(d',q') iff either (d,q) = (d', q') or {(d, @), (&', q)} = {(2,(0,0,0)), (2, ((=1),{(0)}, ((0))))}-
Define <?=<] desc*(Q), ~?=n~] desc*(Q). It is also easy to verify the

next lemma on the order of the entries of E which respects Q).

Lemma 3.22. Suppose () is a level < 2 tree and E respects (). Suppose
(d,q), (d,q) € desc*(Q). Then By < "By iff (d,q) <2 (d,q); Bq = By iff
(d,a) ~ (d.q).

4 The level-2 sharp

4.1 The equivalence of z2# and M (x)

From now on, we assume Aj-determinacy. By Kechris-Woodin [29], O (< w?-IT})-
determinacy follows. By Neeman [37,138] and Woodin [30,48], this is also
equivalent to “for every z € R, there is an (w,w; )-iterable M (z)”.

Definition 4.1. Suppose X = w* xR! is a product space. Suppose z is a real
and 8 < u,. A subset A C X is B-TI3(z) iff there is a IT3(z) set B C u,, x X
such that A = Diff B. A is 8-1} iff A is B-I15(0). A is B-II} iff A is -TT3(x)

for some real z.

By Theorem , when £ is a limit ordinal, A C X is §-II3(z) iff there is
a pair of ¥;-formulas (p, ) such that

—

(ﬁay) (nlv"'7nk7y17"'7yl>€A
iff
Lﬁgvﬂ[TanJﬂ ): Ja < 5(V77 <« @(7777/_1:7 ga T27:U) N ﬂlb(a,ﬁ, ?7’ T27$))'

Lemma 4.2. Assume A%-determmacy. Suppose n, m are positive integers.
If A is (u,)™-11L(z), then A is O*(wn-I1}(x)).
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Proof. Without loss of generality, we assume x = 0, m = 1, and A C R.
Let B be a II} subset of u, x R such that A = Diff B. Let B* = {(w,y) :
(Jw|,y) € B} be the 1T} code set of B. Let C C R? be a X} set such that

(w,y) € B* < Vr(w,y,r) € C.

Consider the game H(y), where I produces w,r € R, II produces w', 1" €
R. The game is won by I iff both of the following hold:

1. w e WO,, |w|is odd, and (w,y,r) ¢ C.
2. If w' € WO,, |w'| is even, and (w',y,7") ¢ C, then |w| < |w/'|.

Therefore, y € A iff I has a winning strategy in H(y).

Since L[y, w,r,w’,r'] is ¥i-absolute, and since the relation |w| < |w’| for
w,w" € WO,, is definable over L[y, w,r, w',r'] from parameters uy, ..., u, 1,
the payoff set of the game H(y) can be expressed as a first order statement
over L]y, ] from parameters ui, ..., u,_;. That is, there is a formula 6 such
that an infinite run

(w,r,w',r")

is won by I iff
Ly, w,r,w' '] E 0(y,w,r,w' 7" uy, ... u,_1).

It follows by Martin [33] that the payoff set of H(y) is ©(wn-I1} (y)), uniformly
in y, hence determined. Hence A is in 0%(wn-II}). O

Lemma 4.3. Assume Aj-determinacy. Let n < w. If A is D*(wn-11}(z)),
then A is u, o-TIi(x).

Proof. Without loss of generality, assume x = 0 and A C R. We produce an
effective transformation from a ©?(wn-I17) definition to the desired w, o-113
definition. By Martin [33], if (y,r) € R?, C C R is wn-ITi(y, ), then there is
a formula ¢ such that Player I has a winning strategy in G(C') iff

L[y,?”] ): Qp(y,'f’, U, ... 7un)-

The transform from the wn-ITI}(y, r) definition of C' to ¢ is uniform, indepen-
dent of (y,r). Suppose A = OB, where B C R? is O(wn-II}). Suppose ¢ is a
formula such that

(y,T) € B« L[y,T] ): Qp(yaraula---aun)-

To establish a w,,o-I1} definition of A, we have to decide which player has
a winning strategy in G(B,), for y € R. For ordinals & < -+ < §, <n <
w1, we say that M is a Kechris-Woodin non-determined set with respect to

(yafl,---,fn,n) iff
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1. M is a countable subset of R;

2. M is closed under join and Turing reducibility;

3. Vo e M 3ve M LyJy, 0 ®v] = —p(y,0c ®v,&,...,&);
4. VoeMIveM Lyfy,v@ac| =y, v®0,&,...,6).

In clause 3, “Vo € M” is quantifying over all strategies o for Player I that is
coded in some member of M; o * v is Player I's response to v according to
o,and 0 ® v = (0 *v) @ w is the combined infinite run. Similarly for clause
4, roles between two players being exchanged. Say that z is (y, &1, ..., 20, 1)-
stable iff z is not contained in any Kechris-Woodin non-determined set with
respect to (y,&1,...,&,n). 2z is y-stable iff z is (y, &1, ..., &, n)-stable for all
£ < ... <&, <n<wy. Theset of (y,z) such that z is y-stable is ITi. By the
proof of Kechris-Woodin [29], for all y € R, there is z € R which is y-stable.

Note that if z is (y, &1, . . ., &n, m)-stable and z < 2/, then 2" is (y, &1, . . ., &0, 1)-

which is (y, &1, ..., &, n)-stable:

< <§1 77777 S zZ4r z 18 (yagla cee 7£n,77)‘stable Nz ST Z//\

Vo STZ Jv ST Z, Ln[%U@U} ):_“P(%U@Uafla---agn)
Vo <r 2T <r 2 Lylyv@o] E (v 00,6, 6.

Wellfoundedness of <§1 """ &1 follows from the definition of (y,&1, ..., &, n)-
stableness. If z is (y, &1, ..., &y, n)-stable, then <§1 """ S {22 <§1 7777 &l 2}
is a 1 wellfounded relation in parameters (y, 2) and the code of (¢, ..., &,,n),
hence has rank < w; by Kunen-Martin. If z is y-stable, let f be the function
that sends (&1,...,&,n) to the rank of z in <§47 Then f7 is a func-
tion into w;. By Yi-absoluteness between V and Lly, 2]°"@7) we can see
f7 € L[y, z]. Furthermore, f7 is definable over L[y, z] in a uniform way, so
there is a {€}-Skolem term 7 such that for all (y,z) € R?, if z is y-stable,
then

FiEn o &) =m0y 2 60, 6 ).
Let
B, = WAy 2 uy, . ).
The function
(y,2) — B

is Al in the sharp codes. We say that z is y-ultrastable iff z is y-stable and
B; = min{3; : w is y-stable}.
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Claim 4.4. If z is y-ultrastable, then there is 0 <7 z such that o is a winning
strategy for either of the players in G(By).

Proof of Claim[{.4]. Suppose otherwise. For any o <r z which is a strat-
egy for either player, pick w, which defeats o in G(B,). Let w be a real
coding {(o,w,) : 0 <7 z}. By an indiscernability argument, for any (y, w)-
indiscernibles & < --- < &, <mn, for any 0 <r z, if ¢ is a strategy for Player
I, then

Ln[ya o wa] ): _‘90(1/7 o We 517 s 75%)7
if o is a strategy for Player II, then
Ln[y7 We X U] ): go(y,wa & g, 517 s 7671)'

This exactly means
w <§1 ----- &nsm z,

and hence
f;f(gla"'afmn> < f;(fla st 7571777)'

Since z is y-stable and z <7 w, w is y-stable. Therefore, 3 is defined and
B;” < B; , contradicting to y-ultrastableness of z. O

From Claim [£.4] if Player I (or II) has a winning strategy in G(B,), then
for any y-ultrastable z, there is a winning strategy for Player I (or II) in
G(B,) which is Turing reducible to z. Therefore, Player I has a winning
strategy in G(B,) iff there is § < u,,4o such that

Jz (z is y-stable A 3; = §) (1)
and

Vy <9 Vz ((z is y-stable A 8; = v) —
Jdo <7 z (0 is a winning strategy for I in G(B,))).  (2)
Note that in (1)),
{(6,y) : 3z (z is y-stable A B; = )}
is a 3} subset of u, x R, and in (2)),

{(v,y) : Vz ((z is y-stable A B; =) —
Jdo <r z (0 is a winning strategy for I in G(B,)))}

is a [T} subset of u, x R. So 3§ < un+2( A ) is a U4 2-115 definition of
A. O]

42



Lemma 4.2 and Lemma [4.3| are concluded in a simple equality between
pointclasses.

Theorem 4.5. Assume Aj-determinacy. Then for v € R,
D% (< w1} (7)) = <uy-TI5(z).
Definition 4.6.
O™% = {("g", @) : ¢ is a Xy-formula, @ <y, Lz [13, 2] = o(Th, 2, a)}.

O™ i3 the u,-version of Kleene’s O relative to (Ty, z). It is called P¥
in [23).
Definition 4.7.
£ = {(, ) : 30 < ua((9.) ¢ O™ AV < o) € OB)),
2 ={(n,"g, W) i n <wA (P, € 277}

O™2% gplits into w many parts (OT2*N(w X uy,))n<w. Each part is squeezed
into a real x2# by applying the difference operator on its second coordinate.
The join of (22#),, is 22#. In particular, =" is Turing equivalent to the
good universal II} real, which is called the Al-jump of z. Each 2# belongs
to Lyg [Ty, z], but 2*# ¢ L[5, 2]. The distinction between z3" and 22#
does not have a lower level analog.

The expression of 0%# generalizes Kleene’s O to the higher level. Note
that the transformations between 0%(<w?-I1}(x)) and <u,,-I1}(x) definitions
in Theorem are uniform. Applying Theorem to the space X = w,
in combination with Theorem [2.1, we get the equivalence between x?# and
Theorem 4.8. Assume Aj-determinacy. Then x*% is many-one equivalent
to Ml#(:v), the many-one reductions being independent of x.

0%# is essentially a fancy way of expressing ys, the leftmost real of YA}
which is used in the standard uniformization argument. 7, and y3 are used
in [31] to show that every nonempty X} set of reals contains a member which
is recursive in g3, or in our terminology, recursive in 0>#. Basis theorems can
also be proved with inner model theory. If Mi_l exists, then every nonempty
33,41 set of reals contains a member recursive in M | (cf. [47.51]). At
higher levels, the leftmost real basis arguments are investigated in [27]. Tt is
shown by Harrington (modulo Neeman [37,38]) that under A} -determinacy,
there is a A%nﬂ-scale on a A%nﬂ set whose leftmost real yg,.1 is A;nﬂ-
equivalent to Mzﬁq and such that every nonempty Y3, set contains a real
recursive in 4o, 1. It is asked in [27, Conjecture 11.2] whether yo,, 41 is Turing
equivalent to Mj;_l. Theorem solves this conjecture in the n =1 case in
an effective manner.
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4.2 Homogeneity properties of S,

By [27, Lemma 14.2], L1 [T3] is admissibly closed. We shall define a system of
Ls1[T3]-measures on finite tuples in u,. This system of L [T5]-measures will
witness Sy being L [Tb]-homogeneous. Under AD, these Lg [Tb]-measures
are total measures induced from the strong partition property on w; (cf. [26]).
These measures enable the Martin-Solovay tree construction of S3 projecting
to the universal II} set, to be redefined in Section In our situation, we
must recast the effective version of the proof of the strong partition property
on wy. Let XT be the set of strictly increasing functions f : w; — X that
belong to L. Only functions in I will be partitioned, and the partition must
be guided by a A% surjection from wI onto u,, and a subset A C u,, which
lies in Lg1[T5].

Every function f € w) is of the form o — 726 (2, @) where 2 € R and 7 is
a Skolem term. Thus, sharp codes for increasing functions is a good coding

system for w!.

Definition 4.9. w; has the level-2 strong partition property iff for every
function ¥ : w! — w, such that the relation “(7,z#) is a sharp code for
an increasing function, a = (7 e (z,.))” is A}, for every B € Lsi[T2],
there is X C w; such that o.t.(X) = wy, X € L and either P'XT C B or

WXt Cu, \ B.

In most applications, ¢ will have the property that ¢ (f) = ¥(g) whenever
Vo < wy sup f"a = sup ¢”a. The partition will be essentially on continuous
functions only. In this case, when X is the homogeneous set produced by
Definition [4.9] so is the set of limit points of X. We will henceforth demand
that the homogeneous set is a club in wy.

Martin’s proof of the strong partition property on w; under AD carries
over in a trivial way. For the reader’s convenience, we include a proof.

Theorem 4.10 (Martin). Assume Aj-determinacy. Then w; has the level-2
strong partition property.

Proof. We imitate the proof in [19, Theorem 28.12], which builds on partially
iterable sharps. We are given ¢ : wI — u,, whose complexity is A} (in
the sharp codes for increasing functions) and the target of the partition
B € Ly [T5]. Define the game G in which I produces ("7, a*), II produces
("o, b*). An infinite run is won by Player II iff

1. If ("7, a*) is a putative sharp code for an increasing function, then so
is ("o, b*). Moreover, for any n < wy, if

a* is n-wellfounded A 7M1 () € wip(Mg- )
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then
b* is p-wellfounded A oMo (n) € wip(My- ).

2. If ("7, a*), ("o, b*) are true sharp codes for increasing functions, a* =
a”, b* = b, letting h(n) = sup{r"(wn + n), " (wn +n) : n < w}
for n < wy, then ¥(h) € B.

The payoff set of G is in Ls1[T5] by Theorem , hence in O (<w?II}) by
Lemma 2.7l Hence G is determined.

Suppose that player I has a winning strategy ¢ in G.. Let C' be the set of ¢-
admissibles and limits of ¢-admissibles. Similarly to the proof of Lemma[2.11
using boundedness, if ("o, v#) is a true sharp code for an increasing function
such that V3 < w; ollPl(B) € C, then (77, w#) =pgr f * ("o, v%) is a true
sharp code for an increasing function, and for any n € C for any 5 < 1 such
that V3 < B8 o*l’)(3) < n, we have 75*!(8) < min(C \ n + 1).

Let e : w; — C enumerate C in the increasing order and let X =
{sup,.,e(w& +n) : &€ < wy}. We show that " XT C B. Suppose that
f € XT. By definition of X there is a function g € CT such that f(a) =
sup,,., g(wa+n) for any @ < wy. Let b € R and o be such that g(n) = 7% (n)
for any < w;. Feed in ("o, b#) for Player II in G. Then the response
(7, a*) =pgr f * ("o, b%) is a true sharp code for an increasing function,
and for any o < wy, for any n < w,

rH(wa +n) < min(C\ (g(wa +n) +1)) < glwa +n+ 1),

where the last inequality follows from the fact g € CT. Let h be given as in
the definition of G. Then h = f. Since ¢ is a winning strategy for Player I,

W(h) ¢ B.
A symmetrical argument shows that if Player II has a winning strategy
in G, then there is X € LL which is cofinal in w; such that " X"NB =0. O
Definition 4.11. Let ) be a finite level < 2 tree. We define
Acp®
iff there is C' € py, such that
[C]9T C A.

u@ is easily verified to be a countably complete filter concentrating on
[w1]9T. In particular, when card(Q) = 1, u® is the principal measure con-
centrating on {(w1)20}. Noticing the facts that rep(Q) has order type
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wi + 1, and that [f]9 depends only on {f(v) : ||v|/<e is a limit ordinal}.
Theorem [4.10] implies that

p@ is an Lsi[To]-measure.

Let j@ = jﬁf;) i) be the restricted ultrapower map of u® on Lsi[To]. Put

[flue = [f]ﬁj%[Tal for f € L(;%[TQ]. Lo$’ theorem reads: for any first order

formula ¢, for any « € R, for any f; € Lg[T3], with ran(f;) C Lig[Ts, ],
1< <n,

JOLug o, ) F (il i)
iff
for j%-ace. € Lg To,a) b= o(fi(E), .., falE)).

Lemma 4.12. Assume A)-determinacy. If P, W are finite level-1 trees,
A C [T xR s IIL (or X%, AL resp.), then so are

B ={x: for pW-a.e. @,(a,z) € A},
C={(B,x): Fe i’ (A},
where A, ={ad : (d,z) € A}.

Proof. x € B iff y Va € [w)"T(d are y-admissibles — (@, z) € A). = ¢ B
iff Jy Va € [wi]"1(a are y-admissibles — (@, x) ¢ A). The quantifier V& €
[w1]"T does not increase the complexity due to Corollary . The complexity
of C follows from that of B and Los. [

A purely descriptive set theoretic proof of Lemma is given in [13]
Lemma 4.40].

Lemma 4.13. Assume Aj-determinacy. Suppose Q is a finite level < 2 tree.
If ACw; x Rias T (or X%, Al resp.), then so is

B={(f,x): f €A%},
where A, = {a: (a,z) € A}.

Proof. Put Al =the set of limit points of A,. By Lemma , g e [A,]¢T
iff 5 respects @ and for any ¢ € 'Q, '8, € A, , for any ¢ € dom(%Q),
2, € jomelo)(AL),

Now apply Lemma and Lemma [3.19] O
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Lemma 4.14. Assume Aj-determinacy. Suppose Q is a finite level < 2 tree.
If AC ]9 x R s I (or XL, AL resp.), then so is

B={x: for u®-a.e. 3,(3,z) € A},

Proof. Let C' = {(y,) : @ < wj A« is y-admissible}. C'is Al. Then z € B iff
Iy Vi (B € [C))°" — (B,7) € A). « ¢ Biff JyVp (8 € [C))9T — (B,2) ¢ A).
Use Lemma 13 O

Corollary 4.15. Assume Aj-determinacy. Suppose Q is a finite level < 2
tree. Then j9(a) < 83 for any a < &5. j9(Ty) € L [T2].

Proof. By Lemmal4.14] for any o < 83, j¢(a) is the length of a A} prewellorder-
ing on R. j9(Ty) € L ,,4 [T, M{’] by Corollary [2.15] O

#
M
3

Corollary is the effective version of [46| Corollary 3.9]. Actually,
§9(Ty) is A} in the sharp codes, a fact to be shown in Section [4.5]

For @ a finite level < 2 tree, by Corollary Lg[j9(T2)] = Ult(Lgy [To], u%).

If Q is a subtree of @', both finite, then u? projects to u® via the map
that sends (8,)(@gedom(@)t0 (By)(@gedom(q)- Let

§O9 Ult(Lgy [To], 1) — Ult(Lgy [ T3], u¥)

be the induced factor map. If Cj = (Qn)n<w is alevel < 2 tower, the associated
Lsi[To]-measure tower (19") < is easily seen close to Lsi[T2].

If (P,p) = (P, (ps)i<m) is a potential partial level < 1 tower, let f € B(PT
iff f:[wi]"T — B is a function and

1. if (P, p) is of continuous type, then the signature of f is (p;)i<m, f is
essentially continuous;

2. if (P,p) is of discontinuous type, then the signature of f is (p;)i<m_1,
f is essentially discontinuous, f has uniform cofinality ucf(P, p).

Let B c [B](P’ﬁ)T iff B = [f]up for some f c B(Pvﬁ)T

M(P@

is the Lg[To]-measure where A € pPP) iff there is £ € pg such that

: : (PP
[E)(PPT C A B respects (P,p) iff B € [w]PPT. Let jPP) = jﬁf&%&?] e

the induced Ly [T5]-ultrapower map. Let seed ™ be represented modulo
pwPP) by the identity map.
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If (d,q) € desc(Q), let pu49 = py if d = 1; u(i"” = pPP if d = 2,
q = (¢, P,p). Thus, u? projects to u'*% via the map 3+ By, i.e., A € pd9
iff {8 :9, € A} € u?. (Recall the definition of 43, from 3 in Section )
Let

(d,q)?

be the induced factor map, so that j9 = (d,q)% o3, ifd=1, j° = (d,q)%o
§PP) if d = 2. Let
Q
seed(dyq)

be represented modulo y® by the map 5 5 By
The homogeneity property of the Martin-Solovay tree on a ITj set (cf. [26])
translates to our context:

Theorem 4.16. Assume Al-determinacy. Let Q= (Qn)n<w be an infinite
level-2 tower. Let QQ, = Up<,@n. The following are equivalent.

1. Q. is I}-wellfounded.
<Qw 45 q wellordering.
There is E = (B4)tedom(q.) which respects Q.

(U9 ey, is Ls [T5]-countably complete.

The direct limit of (79m%"),, cnew is wellfounded.

Proof. 1 < 2: By Proposition |3.9

2 = 4: Suppose <9 is a wellordering. Let (A,)n,<, be such that A, €
pn NLg1[T3]. Let x € R and C' € Lz] be a club in w; such that [C]e-T C A,
for all n. Let f : dom(<%) — C be given by

f(@@q, t) = the ||d Bg, t||<e.-th element of C.

Then f € Llx,Q,,] and is order preserving. Let 3, = [f [ rep(Q,)]%". Then
for all n, (f1,...,0n) € An.

4 = 3: This follows from the fact that u®" concentrates on tuples that
respect ).

3= 1: If z € [dom(Q,)], then jQ@RQuG (B ) > B,y for all k < | < w.
This means the direct limit of j@«@*):Qu(#) ig illfounded. Hence @, () is not
I1}-wellfounded by Theorem .

4 < 5: By Proposition 2.17] O

Definition 4.17. Q°, Q!, Q%°, Q*' denote the following typical level < 2
trees of cardinalities at most 2:
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o 'Q°=10,"Q" ={(0)}, dom(Q°) = dom(*Q") = {0}.

e For d € {0,1}, 'Q* = 0, dom(*Q*) = {0, ((0))}, 1Q**((0)) is of degree
d.

QO . . . Ql . . QQO Q21

p< is a principle measure. p% is essentially pup. p% and p%  are
essentially refinements of the Lg; [T3]-club filter on us, the former concentrates
on ordinals of L [Tb]-cofinality w, the latter of Ly [Tb]-cofinality wy.

4.3 The tree S;

A partial level < 2 tree is a pair (Q, (d, ¢, P)) such that @ is a finite level < 2
tree, and one of the following holds:

1. (d,q,P) = (0,—1,0), or
2. d=1,q¢'Q,'QU{q} is alevel-1 tree, P =, or

3.d=2,q¢ dom(RQ), dom(*Q) U {¢} is tree of level-1 trees, P is the
completion of XQ(¢™). (In particular, XQ(¢~) must have degree 1.)

The degree of (Q,(d,q,P)) is d. We put dom(Q, (d,q, P))
{(d,q)}. The cardinality of (Q, (d,q, P)) is card(Q, (d,q, P)) =
The uniform cofinality of a partial level < 2 tree (@, (d, q, P)) is

ucf(@Q, (d, g, P)),

= dom(Q) U
card(@) + 1.

defined as follows.

1. ucf(Q, (d,q, P)) = (0,—1) if d = 0;

2. uct(Q, (d,q, P)) = (1,¢7) if d = 1, Ih(q) > 1;

3. ucf(Q, (d,q, P)) = (2, (0,0,0)) if d =1, Th(q) = 1

4. uek(Q, (d,q, P)) = (2, (¢, P,7)) if d = 2, Qlg"] = (P~, ), and ¢ is the

<px-least element of “Q{q, +}.
So ucf(Q, (d, q, P)) is either (0, —1) or a regular extended @Q)-description. The
cofinality of (Q, (d,q, P)) is

it d =0,
cf(@, (d, q, P)) =<1 ifd=1landqg= min(_<1Qu{q})’

2 otherwise.
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A tuple 5 = (B1)(e.t)cdom(Q,(d.q,P)) TesPECts (Q, (d, g, P)) iff 5 [ dom(Q) respects
Q and B, < w if d =0, B, < By if d > 0 and ucf(Q, (d,q, P)) = (d,t). A
partial level < 2 tree of degree 0 has no completion. A completion of a
partial level < 2 tree (Q, (d,q, P)) of degree > 1 is a level < 2 tree * such
that dom(Q*) = dom(Q, (d, ¢, P)), Q* [ dom(*Q) = %Q, and either d = 1 or
d = 2N Quee(t) = P. For alevel < 2 tree Q', (Q, (d, q, P)) is a partial subtree
of Q" iff a completion of (Q, (d, q, P)) is a subtree of @'

A partial level < 2 tower of discontinuous type is a nonempty finite se-
quence (Q;, (d;, ¢i, P;))1<i<k such that card(Q,) = 1, each (Q;, (di, qi, P;)) is
a partial level < 2 tree, and each Q);1; is a completion of (Q;, (d;, ¢;, P;)). Its
signature is (d;, ¢;)1<i<k- Its uniform cofinality is uct(Qg, (d, qi, Pr)). A par-
tial level < 2 tower of continuous type is (Q;, (d;, ¢, P;))1<i<x ™ (Q«) such that
either k& = 0 A Q. is the level < 2 tree of cardinality 1 or (Qy, (di, gi, P;))1<i<k
is a partial level < 2 tower of discontinuous type AQ. is a completion of
(Qr—1, (dk—1,qk—1, Pr—1)). lts signature is (d;, ¢;)1<i<k- I k& > 0, its uni-
form cofinality is (1,qx—1) if dp—1w = 1, (2, (qe—1, P, D)) if dx—1 = 2 and
Qlgr_1] = (P,p). For notational convenience, the information of a partial
level < 2 tower is compressed into a potential partial level < 2 tower. A po-

tential partial level < 2 tower is (Qx, (d, q, P)) = (Q«, (d;, ¢i; P;)1<i<in(g)) such

that for some level < 2 tower @ = (Q;)1<i<k, either Q. = Qr A (Q, (d, g, P))

—

is a partial level < 2 tower of discontinuous type or (@, (d,q, P)) " (Qx) is a
partial level < 2 tower of continuous type. The signature, (dis-)continuity

type, uniform cofinality of (Q., (d, q, P )) are defined according to the partial
level < 2 tree generating (Q., (d, q, P)).

ucf(Qx, (d, q, P))

denotes the uniform cofinality of (Q., (d,q, P )) Clearly, a potential partial

level < 2 tower (Q., (d,q, P)) is of continuous type iff card(Q.) = 1h(q), of
discontinuous type iff card(Q.) = lh(q) — 1.

Definition 4.18. A level-3 tree of uniform cofinality, or level-3 tree, is a
function

R

such that 0 ¢ dom(R), dom(R) U {0} is tree of level-1 trees and for any
r € dom(R), (R(r [ 1))i<i<m() is a partial level < 2 tower of discontinu-
ous type. If R(r) = (@, (dr, s, P,)), we denote Riee(r) = @, Rnode(r) =
(dr,qr), Rlr] = (Qr, (dyps @y Pri)1<i<in(r)).  R[r] is a potential partial level
< 2 tower of discontinuous type. If @ is a completion of R(r), put R[r, Q] =
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(Q, (dr, oy Prp)1<i<in(ry), which is a potential partial level < 2 tower of con-
tinuous type. For r € dom(R) U {0}, put R{r} = {a € w< : r~(a) €
dom(R)}, which is a level-1 tree.

The cardinality of R is card(R) = card(dom(R)). R is said to be regular
iff (1)) ¢ dom(R). In other words, when R # 0, ((0)) is the <px-maximum
of dom(R).

Suppose R is a level-3 tree. Let dom*(R) = dom(R) U {r~(—-1) : r €
dom(R)}. Forr € dom(R), put R{r,—} = {r="(=1)}U{r " (a) : Ruee(r~"(a)) =
Rivee(r),a <pr r(Ih(r) — 1)}, R{r,—} ={r } U{r "(a) : Ruee(r—"(a)) =
Rtree(r)y a >BK T(lh(?") - 1)}’

If § = (%4) (a,g)en 1s a tuple indexed by N, r € dom*(R), lh(r) = k, either
k=1 or dom(R(r~)) C N, we put

Baorr=(r(0),By,r(1),..., By, (k= 1)),
where (d;, ¢;) = Ruoae(r [1). The ordinal representation of R is the set
rep(R) :{ﬁ @r7r:r e dom(R), 3 respects Rivee(r)}
U{B@rr(=1) : r € dom(R), 3 respects R(r)}.
rep(R) is endowed with the <pg ordering
<f—<prlrep(R).
R is I -wellfounded iff
1. Vr € dom(R) U {0} R{r} is [Ii-wellfounded, and
2. Vz € [dom(R)] R(z) =prF Un<w(Riree(z [ 1)) 1<n<w is not Ij-wellfounded.

For level-3 trees R and R’, R is a subtree of R’ iff R is a subfunction
of R'. A finite level-3 tower is a sequence (R;);<, such that n < w, each
R; is a regular level-2 tree, card(R;) = i+ 1 and ¢ < j — R; is a subtree
of R;. R is reqular iff each R; is regular. An infinite level-3 tower is a
sequence R= (Rn)n<w such that for each n, (R;);<, is a finite level-3 tower.
[1}-wellfoundedness of a level-3 tower is a Hé property in the real coding the
tower. In particular, every finite level-3 tree is IT}-wellfounded. Similarly to
Proposition [3.9] we have

Proposition 4.19. Assume Al-determinacy. Suppose R is a level-3 tree.
Then R is Ti-wellfounded iff <™ is a wellordering.
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Associated to a IT3 set A we can assign a level-3 system (Ry)se,<« S0 that
x € A iff the infinite level-3 tree R, =pgp U<y Ry is IIi-wellfounded. If A
is lightface IT3, then (R;)se,<« can be picked effective.

Suppose I’ € Lg1[T3] is a function on rep(R), r € dom(R). Then F; is a

function on wf"ee(r)T that sends 3 to F(B®gr). F represents a card(R)-tuple

of ordinals
[F]R = ([F]F)Tedom(R)

where [F]f = [F}] ,ruen for r € dom(R). If B C &3, put

T 2

F e B

it I € L [T5] and F' is an order-preserving continuous function from rep(R)
to B (with respect to < and <). Let

[B]fY = {[F]|": F € Bf"}.

A tuple of ordinals 7 = (7,)redom(r) is said to respect Riff ¥ € [§3]71. 7 is said
to weakly respect R iff for any t,t' € dom(R), if ¢ is a proper initial segment
of t/, then jftee(®)Fuee)(~,) > ~,,. By virtue of the order <%, if 4 respects
R, then 7 weakly respects R and whenever Riee(t™(p)) = Riree(t™(q)) and

P < g, then v~ ) < %i~(g)-
The trees S; and S3 are defined in [26]. They both project to the universal
I1} set. In our language, they take the following form.

Definition 4.20. Assume Aj-determinacy.

1. Sy is the tree on V, x &3 such that (@, () € S; and
(R, @) = ((Ri)i<n: (i)i<n) € S5

iff R is a finite regular level-3 tower and letting r; € dom(Risq) \
dom(R;), Br, = ait1, then (B;)redom(r,) Tespects R,,.

2. Sy is the tree on V,, x &3 such that (§, () € S3 and
(R, @) = ((Ri)izn, (0i)i<n) € S

iff R is a finite regular level-3 tower and letting 7; € dom(R;1) \
dom(R;), By, = ait1, then (B;)redom(r,) Weakly respects R,,.

By Theorem
p[S;] = p[Ss] = {R: R is a Ili-wellfounded level-3 tower}.
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The (non regular) scale associated to Ss is IT3. For & < &3, put (é, a) e S3l¢
iff (R,a) e S3 and (R,a) # (0,0) = ap < €.

The properties of a tuple respecting R is decided by the signature, ap-
proximation sequence and relative ordering of its entries, in a parallel way to
the level-2 case. It is handled in [12]. We state the results in our language.

For level < 2 trees @, X, we say that 7 : dom(X) — dom(Q) factors
(X, Q) iff putting (d, % (z)) = n(d, z) for (d,r) € dom(X),

1. 'r factors (X, 'Q);
2. if z € dom(%X) then %X (z) = Q(*r(x));

3. if z,2’ € dom(®X), then z <px ' — *r(z) <pg “r(z'), x C 2/ —
n(z) C %n(2).

For d € {1,2}, % has this fixed meaning if 7 factors (Q, X). Extend the
definition of *r on dom*(*Q) and desc(%Q) is the following natural way: if

¢~ (=1) € dom"(Q), define *r(q™(-1)) = m(q)"(-1); if a = (¢, P.p) €
clesc(QQ), define 27T(q) = (%T(Q>7P7m If B = <d6q>(d,q)6dom(Q) € [WI]QTu pUt
ﬁﬂ' - (d/Bﬂ',fE>(d,Z')edOm(X) S [wl]XT where dﬂw,m - dﬁdfn—(g;)

Definition 4.21. Suppose @ is a finite level < 2 tree, (d, ) — ((ds, ¢i) )1<i<k
is a distinct enumeration of a subset of @) and such that {¢; : d; = 2} U {0}
forms a tree on w<¥. Suppose F : [w;]?" — &% is a function which lies is

Lsi[To]. The signature of F'is (d, q) iff there is E' € g, such that

]‘ for a‘n ? 7 [ ] ? lf (dqu07 e 7dk_b7%71) <BK (doﬁq07 et 7dk_1/6q1c71)
then f(5) < f(7);

2. for any (3,7 € [E], if (%oy,,, ..., %1y, )= (%8, ..., %15, ) then
f(B) = f(9).

Clearly the signature of F' exists and is unique. In particular, F' is constant
on a p¥-measure one set iff the signature of F is 0.

Suppose the signature of F is m = ((di, qi))1<i<k- F is essentially con-
tinuous iff for p@-a.e. 3, F(3) = sup{F(7) : 7 € [w;]", (Yaor -+ s g, ) <BEK
(%98, - -, %18, )}. Otherwise, F is essentially discontinuous. Put [w,]9T0~1) =
(W] X w. For (d,q) € desc*(Q) regular, put [wi]@M40) = {(F ~) : § €
[w1]@T, v < 934}. For (d, q) either (0,—1) or in desc*(Q) regular, say that the
uniform cofinality of F is ucf(F) = (d, q) iff there is G : [wl]m(d @) — §3 such
that G € Lg [T3] and for any for u®-a.c. 3, F(B) = sup{G(B,7) : (B,7) €
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[w1]@T@)} and the function 7 G(g ,7) is order preserving. The cofinality

of I'is
0 if ucf(F) = (0,—-1),

cf(F) =141 if ucf(F) = (1,q),¢ = min(<?),

2  otherwise.

Let (X, (di, z;, W;)) " (X)) be the partial level < 2 tower of continuous type
and let m factor (X, @) such that w(d;, ;) = (d;, ¢;) for each 1 <i < k. The
potential partial level < 2 tower induced by F'is

L. (Xk, (diy i, Wi)1<i<k), if F is essentially continuous;

2. (Xy, (diy 2, Wi)1<icr (0, —1,0)), if F is essentially discontinuous and
has uniform cofinality (0, —1);

3. ( Xk, (diy s, Wi)1<ick ™ (1,21,0)), if F is essentially discontinuous and
has uniform cofinality (1,¢.), (X, (1,27,0)) is a partial level < 2 tree,
(L (7)) = (1, ¢.);

4. (X, (diy x5, Wi 1<ick ™ (2,27, P,)), if F is essentially discontinuous and
has uniform cofinality (2,q.), 9« = (¢s, Ps, D), (Xk, (2,21, F,)) is a
partial level < 2 tree, and either

(8) q. € desc(Q), * = ()" (a), 7(2, (z")""(a7)) = (2,4.), or
(b) q. ¢ desc(Q), (2, (z7)7) = (2,4.).

The approzimation sequence of F is (F;)i<i<r where F; is a function on

[wr] ¥, Fi(5) = sup{F(7) : 7 € [wi]?", ("5, 5 0) = (WBars o, 580}

for1 <i<k.

The existence and uniqueness of the uniform cofinality of F' will be proved
in Section . In particular, if R is a level-3 tree, H € (83)%, then for any r €
dom(R), H, has signature (Ryode(” [©))1<i<in(), is essentially discontinuous,
has uniform cofinality ucf(R(r)) and cofinality cf(R(r)), induces the potential
partial level < 2 tower R[r|, and (H,y)1<i<in(r) is the approximation sequence
of H,. Again, all the relevant properties of F' depends only on the value of
F on a p®-measure one set. We will thus be free to say the signature, etc.
of F when F is defined on a p“-measure one set.

Definition 4.22. Suppose w; < 7 < 63 is a limit ordinal. Suppose @
is a finite level < 2 tree, v = [F],qe, the signature of F'is ((d;, ¢))1<i<k,
the approximation sequence of F' is (F})i<;<x. Then the Q-signature of (3
is ((ds, ¢;))1<i<k, the Q-approzimation sequence of v is ([F],e)i<i<k, 7 is

o4



Q-essentially continuous iff F' is essentially continuous. The Q-uniform cofi-
nality of v is w if F' has uniform cofinality (0, —1), seed(% a) if f has uniform

cofinality (d,q) € desc*(Q). The Q-potential partial level < 2 tower induced
by v is the potential partial level < 2 tower induced by F.

In Section [4.5] we will show that all the relevant properties in Defini-

tion are independent of the choice of F' (but depends on @ of course).

Q
We will also show that the Q-uniform cofinality of «y is exactly ofa (72 ()

Y

and cf 25" (7) = Uet(r), where we set up = w.

Definition 4.23. We fix the notations for all the level-3 trees of cardinality
1. For d € {0,1,2}, dom(R?) = {((0))} and R¥((0)) is of degree d.

4.4 Level-2 description analysis

If Q is a level-2 tree, q = (q, P,p) € desc(Q), 1h(q) =k, p'= (ps)i<in(m), 0 is a
function whose domain contains P, we put

c®q=0®qq=(0(p)q0),...,0(pr-1),q(k —1)).

Definition 4.24. Suppose W is a finite level-1 tree and suppose @ is a level
< 2 tree. A (Q, W)-description is of the form

D = (d,(q,0))
such that either
1.d=1,q€'Q, o0=0,or
2. d=2,q=(q,P,p) € desc(Q), o factors (P,W).

desc(Q, W) is the set of (@), W)-descriptions. A (Q, *)-description is a (Q, W')-
description for some finite level-1 tree W’. desc(Q, ) is the set of (@, *)-
descriptions. We sometimes abbreviate (d, q, o) for (d,(q,0)) € desc(Q, W)
without confusion.

Suppose now D = (d,q,0) and if d = 2, then q = (¢, P, p), 0’ = (P:)i<in(m»
lh(q) = k. The degree of D is d. The level-1 signature of D is

0 ifd=1,
(0(pi))ick ifd=2.

D is of level-1 continuous type iff d = 2 and q is of continuous type; otherwise,
D is of level-1 discontinuous type. The level-1 uniform cofinality of D is

sign; (D) = {

-1 ifd=1V(d=2Aucf(P,p) =—-1),

UCf1<D) = { .
o(uct(P,p)) ifd=2Aucf(P,p)# —1.
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The level-2 signature of D is

((1,q)) if d =1,
signy(D) = ¢ ((2,¢%))1<i<k—1  if d = 2,q of continuous type,
((2,q71))1<i<k if d = 2, q of discontinuous type.

D is of level-2 W -continuous type iff d = 2 and if ucf(P, p) # —1Ao(ucf(P, p)) #

min(<"), then pred_w (o (ucf(P,p))) € ran(c). Otherwise, D is of level-2
W -discontinuous type. The level-2 W -uniform cofinality of D is

ucfy’ (D)

defined as follows. If d = 1, then ucfy (D) = (1,q). If d = 2, ¢ is of
continuous type,

1. if D is of level-2 W-continuous type, then ucfy (D) = (2,(¢~, P\

{pe-1}.9));

2. if D is of level-2 TW-discontinuous type, then ucfy (D) = (2, (¢~, P, p)).
If d = 2, q is of discontinuous type,
1. if D is of level-2 W-continuous type, then ucfy (D) = (2, q);

2. if D is of level-2 W-discontinuous type, then ucfy (D) = (2, (g, P U

{pk}7ﬁ>'

The constant (Q, *)-description is (2, (0,0,0),0¢) where oy is the unique
that factors (0, %), i.e., oo(0) = 0.

Note that if D € desc(Q,W) and W is a subtree of W’ then D €
desc(Q, W), but ucfy (D) could be different from ucfy (D). If Q is finite,
there are in total

d(W) card(WW)
4 car
it 3 (Re’)t T (i
gedom(%Q) 2Q(q) of degree 1
many (Q,W)-descriptions. We shall establish an exact correspondence be-
tween desc(Q, W) and uniform indiscernibles < j? o jW (w;).

Suppose D = (d,q,0) € desc(Q, W), and if d = 2, then q = (g, P, ),

7= (Pi)icin@), 1h(q) = k. For g € w?T, let

w

dp - [WI]WT

—wp +1
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be the function as follows: if d = 1, then gf} (@) = '[¢]¢ when min(@) > '[g]%,
gy (@) = ||(1,(q))||<a otherwisdl} if d = 2, then g}y (@) = %,(dy) (Recall the
definition of @, in Section [3.2). In particular, if D is the constant (Q,*)-
description, then gy is the constant function with value w;. Clearly, the
signature of gy is sign, (D); D is of level-1 continuous type iff gy is essentially
continuous; the uniform cofinality of g} is ucf;(D). Suppose additionally
that () is finite. Let
ide"

be the function [g]? — [gfy]w, or equivalently, B o (B,), where 0V
is interpreted as j". Clearly, the signature of id%w is signy’ (D); id%w
is essentially continuous iff D is of level-2 W-continuous type; the uniform
cofinality of id2" is ucf}¥ (D). Let

seed@" € Lyy (9 0 4 [T3)

be the element represented modulo ;@ by id%w. In particular, if d = 1

then seed%w = seedaq); ifd =2, P =W and o = idp, then Seed%W =

seed((?2 - By Los, if D is not the constant (@, x)-description, for any A € py,
seed2" € j o jW(A). Thus, we can define

DY Lt [ (T2)] = Lgy (9 0 5" [T3)])

by sending j,, (h)(w:) to j@ o 5V (h)(seed™).
If Q is a level-2 tree, q = (q, P, p) € desc(Q), | < 1h(q), define

qll = (gl {pi:i <}, (pi)i<t)-

which is a @Q-description. If D = (2,q,0) € desc(Q, %), q = (¢, P,p), | <
lh(q), define
Dll=(2,qll,o{pi:i<l})

which is a (@Q, *)-description. Define
D <D

iff D = D’ |1 for some [ < Ih(D’). Define <@W =< desc(Q, W).
The ordering of seed%w is definable in the following concrete way. Put

<D>={E;’q)69 L
,odq) ifd=2.

Lthe split in definition is insignificant, only to ensure Lemma m
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Define
D<D

iff (D) <pg (D’), the ordering on subcoordinates in w<“ again according to
<pk. For example, the constant (@, *)-description Dy is the <-maximum,
and we have (Do) = (2,0). When 1 < card('Q) < Ry, the <-least (@, *)-
description is (1, ¢, 0), where q is the <pgg-least node in 'QQ. When W # (), the
<-least (Q, W)-description of degree 2 is Dy = (2, ((—1),{(0)}, ((0))), ow),
where oy ((0)) =the <pg-least node in W, and we have (Dy/) = (2, (ow (1), —1)).
Define <@W=<] desc(Q,W). <9W exactly determines the order of the
d%W’s, as in the following lemma. It is parallel to Lemma .

Lemma 4.25. Suppose D, D’ € desc(Q, W) and D <9V D’. Then
1. For any g € W&, for any @ € W}, gl (@) < g ().

2. Suppose @ is finite. Then seedg’w < Seedg’,w. Moreover, for any
B < uy, DY(B) < seed

Proof. 1. Simple computation.

2. Note that D@V (w;) = seed2". We directly prove the “moreover”
part. We are given 8 = j,, (h)(wy), where h is a function into w;. Let E € py,
such that for any o € E, h(a) < min(E \ a + 1). We have D@V (3) =
79 0 ;W (h)(seed®™). By Lo, it suffices to show that for any g € E@T,
PV (h)(lgB 1) < lgb]w. By Lo$ again, it suffices to show that for any
a € (w1, kgl (@) < giy(a@). We already know that gy (@), g5y (@) € E.
By our choice of E, it suffices to show that gy (@) < gpy(@). This is exactly
part 1. 0

Suppose W is a level-1 proper subtree of W', W’ is finite, w € W U {0},
w' € W'\ W. Define
w < w
iff w <pr wand {w* € W :w <gg w* <pg w}=10.
<}V inherits the following trivial continuity property.

Lemma 4.26. Suppose W is a level-1 proper subtree of W', W' is finite,
weW,w e W\W, w<WV w. Suppose C € g, is a club, C' is the set of
limit points of C. Then for any @ € [C']|"7T,

v = sup{Bu : B € [C1Y", 3 eatends a}.
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Suppose W is a proper level-1 subtree of W’. For D € desc(Q, W) and
D’ € desc(Q, W) \ desc(Q, W), define the level-1 end extension relation

D <" D’

iff D' < D and {D* € desc(Q,W) : D' < D* < D} = (). Thus, D <%"
D’ iff both D, D’ are of degree 2 and letting D = (2,(q, P,p),0), D' =
(27 (q/7 Plaﬁ)a OJ)a lh(q) = k? ﬁ: (pi)i<1h(ﬁ)a then either

1. ¢ is of continuous type (hence lh(p) = k), D~ < D', o(pr_1) <V
gl(pk—l)a or

2. ¢ is of discontinuous type (hence lh(p) = k+ 1), D < D/, o(p;) <}
o' (pr)-

As a corollary to Lemma [4.26, <9" inherits the following continuity
property.

Lemma 4.27. Suppose W is a proper subtree of W', D € desc(Q, W), D’ €
desc(@Q, W), D <11Q’W D'. Suppose C € py, is a club, C" is the set of limit
points of C. Then for any g € W', for any & € [C"]"7,

g (@) = sup{gly/ (3) : B € [C)W"", § eatends a}.

Suppose @ is a proper subtree of @), both finite. For (d,q) € desc*(Q),
(d',q') € desc™(Q'), define the level-2 extension relation

(d,q) <5 (d',q)

iff (d',q') < (d,q) and {(d*,q*) € desc™(Q) : (d',q') < (d*,q") < (d,q)} = 0.
Thus, (d,q) < (d',q') iff either

1. d:d’:l,q<lqu’,or
2. d'=1,0<2dq,d=2,qe {((-1),{(0)},((0))), (0,0,0)}, or

3.d=d = 27 lettlng q = (q7 P7]3>7 ﬁ: (pi)i<lh(ﬁ), q= (q/,Pl,ﬁ), ]7 _
(P})icingrys h(g) = k, then either
(a) q € desc(Q) is of continuous type, k > 2, (P,5) = (P, 7 | k),
() Cdak—2) <2 ¢k —2), or
(b) q € desc(Q) is of discontinuous type, (P,p | k) = (P,
=), qlk—1) <2 ¢k 1), or

S
=
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(c) q & desc(Q), ¢ S ¢, 0 <1 ¢/ (k).

As a corollary to Lemma and Lemma 3.18| <12Q inherits the following
continuity property.

Lemma 4.28. Suppose C' € puy, is a club. Let n € C" iff C Ny has order type

n. Suppose Q is a proper subtree of Q', Q,Q" are finite, (d,q) € desc™(Q) ,
(d',q) € desc*(Q'), (d,q) <§ (d',q'). Then for any j € [C']T,

dﬁq = Sup{d/'yq, 7 € [C97,7 extends E}

In the proof of Lemma [4.28] the construction of ¥ that witnesses the <
direction relies on the assumption that n € C” iff C' N n has order type 7.

Suppose @ is a proper subtree of @), both finite. For D € desc(Q, W),
D’ € desc(Q', W) \ desc(Q, W). Define the level-2 end extension relation

D <" D'
if D’ < D and {D* € desc(Q,W) : D’ < D* < D} = (). Thus, putting
D= (d,q,0), D= (d,¢,0), D<¢" D' iff either
1.d=d =1, q<lqu’, or
2.d'=1,0<°q,d=2 q=((-1),{(0)},((0))), 7((0)) = min(<"), or

3. d=d =2, letting q = (¢, P,p), P = (pi)i<nipy, a = (¢, P, ), P =
(P})icingry, Ih(g) = k, then either
(a) ¢ is of continuous type (hence lh(p) = k), D~ < D', <]iQ{qr‘}
¢ (k —1), either pp_1 = —1 or ¢'(pr—1) = pred_w (o (px—1)), or
(b) ¢ is of discontinuous type (hence Ih(p) =k+1), D D', ) <]iQ{q}
q,(k)7 O'/(p];) - pred<w(0(pk)).

In particular, D <1(2°2’W D’ implies that D is of level-2 WW-discontinuous type.

<1§2’W inherits the following continuity property.

Lemma 4.29. Suppose C' € g, is a club. Let n € C' iff n € C and C N7
has order type n. Suppose @ is a proper subtree of @', both finite, D =
(d,q,0) € desc(Q, W), D' = (d,q,0") € desc(Q',W), D <"V D'. Then
for any 3 € [C"]eT,

¥ (18,) = sup{(0")" (hy) : 7 € [C1°,7 eatends F}.

60



Proof. The > direction follows from Lemma |4.25 We show the < direction.
When d = d = 1, both sides are equal to %, by Lemma [4.26, When
d =2Ad =1, both sides are equal to w; by Lemma again. Suppose now

d=d =2 Letq= (q,P,ﬁ), p= (pi)i<lh(ﬁ)a q= (q/7pl,17)a P = (p;>i<lh(ﬁ’)>
lh(q) = k.

Case 1: ¢ is of continuous type.

Let P~ = P\{pr_1}. S0 Q(q¢") = (P~ ,pr_1). Let ¢" = ¢ [k, 0" =o' | P,
P’ = Qnoae(q"). Then (2, (¢", P, (p"))) <5 (2, (¢, P, p)). By Lemmal4.2§

GPP (38,0 ) = sup{Pyr - 7 € [C]97, 7 extends F}.
It suffices to show that
0" o ja T (CB) = ("o i T (B

p-

This is exactly Lemma , using the fact cf“(%3,-) = seed .
k—1

Case 2. ¢ is of discontinuous type.
Let P* be the completion of (P, py) if pp # —1, PT™ = P if p, = —1. Let
¢ =¢ k+1, 0" =0 | Pt. Then (2,(¢", Pt,p) <¥ (2,(¢q, P*,p)). By

Lemma [4.28]
PP (%8,) = sup{Py : 7 € [C]97, 7 extends §}.
It remains to show
" (%B,) = (0")ip 0 37 (By)-
This is exactly Lemma using the fact cf]L(Qﬁq) = seed;:; when p;, # —1,
cf“(?8,) = w when p, = —1. O

Definition 4.30. Suppose S is a finite regular level-1 tree and @ is a level
< 2 tree. Suppose 7 : S U {0} — desc(Q, ) is a function. Then 7 factors

(5, Q, *) iff
1. 7(0) is the constant (Q, *)-description.
2. If s <% &', then 7(s) < 7(5').

For a level-1 tree W, 7 factors (S, Q, W) iff 7 factors (S, @, *) and ran(7) C
desc(Q,W). In particular, if every 7(s) is of degree 1, then 7 factors (5, @, 0).
If S is a level-1 tree, then
id, g

factors (S, Q°,9), where id, s(s) = (2, ((—1),{(0)}, ((0))), 05), 05(0) = s.
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Suppose T factors (S,Q,W). For g € wlm, let
g+l = ]

be the function sending & to (gf‘(s)(&))sedom( ). Lemma ensures that g"
is indeed a function into [w;]°T. In particular, gi%*’s is the identity map on
o] 1.

ide"

- =,

is the map sending [g]? to [¢}],w. So id%"(5) = (id?(’:)v( ))ses. Put
seed®" = [id?"] 0

By Lemma and Lo, for any A € p®, seed®" € j9 0 jW(A). Hence, we
can unambiguously define

T Ly [1°(T)) = Ly [19 0 5" ()]

by sending j°(h)(seed®) to 79 o jW(h)(seed®™). 7@W is the unique map
such that for any z € R, 79" is elementary from Ly [59(T3), 2] into Ly 9o
JW(Ty), 2] and for any s € S, 79V 0 5% = 7(5)@W

Lemma 4.31. Suppose Q, W are finite.

1. If D = min(<@W), then seed®" = w,. Hence DOW is the identity on
w1 —|— 1

2. If E = pred_q.w (D), then (E@Y)"uy is a cofinal subset of seed " .

Proof. We only prove the case when Q = (). The general case takes an
analogous additional argument.

Case 1: W = (.

The only (Q, W)-description is the constant (@, *)-description Dy. We
only have to prove part 1. For any =z € R, DSQ’W = j9 0 ;" is elementary
from Ly [Ty, x| into Ly [j9 o jV(T),x]. It follows that DY | wy is the
identity map. It remains to show that seed%ow = w;. We already know that
seedg’ow = j9(w1). Suppose [g],0 < j9(wi) and we try to show that [g],e <
wi. Let @' be the completion of the partial level < 2 tree (Q, (1, (0),0)). Let
D’ = (1,(0),0) € desc(Q’,W). Then D, <" D’. We partition functions
f € w?" according to whether 1[f]g) < g([f 1rep(Q)]?). We obtain a club
C € pg, which is homogeneous for this property. Let n € C" iff n € C and
C N n has order type n. If the homogeneous side satisfies 1[f](%) > g([f T

rep(Q)]¥), we let ap =the w-th element of C, and so every f € [C"]9T is
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extendable to f' € C9" so that ! f’](%l) = ayp. Therefore, for every € € [C]@!

g(€) < ap. Hence by Lo, l9],e < j%(an) = ap and we are done. If the
homogeneous side satisfies 1[f}%) < g([f T rep(Q)]?), then by Lemma [4.29)

wp =2[f [rep(Q)]Q? < g([f Itep(Q)]?), contradicting to the assumption on g.

Case 2: W # ().

We firstly prove part 1. The <@W-minimum is Dy = (2,q,0), where
a = ((—1),{(0)},((0))), o((0)) is the <pg-least node in W. seed%’ow is
represented modulo @ by the function that sends § to o™ (8q) = 0" (wy) =
wy. Hence, seedg’ow = j9(w;). Work with the same Q' as in Case 1 and argue
with the same partition arguments.

Next, we prove part 2. Let D = (2,q,0), q = (¢, P,p), E = (2,r,7),
r=(r,Z,Z). Then q # (—1). Put Q" = {a € w<¥ : v (a) € dom(Q)} for
v € dom(%Q).

Subcase 2.1: r is of discontinuous type.
Let @' be the level < 2 tree extending () such that dom(Q’) \ dom(Q) =

{2,™)}, v =r"(a), 0 <1Q{T a, Q'(r') = Q(r). Let v = (1, Z,7),
E' = (2,r',7). Then D <$" E'. Our partition arguments will be based on
Q'

Suppose [g],e < seedQ’W and we seek 19 < ug such that [g],e < E®W (n).
We partition functions f € w®" according to whether 7V (2[f]9) < g([f |
rep(Q)]%). By Theorem we obtain a club C' € py, which is homoge-
neous for this property. Let 77 € C"iff n € C and C Nn has order type
n. If the homogeneous side satisfies TW(z[f]?,/) > g([f [ rep(Q)]9), we let
no = Ju.(ho)(w1), where ho(a) = min(C” \ (a + 1)). This allows us to ex-
tend every f € (C")?" to f/ € C91 so that 2[f]9 = 5 (ho)([f]9). There-

T

fore, for every £ € [C']%1, g(€) < 7 (j%(ho)(&)) = " (ho)(r"(&)). Hence
[glue < 590" (ho)(seedg ™) = EY (j, (ho)(w1)). Hence [g],e < EW ().
If the homogeneous side satisfies 7 (2[f]%) < g([f | rep(Q)]?), then by
Lemma [1.29] o' (?[f]¢) < g([f Itep(Q)]%). This contradicts our assumption
on g.

Subcase 2.2: r is of continuous type.

Let @' be the level < 2 tree extending ) such that dom(Q’) \ dom(Q) =

{27} 7 = (r)" <>@<1Q“”a,@< ) =Q(r). Letr' = (r'~(~1), Z, ),
E' = (2,r/,7). Then D <$" E'. The rest is similar to Subcase 2.1. O

At this point, it is convenient to label the nodes of a tree of uniform
cofinalities using arbitrary sets instead of elements in w<“ and (w<¥)<“.
Suppose @ is a level < 2 tree and W is a level-1 tree. A representation
of Q@ ® W is a pair (S,7) such that S is a level-1 tree, T factors (S,Q, W),
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ran(7) = desc(Q, W), and s <% &' iff 7(s) <@W 7(s'). Representations of
@ ® W are clearly mutually isomorphic. We shall informally regard

Q@ W = desc(Q, W) \ {the constant ((), W)-description}

as a “level-1 tree” by identifying it with S via 7. We put seed%®w
seedfq(D) for D € desc(Q,W). If 7’ factors (5", Q, W), then 7" also factors
“level-1 trees” (S',Q ® W), and (7/)9%" makes sense. That is, (7/)9®W =
(17t o7)%, where 77! o 7/ factors (S, S). The identity map idggw : D — D
factors (QR W, Q, W). If Q is a subtree of @)’ and W is a subtree of W', then
Q ® W is regarded as a subtree of Q' ® W, and the map j9®W@®W" makes
sense. In other words, let (S, 7) be a representation of Q ® W and (S’,7’) be
a representation of ' ® W' such that S is a subtree of S’ and 7 C 7/, then
JREWQEW" — 38,8 If 1 factors level < 2 trees (Q,T), then

TQW
factors level-1 trees (Q @ W, T ® W), where 7(d, q, ) = (d,r(q), o).
Lemma 4.32. Suppose Q) is a finite level < 2 tree, W is a finite level-1 tree.
1. If D € desc(Q, W), then seed®®" = seedd" .
2. (idgew)@" is identity on j9 o ;W (w; + 1).
3. If S is a level-1 tree, T factors (S,Q, W), then 7@V = 7QW,

Proof. Let Dy, ..., D, enumerate desc(Q, W) in the <9W-ascending order.

We prove by induction on [ < m that seed%?w = seed%iw for any ¢« <.
Suppose [ = 0. The fact seed%ow = w; follows from Lemma 4.31£
Suppose the induction hypothesis holds at I < m. That is, (D;)" (w;) =

seedg’lw = w4y for I < m. By Lo$, (idgew)?" is identity on wu;o. But

((Dy)@W)"uy is a cofinal subset of seed%ﬁl1 by Lemma.31] Hence, seed%’l‘f1 =
ur+o. This proves part 1. Parts 2-3 are immediate corollaries.

D € desc(Q, W) is direct iff either D is of degree 1 or D is of the form
(2, (q, P,p),idp). Lemma has the following corollary on representations
of uniform indiscernibles in the p@-ultrapower.

Lemma 4.33. Suppose Q) is a finite level < 2 tree. Then

{u, 11 <n<w}={seed" : W finite, D € desc(Q, W) is direct}.
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For (d, q) € dom(Q), define

0 ifd=1V(d=2A%Q(q) of degree 0),
CfQ(d7 q) — ]. lf d = 2 /\ qu(@(q)) — min({@tree(Q)>7

2 otherwise.

By Lemma if E respects @), then
L1 [To]
cf A (dﬂq> = ucfQ(d,q)

where ug = w.

4.5 Approximations of 53 in L (T3]

Lemma 4.34. Suppose Q is a level < 2 tree, W is a level-1 subtree of W', all
trees are finite. Then jO(jWW W (wy + 1)) = jREWRQEW | (jREW (1, 4 1)),
and hence jQ(js‘ffi)W/ Fi% (w1 +1)) = jg%W’Q@?W/ (19 (wy + 1)) by sufficient
elementarity of ;<.

Proof. By Lemma seed%w = seedg®w for D € desc(Q, W), and sim-
ilarly for W’. So jROWQEW(seed@W) = seedg’wl for D € desc(Q,W).
since j9(5""") is elementary from L[z] to L[z] for any z € R, it suffices
to show that j(jWW | jW(w, 4 1))(seed?") = jREWREIW (goed2W) for
any D € desc(Q,W). Fix D € desc(Q, W). Suppose the typical case when
D = (2,q,0) is of degree 2. Then by Los,

GG (wr + 1)) (seed™ ) = GGV 1Y (@i + D)€ - 0V (%q)]e)
=€ 7" 0oV (%g)e
[

=§— UW/(Qéq)]uQ
’W/
= Seed%
— jOBWQEW (geed? ™),
O

Lemma 4.35. Suppose w factors finite level < 2 trees (Q,T) and W is a
finite level-1 tree, all trees are finite. Then w1 | j9 o jW(w +1) = (7 ®
IW)QSIW | S (4 1)

Proof. Apply Lemma [4.32| and use the fact that WT(seed%’W) = Seed:gwm
for D € desc(Q, W).
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Lemma 4.36. Suppose Q) is a finite level < 2 tree. Then
1. 91 {u, :n < w} is AL, uniformly in Q.
2. 79 uy,) = uy.
3. j9Tuy, is AL, uniformly in Q.

4. Suppose P, P' are finite level-1 trees and  factors (P, P'). Then j9 (x|
u,,) is AL, uniformly in (Q, P, P', 7).

5. j9Ty) is AL, uniformly in Q.

Proof. 1 and 2. By Lemma 4.32]
3. QT A (uy, o uy)) = TR (), L, 59 (un)).

4. By Lemma [4.34]
5. by 4. O

The following lemma refines Corollary [4.15]

Lemma 4.37. Assume Al-determinacy. Suppose x € R. Then for any
finite level < 2 tree Q, jO(k%, M%) = (K%, \%). Moreover, Sz | k% and Sz | \2
are both uniformly Ai-definable over L[Ty, x| from {Ts,x}.

3
Proof. By elementarity, j9 (k%) is the least y for which L, [j9(T3), z] is admis-
sible. But j¢(T3) € Lys[T5, x| by Lemma Consequently, L,z [j9(T3), z]
is admissible. Since j€ is non-decreasing on ordinals, we must have j9(k%) =
w3. Similarly, A3, being the sup of the ordinals A;-definable over L,s[T5, z]
from {T5,z}, is also fixed by ;€.

To define S3 | w%, it is of course enough to establish a uniformly A,
definition of j9<' | k% over Lz [Ty, z], for @ a level < 2 subtree of Q. Note
that every element of L,:[Ts,z] is Aj-definable over L,:[T5,z] from wu, U
{T3,x}, and hence by Los, every ordinal in j9(Lys[Ts,z]) is As-definable
over j9(Lyz[Ty, z]) from parameters in u,, U{j%(T%), z}. The lemma follows
immediately from Lemma and Los:

F99(y) =

iff for some £ < k%, some X;-formula ¢, some ordinal o < u,,,
Lijoig[i%(T2), 2] E V6 (6 = 7 ¢ ¢(3,j(T2), , @),
and
Lo 1% (To), 2] E V6 (6 =+ ¢(6,j9(Ta), 2, j% ())).
This is a ¥; definition of j99'(y) = 4 over Lz [Ty, x] from {Ty,z}. In

a similar way, we can write down a X, definition of j99'(y) # 4. The
definition of S5 [ A§ is similar. [
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In light of Lemma [4.37, L.s[S3[x3] is regarded as the “lightface core” of
Ly [Ty, ], analogous to Lz versus Lyg[z]. In parallel to Guaspari-Kechris-
Sacks in [5}20,40], if C5 is the largest countable IT3 set of reals, then x € Cj
iff v € Lig[S3 [ k5] iff @ € Lyz[S3]A5]. A related result about Cj is in [6]
which follows the same line. An inner model theoretic characterization of Cs
is still unknown.

Recall that the set of uncountable L-regular cardinals below w,, is {u, :
1 < n < w}. The scenario in the AD world suggests that the set of un-
countable L1 [T5]-regular cardinals should be {uy,uz}. For a finite level <2
tree @, by Lemma {436, L,, C Ll QTy)] C Lsi[To], so the set of un-
countable Lg; [9(T3)]-regular cardinals should be {u, : n € A} for some
set {1,2} € A C w\ 1. Which u, is L [9(T3)]-regular? The answer to
this is an abstraction of Jackson’s uniform cofinality analysis on functions
F o [w]9" — 683 that lie in Lsi[T3], originally in [12]. In particular, we con-
firm that the set of uncountable L [T5]-regular cardinals is indeed {u1, uz}.

Theorem 4.38. Suppose Q) is a finite level < 2 tree, W is a finite level-1
tree. Suppose D = (d,q,0) € desc(Q,W). Then

Ly

of s U (M) (seed?"™) = seed® wefl (D)

In particular, the set of Ly [j Q(Ty)]-regular cardinals is exactly

{seed?, :(d,q) € desc*(Q) is regular}.

(daq) -
Q
Proof. Put (d,r) = ucf) (D). Firstly, we prove cf o3V (T2)](seed%W) =
Q
of 5} g (T2)}(seed&r)). There is nothing to prove for d = 1. Suppose now
d=2.

Case 1: ¢ is of continuous type.

Subcase 1.1: D is of level-2 W-continuous type. _

In this case, ¢ is continuous at QBq For any 8 € [wi]9", (8, =
sup( o P~ P)”(QB ). So ctlmslT2l (oW (23,)) = cffnal2 (23 ) Note that
@ r) is represented by the function § — %8,-. By Los, cfLrs(9(T2)) (seed%w) =
of s (G9(T2 ))(seed(QQ -

Subcase 1.2: D is of level-2 W-discontinuous type.

Then pred_w(o(pr—1)) exists and is not in ran(c). Put P~ = P\
{pr—1}. Let ¢’ factor (P,W) where o and ¢’ agree on P~ and o'(py_1) =
pred_w (o(pi_1)). By Lemmaf3.5, o™ (%84) = (o 7§71 (). So of b2l

oW (3By)) = cfl=I(jP7P (23 1)), Note that seed (2.r) 18 Tepresented by the

function 6 — 7P (%8,-). By Los, chﬁs(jQ(TZ))(seedg’W) = chN3(jQ(T2))(seedg7r)).

seed?
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Case 2: ¢ is of discontinuous type.

Subcase 2.1: D is of level-2 W-continuous type.

Then o is continuous at %34. Proceed as in Subcase 1.1.

Subcase 2.2: D is of level-2 W-discontinuous type.

Then pred_w (o (p;, )) exists and is not in ran(o). Put PT = PU{p;}. Let
o’ factor (P*, W) where o’ D o and o’(pi) = pred_w (c(p;,)). By Lemma
oW (%) = (o) (i7" (%4)). Proceed as in Subcase 1.2.

sup
Note that by Lemma , each u, (1 < n < w) is of the form seed2" for
some finite W and D € desc(Q, W). In summary, we have proved that every
Ls; [j9(T3)]-regular cardinal must be of the form seed&q), where (d,q) €
desc™(Q) is regular.
Secondly, we prove that if (d,q) € desc*(Q) is regular, then seed(%vq) is
regular in L [59(T3)].
Q

(er)’

where (e,r) <@ (d,q). Let g € Ls [79(T3)] be a cofinal map from seedgr)

into seed%q). Let g = [Glue, where G € Lg[Ty]. By Los, for u@-a.e. B,

9(B) € Lgi[T2] is a cofinal map from 6, into g
We prove the case when d = e = 2, the other cases being similar. Put
r = (r,Z, 7). Let Q1 be alevel < 2 tree which extends () such that dom(Q’)\

dom(Q) = {(2,¢)}, and
1. if (2,q) € desc(Q), then ¢ = g~ (a), 0 <1?Q{q_} a, Q'(¢') = Qq);

2. if (2,q) ¢ desc(Q), then ¢’ = ¢~ (a), § <27 a, Q!..(¢) = P.

Let Q2 be the level < 2 tree defined in a similar way with (¢, q’) replaced
by (r,r"). Let @ be the tree extending both ¢; and @2 and dom(Q') =
dom(Q,) U dom(Q,). Put ¢ = (¢,P,p), ¥ = (',Z,7). So q <$* q,
r' <¢' r. We partition functions f € w®' according to whether g([f |
rep(Q)]Q)(z[f]?,/) < 2[f]9. By Theorem [4.10, we obtain a club C' € pu

q
which is homogeneous for this property. Let n € C" iff n € C and C' N7

has order type n. Let n € C" iff n € C" and C' N n has order type n. If
the homogeneous side satisfies g([f | rep(Q)]?)(2[f]%) < 2[f}§,, then every

r/

function f € (C")? extends to some f' € (C")%" by Lemma [3.18] and
{Q[f”]gl 3" € CUT(f' C f)} is cofinal in 2[f]9 by Lemma [4.28, Hence,

sup(g([f Trep(Q)]9))" ([ f]9) < Q[f’]g%l < 2[f]fl?, contradicting to our assump-

tion. If the homogeneous side satisfies g([f | rep(Q)]9)(%[f]9) > [f]g,, a

similar arguments yields sup(g([f [rep(Q)]9))"(*[f]¥) > *[f]&, contradiction

r

again. 0

jQ(Tz)](

Suppose towards a contradiction that cf et seedg q)) = seed
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It is easy to deduce the following corollary using Los:

Corollary 4.39. Suppose 3 < 83 is a limit ordinal. Then B has Q-uniform

Q
cofinality (d,q) 1 of oy (2] B) = seed? . In particular, the Q-uniform
(d,q)
cofinality of B exists and is unique.

If w factors finite level < 2 trees (Q, T), then 77 (uy) = Uy — Tl (Uns1) =
Umy1. Therefore, the continuity of 77 is decided by #T [ {u, : n < w}. If
(d,q) € desc™(Q) is regular, 7 is continuous at (d,q) iff one of the following
holds:

1. d =1, either '7(q) = min(<"") or pred_i('r(q)) € ran('r).
2. d=2,q=(0,0,((0))), either 7" = 0 or max(<T) € ran('n).

3.d=2,q=(q P,p) € desc(*Q), and letting ¢’ = max_,, T{*r(q), -},
then either ¢ = *r(q~)"(—1) or ¢’ € ran(*r).

4. d=2,q=(q,P,p) ¢ desc(1Q), and letting a = max_ . (*T'{*r(q)} U
{—1}), then either a = —1 or *r(q) " (a) € ran(?r).

Thus, 7 is continuous at (d, q) iff 77 is continuous at seed% - We obtain the

following lemma discussing the continuity behavior of 77. It is the level-2
version of Lemma [3.4]

Lemma 4.40. Suppose 7 factors finite level < 2 trees (Q,T), v < 5; s a

119 (T2 * .
limit ordinal, cf"* bR (v) = seed% o (d,q) € desc™(Q) is reqular. Then

1. 7 (y) = wl,(7) iff 7 is continuous at (d, q).

2. Suppose m is not continuous at (d,q). Let QT be a level < 2 tree and
let 7 factor (QF, ) so that Q1 extends Q, " extends 7, and

(a) ifd =1, then dom(Q*)\dom(Q) = {(1,¢")}, ¢ <% ¢*, '+ (q*) =
succ_ir('m(q7));

(b) ifd =2 andq = (0,0, ((0))), then dom(Q™)\dom(Q) = {(1,¢7)},
0 <2 q", Tt (¢") = min_ir{a: Vr € dom('Q) () <7 a};
(c) if d =2 and q = (¢, P,p) € desc(Q), then dom(Q") \ dom(Q) =

{(27q+>}7 q+ = MaX<py ?Q+{Q7 _} and 27T( ) ( ) ( )7 a=
ming,,{b:Vr € Qq, =) \ {g~ " (=1)} (r) <ax *w(¢7)" ()}

(d) if d =2 and q = (q, P,p) € desc(RQ), then dom(QT) \ dom(Q)
{2,0")}, ¢ = ¢ (maxc,, . Q™ {q}), " (¢") = *r(q)"(a), a =
ity (b Ve € XQ{g} 7(a(0) <mx rla)~ ()}
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Then wk,(v) = (7)T 0 &2 (v).

sup

If 7 factors finite level < 2 trees (@, 7)) and 7 is discontinuous at (d, q),
then pred(w, T, (d,q)) is a node in dom(7") defined as follows:

1. If d = 1, then pred(r, T, (d,q)) = (1, pred_i('r(q))).
2. If d=2and q= (0,0, ((0))), then pred(r, T, (d,q)) = (1, max_,, 'T).

3. If d =2 and q = (q, P,p) € desc(Q), ¢ # 0, then pred(w, T, (d,q)) =
(27 maXcq g, 21_1{2”-((])7 _})

4. If d =2 and q = (q, P,p) ¢ desc(Q), ¢ # 0, then pred(w, T, (d,q)) =
(2,¢7(a)), a = max_,, T{*r(q)}.

If (2,q) = (2, (¢, P,p)) € desc(Q) then put pred(r, T, (2, q)) = pred(r, T, (2,q)).
The next lemma is the level-2 version of Lemma |3.5] whose proof is similar.

Lemma 4.41. Suppose (Q~, (d, q, P)) is a partial level < 2 tree, T is a finite
level < 2 tree,  factors (Q,T), and 7 is discontinuous at (d,q). Let T factor
(Q,T) where 7 and m agree on dom(Q)\{(d,q)}, 7(d,q) = pred(n, T, (d,q)).

Q~ _
b ()] (v) = seed® ))- Then

Ls1
Suppose cf %3 ucf(Q~,(d,q,P

T 0 e (1) = Tap 0 59

The level-2 version of Lemma [3.6]is similarly proved.

Lemma 4.42. Suppose (Q, (d,q, P)) is a partial level < 2 tree, ucf(Q, (d, q, P)) =
(d*,q*), T is a finite level < 2 tree, w factors (Q,T), and 7 is discontin-
uwous at (d*,q*). Let QT be a completion of (Q,(d,q, P)) and let T fac-
tor (Q*,T) so that T extends w, 7(d,q) = pred(n,T,(d*,q*)). Suppose

@
cf a3l () (v) = seedgﬁ,q*). Then

. +
() =75, 09 (7).

Note that in Lemma, the completion @ is decided by pred(r, T, (d*, q*)).
There is no freedom in choosing Q.

In the same spirit as Lemmas [3.15}{3.20| we will obtain a concrete way of
deciding whether a tuple 7 respects a level-3 tree R.

Suppose F is a club in wy. For a partial level < 2 tree (Q, (d,q, P)),
put @ = () (erycdom@,dgr)y € B QELPNT I & respects (Q, (d,q, P)),
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(et) (etyedom(@) € B9, and d =1 — oy, € E, d =2 = %, € j¥(E). For a
level-3 tree R, put

rep(R) | E ={3 ®rr:r € dom(R), § € [E]fre=()T}
U {B@R r(=1):re dom(R)jﬁe (BT

Then rep(R) | E is a closed subset of rep(R) (in the order topology of <.

Lemma 4.43. Suppose R is a finite level-3 tree, B € Lgi[Tb] is a closed set
of ordinals. Then 7 € [B)F" iff there is F' € (83)"" and E € up such that
¥ = [F® and for any r € dom(R), for any B € [E|ROT, F.(5) is a limit
point of B.

Proof. The nontrivial direction is <=. Suppose F' € (83)"" and E € yy, are as
given. For r € dom(R), let R(r) = (Q., (d,,q,, P;)), and let 7* be the <pk-
greatest member of R{r, —}. In parallel to Claim [3.16 by Theorem and
cofinality considerations in L [97 (Ty)], we have

Claim 4.44. There is E' € py, such that E' C E and for any r € dom(R),
for any § € [E",

- -,

1. if d. =1 then BN (F«(5), F.(B)) has order type 1ﬁqr— ;

2' Zfd'r - 27 qu(R[T]) = (2’ qT,*)) qT,* == (q?”,*’ PT’,*?ﬁT,*)) then Bm(Fr* (5)7 FT( _’))
has order type %6, ..

The rest proceeds as in the proof of Lemma [3.15 O

Lemma 4.45. Suppose R is a finite level-3 tree, R[r| = (Q,, (d., g, P.)) for
r € dom(R), E € py, is a club. Suppose f : rep(R) [ E — 83 satisfies

1. if r € dom(R), then the Q,.-potential partial level < 2 tower induced
by F, is R[r|, the approzimation sequence of F, is (Fy)1<i<in(g), and
the uniform cofinality of F, on [E]°" is witnessed by F,~_y), i.e., if

§ € (B2, then Fy(5) = sup{Fr(3~()) : 5~(2) € rep(R) | E},
and the map §+— F~_1(87 (7)) is continuous, order preserving.
2. if Ripee(r7(a)) = Riee(r™ (b)), and a <pg b, then [Frﬂ(a)]“Qm(@ <

[Frﬂ(b)]/ﬂrﬂw) .

Then there is E' € pup, such that E' C E and f | (rep(R) [ E') is order
preserving.
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Proof. Put ucf(R[r]) = (dr,drx), and if d, = 2 then Q.. = (@rx, Prs, Drx)-
We know by assumption that for pu%r-a.e. E, Fr(g) = sup{Frﬁ(a)(g“(w)) :
r~(a) € dom(R),y < ™3, }. Fix for the moment r such that d, # 0.
Similarly to the proof of Lemma [3.17, we need a club E’ € yy, such that for
any 3 € [E']%", for any v < 7 both in j7(E'), if Ryee(r™(a)) = Riree(r™ (b))
then Fr~) (67 (7)) < Fr-w) (67 (7).

If 5 respects Q, and 37 (v) respects R(r), let g(57 (7)) be the least 7' sat-
isfying that whenever 7~ (a), 7~ (b) € dom(R), § <, d" > 7/, 5“(5) respects
R(r~(a)), (&) respects R(r™ (b)), we have Fy—(4)(87(8)) < Fry(57(6)).
If QT is a completion of R(r), then for u® -a.e. g, g(g) < ¥¢,... By
Lemma m, there is h?" : w; — w; and EQ" € pur, such that h € L
and for any £ € [EQT]9™, g(€) < j&(hQ7)(%¢, ). There are only finitely
many completions of R(r). Let h : w; — w; where h(a) = sup{h® (o) : Q*
is a completion of R(r)}. Let E' = N{E?" : Q% is a completion of R(r)}.
Let n € E"iff M"(nN E’) Cn. E” is as desired. O

As corollaries of Lemmas [4.43| and 4.45| we obtain:

Lemma 4.46. Suppose that R is a level-8 tree and ¥ = (V;)rcdom(r) 5 @
tuple of ordinals in 8. Then 7 respects R iff the following holds:

1. For any r € dom(R), the Riee(r)-potential partial level < 2 tower
induced by v, is R[r], and the Ri.e.(r)-approzimation sequence of 7y, is

(yr)1<1<im(r) -

2. If Riyee(r7(a)) = Ripee(r™ (b)) and a <pg b then vr—~@a) < Vr~@)-
Moreover, if B € Ls: [T5] is a closed set, B' is the set of limit points of B,
then ¥ € [B)®" iff ¥ respects R and for each r € dom(R), v, € jRue)(B").

In particular, if 4 respects R, then of 5} [TQ](
where ug = w.

Y) = Uet(r(ry) for r € dom(R),

Lemma 4.47. Suppose R and R’ are level-3 trees with the same domain.
Suppose 7 respects both R and R'. Then R = R'.

4.6 Factoring maps between level-2 trees

Definition 4.48. Suppose I < w. Suppose for each i < I, J; < J; < w and
A; = (i) j,<j<y, is a finite sequence of sets. Then the contraction of (A;)i<;
is (bg)k<x such that

L {a;i<IJi<j<Ji}={b:k<K}.
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2. For each k < K, letting (i¥, j
by, then the map k s (i*, j*)

*) be the <pg-least (i,75) such that a; ; =
is order preserving with respect to < and
<BK-

Definition 4.49. Suppose T, Q) are level < 2 trees. A (T, Q, —1)-description
is of the form

C=(1,(t,0)

such that t € 'T. Suppose (W, ) is a potential partial level < 1 tower
of discontinuous type, W = (w;)i<m. If w = 0, the only (7,Q, (W, w))-
description is (2, ((0,0,0),7)), where 7 factors (0, Q, (), which is called the
constant (T, Q, *)-description. If w > 0, a (T, Q, (W, w))-description is of the
form

C=(2(t1))
such that

1. t € desc(*I') and t # (0,0,0). Let t = (¢,5,5), Ih(t) =k, §= (5;)i<m(s)-
2. 7 factors (S,Q,W).
3. The contraction of (signy(7(s;)))i<k 18 (W;)i<m.

4. If t is of continuous type and w,,_; does not appear in the contraction
of (sign, (7(s;)))i<k—1 then 7(sg_1) is of level-1 discontinuous type.

5. Either ucf(S, §) = w,, = —1 or ucf;(7(ucf(S, 5))) = uct(W, ).

A (T, Q, x)-description is either a (T, Q, —1)-description or a (T, Q, (W', w"))-
description for some potential partial level < 1 tower (W’ w') of discontinu-
ous type. For a level-1 tree W, a (T, Q, W)-description is a (T, Q, (W, d"))-
description for some o’. desc(T,Q,—1), desc(T,Q, (W, w)), desc(T,Q, ),
desc(T, Q, W) denote the sets of relevant descriptions. We sometimes abbre-
viate (d, t,7) for (d, (t,7)) € desc(T, @, *) without confusion.

Recalling our notation of QW , we may regard desc(T', Q, —1) C desc(T, D),
desc(T,Q, W) Cdesc(T,Q@W). T®(Q®@W) is also a “level-1 tree”, whose
nodes consist of non-constant (7', ) ® W)-descriptions, so that desc(T,Q ®
W) = desc(T ® (Q ® W)). Every non-constant (7, Q, W)-description is a
member of T'® (Q @ W). The constant (T, Q, *)-description Cy is regarded
as the constant T'® (Q ® W)-description, to make sense of seed(Tj(?(QG@W). The
degree of (d,t,7) € desc(T, @, ) is d. In fact, if C € desc(T, Q, *) is of degree
2, then there is a unique potential partial level < 1 tower (W, @) for which

C € desc(T, Q, (W, w)).
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Suppose now C = (d,t,7) € desc(T,Q,x*), and if d = 2, then C €
dGSC(T7Q, (W7 117)), t= (t7 S?‘?)? lh(t) = M §= (Si)i<lh(§)> W= (wl)lﬁm The

level-2 signature of C is

0 ifd=1,

the contraction of (signy (7(s;)))icx if d = 2.

) - {

C is of level-2 continuous type iff d = 2, t is of continuous type, and 7(s;_1)
is of level-2 W-continuous type; C is of level-2 discontinuous type otherwise.
The level-2 uniform cofinality of C = (d, t, ) is

ucfy(C)
defined as follows. If d = 1, then ucfy(C) = (0, —1). If d = 2 then
1. if ucf(S, 3) = —1, then ucfy(C) = (0, —1);
2. if ucf(S,5) = s, # —1, then ucfy(C) = ucfy (7(s,)).
If w,, # —1, C is said to be of level-2+ discontinuous type, and put
ucf] (C) = uefy " (r(uct(S, 3))),

where W is the completion of (W, w,,). The level-2x signature of C is

(1,1)) ifd=1,
sign,, (C) = ¢ ((2,¢4))1<i<k—1  if d = 2,t is of continuous type,
((2,t114))1<i<k if d = 2,1 is of discontinuous type.

C is of level-2x Q-continuous type iff d = 2 and if ucf(S, §) # —1AT(ucf(S, §)) #
min(<9")), then pred_q.w (7(ucf(S, 3))) € ran(r). Otherwise, C is of level-
2% Q-discontinuous type. The level-2x% Q-uniform cofinality of C is

ucf$ (C)

defined as follows. If d = 1, then ucf$.(C) = (1,t). If d = 2, ¢ is of continuous
type,

1. if C is of Q-continuous type, then ucfs.(C) = (2, (t~, 5\ {sp_1}, 9));
2. if C is of )-discontinuous type, then ucfg*(C) =(2,(t7,5,9)).

If d = 2, t is of discontinuous type,
1. if C is of Q-continuous type, then ucf$ (C) = (2,t);
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2. if C is of Q-discontinuous type, then ucfs (C) = (2, (t, S U {sx}, 9)).
For h € wl!, if C = (1,t,0) is a (T, Q, —1)-description, then
hg : [Wl]QT — W1

is the function sending @ to '[A]{ if min(@) > [A]{, sending @ to ||(1, )]~
otherwise; if W is a (possibly empty) level-1 tree, C = (2,t,7) is a (T, Q, W)-
description, t = (¢, .5, §), then

he : wr]@ = Y (wy).

is the function that sends [g]? to [%h o g¥],w. Note here that % o g}
has signature sign(W, @), is essentially discontinuous, and has uniform co-
finality ucf(W, w) In either case, when (@ is finite, we have the following:
the signature of hC is signy (C); hc is essentlally continuous iff C is of level-2
continuous type; the uniform cofinality of h is ucfy(C). If W is the comple-
tion of (W,wy,), then jWW" o hQ is of dlscontlnuous type and has cofinality
ucfy (C). Moreover, ran(h&) C ran(h) if d = 1, ran(h&) C % (ran(h)) if
d = 2. When T, Q are both finite, C = (d,t,7) € desc(T, @, *),

T,
1dCQ
is the function [h]T [hg] 4@, or equivalently, 5 — Y% when d = 1, 5 >
TQ’W(2§t) when d = 2 and C € desc(T,Q,W). The signature of idg

sign$ (C); idg L@ is essentially continuous iff C is of level-2« Q- contmuous
type; the umform cofinality of idg® is ucfg.(C).

seedg® € Ls (57 0 j9(T)]

is the element represented modulo ,uT by idg Q. Using Los, it is clear that

if d = 1, then for any A € /,L]L, seed Rey To j9(A); if d = 2, then for
any A € u(Ww , seed @eToj @(A). Using Lemma , we can see that

seed e ¢ {u, : n < w}, and seedj(;’Q can be computed in the following
concrete way:

o If d=1, then seedg’Q = seedg’@ = seedgéw.
o Ifd=2and C € desc(T,Q, W), then seed(Tj’Q = seedg’Q@)W seedT® QW)
If C=(1,t,0), let

CT9: Ly [, (T2)] = Ly [17 0 59Ty)]
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where CT’QOML(h)(Wl)) = ;T on(Seedg’Q). If C=(2,t,7), let
Ch9: Ly [{"(Ty)] = Ly [5" 0 j9T)]

where CT9(; (Ww)(h)(seed(w’ﬁ))) = j7 0 j9(seed59).

Suppose (W, @) = (Wi, w;)i<m is a potential partial level-1 tower. If
C = (2,t,7) € desc(T,Q, (W, w)), t = (t,5,5), define Ih(C) = m. If
m < m, then

Clm e desc(T, Q, (W, (w;)i<1))

is defined by the following: letting [ be the least such that 7(s;) ¢ desc(Q, Wy,),
and D € desc(Q, W) be such that D <9 7(s,), then

1. if D # 7(s; ), then C[m = (2,t [I7(—1),7), where T and 7 agree on

2‘Z—‘tree( ) ( ) ;
L if D =7(s; ), then Clm = (2,t [, 7 [ Tiree(t [1)).
Define

CaC
iff C = C'|m for some m < Ih(C’). Define <T"?=< desc(T,Q,*). As a
corollary to Lemma m <79 inherits the following continuity property.

Lemma 4.50. Suppose T, Q) are finite level < 2 trees, W is a level-1 proper
subtree of W'. Suppose E € puy is a club, E' is the set of limit points of
E. Suppose C = (2,t,7) € desc(T,Q, W), C" = (2,t',7") € desc(T,Q,W’),
C <T@ C'. Then for any h € wl', for any g € W, for any @ € [E']"T,

hy 0 gV (&) = sup{hy o gLV’(E) fe [E]W,T,g extends d}.

Hence, the signature and approximation sequence of hy ogXV are proper initial
segments of those of hy o gr,// respectively.

@t if d=1,
<C%_£ZT@O if d=2.

Let

Define
c<C

iff (C) <pk (C'), the ordering on subcoordinates in desc(Q), %) U desc(Q’, *)
according to < acting on desc(Q, x) U desc(Q)’, ). The constant (7', Q, *)-
description, Cy, is the <-greatest, and we have (Cy) = (2, (). Define <T?=<
I desc(T, Q, *). <79 inherits the following ordering property as a corollary
to Lemma [£.25
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Lemma 4.51. Suppose (W,u_)’) = (Wi, w;)i<m s a partial level < 1 tower.
Suppose C = (2,t,7) € desc(T,Q,Wy), C' = (2,t',7") € desc(T,Q, Wy ),
k<m, k' <m, C<TQC" Then for any h € wlTT, for any g € leT, for any
aew'™ hyogWm(@) < hy o gV (a).

Definition 4.52. Suppose X, T, Q) are level < 2 trees. Suppose 7 : dom(X) —
desc(T, @, %) is a function. 7 is said to factor (X, T, Q) iff

1. If (1,7) € dom(X), then 7(1,2) € desc(T,Q, —1) Udesc(T, Q,%X[0]).
2. If (2,2) € dom(X), then 7(2,x) € desc(T, Q, %X [x]).
3. m(2,0) is the constant (T, @, x)-description.

4. For any (d,z),(d',2') € dom(X), if (d,2) <pg (d',2) then 7(d, z) <T<
m(d,z").
5. For any z € dom(®X) \ {0}, 7(2,27) <79 7(2, z).
7 is said to factor (X, T, x) iff w factors (X, T, Q') for some level < 2 tree @'

Suppose T is a level < 2 tree.
idT,*
factors (T,T,Q°) where idr.(1,¢) = (1,¢,0), idr.(2,t) = (2,(¢, S, 5),id.s)
when ?T'[t] = (S, 5).
id*T
factors (T, Q°, T) where id, 7(1,t) = (2,q0,74), 9o = ((—1),{(0)}, ((0))), 7

factors ({(0)},7,0), 71((0)) = (1,t,0), 7r(2,t) = (2,q0,77) when T[t] =

(8,3), 72 factors ({(0)},T. S), 72((0)) = (2. (1,5.5),ids).
If m # 0 factors (X, 7,Q), T is Hl—wellfounded and h € w] ', let

h2 : wi]?T = [w] ¥

be the function that sends 5 to (hf’r?(d@) (5))(11 z)edom(x)- The fact that hQ(f) €

[wi] X1 follows from Lemmas [3.18] 4.514.50| Moreover, for any § € [wy]?,
h@(B) € [ran(h)]*T. In particular, if Q@ = X then hi%*’x is the identity
function on [wy|¥T. If T is finite, let

idT)Q

be the function [h]” — [h?],a, or equivalently, £ — (idTQ (_}) d,z)cdom(X)-
Let

seed!? = [id9]
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By Lo$ and Lemmas 3.18} [4.5114.50] it is clear that for any A € p~, seed2:? €
§T 0 j9(A). Define

9 L [ (T2)] = Ly [ 0 j9(T2)]

by sending 5% (h)(seed™) to jT o j9(h)(seed?).
Suppose T, ) are both level < 2 trees. A representation of T ® @ is a
pair (X, ) such that

1. X is a level < 2 tree;
2. 7 factors (X, T, Q);
3. ran(m) = desc(T, Q, *);
4. (d,z) <pr (d',2') iff 7(d,z) <79 =(d', z").
Representations of T'® @ are clearly mutually isomorphic. We shall regard
T®Q

itself as a “level < 2 tree” whose level-d component is (t,7) for which
(d, (t,7)) € desc(T, @, x), and whose level-2 component sends (t, 7) to (W, w,,)
if (2,(t,7)) € desc(T,Q, (W, (w;)i<m)). In this way, 7 is a “level < 2 tree
isomorphism” between X and T'® (). All the relevant terminologies of level
< 2 trees carry over to T'® () in the obvious ways. In particular, if W is a
finite level-1 tree, a (T ® @, W)-description takes one of the following forms
(recall that (d,t,7) is simply an abbreviation of (d, (t,7))):

1. (1,(t,0),0) for (1,t,0) € desc(T,Q, —1);
2. (2,((t,7),Z,2),9¢) for (2,t,7) € desc(T, Q, (Z, 2)) and 1) factoring (Z, W);

3. (2,((t, )" (=1),Z%,2),¢) for (2,t,7) € desc(T,Q, (Z,7)), Z = (z)i<,
Zt =ZU{z} and ¢ factoring (ZF, W).

(T ® Q) ® W is thus regarded as a “level-1 tree” whose nodes consists of
non-constant (7' ® @), W)-descriptions. There is a natural isomorphism

LT,QWw
between “level-1 trees” (T'® Q) @ W and T'® (Q ® W), defined as follows.
L. LT’QW(L <t7 Q)), Q)) = (17 t, @)
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2. If (2,t,7) € desc(T,Q,(Z,7)), t = (t,5,5), ¥ factors (Z,W), define
LT’Q,W(Qa <<t77_>7 Z, 5)7¢) - (27t7 (Q & 1/)) © T)'

3. If (2,¢,7) € desc(T,Q,(Z,2)), t = (t,5,9), Z = (2i)i<t, § = (Si)i<k,
Zt =ZU{z}, ¢ factors (ZT, W),

(a) if ¢ is of discontinuous type, define trow (2, ((t,7),Z7,2),¢)
(2,t7(—1),1%7), where 1)o7 factors (SU{s.}, Q, W),
tends (Q®@)oT, Yo7 (sk) = (2, (q0,0)), a0 = ((—1),{(0)}, ((0))),
a((0)) = ¥(z1);

(S\{sk})), ¥ *1 7(sk) = (2,q7(—1),0") where 7(s
a=(q, P, (pi)i<m), 0" extends o, 0™ (py) = ¥(z1).

~—

The reason why vy g w is a surjection is the following. Suppose C € T'®
(Q ® W) is of degree 2. Put C = (2,t,7), t = (£,5,5), § = (8:)icin(s),
k =1h(t). Let (w;)i<m be the contraction of (sign,(7(s;)))i<k. Then wy is the
<pr-maximum of {w; : i < k}. Let (Z,2) = (Z,(2i)i<m) be the potential
partial level < 1 tower of continuous type and ¢ : Z — W be the level-1
tree isomorphism such that ¢ (z;) = w; for any ¢ < m. If t is of continuous
type, 7(sk_1) is of level-1 continuous type, but w,,_; does not appear in the
contraction of (sign,(7(s;)))i<k—1, then

C= [’T,Q7W<2> <<t7 T)A(_l)v Z, Z)? w)

Otherwise,
C= LT,Q,W(Z ((tv 7-)7 Z, ?\(Z*))v ¢)a
where (Z, z,) is a partial level < 1 tree, z, = —1 if ucf(S,5) = —1, z; =
ucty (7(ucf(S, 5))) if uctf(S,s) # —1. trow justifies the associativity of the
® operator acting on level (< 2, < 2, 1)-trees.
The identity function idrgg factors (7' ® @, T, Q). By definitions and

Lemmas [4.32], 3.11],

: TRQ)OW TR(QEW
(ldT(g)Q)T’Q(Seed(C* QEWy seedLTQ(’QW(C*))

for any C* € (T ® Q) ® W. Hence, (idrgg)"?(u,) = u, for any n < w. As
(idreq)™? is elementary from Ly [j799(Ty), x| to Ls[j" 0 j9(Ty), x] for any
x € R, (idrgq)"? is the identity map on Ly [Tb].

Suppose 7 factors level < 2 trees (X, T) and @ is another level < 2 tree.

o T® (Q factors (X ® Q, T ® @), defined as follows: 7 ® Q(d,x,7) =
(d, “r(x), 7).
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e Q ® 7 factors (Q ® X,Q ® T), defined as follows: Q ® w(d,q,7) =
(d,q, (mr @ W) o), where 7 factors (P, X @ W).

We effectively obtain the following lemma which reduces finite iterations
of level < 2 ultrapowers to a single level < 2 ultrapower. The proof is in

parallel to Lemma [£.34]
Lemma 4.53. Suppose X, T, Q) are finite level < 2 trees. Then

1. jT 09 = jT%Q

2. 7 factors (X, T,Q) iff  factors (X, T®Q). If t factors (X, T,Q) then
1R — ;TeQ

3. If m factors X, T, then

(a) j%(r" Ta) = (Q @ M) [ j%(a) for any a € Lg[To];
(b) 7 [ Lgi [[¥49Ts)] = (7 ® Q)T%%.
Suppose T, Q,U are level < 2 trees. There is a natural “level < 2 tree
isomorphism”
Ll1,Q,U

between (T'® Q) ® U and T'® (Q ® U) defined as follows. Suppose B €
desc(T ® @, U, *).

L IfB = (1,(t,0),0), C = (1,t,0) € desc(T,Q, —1), then C € desc(T, Q®
U,—1) and trqu(B) = C.
2. IfB ((t,7),Z,2),¢) € desc(TeQ,U, W), C = (2,t,7') € desc(T,Q, (Z,

= (2,
(t S, 5), v factors (Z,U, W), then t7o.0(B) = (2,t, 15}y 0 (@ ®
w) T

3. 1B =(2,((t,7)"(=1),Z%,2),¢) € desc(T®Q,U, W), C = (2,t,7) €
desc(T,Q, (Z,2)), t = (t, S ( Di<k)y 2= (zi)i<t,

(a) if ¢ is of discontinuous type, then tr gy (B) = (2,t7(—1),1 %o 7),
where 1) %o 7 factors (S U {sp},Q @ U, W), ¢ %o 7 extends 15,y ©
(Qev)oT, ¥xo7(sk) = tguw(2 a0 0), a0 = ((—1),{(0)}, ((0))),
o((0)) = ¥(=).

(b) if t is of continuous type, then t7.g v (B) = (2, t,1%,7), where %7
factors (S, QRU, W), 1,7 extends LC_Q}UWO(Q@w)o(T F(S\{sk})),
ok T(8K) = Lé}U7W(2,qA(—1>,U+) where 7(s) = (2,q,0), q =
(q, P, (pi)i<m), 0" extends o, 07 (pm) = ¥ (2).
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L, justifies the associativity of the ® operator acting on level (<£2,<2,<
2) trees.

Lemma 4.54. Suppose X, T are level < 2 trees, 0 : rep(X) — rep(T) is a
function in 1L, order-preserving and continuous. Then there exists a triple

(@Q,m,9)
such that Q is a level < 2 tree, w factors (X, T,Q), 7 respects Q, and
Vh € wlt hER(F) = [ho 0¥
Proof. For d € {1,2}, let AY = {z € 'X : (1, (z)) € {d} x rep(T')}. By

order preservation and continuity of 6, A is a < ~-initial segment of X . For
x € Al let tL € 'T be such that

0(1, () = (1, (t))-
The existence of t! follows from the fact that (1, (z )) has cofinality w in
rep(X). For z € A2 let t2 = (£2,52,52) € desc(?), 5 (Si,z)l<1h(sr and
ﬁ2 (5 )seSQU{Q)} be such that

o(1,

For z € dom(?X), let 2X (z) =
of §, we can find t, = (t,, S

—

«,

(
(W,, w,). By order preservation and continuity
,5,) € esc( ) and 60, € LL such that for u"=-a.e.

9(2,52@2)( $) = (2,9:,;(_)) Doy t, )
Let §:1: = (sx,i)i<lh(§’m)7 Sg = Sglh(5;)—1- Let [ ] Wz — Bx = (5$,5)5€SIU{@}7
0:(Q) = (02,5(d))ses,uq0y, so that f,, = [Hxis]uwx In particular, ty = 0,
Bpo = wi, and ¢, # ) when z # ). Fixing x, the map s — [, is order
preserving with respect to <% and <. Let

B, ={s € S;: frs <wi}.

So B, is closed under <*+. For s € S,\ By, let (P, 4, Jir.s) be the potential par-
tial level < 1 tower induced by B, Drs = (Pr,s,i)i<ih(@s.s)> Poss = PaysIh(Fas—1)1
let (seedl‘f;fs’i)i@w’s be the signature of 3, , let (7Va,s,)i<v,, be the approxi-
mation sequence of 3, ., and let cf™(8,,) = Seedmfs if cf“(By.s) > w. Let oy,
factor (Pys, Wy), where 0, s(pr.si) = Wy, for i < v, . Let

D, ={s € S, \ B, : Bss is essentially continuous},
E, =S\ (B,UD,).
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Thus, v, s = card(P,s). For s € D,, v,s = lh(p,s); for s € E,, v,s =
Ih(p,s) — 1.
By order preservation and continuity of 6, we can see that for x €

dom(%X),
1. If t, is of continuous type, then 6, ;. has uniform cofinality ucf(2X[z]).

2. If t, is of continuous type and x = ) Vw,- does not appear in sign(6, )
for any s € S, \ {s.}, then 0,5, is essentially discontinuous and thus
Sy € E,.

3. If t, is of discontinuous type then

(a) if w, = —1, then s, = —1;

(b) if wy # —1, then s, # —1, 0, - has uniform cofinality w,, and
thus w, .- =w, .

Claim 4.55. Suppose x,2' € dom(’X), z = (2')~, t, is of continuous type,
and the contraction of ((wm,sz,j,z’)i@z,szj)j<lh(tx) i5 (Wapi)i<in(z)- Then

1. t, =1tu.
2. For any s € Sy \ {sz}, Brs = Bur.s-

3- (wx,sz,ia '7m,sz,i)i<’um,sw s a proper antlal Segment Of (wx’,sz,m ’Yﬂc’,sz,i>i<vm/7% .
Hence, P, s, is a proper subtree of Py s, and py s, 5 an initial segment
Of px’,sm .

4. 0w s, (Pus,) = Wy In particular, the contraction of((wx/,sw,’jyi)i@ , )j<Ih(ts)

sl

is (Wagi)i<ih(z)-

Proof. By order preservation and continuity of 0, t, = t,» and for pu"=-a.e.
a,

1. for any s € S, \ {s,}, if @ € [w]"+'T extends @ then 0, (@) = 0, o(d');

I

2. 0,5,(@) =sup{ly s, (@) : @ € [w1]"*T extends a}.

Thus, f,s = Bws for any s € S, \ {s,}, and j!Xg’WT’(ﬁx,%) < Brs, <
gWVeWar (B, 5.). As t, =t is of continuous type and w, does not appear in
sign(f, s) for any s € Sy \ {sw}, 0.5, is essentially discontinuous, giving
W Wy

Jsup = (Bis,) # Bus,- We can then apply Lemma to show that the
partial finite level < 1 tower induced by f3, s, is a proper initial segment of

that induced by B, ., and wy 5, 4, . = Wy. O

Vzx,s
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Claim 4.56. Suppose x,2' € dom(*X), x = (2/)7, t, is of discontinuous
type, and the contraction of ((Wa,s, ,i)i<vs.., , )i<in(t,) @5 (Wai)i<in)- Then

1.ty Cty.
2. for any s € Sy, Brs = B s-

3. (ww; i Vase ﬂ')i@z __ s a proper initial segment of (Wyr s, iy Vo 50 )i<v.

T',Sx

x
Hence, P, - 1s a proper subtree of Py s, and p, .- is an initial segment
Of pCE,,Sz .

x', 5

4. Ows, (px’s;) = w,. In particular, the contraction of ((wy s , i)i<vx/,s , )j<in(e, )
',

is (Wi )i<ih(a) -

Proof. By order preservation and continuity of 0, t, C t,» and for p"=-a.e.
a,

1. for any s € S,, if @ extends & then 0, (&) = 0, s(&);
2. 0,,-(d) =sup{ly ., (d) : @ extends a}.
The rest is similar to the proof of Claim O

Let
o {8, v e A se€ S U{By, v €dom(®X),s € B} — Z!

be a bijection such that Z! is a level-1 tree and v < v/ + ¢'(v) <Z" ¢'(v/).
Let

? {(Was,is Vasii)ict = T € dom(QX), se€ D,UE, l <lh(pys)} — 72U {0}

be a bijection such that Z?2 is a level-1 tree and v C v/ < ¢*(v) C ¢*(v'),
UV <BK v ¢2<U) <BK ¢2(U,). Let

Q= (Q,7Q),
where 'Q = Z!, 1) is a level-2 tree, dom(Q) = Z2,

2@[¢2<(wz,s,ia Wr,s,i)i<lh(ﬁx,s)—1)/\(_1>] = (Pm,s;ﬁm,s> for s € Dma
QQ[¢2((wx,s,i>ﬁ)/x,s,i)i<lh(ﬁzﬁs)fl>] = (Px,saﬁaz,s> for s S Ex

Let

—

¥ = (Ng) (d.g)edom(@)
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where LYq = (¢1)_1(Q>7 27@ = Wi, 27q = Ya,s,l when q = ¢2((wx,s,i7’7x,s,i)i§l)-
For z € Al, let

7(1,2) = (1,1, 0).
For x € A2, let

y Yy Tx

m(l,2) = (2,65, 77),
where 77 factors (S7,Q,0), 77(1,s) = (1,¢'(8;,),0). For x € dom(*X), let

7(2,2) = (2,ts, 70),
where 7, factors (S,, @, W,), defined as follows:

(17¢1<5m,s);®) if s € Bx,
Tx(S) - (27 (¢2<<wr,s,z’7 7m,s,i>i<lh(ﬁm,5)—1),—\(_1)7 Pm,wﬁx,s); 0'3375) if s - Dx,

(27 (¢2((wm,s,i7 '7m,s,i)i<lh(;5’z,5)—1)a Px,s,ﬁm,s)y 0';575> if s e E,.
It is easy to check that (Q,m,7) works for the lemma. O

Note that if 7 factors ITi-wellfounded trees (X, T'), then [d, z] x < [7(d,x)]r
for any (d,z) € dom(X). We say that = minimally factors (X,T) iff = fac-
tors (X,T), X, T are both II}-wellfounded and [d, z]x = [7(d, x)]r for any
(d,z) € dom(X). In particular, if T',Q are both II}-wellfounded, then idr.
minimally factors (7,7 ® Q). In the assumption of Lemma if X, T are
[1}-wellfounded and the map 6 is a bijection between rep(X) and rep(7T),
its proof constructs = which minimally factors (X,7T ® Q). This entails the
comparison theorem between IT3-wellfounded trees.

Theorem 4.57. Suppose X, T are Ii-wellfounded level < 2 trees. Then
there exists (Q,m) such that Q is }-wellfounded and m minimally factors

(X, T®Q).

We shall see in Section [5| that the minimally of factoring maps between
[13-wellfounded trees corresponds exactly to the Dodd-Jensen property of
iterations of mice.

Suppose @, Q' are finite level < 2 trees, () is a proper subtree of Q’,
(Wi, w;)i<ny is a partial level < 1 tower, m < m/, C € desc(T, Q, (W, (wi)i<m)),
C' e desc(T,Q', Wy, (wi)i<my)) \ desc(T, Q, (Wi, (w;)i<m)). Define

C <@

iff C' < C and |, <<, ,{1C* € desc(T, Q, (Wi, (w;)i<k)) : C' < C* < C} =
(). A purely combinatorial argument shows that C <12T’Q C' iff C and C'
are both of degree 2 and putting C = (2,t,7), C' = (2,t',7), t = (¢, 5, 3),
§=(8i)icm@, t' = (t',9',5), k = 1h(t), then either
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1. t is of continuous type, t [k —1 =tk —1, 7] (S\ {sk_1}) C 7’

T(Sk—1) <1§2’Wm 7'(8_1), or

2. t is of discontinuous type, C <1 C’, 7(s;) <$""™ 7(sp).

As a corollary to Lemma and Lemmal4.29, <2°% inherits the following
continuity property.

Lemma 4.58. Suppose Q,Q", W, W' are finite, Q is a level < 2 proper sub-
tree of Q', W is a (not necessarily proper) level-1 subtree of W'. Suppose
C = (2,t,7) € desc(T,Q, W), C' = (2,t',7') € desc(T,Q, W), C <29 C.
Suppose E € py, is a club, n € E' iff n € E and ENn has order type n. Then
for any h € W, for any 5 € [E)@,

-,

I o h(B) = sup{hE(7) : 7 € [E)2T,7 extends ).

4.7 Level-3 description analysis

Definition 4.59. Suppose R is a level-3 tree. The constant R-description is
(). An R-description is either the constant R—description or atriple (r, @, (d, q, P ))

such that either r € dom(R) A (Q, (d q, D orr=r “( HAr e

dom(R) A @ is a completion of R(r~) A (Q, ( d q, ) . desc(R)

is the set of R-descriptions. (r,Q, (d q,P)) is of dzscontmuous type if r €
dom(R), of continuous type otherwise. An extended R-description is either

an R-description or a triple (r, @, (d, g, P)) such that (r~(-1),Q,(d,q, P))
is an R-description of continuous type. desc*(R) is the set of extended R-
descriptions. An extended R-description r is reqular iff either r € desc(R)
of discontinuous type or r ¢ desc(R). A generalized R-description is either
(0,0,0) or of the form

A=(r,m,T)

so that r = (r,Q, (d,q, P)) € desc(R) \ {0}, T is a finite level < 2 tree, 7
factors (Q,T'). desc™(R) is the set of generalized R-descriptions.

Suppose (@, (d, q, P)) is a partial level < 2 tree. We define

(0,-1,0) if ucf(Q, (d,q, P)) = (0, ~1),

e if uet(Q, (d,q, P)) = (1,¢°).

PGP =9 (0, o idug ) i 1ef(Q. (d, . P)) = (2.0°),
q* (q*,P*,F)
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Thus, uctf*(Q, (d,q, P)) € {(0,—1,0)} Udesc(Q, P), and cf(Q, (d,q, P)) =1
iff ucf*(Q, (d, q, P)) = min(<%F). If cf(Q, (d,q, P)) = 2, let

ucf™ (Q, (d, q, P)) = pred<QvP(qu* (Qv (da q, P)))

ucf™(Q, (d, q, P)) can be computed in the following concrete way. If d = 1,
then ucf™ (Q, (1, ¢q, @)) (1, pred_iquiq (q), 0); if d = 2, then ucf™(Q, (2, ¢, P)) =
(2,q’,idp), where ' = (¢, Pﬁ) € desc(Q), ¢ is the <pg-maximum of
Q{q,—}. If Q* is a completion of (Q, (d,q,P)) and D = (1,q,0) if d = 1,
D = (2,(q, P,p),idp) if d = 2 A Q*[q] = (P, p), then

D= pred<Q*,P(qu*(Q, (d,q,P)))

and
ucf™(Q, (d, q, P)) = pred_q+.» (D).

Supposer = (r,Q, (d, q, P)) € desc*(R), lh(r) =k, (d, q, P; = (di, @i, Py)1<i<in(g)-

For F € (81)%", define F, to be a function on w®": if r € desc(R), then
F, = F,; if r ¢ desc(R), then Fy(8) = Fr(B | Riee(r)). If ¥ = (%) redom(r) €
(6371, put v = [Fele. If r € desc(R) and A = (r,7,T) € desc™(R), put
va =7 (7). Put 79 = Y000 = 05. Thus, if r € desc(R) is of discontinuous
type, then 7, = 7,5 if r ¢ desc(R ) then 7 = jRreeQ(y,) = Yeiap .Q)-
The next lemma computes the remaining case when r € desc(R) is of con-
tinuous type, justifying that v, does not depend on the choice of F'.

Lemma 4.60. Suppose R is a level-3 tree, 7 € [65]%, r = (r,Q, (d, q, )
Rtree("" ) Q(
77"*)'

desc(R) is of continuous type. Then vy = jsup
Proof. Suppose ¥ = [F]®, F € (63)%. Put lh(r) = k +1, (d,q,P) =
(di, i, Pi)1<i<x. We prove the case when cf(R(r~)) = 2, the other case being
similar. Put R(r~) = (Q,(d,q,P)), 7~ = m [ dom(Q~), so that @ is a
completion of R(r~), (d,q, P) = (dg,qx, Px). Put ucf(R(r7)) = (d*,q%),
ucf ™ (R(r™)) = (e, z,idp).

We firstly show the > direction. Suppose § = [G] o~ < 7-, G € Lgi[T3].
By Log, for @ -a.e. ﬁ, (5) < F,- (5) = SUDgcarg, ., E, (5“(5)) Where 5“({)
is a tuple extending 3 whose entry indexed by (d,q) is €. Let H(B) be the
least & < By satisfying G(B) < F.(3~(£)). By Lemmas and - there
is h:w; — wy such that h € L and for u@ -ae. 3, H(B) < 57 (h)(6,) < < B,
Thus, for u%-a.e. 3, G(g[dom(Q_)) < Fr(ﬁ) Thus, jQiQ(é) < [Ft]ue.

We secondly show the < direction. Suppose § = [G],e < [Fi].e, G €
Lys[T2]. Then for p%a.e. 5, G(5) < Fo(B) = supeeas, Fo(8 | dom(Q)(€).
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Let H(B) be the least & < 23, satisfying G(8) < F.(8 ] dom(Q™)"(€)). By
Lemmas- 4.32] and [4.25) - again, there is b : w; — w; such that h € L and for
W9-ac. B, H(B) < j7(h)(B,) < %,. Thus, for y%-ac. f. G() < 2 n),
where 7 is represented modulo ,uQ by the function § — F.(37jF(h)(%6,)).
Since 1 < v,-, we have § < jsup Q). H

Define
C* = {€ < 8} : for any finite level < 2 tree Q,jgm(f) = ¢}

Assuming Al-determinacy, Lemma implies that C* N % has order type
x2, and hence C* has order type 8. A tuple 7 is said to strongly respect R
iff ¥ € [C*]®*'. In most applications, we are only concerned with 7 strongly
respecting R. In that case, the techniques in Section helps to decide
the ordering of 7, for different r € desc*(R). The results are in parallel to
Lemma [3.22]

Define {(0,0,0)) = (@) = 0. For A = (r,7,T) € desc™(R), r =
(r,@,(d,q, P)), Ih(r) = k, define

( (T(O)v [[ﬂ-(dla ql)]]Tv T(D? BRI [[ﬂ-(dk—Qv Qk—Q)]]T7 T(k - 2)7 _1)

if r is of continuous type, 7 is continuous at (dg_1, gx—1),

(r(0), [7(d1, q1)]r,7(1), ..., [7(dr-2, r—2)]7, 7 (k — 2), [pred(n, T (dr—1, gr—1))] 1)
if r is of continuous type, 7 is discontinuous at (dy_1, qx_1),

(T(O)w [[ﬂ-(dla ql)]]Tv T(D? SR [[ﬂ-(dk—lv Qk—l)]]T7 T(k: - 1)7 _1)

if r is of discontinuous type, 7 is continuous at ucf(R(r)),

(r(0), [7(dy, q)]r,r(1), ..., [7(dp-1, gx—1)] 7, r(k — 1), [pred(m, T, uct(R(r)))]r)

if 7 is of discontinuous type, 7 is discontinuous at ucf(R(r)).

and define (r) = ((r,Q,idg)). If r is of discontinuous type and Q7 is a

completion of @, define ((r,Q*,(d,q,P))) = {((r,Q",idg)). For A A’ €
desc™(R), define
A <A

iff (A) <px (A’); define
A~A

iff (A) = (A’). For r,r’' € desc™(R), define

iff (r) <px (r'); define



iff (r) = (/). All relations are effective. Define <F=<] desc™(R), ~f=~

[ desc™(R) <T=<] desc*(R), ~f=~] desc*(R). For r,7’ € dom(R), define
r <Ry iff (r)"Rlr] < (') R[]

Lemma 4.61. Suppose R is a level-8 tree, A, A’ € desc*(R), 4 strongly
respects R. Then A <% A’ iff ya < var; A ~F A’ iff yao = Yar.

Proof. Put A = (r,T,7), A’ = (v',7',7'). Recall our convention that
Yoo = 03 The lemma is trivial if r = ) or ¥’ = (. Assume now

r,r’ # 0. Putr = (Z”,Q, (d,q,Pj), (d,q, Pj = (di, @i, Pi)1<i<m(g), k = 1h(r),
I‘, = (7’/, Q/7 (dl7 qlv Plj)? (dla q/7 Pl§ = (d;7 q;; Pi,)lﬁiﬁlh(tf’)a k/ = 1h(7"). Assume
7= [F]F, F e (C*).

Firstly, we prove that A ~ A’ implies y4 = va-.

Case 1: r =1’ is of continuous type.

Put @ = Ryee(r7).

Subcase 1.1: 7 is continuous at (dg_1, qx—1)-

Then [7(d,q)]|r = [7'(d,q)]r for any (d,q) € dom(Q~). Put 7 = 7 |
dom(Q), 7/ = 7' [ dom(Q~). By Lemma [1.60, ya = 75, (%) = 75, ()
and yar = (T/)z:l/p(")/r—). Given § = [G] o- < 7-, we need to show that
71(6) < ya,. By Theorem there exist X and 1 minimally factoring
(I, T"® X). So ¢ om(d,q) = idg . on'(d,q) for any (d,q) € dom(Q~). We
shall actually show that 7' o 77(§) < yas, i.e., (¥ o 7)T"¥(§) < yar. By
Lo$, it suffices to show that for u"-a.e. f, jX(G)(ldi;f(g)) < F. (5:/). The
minimality of ¢) implies that idi;’TX (8) = jX(5.). It suffices to show that for
p-ae. B, 7X(G(5,)) < Fu(B,). Hence, it suffices to show that ;@ -a.c.
3, jX(G(g)) < F,n/(g). As FT/(E) € C*, this inequality is a consequence of
G(ﬁ) < F,. (5), which holds true for u® -a.e. 8 by assumption.

Subcase 1.2: 7 is discontinuous at (dy_1, qx_1).

Then [n(d,q)]r = [7'(d,q)]r for any (d,q) € dom(Q). Let 7 factor
(@Q,T) where T and 7 agree on dom(Q~) and 7(dg_1, qx—1) = pred(m, T, (dx_1, qr—1)),

and likewise define 7" which factors (@', 7). By Lemma @, YA = Tsj;p o
799 (y-) and yar = (7))L, 0 79 9(7-). Work with X and ¢ minimally

factoring (7,7’ ® X) and argue similarly to Subcase 1.1.

Case 2: r = r’ is of discontinuous type.

Subcase 2.1: 7 is continuous at ucf(R(r)).

Then [7(d, q)]r = [7'(d, ¢)]z for any (d, ) € dom(Q) and ya = 75, (V)
var = (7)1, (). Argue similarly to Case 1.

Subcase 2.2: 7 is discontinuous at ucf(R(r)).

Let QT be a completion of R(r) and let 7 factor (Q*,7T) so that 7 ex-
tends m, 7(dg,qr) = pred(m, T, (dg,qx)), and likewise define 7/ which fac-
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tors (Q*, 7). Then [[T(d q)]]T = [7'(d, q)]r for any (d,q) € dom(Q+). B
Lemma @ 1a = 71009 () and ya = (7)1, 0 j29"(7,). Argue
similarly to Case 1.

Case 3: r # r'. Assume r = 7'~ (—=1).

Subcase 3.1: 7 is continuous at (dg_1, qx—1)-

It follows from Subcase 1.1 and Subcase 2.1 that ya = 7%, (7) and
yar = (7 )z;/p(%/). Argue similarly as before.

Subcase 3.2: 7 is discontinuous at (dg_1, qx—1).

Use a combination of Subcase 1.2 and Subcase 2.2.

Secondly, we prove that A < A’ implies 7o < Yar.

Case 1: (A’) is a proper initial segment of (A).

Then (A’) does not end with —1. We prove the typical case when 7’ is
of discontinuous type. So ' C r. Let (Q')" be a completion of R(r") and let
7' factor ((Q')*,T") so that 7/ extends 7', 7/(dy, qr) = pred(m, T, ucf(R(r"))).
Then (Q")" = Rivee(r [k'). We get ¢ minimally factoring (T, 7" ® X) so that
Y om(d,q) = idg . or'(d,q) for any (d,q) € dom((Q")"). We shall actually
show that 7 X (y4) < var- By Lo, it suffices to show that for uT-ace. B,

7Y (F) (@ diof(ﬁ)) < F,. (B,T) The minimality of ¢ implies that 1d£of(ﬁ)
agrees with j (57) on dom((Q')*). It suffices to show that for u@-a.c. 3,
7X(F, (ﬁ)) < Frr(ﬁ fdom(Q')). Asran(F') C C*, this would be a consequence
of Fo(f) < F (3 dom(Q")), which follows from order preservation of F.

Case 2: (A’) is not a proper initial segment of (A).

Similar to Case 1, using the following fact: Suppose X, X’ are level < 2
trees and [d;, z;] x = [d;, z}]x for 1 < i < n, [dn, z,]x < [d,, 2! ]x. Then
there exist U and v minimally factormg (X, X' ®U), which implies that for
any 3 € [w]¥, if 1dX U(3) = &, then ¢ and jU(5) agree on {(d;,z;) : 1 <
z<n}andd"<5n<j(nﬂn) O

4.8 Factoring maps between level-3 trees

Put 7 @ () = (0. Suppose Y is a level-3 tree, y = (y, X, (e, x, W)) € desc(Y),
lh(y) = k, (e,x W) = (€, i, Wi)i<i<im(g), 7 is a function whose domain
contains dom(X), we put

T@y=nmdyy=(y0),m(er,x1),y(1),. ... m(ex—1,25-1),y(k — 1)).
If I <lh(y), then y [l = (y [, Yiree(y 1), (ei; 2i, Wi)1<i<t)-
Definition 4.62. Suppose Y is a level-3 tree, T is a level < 2 tree. The

only (Y, T,0)-description is (0,(), which is called the constant (Y, T),x)-
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description. Suppose (Q, (d,¢, P)) = (Q, (d;, 4:, P))1<i< is a potential par-
tial level < 2 tower of discontinuous type. A (Y, T, (Q, (d, q, P)))-description
is of the form

B = (y,m)
with the following properties:
1y € dese(Y)\ {0}. Puty = (5, X, (e;2, W), Ih(y) = I, (e,, W) =
(€i7 L, VV@')lgz‘glh(f)-
2. 7 factors (X, T, Q).

3. The contraction of (signy(m(e;, z;)))1<i<i is ((di, Gi))1<i<k-

4. If y is of continuous type and (e;_1, z;_1) does not appear in the contrac-
tion of (sign,(m(e;,x;)))1<i<i, then m(x;_1) is of level-2 discontinuous
type.

5. Put ucf(X, (e,z, W)) = (es, X4).
(a) If e, = 0 then dj = 0.
(b) If e, = 1 then ucfy(m(1,x,)) = ucf(Q, m)
(c) If e, = 2, x, = (2., W,,W,) € desc(X), then ucfy(m(2,2,)) =
ucf(Q, (d, q, P)).
(d) If e, = 2, x, = (w4, W,,0,) ¢ desc(X), then ucf] (7(2,2,)) =
wct(Q. (4.4, P)).

A (Y, T,Q)-description is a (Y, T, (Q, (d', ¢, P’ ;))—description for some poten-
tial partial level < 2 tower (@, (d',¢’, P")) of discontinuous type. A (Y, T, *)-
description is a (Y, T, Q’)-description for some level < 2 tree Q" or Q' = ().

desc(Y, T, (Q, (d,q, P;)), desc(Y,T,Q), desc(Y, T, *) denote the sets of rele-
vant descriptions.

Similarly to Definition 4.49| if B € desc(Y, T, @), then there is at most
one (Q, (d, q, P)) for which B € desc(Y, T, (Q, (d,q, P))). Suppose that B =
(y,m)isa (Y, T,(Q,(d,q, P;))—description, F € (63)Y". Then

FL o fw]'T — 8%
is the function that sends [h]” to [Fy, o h¥],e. Note that Fy o A% has signa-

ture sign(Q, (d, q, P )), is essentially discontinuous, and has uniform cofinality
ucf(Q, (d, q, P)). Of course, F% is meaningful only when T is T13-wellfounded.
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Assuming TI3-determinacy, the L[T3]-measure p¥ will be defined, and
[F]Y — [Fg],r will represent an element in L[ (73)] modulo p*". Such kind

of results related to level-3 ultrapowers are parallel to Section [4.6] They will
be handled in Section (6}
Suppose (Q, (d, q,P;) = (@i, (d;, ¢i, P;))1<i<k is a potential partial level
< 2 tower and B = (y,7) € desc(Y, T, (Qx, (d,q, P))). Define 1h(B) = k.
B 10 is the constant (Y,T,x*)-description. Suppose y = (y, X, (e, 2, W)),
0 < k < k. Then
Bk € desc(Y, T, (Qz, (di, ¢, Pi)i<i<i))

is defined by the following: letting [ be the least such that 7(e;,x;) ¢
desc(T, Qz, ), C € desc(T, Qf, *) be such that C <12T’Qf“ m(e;, ), then

1. if C # n(e;, x;), then Bk = (y [I7(~1),7), where 7 and 7 agree on

Ycree(y ”)7 ’ﬁ'(el,l'l) = C7

2. if C =n(e, 1), then Blk = (y 1, 7] Yiree(y [1)).

Define
B B’

iff B = B’ | k for some k < 1h(B’). Define <¥'T=<] desc(Y,T,*). As a
corollary to Lemma m, <¥T inherits the following continuity property.

Lemma 4.63. Suppose Y is a level-3 tree, T is a level < 2 tree, () is a
level < 2 proper subtree of Q'. Suppose B = (y,n) € desc(Y,T,Q) and
B = (y',7) € desc(Y,T,Q"), B <¥T B'. Suppose E € py, is a club, n € E’
iff n € E and ENn has order type . Then for any F € (83)Y", for any
hew!, for any ge [E]°T,

Fy o hQ(F) = sup{Fy 0 h% (7) : 7 € [E]?, 7 extends §}.
Hence, the signature and approzimation sequence of Fy oh@ are proper initial
segments of those of Fy o hg respectively.
Given a (Y, T, *)-description B = (y, 7), define
(B)y=nay.

Define

B < B
iff (B) <pi (B’), the ordering on coordinates in desc(7’, @, *) for some T', Q)
again according to <. The constant (Y, T, x)-description By is the <-greatest,
and we have (Bg) = 0. Define <¥T=<] desc(Y,T,*). As a corollary to
Lemma m, <¥T inherits the following ordering property on F.
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Lemma 4.64. Suppose (Qi, (d;, Gi, Pi))i<i<m is a partial level < 2 tower,
B € desc(Y,T,Q4), B’ € desc(Y,T,Qp), k <m, ¥ <m, B <YT B'. Then
for any F € (83)"7", for any B € [w]TT, j9@m o FE(B) < j9@m o FL(5).

Definition 4.65. Suppose R,Y are level-3 trees, T is a level < 2 tree. Sup-
pose p : dom(R) U {0} — desc(Y,T,x) is a function. p factors (R,Y,T)
iff

1. p() is the constant (Y, T, x)-description.
2. For any r € dom(R), p(r) € desc(Y, T, R[r]).

3. Forany r~(a),r"(b) € dom(R), if a <pg band Riee(r(a)) = Riree(r (D))
then p(r~(a)) < p(r~(b)).

4. For any r € dom(R), p(r~) <¥'T p(r).

If Y is a level-3 tree, then
idY,*

factors (Y, Y, Q%) where idy.(y) = ((v, X, (e, z, W)), id, x) for Y[y = (X, (e, z, W)).
For level-3 trees R,Y, we say that p : dom(R) — dom(Y) factors (R,Y)
iff

1. If r € dom(R) then R(r) =Y (p(r)).

2. If r,7" € dom(R) and r C r’, then p(r) C p(r’).

3. If Riyee(r™(a)) = Riee(r™(b)) and a <pg b, then p(r~(a)) <gpxk
p(r=(0)).

If in addition, p is onto dom(Y'), then p is called a level-3 tree isomorphism
between R and Y. If p factors (R,Y) and 7 = (7,)ycdomy) € [03]7T, let
Vp = (7p,r>Tedom(R) € [6:1))]1?? where 7, = Yp(r)-

If p factors (R,Y,T) and F € (835)¥7, let

Fy s fin]™T = 03]

— —

be the function that sends & to (FPTT)( ))redom(r)- The fact that F(£) €

[03]%" follows from Lemmas 4.63|

Suppose Y is a level-3 tree, T is a level < 2 tree. A representation of
Y ® T is a pair (R, p) such that

1. R is a level-3 tree;
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2. p factors (R, Y, T);
3. ran(p) = desc(Y, T, *);
4 Tf Riyee(r™(a)) = Ruree(r™ (b)), then a <pic biff w(r™(a)) <7 w(r™ (b)),

Representations of Y ® T are clearly mutually isomorphic. As before, we

shall regard
YT

itself as a “level-3 tree” whose domain is the set of non-constant (Y, T, x*)-
descriptions and sends B € desc(Y, T, (Q, (di, gi, Pi)1<i<k)) to (@, (dk, g, Pr))-
If @ is alevel <2 tree, then (Y @ T) ® @ is a “level-3 tree” whose domain
consists of non-constant (Y ® T, @, x)-descriptions. There is a natural iso-
morphism

by, T,Q

between “level-3 trees” (Y ® T) ® Q and Y ® (T ® @), defined as follows:

1 IfA = ((Ba Z, (d7Za N3>a¢) S deSC(Y®T7Qa U)a B = (Y77T) € deSC(Y7 T, (Zv (da ZaNS))a
y = (y, X, (e,z,W)), then 1y 1o (A) = (y, 1,;71621] o(T®1)om).

2. If A = ((B“(—l),Z*,(d,z,N;),w) € desc(Y @ T,Q,U), (d,z,N; =
(di, zi, Ni)1<i<t, B = (y,7) € desc(Y,T,(Z,(d, 2, N))), y = (y, X, (€5, 75, Wi)1<i<),
then

(a) if y is of discontinuous type, then tyro(A) = (y(—1),% %o
), where 1 ¢ 7 factors (X7, T ® Q,U), X T is a completion of
(X, (5, :)), ¥ %o m extends 1y 0 (T ®@ ¥) o, 1 %o w(ex, o) =
t70.0(2:t0,7); to = ((=1),{(0)}, ((0))), 7((0)) = W(d, );

(b) if y is of continuous type, then vy rg(A) = (y,¢ % m), where
W #  factors (X, T ® Q,U), 1 % 7 extends LilQU o(T®y)om|
(dom(X)\{(ex, zx)}), vx1m(en, ) = t7.9,(2,7(=1),7F), where
m(ex, xr) = (2,6,7), t = (£,5,(8i)i<m), 77 extends 7, 77 (s,) =

U(dy, ).

Lty T.q justifies the associativity of the ® operator acting on level (3, < 2, < 2)
trees.
The identity map idygr factors (Y @ T,Y,T). p factors (R,Y,T) iff p

factors (R, Y @ T). If y € dom(Y'), y = (y, X, (e,x,W)) € desc(Y),

Y ®, T
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is the level-3 subtree of Y ® T whose domain is dom(Y ® Q°) plus all the
(Y, T, *)-descriptions of the form (y,7). If 7 factors level < 2 trees (T, Q),
then

Y®m
factors (Y @ T,Y ® Q), where Y ®@ 7(y,v) = (y,(n @ U) o) for (y,¢) €
desc(Y,T,U).
If p factors finite trees (R,Y,T'), then p induces

pt s desc™(R) — desc™(Y)
as follows:

1. If A= (0,0,0), then p"(A) = A.

2. f A= (r,v,U), r = (r,Q, (d,q,P;) is of discontinuous type, p(r) =
(y,m), then p*(A) = (y, (T ® 1)) o m).

3. IfA = (I‘,’QD, U)a r= (raQa (da qapa) is of continuous type, <daQ7P; =
(di, @iy Pi)r<i<t, p(r™) = (v, 7), y = (¥, X, (es, 25, Wi)1<i<k),

(a) if y is of discontinuous type, then g7 (A) = (y ™ (—1), o), where
xom factors (X, TRU), Yxom extends (T @) or, xom(ey, rr) =
(2,t0,7), to = ((=1), {(0)}, ((0))), 7((0)) = ¥ (ds, p1);

(b) if y is of continuous type, then p? (A) = (y,v *; 7), where ¢ *; 7
factors (X, T@U), v m extends (T'®v)o(m [ dom(X)\{(ex, zx)}),
W ox (e, xx) = (2,t7(=1),77), where m(ex, xx) = (2,t,7), t =
(t, S, (Si)i<m), 7T extends 7, 77 (s,,) = ¥(d;, p1).

A <B A pT(A) <Y pT(A)); A ~B A’ iff pT(A) ~Y pT(A’). A purely
combinatorial argument shows that if R = Y ®T, then for any B € desc™(Y))
there is A € desc*(R) such that g7 (A) ~! B.

Lemma 4.66. Suppose Q) is a finite level < 2 tree, W is a finite level-1 tree,
0 : [wi]9" — W (w1) is a function in Lsi[To]. Suppose cf“([0],0) = seed2"
D = (d,q,0) € desc(Q, W).

1. The uniform cofinality of 6 is ucty (D).
2. ucty (D) = —1 iff f~(0(€)) = w for u@-a.e. €.

—

3. Fizw e W. Then ucty(D) = w iff cf“(0(€)) = seed? for uQ-a.e. .
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Proof. Let g € L be a strictly increasing function from seed" to [] @ cofi-
nally. Find G € L such that [G],e = g. We have [0],o = sup [G],o” seed"
By Los, for p@-a.c. €, 0(€) = sup G(€)" (o (dfq)) (Recall our convention that
0" = ;W) This shows part 1. Also, for u@-a.c. &, CfL( 0(€)) = cf“(a% (%)),
which equals to w when ucf; (D) = —1, equals to seeducf p) otherwise. This
shows parts 2-3. O

Lemma 4.67. Suppose R,Y are level-3 trees, 0 : rep(R) — rep(Y) is con-
tinuous and order preserving, 6 € Léé [T3]. Then there ezists a triple

(T, p.9)
such that T is a level < 2 tree, p factors (R,Y,T), 5 respects T', and
VEF € (63)"1 FI(5) = [F o 0]".
Proof. For r € dom(R), let R(r) = (Q,, (d;, g, P)). For q € dom(*Q,), let
Qr(q) = (Prg,Pryg)- Thus, when d, = 2, P, is the completion of (P, -, p, ).

Let £ € pr, yr = (Yr, X, (e, 2, W;)) € desc(Y) and 0, € Ly [T3] be such
that for any § € [E]9", 60,(8) € [wi]¥" and
(

=

0 5@1%7’) = 0,(8) ®y Y-
Let (e, x,, W,) = (€4, Tri, Wri)1<i<ingz,)- For z € dom(?X,), let %X, ( ) =
(Wyw, wy). Thus, when e,; = 2, W,; is the completion of (Wm Wy )
Let [eT]/LQT = /77" = (e’yr,:c)(e,x)edom(Xr)a 97"(5) = (eer,a:(ﬁ))(e z)edom(X)- So ¢ 77“:1: =
[Or.2) u@r - For e € {1,2}, let
B = {x € dom(°X,) : Hpp < wi}.

So B! is closed under <" and B2 = (). For z € °X,\ B, let (S

T, r‘x

) be the
potential partial level < 1 tower induced by %,.., 5., = (smﬂ)zdh(sgz), Sy =

S Ih(5t . )—1 , let (seed%e W_”)Kvg’w be the signature of %, ., let (d7,)icue,
be the approximation sequence of %, ., and let cfH‘(@ym) = Seedgﬁ’w"z if
cf™(%,.) > w. The existence of (G5 2.i)i<ve, and g5, follows from Lemma@

Let Df‘:):Z:(C??:EZ?qTIU 7"$Z> DE :( im’q'f"$7 ’I"CL’) Let
wa
factor (Sy,, @, *), where 77, (s;., ;) = Dy ; for i <wvy,. Let

D; ={zx € °X, \ By : %, is essentially continuous},
= dom(°X,) \ (B U Dy).
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Thus, vy, = card(S;,). For z € Dy, vi, = Ih(s}
Put ucf(R[r]) = (df, q}), ucf(Yy,]) = (e, x5), if ef = 2 then put x} =
(s, Wy, ).
By order preservation and continuity of 6, we can see that for r € dom(R),

. € € —
o)y for x € Ef v, =

1. if y, is of continuous type, then ¥, , has uniform cofinality ucf(R]r]);

2. if y, is of continuous type and lh(r) = 1V (d,-, ¢,- ) does not appear in
the contraction of (signy"(¥,,)) for any (e,z) € dom(X,) \ {(e;,z,)},
then “0, . is essentially discontinuous;

3. if y, is of discontinuous type,

(a) if df =0, then e = 0;

(b) if dF = 1, then ef = 1, %, x- has uniform cofinality (1,q;), and
thus by Lemma |4.66, D, .. = (1,q;,0);

(c) if && = 2 and qF € desc(Q,), then e = 2 and x} € desc(?X,),
%, .+ has uniform cofinality (2,q), and thus by Lemma m
uefy” (DF,..) = (2, a7);

(d) if &* = 2 and q* ¢ desc(*Q,), then e = 2 and x* € desc(X,),
GWrap Wr (*,.1+) has uniform cofinality (2, q;), and thus by Lemma ,
wr 2 *

U‘Cf2 " (Dr,xf) = (27 qr)

Claim 4.68. Suppose r € dom(R), z,z' € dom(?X,), x = (z')~. Suppose
the contraction of (signl(D%m))Kvgw i85 (Wrafi )i<in(z)- LThen

ra’ i

1. For anyi < v?,, 52

rx) Urai

2 52 » i 2 2
2. (D7, 0; .0)i<uz,, 18 a proper initial segment of (D5 . ;, 57%,71-)2-@3 - Hence,
2 2

2 . 2 . . . .
Sy 18 a proper subtree of Sy, and s, . is an initial segment of s

T !

3. sign, (D?

! 2 )
T,x 7UT,I

is (Wr,ap)i<in(z)-

= Wy In particular, the contraction of (sign, (D2, ,)) i<,

2 'mWr,z 2
4' Dr,x <]1 Dr,m"

5. Ifx € D2UE?, 27 (c), 2™ (d) € dom(®X), ¢ <pg d, then &?

27 (0) 07
2
57"

WL (d)vvg,z ’

<

6. Ifv € DUEL (] o, =&

2
7",3377),,"1,

then for any g € E9T,

[ho g% "] wee = 0,([g]").

2
Trx
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Proof. By Lemma [1.34] jOr(jWr=Wrat | jWra(w) 4 1)) = jOrOWne@@Wou |

. . . ’ . .QT®WT,17QT®WT7:C/
jOrEWre(wy + 1) and jr (5= Ve | Ve (wy + 1)) = jaup [

j@er@Wra () 4+ 1). Since 6, takes values in [w;]¥T on a p@ -measure one
set, for u@-a.e. £, we have

— — —

GV Ve (B,,4,(€)) < B () < j7Vo e (,,4(6))

and .
Cf]L(Qgr,x( )) = Seedz‘)/ﬁ’x .
Hence by Los,
'QT@WT,ZyQ’I‘®WT. z! . )
Jsup Y (277',95) < 271’,95/ < jQT@WT’Z’QT®Wr,w (2,}/74’2:)

and by Lemma 4.66
ucfy (D, ;) = w,.

ra®

We are in a position to apply Lemma with
A={l:3D € desc(Q,, W, ) u, = seedgr’wr’”'},

leading to parts 1-4. Part 5 also follows from Lemma [3.14] using the fact that
Yra—(c) < Vra—(d)- We now prove part 6. Note that 77, factors (S7,,Q, ®
W,.) and in fact, (72,)9®"r=(82 ., ) =772,. Suppose we are given h with

(] 2. = 62,2 - Define b on [E]% by h.([g)%) = [ho g3 "] m.. By

2
Tr

Los, it suffices to show that [h,],e. = 77,. But this follows from Lemmam
This finishes the proof of Claim [4.68| ]

In parallel to Claim we have

Claim 4.69. Suppose r,7" € dom(R), r = ('), y, is of continuous type,

and the contraction of((sign2(sz’;mi))i<v:rij Di<j<tn(a,) 8 ((dris @) )1<i<ingr)-
.

Then

1.y = yp.
2. For any (e,z) € dom(X,) \ {(er, )}, Yrz = T 2.

8. (D7, 5 0pr. i)icotr,, 18 a proper initial segment of (Dy7 e

Ty Try8) O Tyt 7 X0 r’,xr,i)i<vi,rxr‘
Hence S, ., is a proper subtree of Sy 4, , and 5, is an initial segment
Of ST/7£U7"

4. The level-2 signature ofrf,fxr(smr) is (1, qr)) ifdr = 1, ((2, ¢mi) )1<i<ingg,)
ifd, = 2. In particular, the contraction of ((signy (D" ));yera N<i<ih(er)

7T, ot )
Ly
,

is ((dus, Grir) )1<i<in(r) -
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Proof. By order preservation and continuity of 6, v, = y,» and for u%r-a.e. 3,

-,

1. for any (e,z) € dom(X,) \ {(e,z,)}, if 5’ extends E then 9, .(5) =
697“’,:10(5/);

2. e’ﬁmr(g) = sup{679r/7xr(g’) . f extends S}

ThU.S, gyr,x = e%’,a: fOI’ any (G,ZE) € dOHl( ) \{(er’xT)} and ]SUP ,(S‘YT,HC) S
Ny < JO9 (%,.,). As t, = t, is of continuous type and (d,,q.) does not
appear in sign (%9, ) for any (e,x) € dom (X, )\{(ey,x)}, O 4, is essentially
discontinuous, giving jsup '("’y,,,x) # 9. With the help of Lemma
again, we can find level-1 trees M,, M,, such that M, is a subtree of M,
and jsj\l/ng’(%x) < e < jMOMe (%, ). The claim then follows from
Lemma [3.14 O

In parallel to Claim we have
Claim 4.70. Suppose r,r" € dom(R), r = (r')~, y, is of discontinuous type,

and the contraction of ((signQ(DT’"mJ” Z))Kwy i Ji<j<ine,) 5 ((duis Grii) )1<i<ingr)-

Put xy =z, if uef(R(r)) ¢ desc(Q), z7 = ;" ((2r(Ih(z,) — 1))7) if
ucf(R(r)) € desc(Q,). Then

Loy Sy

2. For any (e,z) € dom(X,), 9o = Yz

3. (foxr i Ol z)z<v$fm is a proper initial segment of(DeTx o (5?z 1>1<v e
The signature and approzimation sequence of “7y, .= are proper zmtzal

segments of those of “y ... Hence S,.x is a proper subtree of Sy ..,
and 8, .+ 15 an initial segment of 5y 4,

4. The level-2 signature ofof,xr(sr,xr) is ((1,qr)) ifd, = 1, ((2, ¢ri) )1<i<ingg,)

€.’

if d, = 2. In particular, the contraction of ((signy(D,; ? ))Z< i )1<j<Ih(z,.)

T'(E/Z

r! ,"ET/yj

is ((dyi, @rit) ) 1<i<in(r)-
Proof. By order preservation and continuity of 6, y, C v,» and for 9 -a.e. B,

1. for any (e, z) € dom(X,), if §" extends § then b, ,(5) = O o(F);

—, —

2. if ucf(R(r)) ¢ desc(Q,) then j¥XX7 (8, .. (F)) = sup{“0, ., (F) : § extends [},

where X' = Yiree(y [1(y,) + 1);

-

3. ifucf(R(r)) € desc(Q,) then “8, .+ (3) = sup{“0, 4, (3 : B extends 5}
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The rest is similar to the proof of Claim [4.69 O

Let
¢ {ye:r €dom(R),r € B} — Z!

be a bijection such that Z! is a level-1 tree and v < v/ < ¢'(v) <Z" ¢'(V/).
Let

¢ {( 2,00 rm 'L)Z<l S dOIIl( )76 S {1,2},[L’ S D;UE;7Z < 1h(§r7$)} - ZzLJ{Q)}

be a bijection such that Z?2 is a level-1 tree and v C v/ < ¢*(v) C ¢*(v'),
v <pg V' iff $*(v) <pk ¢*(v), where the ordering of subcoordinates D, ; is
according to <. Let

= ('T,°T)

where 'T' = Z', ?T is a level-2 tree, dom (T’
21ﬂ[¢2(( T'I7,757?I7,)'L<1h(57‘z ) ( 1)
[¢2(( 7,2, 5x2)1<1h(57‘7 1)

Z2

Y

)
| = (Szp, Sp) for x € Dy,
| = (Ser, Suy) for x € E.
Let )

0 = (D) (et)edom(T)

where ', = (¢")7'(t), Bp = wy, B, = 07, where t = ¢*((D5,,;, 05, ,)i<i). For

r € dom(R), let
p(r) = (yr, )
where 7, factors (X, T, Q,), defined as follows:
(1,0'(774),0) if z € B,
(e, ) = & (2, (DS 0 i)~ (—1), 86 0,0, 7,)  if o € DS,
( (¢2(( 1) :J}Z)Z<1h(srz 1) S:am rac) Tﬁ,x) lfx € Ef
It is easy to check that (7, p, 5) works for the lemma. ]

Put [[@]]R = Ot(<R) Forr = (Ta Q7 (dv q, P;) S deSC*(R)v put
[l =[5 = |13 @ ll<s]ye.
If r € desc(R) is of discontinuous type, put [r]g = [r]r. Note that if p
factors IT3-wellfounded trees (R,Y), then [r]z < [p(r)]y for any r € dom(R).
We say that p minimally factors (R,Y) iff p factors (R,Y), R,Y are both
[1}-wellfounded and [r]zr = [p(r)]y for any r € dom(R). In particular, if
Y is [T3-wellfounded and T is IT3-wellfounded, then idy, minimally factors
(Y)Y ® T). In the assumption of Lemma if R,Y are ITi-wellfounded
and ran(f) is a <¥-initial segment of rep(Y), its proof constructs p which

minimally factors (R,Y ® T'). This entails the comparison theorem between
I13-wellfounded trees.
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Theorem 4.71. Suppose R,Y are 11} -wellfounded level-3 trees and 0]z <
[0)y. Then there exists (T, p) such that T is I1}-wellfounded and p minimally
factors (R,Y @ T). Furthermore, if [0]gr < [0]y, we further obtain B €
dom(Y @ T') such that Ih(B) =1 and [0]r = [B]yer-

4.9 Representations of ordinals in &3

We introduce a coding system for ordinals in (5;) which is the higher level
analog of WO. The coding system is guided by Corollary 2.12] Identifying
u, with (V,, U u,)<%, we shall assume X is a A} subset of R x (V, U u,)<*
so that the map v — X, is a surjection from R onto P((V,, Uu,)<¥).

For a finite level-3 tree R and a tuple 3 ®gpt € rep(R), put

R
NS LOE@Rt

iff for each 7 B s <B F@pt,

(XU>’VEBRS —DEF {<§777> : (Uvi@R Sa&vﬁ) S Xv}

is a linear ordering on u,,. Put
v e LOR

iff v e LO?{BRt for all 5 @rt € rep(R). The relations “v € LOE@Rt” and

“v € LO™ are AL. Put
ve WO

BORt

iff for each ¥ Pp s < Fdpt, (Xy)5@ps is a wellordering on w,, and the map
Y@rs > 0.t.((Xy)5@ps) is continuous, order preserving for ¥®ps <# 5®Rt.
Put

v e WO

iff v e VVO?@T9 , for all B @®pt € rep(R). The relations “v € VVO?;9 , and
R R
“R is a finite level-3 tree Av € WO are IT}. If (X,)

Fopt 18 @ wellordering
on u,, its order type is denoted by ||v A member v € WO codes a

1505t
tuple of ordinals [v]” that respects R:

[0 = [ @rt = [|v]l g, "

Clearly, if v € WO then [v]f € LKE,R[TQ,U,R] and is Aj-definable in

Lr [Ty, v, R) from {Tp,0, R}. Put [0 = ([t])icaomim. So [v]ff = [
R

]'LLRtree (t) -
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Observe the simple fact that for any finite level-1 tree W, for any a =
(Qw )wew Tespecting W, there is a II}-wellfounded level-1 tree W' extending
W such that a,, = ||(w)||.w for any w € W. Intuitively, W’ “represents” &
in the sense that @ extends to a tuple &' respecting W’ and if 8 respects W/,
then Yw € W o, < B,. It is implicitly used in proving that 07 is the unique
wellfounded remarkable EM blueprint. Likewise, its higher level analog will
be an ingredient in the level-3 EM blueprint formulation of 03%. The goal
of the remaining of this section is to prove Lemma [£.79 which states that
every 7 respecting a finite level-3 tree R is “representable”. Lemma [4.79 will
essentially be a strengthening of [13, Theorem 5.3].

The next lemma is an easy corollary of Lemma [3.18 In its statement,

-,

(T,7) is the “amalgamation” of (@, 5) and (Q’,g’).

Lemma 4.72. Suppose Q, Q' are level < 2 trees, § = (%B4) (d,q)edom(Q) TESPECES
Q, g’ = (dﬁ(;)(d,q)edom@/) respects Q. Then there are a level < 2 tree T, a
tuple ¥ = () (a,tyedom(r) and maps 7,7 factoring (Q,T), (Q',T) respectively
such that dom(T) = ran(m) Uran(n’), By = By for any (d,q) € dom(Q),
dydzr’(q) = dﬁ(ll fOT’ any (d7 Q) € dom(Ql)

Amalgamation of level-3 trees is similar, using Lemma instead.

Lemma 4.73. Suppose R, R' are level-3 trees, ¥ = (V)redom(r) Tespects R,
Y = (7)redom(r) Tespects R'. Then there are a level-3 tree Y, a tuple 5 =
(0y)yedom(yy and maps p,p’ factoring (R,Y), (R',Y) respectively such that
dom(Y) = ran(p) Uran(p’), Sy = v for any r € dom(R), 6y = 7, for
any r € dom(R').

Lemma 4.74. For any a € w~*, {[2, (a)]g : Q is a I}-wellfounded level < 2
tree, (a) € dom(Q)} is a cofinal subset of us.

Proof. Note that uy = &3 is the sup of ranks of 33 wellfounded relations
on R. Given <*, a X} wellfounded on R, we need to find a ITi-wellfounded
level < 2 tree @ such that rank(<*) < [2,((0))]g- This suffices for the
Lemma by rearranging the nodes in a level < 2 tree in a suitable way. Put
r<*1r & yrdr @y € A where A is II]. Let (P,)sc,<w be a regular
level-1 system such that Pygua, is II{-wellfounded iff &2/ @y € A. Fix an
effective bijection ¢ : w<* <> (wW<¥)<Y. If (W,),<, is a sequence of nonempty
level-1 trees, their join is @< ,W, = {(n)"w : w € W,}. Let Q* be an
infinite level-2 tree whose domain is {((0))"¢ : ¢ € (w<¥)<“}, and for any
real v, Un<wQ:{ree(((0))A¢(U f”)) = 69n<wP(U)2n+269(11)2n69(v)2n+1' Then Q* is
[13-wellfounded. Let Q@ = (0, Q*). The proof of Kunen-Martin shows that
rank(<*) < [2, ((0))]o. =
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Lemma 4.75. Suppose Q is a I1i-wellfounded level < 2 tree, ¢* € dom(3Q),
P* is the completion of *Q(q*). Then {[2,¢]¢ : Q' is II3- wellfounded

[2,¢°Tq = [2.(¢) Do, Qirec(q') = P*} is a cofinal subset of 0l P (2, To)-

Proof. If ¢* = (), we are reduced to Lemma [4.74 Suppose now ¢* # (). Put
Q(q*) = (P,p*), so P* is the completion of (P~,p*).

Let p** = pred_pr+(p*). By remarkability of the level-1 sharps, letting
fB) =la = (2,0 TP~ g(oyp) @ ¢ (—1))ll<e] ,p- for § = [glu. < ue,
then sup f"uy = j7F([2,¢"]q). Fix B = [g],. < u2, and we try to find
Q¢ such that Q[(¢)7] = Q") Qecld’) = P*, and f(3) < [2. ]
Let U be a I1}-wellfounded level < 2 tree obtained by Lemma such that
B < [2,((0))]u- Let (X, ) be a representation of Q®U, and let 6 : rep(X) —
rep(Q) be the order preserving bijection. Let C = (2,q,7) € desc(Q, U, *)
where = (¢*~(—1), P*, ), 7 extends id. -, (") = (2. ((0), {(0)} (0)).
o((0)) = p**. Let (2,7) = 7 1(C). Then for pf-a.e. @, 0(2,a P2x x) =
(2,61 P~ (glay))®rq~(~1)). Therefore, [2,2q = £([2, ((0))]) > £(8).
(X, x) plays the role of the desired (@', ¢). ]

Suppose @ is a level < 2 tree and € = (det)(d,t)edom(Q) is a tuple of ordinals
indexed by dom(Q). We say that € is represented by @' iff () is a subtree of
@', @ is Ili-wellfounded and € = ([d, t]o’) (4,)cdom(q)-

Lemma 4.76. Suppose ) is a finite level < 2 tree and 5 = (dﬁq)(d,q)edom(@
respects (). Then 5 is represented by some level < 2 tree ('.

Proof. By rearranging the nodes in dom(Q’) in a suitable way, it suffices to
produce a level < 2 tree ' and a map 7 factoring (@, Q') such that for any
(d,q) € dom(Q), 98, = [7(d, q)] - By a repeated application of Lemmam
it suffices to show that for any (d*,¢* " (a)) € dom(Q),

1. if d* = 1, then there is a [I}-wellfounded level < 2 tree Q' and ¢’ € 'Q’
such that "B~y = [1, ¢

2. if d* = 2 and P* = Qiree(q* " (a)), then there is a IIi-wellfounded
level < 2 tree @ and ¢’ € dom(%Q’) such that By~@) = [2,¢ ],

Q)] =Rlq"], Qireed) = P*.

The case d* = 1 is obvious. We assume now d* = 2.
Lemma [4.75] gives us a IT}-wellfounded level < 2 tree T and ¢ € dom(’T")

such that [2,t]r > By, T[t7] = Qlq¢*], Tiwee(t) = P*. Minimizing
[2,t]7, we may further assume that for any ITi-wellfounded 7" and any ¢’
such that [2,¢|77 > 2By~@), T'[(t)7] = Qlg*],[1,ee(t’) = P*, we have
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2.t > [2,¢" " (a)]r. We claim that [2, ]7 = 234~ (a). Suppose otherwise.
Put p* = 2-Z—Ynode(t)'

Case 1: cf"(2,t) = 0.

If 2I'{t,—} has a <gg-maximum t’, then [2,t]r = [2,¢]r + w. So
Bp~@ < [2,¢]r < [2,t]r, contradicting the minimization assumption.
If T'{t,—} has <pg-limit order type, then [2,t]r = sup{[2,¢]r : t' €
T{t,—}}, so there is t’ satisfying 2By~ < [2,¢']r < [2,]r, contradiction
again.

Case 2: cf7(2,t) = 1.

For 3 = wy, put f(8) = [@ = [[(2,a7(B) e t7(=1))l[<z],r-. Then
[2,t]7 = sup{f(B) : B < wi}. For each limit f < w;, we shall find a
[1}-wellfounded 7" and a node t’ such that [2,¢]r = f(8), 2T'[(t')"] =
Ql¢*],T!...(t') = P*, contradicting to the minimization assumption. Fix
a limit ordinal 8 < w;. Let U be a Il}-wellfounded level < 2 tree such
that [1,(0)]y = B. Let (X,7) be a representation of T'® U and let 6 :
rep(X) — rep(T') be the order preserving bijection. Let C = (2,t,7) €
desc(T,U, %), t = (t7(—1),5,5), 7 extends id, s, T(sm@E-1) = (1, (0),0). Let
(2,7) = 77 1(C). Then for u -a.e. @, 0(2,d ®ax ) = (2,0 (B) Bopt ™ (—1)).
Therefore, [2,z]x = f(8). (X, x) plays the role of the desired (T",t').

Case 3: cfT(2,t) = 2.

Let p™* be the <pg| P* U {p*}-predecessor of p*. For 8 = [g],, < us, put
f(B) = la = (2,0 g(ape) ®2p t7(=1))[| <o+ Then [2,i]r = sup{/ () :
B < ug}. For each limit w; < 8 < ug, we shall find a IT3-wellfounded 7" and
a node t’ such that [2,¢]r = f(8), 2T'[(¢')7] = Qlq*],’T},..(t') = P*. Fix
a limit ordinal w; < # < wy. By Case 1 and Case 2 of this lemma applied
to (2, ((0))) in place of (d*,¢*~(a)), we can find a II}-wellfounded level < 2
tree U such that 2, (0)]y = 8. Let (X, 7) be a representation of 7' ® U and
let 6 : rep(X) — rep(T’) be the order preserving bijection. Let C = (2,t,7),
t = (7(=1),5,5), 7 extends id.s, T(su-1) = (2 ((0),{(O)}. (0))).0).
a((0)) = p*. Let (2,2) = 7 *(C). (X, z) plays the role of the desired
(7", ). O

The level-3 version of Lemmas are similarly proved.

Lemma 4.77. For any a € w<*, {[(a)]r : R is a [I}-wellfounded level-3
tree, (a) € dom(R)} is a cofinal subset of &3.

Proof. 1t is possible to imitate the proof of Lemma [£.74 We give an alter-
native proof using the prewellordering property of the pointclass Hil,,. Let G
be a good universal IT3-set and let (Rj)scn<w be an effective level-3 system
satisfying € G iff R, =ppr UncwRup is [I3-wellfounded. G is equipped
with the IIi-norm ¢(z) = [@]r,, the complexity from Theorem 2.1l By
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Moschovakis [36, 4C.14], o.t.(ran(p)) = &3. The rest of the proof is sim-
ple. O

Lemma 4.78. Suppose R is a IIi-wellfounded level-3 tree, r* € dom(R), Q*
is a completion of R(r*). Then {[r'|r : R is Ii-wellfounded, R'[(r")"] =
R[r*], R...(7") = Q*} is a cofinal subset of jRre(")Q" ([7*] r).
Proof. Put R(r*) = (Q~, (d*,¢*, P")), R[r*] = (Q, (d,q, P))

Case 1: cf(R(r*)) = 1.

By Lemma [4.31] letting f(£) = [ — ||7(¢) ®r r*|l<r] - for § < wi,
then sup f"w; = 99 ([r*]r). Fix 8 < wi, and we try to find R and
r’ such that R'[(r")"] = R[r*], R'(r") = Q*, and f(B) < [r']r. Let U be
a I}-wellfounded level < 2 tree such that 8 < [1,(0)]y. Let (Z,p) be a
representation of R@ U, and let 0 : rep(Z) — rep(U) be the order preserving
bijection. Let B = (r,7) € desc(R, U, ), where r = (r*~(—1), Q*, (d, q, Pi),
7 extends id, -, w(d*,¢*) = (1,(0),0). Let z = p~!(B). Similarly to Case 1
of the proof of Lemma [4.75] (Z, z) plays the role of the desired (R’,1”).

Case 2: cf(R(r*)) = 2.

Put E = (e,z,idp«) = ucf” (R(r*)). By Lemma letting f(§) =
1B = 1187 (9)(B2)) ®r 17| <r 0 for & = [g]. < ua, then sup f"uy =
J9 9 ([r*]r). Fix B < uy and we try to find R',7" as in Case 1. Let U
be a IIi-wellfounded level < 2 tree such that 8 < [2,(0)]y, obtained by
Lemma [1.74 Let (Z, p,0) be as in Case 1. Let B = (r,7) € desc(R, U, %),
wherer = (r*~(—1),Q%, (d, ¢, P)), m extends id, o-, m(d*, ¢*) = (2, ((0),{(0)}, ((0))), ),
7(0) = E. Let z = p~1(B). (Z, 2) plays the role of the desired (R',7"). [

Lemma 4.79. Suppose R is a finite level-3 tree and ¥ = (V) redom(r) Tespects
R. Then there is a II3-wellfounded level-3 tree R’ such that R C R’ and for
any r € dom(R), v, = [r]r -

Proof. Tt suffices to produce a level-3 tree R’ and a map p factoring (R, R')
such that for any r € dom(R), v, = [r]r. By Lemma [£.73] it suffices to
show that for any r*7(a) € dom(R), letting Q* = Riee(r*(a)), there is
a I}-wellfounded level-3 tree R’ and r’ € dom(R') such that v, = [r']z,
R[(r')7] = R[], Rixee(r') = Q.

Lemma gives us a ITi-wellfounded level-3 tree Y and y € dom(Y)
such that [yly > Vr~@), Y[y~] = R[], Yiree(y) = Q. Minimizing [y]y,
we may further assume that for any IIi-wellfounded Y’ and any %’ such
that [y'Ty = Ve~ Y'I(¥')7] = R[], Vie(y) = Q7 we have [y']r >
[r*~(a)]y. We claim that [t]y = v,«~(). Suppose otherwise. Put Y (y) =
(@', (d,q", P*)).
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Case 1: cf(Y(y)) =0.

Argue as in Case 1 in the proof of Lemma to obtain a contradiction.

Case 2: cf(Y(y)) = 1.

For < wn, put f(B) = [@ o 3~ (8) g y~(~1) vl S0 [y =
sup{f(B8) : B < wi}. For each limit ordinal 8 < w;, we shall find a II}-
wellfounded Y’ and a node y' € dom(Y”) such that [y']y, = f(5), contra-
dicting to the minimization assumption. Fix a limit ordinal § < w;. Let U
be a II}-wellfounded level < 2 tree such that [[1, (0)]y = . Let (Z,p) be a
representation of Y ® U and let 6 : rep(Z) — rep(Y') be the order preserving
bijection. Let B = (y,m) € desc(Y,U, %),y = (y—(-1), X, (e,x,W;), T ex-
tends id. x, T(em@a), Tm@) = (1, (0),0). Let z = p~'(B). Similarly to Case 2
of the proof of Lemma [4.76] (Z,z) constitutes a counterexample.

Case 3: cf(Y(y)) = 2.

Let E = (e,z,idp-) = ucf™ (Y (y)). For 8 = [g],. < ug, put f(8) = [@ —
16757 (9)(0) B2+ y~ (=D)ll<r]uer- So [t]y = sup{f(B) : B < up}. For
each limit ordinal w; < 8 < wuy, we shall find a II}-wellfounded Y’ and a
node y' € dom(Y”) such that [y']y: = f(8). Let U be a ITi-wellfounded level
< 2 tree such that [2,((0))]o = B. Let Z,p,0 be as in Case 2. Let B =

—~

(y,m), where y = (y~(—1), X, (e,z,W)), 7 extends id. x, 7(em@), Tmz)) =
(2,((0),{(0)}, ((0))),7), 7((0)) = E. Let 2 = p~!(B). Similarly to Case 3 of
the proof of Lemma [4.76| (Z, z) constitutes a counterexample. ]

5 The lightface level-3 sharp

Sections defines a II} singleton 03# which is many-one equivalent to
Mf , under boldface ITi-determinacy. The assumption of Hé—determinacy
is very likely not optimal. Section formulates the existence of 03% as a
purely syntactical large cardinal axiom based on the weaker assumption of
Al-determinacy.

Recall that L[T3] = |
L5§ [Tg] = Vé% N L[Tg].

L[Tg,l’], ]L(;}][Tg] = UIGR L‘s; [Tg,fE]. By Steel,

z€R

Lemma 5.1. Assume IIi-determinacy.

2. Every subset of 83 in Lsi[Ts] is definable over My (x) from {z} for

some x € R.

Proof. 1. Ty is a A} subset of u,, and of course a ¥} subset of d3, and hence
T, € L[T3s] by Becker-Kechris [3]. This gives the C inclusion.
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If A € Ls[Ts, ], by Theorem , there must be ¢ < J; such that
A € LTy | ,z]. Pick y >7 x such that k3 > §. Then A € L,y[Ts,y] by
Lemma [£.37 This gives the D inclusion.

2. By Theorem [2.18] every subset of d} in Lsi[T3] is in Mfoo(at) for some

r € R. If A C &3 is definable over M2#00(x) from {v,z}, v < &3, letting
y > M7 (z) such that ~ is definable over L,y [T3,y], then A is definable over
Mioo(y) from {y}. O

Caution that Lemma does not give a real = for which T3 € L[T5, x].
Ly [Ty, x] computes a proper initial segment of T3, and by varying z, these
proper initial segments are cofinal in 73. However, there is not a single x
with T3 € LT3, x].

5.1 Level-3 boundedness

Recall in Corollary 2.10] that the rank of a X3 (< u,, ) wellfounded relation is
bounded by 5. We would like to strengthen this fact by allowing a suitable
code for an arbitrary ordinal in 5},). The strengthening is based on an inner
model theoretic characterization of u,, in L[T3,z|. We say that

0 is an L-Woodin cardinal
iff L(Vs) = ¢ is Woodin.

Theorem 5.2 (Woodin, [41, Theorem 3.21]). Assume IT3-determinacy. Let
Kk =u,. Forx € R, M,y (v) = k is the least L-Woodin cardinal.

Corollary 5.3 (Level-3 boundedness). Assume II3-determinacy. Suppose
r € R, N € Faou, nis a cardinal and strong cutpoint of N, & = Tar00(n).
Suppose g is Coll(w,n)-generic over N', r € RN Ng]. Let A be the least L-
Woodin cardinal in My () above &. Suppose G is a Iy(r, <u,) set equipped
with a reqular T (r, <wu,) norm ¢. Suppose A is a Yi(r,<u,) subset of G.
Then

sup{p(y) 1 y € A} < (\T)Me=l®),
Proof. Put x = 0 for simplicity. Put

N — {P € F, : P is a nondropping iterate of A" above 7}

N is a subsystem of F. Let Mév 1% be the direct limit of G The
inclusion map of direct systems induces an embedding between direct limits

N .y gNn# #
oy M2,oo — MQ,OO.
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Let 7y, € R be the real coding (g,N|n). Every mouse P € gﬁ” corresponds
to an rg-mouse Plg| € Fa,, (converted into an rg-mouse in the obvious way,
cf. [42]). So in the direct limit,

N7 bl
Mz,og#[g] = Mfm(rg)'

By Corollary [2.10],
sup{p(y) 1 y € A} < rj,

which in turn is smaller than the successor of w,, in Mfoo(rg), as {Ty,r} €

Mfoo(rg). By Theorem m, u,, is the least L-Woodin cardinal of Mfoo(rg),
hence the least L-Woodin cardinal of Mév 0;7# above 7. By elementarity,
0 (u,) = A So mVM(kE) < (AF)Mze. This finishes the proof. O

We also need to code ordinals in 83 by direct limits of iterations of II3-
iterable mice. Suppose z € R and z codes a II}-iterable z-mouse P,. Then

TP, 00 Pz — (Pz)oo

is the direct limit map of all the nondropping iterates of P,. o((P.)w) is the
length of a Al(z)-prewellordering, namely the one induced by iterations of
P.. By Corollary [2.15, mp, o and (P,) are both in L [Ty, M (2)] and

HM#(z)
3

Aj-definable over L 4 [T%, M} (2)] from {Ty, M} (2)}.
N3 1

5.2 Putative level-3 indiscernibles

The higher level analog of the type of L with n indiscernibles is the type
of M, realized by an appropriate [F]®, where F' € (83)". Such functions

2,00

F are coded by subsets of u, in Lg [T5]. The coding system is provided by

Corollary [2.12]
L = {€} is the language of set theory. For a level-3 tree R, £ is the

expansion of £ which consists of additional constant symbols ¢, for each
r € dom(R). For a level-3 tree R and a tuple of ordinals ¥ = (7,)rcdom(R)
the L-structure M, expands to the L-structure

(M; o5 7)
whose constant ¢, is interpreted as 7.

Definition 5.4. C' C 5:13 is said to be firm iff every member of C'is additively
closed, the set {¢ : & = 0.t.(C'N&)} has order type 85 and CNE € L1 [T3] for

all € < &3,
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Definition 5.5. C' C 5:1,, is called a set of potential level-3 indiscernibles for
M, iff for any level-3 tree R, for any F,G € C™" N Lg [T,

7001

(Myoo; [F1%) = (M3 [G]F).

,007 ,007

A firm set of potential level-3 indiscernibles for M,  is the higher level
analog of a set of order indiscernibles for L. Note that the successor elements
of C don’t really play a part in computing [F]? = ([F,] jFiree() )redom(R) > a8 the
relevant ultrapowers pftre(") concentrate on tuples of limit ordinals, hence
the prefix “potential”.

Lemma 5.6. Assume II3-determinacy. Then there is a firm set of potential
level-3 indiscernibles for My .

Proof. Suppose R is a finite level-3 tree. Let ¢ be an Lf-sentence. Consider
the game G where I produces reals v, x, ¢ and a natural number p, II pro-
duces reals v, 2/, ¢ and a natural number p’. The payoff is decided according
to the following priority list:

1. T and IT must take turns to ensure that v € WO and v € WO,
If one of them fails to do so, and w € rep(R) is <-least for which
v ¢ WOET v o' ¢ WORT then I loses iff v ¢ WOX! and II loses iff
v € WO,

2. If 1 is satisfied, put ¥ = (7 )redom(r), Where v, = max([v]F, [v/]F). I
must ensure

(a) x codes a 2-small premouse P, which satisfies “I am closed under
the M} -operator”;

(b) ¢ codes a strictly increasing, cofinal-in-o(P,) sequence of ordinals
(€n)n<w relative to x such that each ¢, is a cardinal cutpoint of

Pu;
c¢) P.lc; is a ITi-iterable mouse;
(d) p codes a tuple of ordinals & = (. )redom(r) in Pz|co relative to a;
)

(e) For each r € dom(R), 7p, ey 00(0tr) = Vs

(
(f) (Pa; @) = ¢

Otherwise he loses.

3. If 1-2 are satisfied, II must ensure 2(a)-(f) with (z,c¢, (¢)n<w, P, @, @)
replaced by (2, (¢} n<w, P, &, =), otherwise he loses.
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4. If 1-3 are satisfied, I and II must take turns to ensure for all 2 < n < w,

(a) P.|cy is a Mi-iterable mouse and Py|c,_; <ps Prlcn;

(b) Pu|c, is a ITi-iterable mouse and P,|c, <ps Pu|c,.

If one of them fails to do so, and n is least for which (a) or (b) fails at
n, then I loses iff (a) fails at n, and II loses iff (a) holds at n.

5. It is impossible that both players obey all the rules, due to a successful
comparison between P, and P,,. The definition of G% is finished.

The payoff of G has complexity ([0]g + w)-II3 for both players. The
nontrivial part about the complexity is that 2(e) is A}, shown as follows.
According to rules 2(a)-(c), Py|c; is ITi-iterable and closed under the (gen-
uine) Mj*-operator, ¢y < ¢1, and therefore M (P,|co) is canonically coded
In . Tp,|ce,00 (Cts) is the length of a AJ(P,|cy) prewellordering, induced by it-
erations. By Corollary [2.15] 7p, |y 0 (%) is Aj-definable over Lz [T, ] from
{Ty,x}. 7 is clearly Aj-definable over L,u[T5,v] from {T5,v}. So 2(e) is
expressed into a Ay statement over L,z (T3, v,z from {T3, v, z,c}, or equiv-
alently, Al(v,z,c) by Theorem [2.1]

Hence G is determined. Suppose for definiteness II has a winning
strategy o in GF¥. Let C be the set of L-Woodin cardinal cutpoints of
M, (o) and their limits. We show that

2,00
VE € C™ (Myo; [F]7) F=
Suppose towards a contradiction that F' € C* but (M, __; [F]%) |= ¢. As 83

700;
is inaccessible in M thereisa club D € Mfoo in &3 so that My |\ < M

2,00 ,O0
for any A € D. There is thus a continuous, order preserving G : w +1 —

C'\ supran(F) for which (M |G(w); [F]®) |= ¢. Pick P € F, and ordinals
(cn)n<w, (0 )redom(r) in P such that mp (c,) = G(n) for any n < w and
Tpoo(,) = [F]E for any r € dom(R). Thus, (P|sup, ., c.; @) F ¢. Let
Player I play (v, z,c,p), where v € WO, ||v||® = F(w) for any w € rep(R),
x codes P|sup,, ., ¢y, ¢ codes (cp)n<w relative to , p codes (o )redom(r)- The
response according to o is denoted by (v, 2’ p') = (v,x,¢,p) * 0. We
shall derive a contraction by showing neither player breaks the rules, using
3.3-boundedness.

As o is a winning strategy, Player II is not the first person to break the
rules. So v € WO®" implies v’ € WO, For each w € rep(R) which is either
the <f-minimum or a <f-successor, if N' € Fo,, n € N, Tr0o(n) = F(w),
g is Coll(w, n)-generic over N, r, € R being the real coding (g,N'|n), then
(v',2', ¢, p') belongs to the set

Ay ={(0,%,¢,p) * 0 : v € WO 1¢}
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which is Y3(M] (ry), <u,,) by Corollary and Theorem . Since o is a
winning strategy, A, is a subset of

B, ={(.7,¢.p) - v € WO}

B, is aTIi(<u,,) set, equipped with the IT}(< u,,) prewellordering (v', 7', 2, ') —
|17’||E. By Corollary [v'[|1® < min(C'\ (F(w) + 1)). By continuity, if w

has <®-limit order type, then |[v/||Z < ||v||E. Consequently, for r € dom(R),
[v']F < [v]%, so if 7 is defined from v,v" as in Rule 2, then v, = [v]£.

By our choice of F'and G, Rule 2 is satisfied. Let Py, (¢n)n<w, @, Pur, (<)) n<w, @'

be defined as in Rules 2 and 3. For each 1 < n < w, using the H},)—
prewellordering on codes of IT}-iterable mice, a similar boundedness argument
shows that ||Py|c)||<,, < min(C\(G(n)+1)), and hence Py|c], <ps Pslcni1.

So Rule 4 is satisfied. This is impossible. n

Definition 5.7. Assume ITj-determinacy. Let C be a firm set of potential
level-3 indiscernibles for M, . Then

03#

is a map sending a level-3 tree R to the complete consistent L£f-theory
03%#(R), where "' € 03%(R) iff p is an LE-formula and for all ¥ € [C]%,

(My;7) E o

03# is the higher level analog of 0#. Each individual 03%(R) is the higher
level analog of the n-type that is realized in L by n indiscernibles. As with
the level-1 sharps, we shall give a II} axiomatization of 03# in Section .

The proof of Lemma 5.6 shows

Lemma 5.8. Assume II}-determinacy. For a finite level-3 tree R, 0°%(R)
is a O([0] g + w)-112) real.

In fact, the complexity of 03%#(R) relies only on [0] z.

Lemma 5.9. If Q is a finite level < 2 tree, then j9(M;.),j° | My, are

definable over My ., uniformly in Q. If X is another finite level < 2 trees

and 7 factors (X,Q), then 79| jX(M;) is definable over My ., uniformly
in (m, X, Q).

Proof. By Theorem m j9(M;5) = L[j?(T3)], and every X} subset of
is definable over M; . It suffices to show that j9(T3), j° |83, 79[ 8} are all
¥l in the codes.
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Let G be a good universal IT} set and let ¢ : G — 83 be a regular II}
norm. Then x € G Ay € G A j%¢(x)) = (y) iff there exists z € R such
that z = M} (x,y) and Loz [Ts, 2] | j9¢(x)) = ¢(y). Here, the statement
79 e(x)) = p(y) is Ay over Lz [Ty, z] from {T,z} by Corollary and
Lemma [4.37} Similarly, using Lemma [£.35] 79 | k% and jO(T3) | k% are A;-
definable over Lig[T3, z] from {T3,z}, uniformly in . So 7% [ and j9(T3)
are X} using similar arguments. O

Based on Theorem and Y}-absoluteness of iterates of M2# , a X1 set
A C 83 has the following alternative definition: « € A iff M, satisfies that

for any £ > «a cardinal cutpoint, in the Coll(w, §)-generic exten-
sion, Txle,oo(r) € A.

We introduce the following informal symbols arising from the proof of
Lemma [5.9] that will occur in £-formulas or £%-formulas for a level-3 tree R:

1. If Q is a finite level < 2 tree, j< is the informal symbol so that j%(a) = b
iff for any ¢ cardinal cutpoint such that {a,b} € K|, the Coll(w,&)-
generic extension satisfies j¢(T ke 00(a)) = Tx e 00 ().

2. If 7 factors finite level < 2 trees (X, T), 7~ is the informal symbol so
that % (a) = b iff iff for any £ cardinal cutpoint such that {a, b} € K|¢,
the Coll(w, §)-generic extension satisfies 7T (T¢,00 (@) = Tre,00(D).

3. If Q is a level < 2 subtree of @', Q' is finite, then j@Q = (idQ)Q’Ql,
where idg factors (Q, Q’), idg(d, q) = (d, q).

4. Corresponding to items 1-3, jglp, Wg:lp, jgﬁf’?/ stand for functions on or-

dinals that send o to sup(j®)”a, sup(z”)"a, sup(j9?)"a respectively.

5. S5 is the informal symbol such that (0,0) € S5 and ((R;)i<n, (5)i<n) €
Sy iff R is a finite regular level-3 tower and letting r; € dom(Ryiq) \
dom(Ri), then T = (Tl)_ — (672 < j(Rn)tree(Tk)y(Rn)tree(Tl)(al>'

6. For 1 < n < w, u, is the symbol so that for any { > w, cardinal

cutpoint, the Coll(w, §)-generic extension satisfies T e oo (Un) = Un.
7. Suppose T is a finite level < 2 tree. If D € desc(T,U), ||D||<xrv = n,
then seedly’ = 4. If (1,1) € dom(T), then Seed(TLt) = seedz‘q’g@). If

S
(2,t) € dom(T), and T}ee[t] = (S, 5), then seed(TQ,t) = seed(T27(t757§)7ids).

seed? = (Seedz‘cj’t))(d,t)edom(T)-
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8. If k is a definable class function and W is a definable class, then k(W) =
U{E(WNV,):a e Ord}.

9. If X,T,T" are finite level < 2 trees, T' is a subtree of 7", a € j*(V),
d € {1,2}, then

(a) B, = {7799 (a) : Q finite level < 2 tree, 7 factors (X, T ® Q)};

(b) HY, is the transitive collapse of the Skolem hull of BY ,Uran(j")
in j7(V) and ¢%, : Hy, — j7(V) is the associated elementary

embedding;
() Jia = (Pxa) ™ _T;
(@) jxa = (@Xa)"0 " 0 0k
(e) ’{a = Bho U B, B;FCL_:BT0 U Blpo , U Bt o5
(f) HdTa is the transitive collapse of the Skolem hull of B}, Uran(j”)

in j_(V) and ¢, : Hi, — j*(V) is the associated elementary

embedding;
(8) Jda = (Paa) "' 04"

() J57 = (¢3) 0 7T 0 6T,
10. Suppose R is a level-3 tree.

(a) If r = (r,Q, (d, q,P;) € desc*(R), ¢ is the informal £%-symbol

whose interpretation is

thl'ee(77)7Q (CTf )

sup

if r € desc(R) of continuous type,

a=1c¢ if r € desc(R) of discontinuous type,

three("')uQ(&) lf T ¢ deSC(R)-

(b) If T, U are finite level < 2 trees and B = (r,7) € desc(R,T,U),
r # @ then cf is the informal £-symbol which stands for 7> U(cr).

(c) f A = (r,7,T) € desc™(R ) # (), then ca is the informal £F-
symbol which stands for 7 (c,).

Put £& = {€,x}; for a level-3 tree R, put £LF% = LF U {z}, where z is
a constant symbol. All of the above informal symbols work in £Z or L2,
which are intended to be interpreted in M, () for € R. In particular, for
r € R,

(L[S])Meoel® = My ..
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Lemma 5.10. Assume IIy-determinacy. Suppose R,Y are finite level-3
trees, T is a finite level < 2 tree, p factors (R,Y,T). Then

"P(Crise o Cr) € 0% (R)
iff
ri(V) ’: QO(CZ(TI), Ce ,Czﬂ(rn))—I < 03#(Y)

Proof. Put p(r) = (y,, 7). Put Ryee(r) = Q. Suppose ¢(vy,...,v,) is an
L-formula, rq,...,r, € dom(R), and

"(Criyeevscr) € 03 (R).

Let C' be a firm set of potential level-3 indiscernibles. Suppose F € QYT.
By Lemma (.46, F is a function from wi T to [C]™. Recall that FT(0) =

FT () redom(r). Hence for any 6 € w!',
p(r) (R) 1

—

For each r € dom(R), by definition of 7, "9, w, /@ ([F]} ) = [F,,],r. Hence
by Lo,

3T (M) (DO ([Fly, ), PO ([FTG, )

Finally, by Lemma 4.60, for y = (y, X) € desc(Y), if y is of discontinuous

type then [F]Y = [F]Y; if y is of continuous type then [F]¥ = jgﬁree(yi)’X Y
y y p

y
Hence,

Yy

l—i(V) ): @(CZ(TI), ce 7CZ(Tn))j € 03#(Y)

]

As a corollary to Lemma [5.10, Lemma 5.9 and Theorem [4.71] we obtain:

Corollary 5.11. Assume IT3-determinacy. Suppose R andY are finite level-
3 trees and [0]r = [0]y. Then 03#(R) =,, 03#(Y).

5.3 The equivalence of z3* and M (z)

For the other direction of the reduction, we want to compute O(< u,-II})
truth using 03# as an oracle.

Lemma 5.12. Assume IIi-determinacy. For a finite level-3 tree R, the
universal O([0] g-113) real is many-one reducible to 03%(R), uniformly in R.
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Proof. Let B C [0]g X R be TI3. Let 6 be a 3; formula such that
(£7x> €B <« Lﬁg[TQ,SL’] |: 0(5,1’)

G is the game with output Diff B. We need to decide the winner of G from
03%(R). B is equipped with the IT}-norm

(&, x) = the least a < k% such that L,[T5, 2] = 0(&, ).

If £ € pg is a club, let p¥ : [0]g — rep(R) | E be the order preserving
bijection. For ¥ respecting R, let #!(7) be the following formula:

There exist H € (d3)%" and a strategy 7 for Player I such that
[H]® = 4 and for any club E € puy, if x is an infinite run according
to 7, then for any even o < [0] g, V8 < a((8,2) € BAY(S,x) <
H(p®(B +1))) implies (o, x) € BAvY(a,z) < H(pP(a+ 1)), and
there is a < [(] g such that (a, z) ¢ B.

Let 0/1(7) be the following formula:

There exist K € (83)7" and a strategy o for Player II such that
[K]f = 4 and for any club E € py, if x is an infinite run according
to o, then for any odd a < [0]r, VB < a((B,2) € BAY(B,z) <
K(p¥(8+1))) implies (o, ) € BAY(a,z) < K(p¥ (a4 1)).

Let C' be a firm set of level-3 indiscernibles for M, . Suppose firstly
Player I has a winning strategy 7 in GG. Let D be the subset of C' consisting
of L-Woodin cardinals in My (o) and their limits. By Corollary [.3] if =
is a consistent run according to o, then (0,z) € B A ¢(0,z) < min(D),
for any odd a < [@]r, (o,x) € B implies (o« + 1,2) € BAY(a+ 1,2) <
min(D \ (¢(a,x) + 1)), and there is @ < [0z such that (a,z) ¢ B. Let
H € D®. Then (H, 1) witnesses 6! ([H]®). Let P € F, and 77 € P such that
TP (1) = [H]®. Let &; be the least successor cardinal cutpoint of P above
max(7]) and let g be Coll(w, &)-generic over P. Let r,; be the real coding
(9,7). Then §1([H]E) is equivalent to a Xi(r, ;) statement 67(r, ), hence
true in P[g]. Hence,

/PColl(w,fﬁ) }: él(fg,ﬁ)

By elementarity, B
(Mj0) ") | 07 (1 (11yr)

By Lemma , for any ¥ € [C]®T,

(M) M5 = 01 (7 ).
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By a symmetrical argument, if Player II has a winning strategy in G, then
for any 7 € [C]®, )
(M p0) M) |2 1 (1 ).

Finally, there does not exist v such that
(M o) NS = 01 (74,5) A G (7 ).

2,00

Otherwise, by absoluteness, 07(Y) A 0'1(7) holds. Let (H, ) witness 67(7)
and let (K, o) witness 67/(). Let E € ug, be a club such that H | (rep(R) |
FE) = K | (rep(R) [ E). Let x be the infinite run according to both 7 and o.
Then inductively we can see that for any a < [0]r, (o, z) € B A ¢Y(a,z) <
H(pP(a+1)), but there is a < [(] g such that («, ) ¢ B, which is impossible.

In conclusion, Player I has a winning strategy in B iff for any 5 € [C]%,
(M;00) M5 = 01 (7g.7)- O

For a real x, 2% is the obvious relativization of 03%*. Combining Lem-
mas[5.§and[5.12] Theorem [4.5/and Neeman [37//38], we obtain the equivalence

of 3% and MJ (z).
Theorem 5.13. Assume Hé—determinacy. For x € R, 2% is many-one
equivalent to Mf(x), the many-one reduction being independent of x.

By Theorem [5.13] and Moschovakis third periodicity, the winner of the
game in the proof of Lemma has a winning strategy recursive in 03%.
Hence, the set of L-Woodin cardinals in M, (0°#) and their limits form a
firm set of potential level-3 indiscernibles for M, .

5.4 Syntactical properties of 037

Suppose M, N are countable II}-iterable mice. A map 7 : M — N is
essentially an iteration map iff there are P and iteration maps ¥p : M — P,
Yy o N — P such that ¥y = Yy om. For « € M, B € N, say that
(M, a) <py (N, B) iff either M <p; N or there exist P and iteration maps
Y M = P,by - N = P such that ¢ (a) < ().

Definition 5.14 (Level-3 EM blueprint). A pre-level-3 EM blueprint is a
function I' sending any finite level-3 tree Y to a complete consistent L£Y-
theory I'(Y') which contains all of the following additional axioms:

1. ZFC + there is no inner model with two Woodin cardinals +V = K+
there is no strong cardinal +V is closed under the M;*-operator.

2. Suppose X, T, Q, Z are finite level < 2 trees, 7 factors (X, T), ¢ factors
(T, 7).
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(a) j7:V — j5(V) is L-elementary. ;% is the identity map on V',

b) o : 5X(V) — j7(V) is L-elementary. QT = 4T 4TT iy the
( I J_ v J I
identity map on ;7 (V).

(c) (Wom)? =9?ox’.

(@) 7049 = 578

() jUrl) = (Q®m)°T.

() 2715900V = (x @ Q752

3. If £ is a cardinal and strong cutpoint, then VU« satisfies the follow-
ing: If U is a IIj-wellfounded level < 2 tree, then K|¢ and (jY)% (K€)
are countable IT3-iterable mice and (j¥)% [ (K€) is essentially an iter-
ation map from K¢ to (j¥)*(K€). Here (j¥)* stands for the direct

limit map of (44K for Z, Z' finite subtrees of U, Z a finite subtree
of Z'.

4. For any y € dom(Y'), “c, € Ord” is an axiom.

5. If y <Y y', then “c, < ¢y/” is an axiom; if y ~¥ y’, then “cy = ¢,/” is
an axiom. - -

A level-3 EM blueprint is a pre-level-3 EM blueprint satisfying the coherency
property: if R)Y,T are finite, p factors (R,Y,T), then for each L-formula
o(v1,...,v,), for each rq,...,7, € dom(R),

"o(Cry, 50, €T(R)

iff
ri(V) ): QO(CZ(H), e ,CZ(Tn))_\ S F(Y)

In particular, if I" is a level-3 EM blueprint, p, factors (R,Y’), then

idy,. opy factors (R,Y, Q°), so by coherency, (¢, . ..J" € T'(R) iff "p(cyp (), - - -

['(Y). This degenerates to the usual indiscernability of the (level-1) EM
blueprint.

Lemma 5.15. Assume II3-determinacy. Then 03% is a level-3 EM blueprint.

Proof. We verify Axioms [I}{5] in Definition [5.14] Axiom [I] follows from The-
orem [2.18. Axiom [2] follows from Lemma [£.53 Axioms 45 follow from
Lemma [4.61]
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Axiom [3| is shown as follows. Let £ be a cardinal strong cutpoint of
M. Let P € F, and n € P such that 7mp (1) = £. Let g be Coll(w,n)-
generic over P. Suppose T is a ITi-wellfounded tree in P[g]. The direct limit
of j7 is wellfounded by Proposition “ We need to show that in Plg],
D (Pn) « Pln — (j7)7(Pln) is essentially an iteration map, where (j7)7
is the direct limit map of (j7')” for finite subtrees 7" of T. Since P[g] is
¥1-correct, we need to show the same fact in V.

Note that M, is definable over M, (g). In fact, M, = (L[S5])Mzee(@),
Let Q € Fay and v so that 7,0 () = € The maps from P to w5l (M; . [€)
and from ﬂéloo(Mz_oo|§) to L¢[Ss] plus Dodd-Jensen implies that P|n ~p;
Wéloo(MQ_ |€). By Xl-correctness of set-generic extensions of Q, Q thinks
that “P|n ~p; L,[Ss]”. By elementarity, (7 (V))€ thinks “P|n ~py j*(L,[S5])".
We claim that (57(V))2 is also Sl-correct in set-generic extensions. To see
this, it suffices to show pl(7(S3))<] € p[Ss]. We know that (j7(S3))< embeds
into j7(S3), so p[(j7(S5))°] C pli"(S3)]. But x € plj (53)] implies = € p[Ss]
by absoluteness of wellfoundedness and elementarity of j7 acting on L[Ss, z].
Hence, in reality we have Pl ~p; (57 (L,[S5]))9. But ()7 (P|n) embeds

into (57 (L,[S5]))<, implying that (7)”(Pln) <ps P|n.

Of course, Pln <ps (j7)7(Pln). So P ~ps (37)7(P|n). A similar argu-
ment shows that for any o € P, (P,a) ~ps ((57)7(PIn), (j7)7(«)). This
finishes verifying Axiom [3 of Definition [5.14. o

Finally, the coherency property of 0% is a consequence of Lemma

]

We say that the upward closure of A C (w<¥)<¥ is

{re(W“)“:3ae A(r Ca)}.

The upward closure does not apply to subcoordinates of a € A. For instance,
b C a(lh(a) — 1) does not imply that ¢~ (b) is in the upward closure of A.
For a level-3 tree R and nodes sq,...,S,,$,...,s, in dom(R),

s' is an R-shift of §

iff there are a level-3 tree S and maps p, p’ factoring (S, R) such that ran(p)
is the upward closure of &, ran(p’) is the upward closure of s, and p~!(s;) =

(p)~1(s}) for any i.
Lemma 5.16 (Level-3 indiscernability). Suppose I" is a level-8 EM blueprint.

/

Suppose R is a level-3 tree and s1,...,S,,S),...,s, are nodes in dom(R).
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Suppose that s is a shift of § with respect to R. Then for each formula o,
I'(R) contains the formula

P(Cory -+ Csn) €2 PCopy - Cr)

Proof. Let S be a level-3 tree and p, p’ both factor (S, R) such that ran(p) is
upward closure of {si,...,s,}, ran(p’) is the upward closure of {s},..., s/ }.
Let p~1(s;) = t; = (p/)7*(s;). Applying coherency of T to p, o/,

"O(Csyy - Cs) ET(R) & Tolety, ) € T(S)
< Tpleg, e )N €T(R).

]

Of course, there is extra information in the coherency property beyond
Lemma [5.16]

As with the usual treatment of 07, a level-3 EM blueprint I' admits an £-
Skolemized conservative extension. That means, since ZFC +V = K is a part
of the axioms, so is “there is a Y£-definable wellordering of the universe”.
Thus, to each L-formula ¢(v, wy, .. ., w,) we may attach a definable £-Skolem
term 7,(wy, ..., wy,) so that the formula Vw, ...w, (v p(v,w,...,w,) —
o(1,(wy, ..., wy), wr, ..., w,)) belongs to I'(R), for any R.

If Y is an infinite level-3 tree, put

I'Yy)= U{I‘(R) : R is a finite level-3 subtree of Y'}.

By coherency, I'(R) C I'(R') whenever R C R’ are finite. Hence by com-
pactness, ['(Y) is a complete consistent £ -theory. The usual argument of
EM models with order indiscernibles carries over to obtain a unique up to
isomorphism LY -structure

Mrpy = (M;QM,&M :t € dom(Y)).
such that Mry is £-Skolem generated by {¢; : ¢ € dom(Y)}, and
Mry =ET(Y).

Mry is called the EM model associated to I" and Y. When eMry s well-
founded, Mry is identified with its transitive collapse. Since Mry is a
model of V' = K, the extender sequence on K*rv is definable over Mry,
this allows us to sometimes treat Mpy as a structure in the language of
premice.

If £* is a first-order language expanding £, N is an L*-structure satisfying
axioms in Definition [5.14] we make the following notations:
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1. If T is a finite level < 2 tree, then ji, = (ﬁ)N, NT = (j_T(V))N is an
L*-structure so that ji-: N'— N7 is L*-elementary.

2. If 7 factors finite level < 2 trees (X, T), then 71, = (z)V. If T, T" are
finite level < 2 trees, T is a subtree of 7", then jff’T/ = (7T,

3. If T'is alevel < 2 tree, then N7 is the direct limit of (./\f L0 T A AL
finite subtrees of 7', T a finite subtree of T7") and j3; : N —> NT is the
direct limit map; if 7" is a finite subtree of 7', then j/:\F//’T NT 5 NTis
the tail of the direct limit map. The wellfounded part of N7 is always
assumed to be transitive.

4. If 7 factors level < 2 trees (X,T'), then mi, : N¥ — N7 is the factor
map between direct limits.

5. If X is a finite level < 2 tree, a € N, d € {1,2}

(a) if T,7T" are finite level < 2 trees, T is a subtree of 7", then
T

. . T
X,a — (H§,a)N7 J;F(,a,N = (];(,a)Nv ¢§a/\f = (¢§a)N7 IxXaN =
.1 ‘
(JXa )N’ ga = (Hc%ja)N’ ]Za,N = (jd a)N gbda./\/' = (i)'/\/’
T,T TT\N .
]da./\/ (jda )
(b) if T is a level < 2 tree, then Ny, is the natural direct limit,
IXan i N = NX, is the direct limit map, ¢% , o : N, = N7
is the natural factoring map between direct limits; if 7" is a finite
subtree of T', then jx fN : ):?'a — NX, is the tail of the direct

limit map; similarly define ./\/3:&, jg’w\/, §aN, Ja a?\/

Y

If T is a level-3 EM blueprint and R is IT}-wellfounded, we make further
notations:

1. If T is a level <2 tree, then M{y = (Mry)", ity = iy, -

2. If T is a finite subtree of 7", then jF T = j}\;ﬁ;/y

3. If m factors (X, T), then ly = 7wy, .

4. If T is a finite subtree of 7", y € dom(Y), X = Yiree(y), d € {1,2},
then CRY,y = (cy)MFY MF Yy (MF Y)§ Y,y jl,Z:,Y,y = j;{,cr’yy,./\/(["}/’

T T T TT T
Y = PXervaMeys 0¥y = IXer vy ey Mrgee = Mrrtae, o o
T T T T T TT
jF,Rd,* jdchYRd’((O))vMpde7 T,R4 % d,CF Rd ((0))’MF Rd’ jF JRA ‘]d Cr Rd ((0))’MF Rd’
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5. If B € desc(Y,T’, %) and T” is a finite subtree of T', then ¢f yp =

Real
Jry (e

By coherency, if p factors (R, Y, T), then p induces an elementary embed-
ding
pr’ s Mrg — MLy
where
P (MR (ep gy D) = T (g )

If p factors (R,Y’), then p induces
p}/ : MF,R — Mr,y

where pl (TMr5(cr gy, . .2)) = 7MY (Cry ps - - )

Recall that wellfoundedness of a (level-1) EM blueprint is a IT} condition,
stating that for every countable ordinal o, the EM model generated by order
indiscernibles of order type « is wellfounded. Its higher level analog is called
iterability, which is a IT} condition.

Definition 5.17. Let I be a level-3 EM blueprint. I is iterable iff for any
I1}-wellfounded level-3 tree Y, Mry is a [1}-iterable mouse.

Lemma 5.18. Assume IT3-determinacy. Then 0°% is iterable.

Proof. Let Y be any IIi-wellfounded level-3 tree. Let F € [C]¥T, where
C is a firm set of potential level-3 indiscernibles for M, . Then Mgs# y

elementarily embeds into M, , the map being generated by cps# y,s = [F Y.

Therefore, Mgs# y is iterable. O
Lemma 5.19. Assume Aj-determinacy.

1. Suppose N is a countable I1}-iterable mouse satisfying Azioms @ in
Definition [5.14).

(a) If T is a Ty-wellfounded level < 2 tree, then N is a T}-iterable
mouse and ji; : N'— N7 is essentially an iteration map.

(b) If Y minimally factors level < 2 trees (T, X), then ¥ : NT — N¥
15 essentially an iteration map.

2. Suppose T is an iterable level-3 EM blueprint and Y is a T1}-wellfounded
level-3 tree. If v minimally factors level-3 trees (Y, R) and [0]y = [0] g,
then ¥E : Mry — Mr g is essentially an iteration map.
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Proof. 1(a). By Axiom [l|in Definition , there are cofinally many cardinal
strong cutpoints in N. ji is cofinal in N7 by definition and a direct limit
argument. By Dodd-Jensen, it suffices to show that for any cardinal strong
cutpoint € of N, j1-(N€) is Ii-iterable and ji, | (NV]€) is essentially an itera-
tion map from N[ to N7T|ji-(€). Fix such €. Let g be Coll(w, £)-generic over
N. The statement “for any II3-wellfounded level < 2 tree T", ji (N€) is a
[Ti-iterable mouse, and 5%/ | (AV|€) is essentially an iteration map from N|¢ to
JL V)" is 1} in a real = € A7lg] coding (A€, G5 T (AIE))1 e evel <2 e

This statement is true in A[g] by Level < 2 ultrapower invariance axiom

in Definition It suffices to show Ng] <gz1 V. But by Axiom [I] in
Definition |5.14, N =“I am closed under the M 1# -operator”. Since N is a II}-
iterable mouse, the Ml# -operators are correctly computed in /. Using gener-
icity iterations [51], M{-operators figure out X-truth. Hence, A[g] =<z V.

1(b). By Theorem [.57 there is a IT}-wellfounded @ and 7 minimally
factoring (X, 7T ® (). So idr, = mo . By Axiom [2| in Definition m
jf[T = Wf/@)Q o Px:, which is essentially an iteration from N7 to N7®Q by
part 1(a). By Dodd-Jensen, ¥ is essentially an iteration map.

2. By Theorem there is a II}-wellfounded T" and p minimally fac-
toring (R,Y ® T'). So idy. = po . By Axiom [2[ in Definition and
part 1, j&y = pi"" o Y is essentially an iteration from Mry to ML, By
Dodd-Jensen, 9 is essentially an iteration map. O

We start to introduce the remarkability property of a level-3 EM blueprint.

For r, s € w<¥, define r <q s iff r(0) <pr s(0), r <& s iff r(0) <px s(0).
If 7= (7;)1<i<n is a tuple of nodes in w<v, define ¥ < s iff r; <( s for any i.
Similarly define 7 < s, ¥ <q S, etc.

Definition 5.20 (Unboundedness). A level-3 EM blueprint I' is unbounded
iff for any level-3 tree R, if 7 is an £-Skolem term, {¢,71,...,7r,} C dom(R),
7 <o t, then I'(R) contains the formula

T(Crise oy Crn) € Ord = 7(¢py, 0 ) < Co

Lemma 5.21. Assume II}-determinacy. Then 0°% is unbounded.

Proof. Let C be a firm club of potential level-3 indiscernibles for M, . Let
n € D iff C' N7 has order type u ¢ for some ordinal &.

We may further assume that dom(R) is the upward closure of U {t} and
R~ =pgr R (the upward closure of 7) is a level-3 subtree of R. The reason
is because we can find level-3 trees S~,S | p~ factoring (S—, R), p factoring
(S, R) so that S~ is a subtree of S, p~ = p [ S, ran(p™) is the upward
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closure of 7, ran(p) is the upward closure of U {¢t}. We then work with S
and p~!(7,t) instead, and finally apply the coherency of 03%.
Suppose ['(R) contains the formula “7(c, ,...,c. ) € Ord”. Then for
any 7 € [C]F,
Moo (@) () < 85

Our assumption 7 <, ¢ ensures the existence of § € [D]A extending 7 |
dom(R™) such that
TM2’°O (/77“17 s 77Tm) < 515'

Hence, I'(R) contains the formula “7(c,,...,¢,,) < ¢ O
Definition 5.22 (Weak remarkability). A level-3 EM blueprint I" is weakly
remarkable iff I is unbounded and for any level-3 tree R, if 7 is an £-Skolem
term, 7 U §U s’ U {t} C dom(R), ¥ <g t <o § <o &, § is an R-shift of 3,
Ih(t) = 1, then I'(R) contains the formula

T(Cryy ooy Crmy Cony ooy Con) < G2 =

T(Crir vy Cron> Csiron v s Csy) = T(Crys ooy Croy Csly oo Cst ).

Lemma 5.23. Assume IIi-determinacy. Then 0°% is weakly remarkable.

Proof. Again, we may assume that dom(R) is the upward closure of ¥U §'U

s U {t}.
Suppose 0°#(R) contains the formula “7(c,,, ..., ¢, ...) < ¢”. We need
to show that 0*#(R) contains the formula “7(cy,, ..., sy ) = T(Crp,y oo Cols -

By Axiom [f]in Definition [5.14] we may further assume that ¢ is in the upward
closure of 5. Let S be a level-3 tree and p, p’ both factor (S, R) such that
ran(p) is the upward closure of 7"U §, ran(p’) is the upward closure of 7U s'.
Put p_l(riusjat) = (Fi7§j7f> = ( ) 1(T17Sj7t/>

Let C' be a firm set of potential level-3 indiscernibles for M, . Let C' =
Ue<s1 C¢ be a disjoint partition of C' such that for any § < 83, 0.t.(Ce) = uy,
and for any ¢ < n < d3, any member of C¢ is smaller than any member of
(. Let D be a club in 03 where v € D iff sup U£<V Ce=v. As Cis firm, D
has order type 3.

If X,Y are subsets of ordinals, define X CY iff X CY and X =Y Na
for some . For each 0 < ¢ < 683, let F& € DST so that (F¢)"rep(U) C Cy,
(F*)"(rep(S) \ rep(U)) E Cg. Define 7* = (7§ )sedom(s) = [F7*]°. Define

€ = TM;OO(V’I%? s 7’7517 .- )
Hence,
€e < min(Ch).
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For 0 < n < & < &3, define 7% = (72£)y€d0m(R) where 77 | = 7 and

p(z)
'yg,g(m) = 75 for any z € dom(S). By Lemma [4.46, v"¢ € [D]®*'. Suppose
towards a contradiction.

Case 1: 0*#(R) contains the formula “7(c,,, ..., ¢y, .) > 7(cry, - - , Cofs - -

Then %7 witnesses that €, > ¢ whenever 0 < n < £ < d3. This is an
infinite descending chain of ordinals.

Case 2: 0°#(R) contains the formula “7(c,,, ..., ¢o,-.) < T(Cryo vy Copyee s

1

Then €, < ¢ whenever 0 < n < £ < &3, contradicting to e < min(C}).

[l
If R is a level-3 tree, t € dom(R), lh(t) =1, let

Rit=R[{r € dom(R) :r <ot}

Lemma 5.24. Suppose I is a weakly remarkable level-3 EM blueprint. Sup-
pose R is a level-3 tree, t € dom(R), 1h(t) = 1.

-

1. If 7 is an L-Skolem term, FUFU s’ U {t} C dom(R), ¥ <ot <¢ 55,
s’ is an R-shift of §, then T'(R) contains the formula

T(Crise e ey Crps Csiy o1 Csy) < Cp =

T(Cryr v s Cras Coirovvs Con) = T(Crys ooy Cropy Csly oo+ Cst )

2. I'(R) contains the scheme “K|c; < V7. In particular, I'(R) contains
the formula “c; is inaccessible and there are cofinally many cardinal
strong cutpoints below c¢;”.

Proof. 1. Assume without loss of generality that dom(R) is the upward clo-
sure of UsUS'U{t}. Suppose I'(R) contains the formula “7(c;,, ..., ¢s,...) <
¢,”. Expand R to the level-3 tree S where dom(S) is the upward clo-

sure of dom(R) U {s/ : 1 < i < n}, each s/ ¢ dom(R), s” is an R-shift

of §, § <y s”. By coherency and weak remarkability, I'(S) contains the

formula 7(cy, ..., ¢5,...) = T(Cr,. . 0op,...). But F~§7s" is a shift of
7~s~s". By indiscernability, ['(S) contains the formula T(Crpseees Copyens) =
T(CL, ...sCory...). Hence, I'(S) contains the formula T(Cﬂ, . ,cij ) =
T(Ci,...,ﬁ,...).

2. Put N = Mr g. By coherency of T', we may assume that A = {s €
dom(R) : s <o t} has <pg-limit order type. By Tarski’s criterion, we need
to show that if w = ™ (21,...,2,) € Ord, z1,...,2, < ﬁN, then w < ﬁN.
To save notations, let k = 1, z; :O'N(CHN,...,CSIN,...) <ﬁN, rF<gt<ps5.
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Pick t* of length 1 such that ¥ <q t* <q t. Build a level-3 tree S that extends
R in which there are nodes t', s’ € dom(S) such that 7 <, (t')"s’ <o r* and
(t)"s" is an S-shift of (¢)75. Put P = Mrg. By weakly remarkability,

ap(ﬁp,...,cip) :ap(ﬁp,...,csﬁp,...).

By unboundedness of T,

7_7><07><C£7>7 T ) <l

By coherency of I', w < ¢+, By AXiomin Definition N <N O

A level-3 tree R is said to be universal above t iff t € dom(R), lh(t) =
1, and for any level-3 tree S, if S [ ' is isomorphic to R [ t via 7w and
dom(S) \ dom(S [ t') is finite, then there is a map p factoring (S, R) that
extends 7. Clearly, for any R, there is (R’,t) such that R’ [t is isomorphic
to R and R’ is universal above ¢. If R is IIi-wellfounded, we may further
demand that R’ is ITi-wellfounded.

Lemma 5.25. Suppose I' is a weakly remarkable level-3 EM blueprint, R is
universal above t, R is universal above t', Rt is isomorphic to R'[t'. Then

(K ey 2= (K]ey) M

Proof. To begin with, we build an isomorphism 1 : (c)Mr e — (¢p)Mror
which preserves membership relations in the respective EM models. Given
a € Mr g such that Mpp = a < ¢, find a Skolem term 7 and nodes 77, §
such that ¥ <t <% §and

a= (T(ﬁ,...,ci,...))MF’R.

Let S be a level-3 tree and p factor (S, R) such that ran(S) is the upward
closure of dom(R [t)UsU{t}. By universality, pick p’ factoring (S, R") which
extends m. By coherency of I, (7(¢x(r,),---,C ))Mrr <Mrrs .
Define

p’0p71(51)7 . e

(@) = (T(Catra)s - - Cprop-t(srs - - ) VO

1 is well-defined and preserves membership. For this, we firstly show
that ¢(a) does not depend on the choice of p’. Suppose p” is another candi-
date for p’. Then p” o p~1(5) is an R'-shift of p' o p~1(5). By Lemma m
MF,R’ ): T(Cﬂ(m), <5 Cplop=1(sy)y - - ) = T(Cﬂ(m), <o Cprtop=1(sy)y - - ) SeCOIldly,
the reason why ¢ (a) does not depend on the choice of 7 and 7, § is because
of coherency of I'. In the same spirit, we can show that ¢ preserves member-
ship. A completely symmetrical argument gives ¢’ : (cy)Mrr — (¢)Mrr,
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By Lemma [5.16] 1 o ¢’ and ¢’ o0 ¢ are both identity functions. So v is an
isomorphism between (¢;)Mr® and (cy )M

Mr g is a model of V' = K. Working in Mr g, K|ﬁ has a canoni-
cal wellordering of order type wc;, and similarly for Mr g. 1 extends to
Y%, acting on (K|¢)Mr# according to these canonical wellorderings. Us-

ing the same argument as before, 1* is an isomorphism from (K|c;)r to
(K| )Mo, 0

A level-3 tree R is universal based on Y iff there is t € dom(R) such that
Ih(t) = 1, R is universal above ¢t and R [t is isomorphic to Y. Suppose T
is a weakly remarkable level-3 EM blueprint. For a level-3 tree Y, if R is
universal based on Y, t € dom(R), Ih(t) = 1, R [t is isomorphic to Y, put

My = (Ke)Mrn,

Mty is well-defined up to an isomorphism. Its wellfounded part is transi-
tivized. By Lemma |5.24] there are cofinally many cardinal strong cutpoints
in Mt ;. Similarly, for a level <2 tree T, define

MY = (K |e)MEn,

Hence, MF? = (M), If p factors (Y,Y”), R’ is universal above R, then
p;’yl = pff | M. If p factors (Y,Y’,T), R is universal above R, then
*,Y/,T Y/,T *
Pr = Pr rMF,Y'
A TI}-iterable mouse P is full iff for any strong cutpoint 7 of P, for any
[1}-iterable mouse Q extending P|n which is sound and projects to n, @ < P.

Lemma 5.26. Assume Aj-determinacy. Suppose I' is an iterable, weakly
remarkable level-3 EM blueprint.

1. Suppose YY" are 11}-wellfounded level-3 trees. Then [0]y = [0]y+ iff
Mry ~pj Mry; [[(Z)]]Y < [[(Z)]]Y’ iff Mry <pjg Mry:.

2. Suppose Y is a I3-wellfounded level-3 tree. Then MGy 1s full.

3. Suppose Y)Y are Tli-wellfounded level-3 trees. Then [0]y = [0]y: iff
Mty ~py Mty [0y < [0]y iff Miy <ps Miy..

Proof. 1. If [0]y < [@]y, by Theorem {4.71] there exist a IT}-wellfounded

Z and p minimally factoring (Y, Z), p/ minimally factoring (Y, Z) so that

[0]y = [@]z. By Lemma [5.19, Mry <p; Mr 7z ~p; Mry:.
If [0]y < [@]y+, we further obtain ¢t € dom(R) so that lh(t) = 1 and

[0]y = [t]z. By unboundedness of I, ran(p). ") C M zler 24 Hence, ppo"
is ¥j-elementary from Mry into Mr z|cr 2. Hence Mry <pjy Mr 2.
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2. Recall that there are cofinally many cardinal strong cutpoints in My .
Suppose 7 is a strong cutpoint of Mf - and Mf y|n < P, P is a sound II3-
iterable mouse, p,(P) < 7. Let Y’ be a IT3-wellfounded level-3 tree such that
|Pllps < [0]y: and Y is universal based on Y. By part 2, P <p; Mry-.
Since /\/ll*«yyln < Mrys and 7 is a strong cutpoint of Mr y~, the comparison
between P and My y is above 7. It follows that P < Mpy.. Hence P <
My

3. By parts 1-2 and remarkability of I'. O]

Assume Al-determinacy. Suppose I' is an iterable, weakly remarkable
level-3 EM blueprint. Suppose Y is a II}-wellfounded level-3 tree.
For s € dom(Y), let
Clt,Y,s = %M;Y
and

Cr,Y,s,co — WMfﬂyy,OO(C;,Y,s) :

In fact, cry.s.00 depends only on ([s]y, Yiree(s)), shown as follows. Suppose Y’
is another IT}-wellfounded level-3 tree and ([s]ly, Yiree(s)) = ([']v7, Yireo(5'))-
By Lemmal[d.47 Y[s] = Y’[s]. By Theorem [4.71] we can find IT}-wellfounded
level-3 trees R, R’ which are universal based on Y,Y” respectively, a IIi-
wellfounded Z and p minimally factoring (R, Z), p/ minimally factoring
(R, Z). In particular, p(s) = p/(s'). By Lemma [5.19} pZ : Mr g — Mr 7 is
essentially an iteration map, sending ¢ty ; t0 cr z,(s), and similarly on the
p'-side. Hence cry 00 = Cry’ 5. We can safely define

CF?Q?’Y = CF7Y787OO

for }/tree(s) = Q and Y= [[S]]Y-

If (Q,(d,q,P)) = (Q,(d;, g, P;)1<i<k) is a potential partial level < 2
tower, let F' € B@@ePDTiff 1 [0]9T — B is an order preserving function
and

1. if (@, (d, g, P)) is of continuous type, then the signature of F'is (d;, g;)1<i<k,

I is essentially continuous;

2. if (@, (d, q,P;) is of discontinuous type, then the signature of F is
(di, qi)1<i<k, F' is essentially discontinuous, F' has uniform cofinality

ucf(Q, (d,q,P;).

Let v € [B](C*?’(d’q’P;)T iff v = [F],e for some F € B@{da P, 7 is said to
respect (Q, (d, q, P)) iff v € (6;)(Q’(d7q’P3)T. ~v is said to respect @ if ~y respects
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some potential partial level < 2 tower (Q, (d’,q’,P’;). By Lemma |4.79] ~
respects @Q iff there is a ITi-wellfounded Y and s such that Yi..(s) = Q
and v = [s]y. Hence, cp g is defined whenever v respects () and the map
7+ cr,~ is order preserving. Define

Cry = Q0

cr is defined whenever v < (5:13 is a limit ordinal. Remarkability will ensure
that the map 7 + cr, is continuous. Assuming Aj-determinacy, define

C(B) = C

Q,'Y - 03#7Q7’Y’
3

C’(Y) = Co3# )

I8 = {c( ) : 7y respects Q}.
I® is the higher analog of Silver indiscernibles for L.

Lemma 5.27. Assume I3-determinacy. Then there is a club C C 8y such
that C € L[Ts,0%%] and for any potential partial level < 2 tree (Q, (d, q, P;),
for any v € [C](Q’mﬁ,

V= CS,)V'

Proof. Let D be a firm set of potential level-3 indiscernibles for M, and
let n e C'ift n € D and D Nn has order type n. C' works for the lemma. [

Recall Definition for the definition of R*. An ordinal a < w; is
wy-represented by T iff (1,(0)) € dom(7T) and [1,(0)]r = a. a < ug is
ug-represented by T iff (2,((0))) € dom(T') and [2, ((0))]r = «a.

Definition 5.28 (Remarkability). A weakly remarkable level-3 EM blueprint
I' is remarkable ift

1. I(R") contains the axiom “c((g)) is not measurable”.

2. T(R') contains the following axiom: if £ is a cardinal and strong cut-
point, ¢ = ¢(o)); (gbl c) (c), then VOIS satisfies the following:

(a) If avis wy-represented by both T and 77, then((j1 DE(KE), (jlc (b)) ~pJ
(5L c) (K|¢), (lec (). Here (¥ c) stands for the direct limit
of (jlc VK for Z,7' finite subtrees of U, Z a finite subtree of

Z', and ( jlvc’ U)K stands for the tail of the direct limit map from
. 1 .
GEYE(K) 10 (1)< (K).
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(b) Let F(a) = W(j{c)K(K‘g)’oo((j8017T)K(b)) for a represented by T.
Then sup,,,,, F(a) = Tgie ().

3. T'(R?) contains the following axiom if £ is a cardinal and strong cut-
point, e € {0,1}, ¢ = o), b= (gb ) (¢), then V@) satisfies the
following;:
(a) If ais up-represented by both T and T”, then ((j3 )" (K|£), (]ge () ~ps
((]g/c)K(KK) (3595 '(b)). Here (j5.)" stands for the direct limit
of (]2Z Z\E for Z,Z' finite subtrees of U, Z a finite subtree of

7', and (jgjﬁ’U)K stands for the tail of the direct limit map from
(Jge )¥ () to (jg)" (K).

(b) Let F(a) = W(jg‘c)K(KE)po((j26‘?267T)K(b)) for a represented by T.
Then sup, ., F(a) = Tkje0o(C).

In the next lemma, we denote y* = (((0), —1), Q" ((1, (0),0))) € desc(R'),
B! = (y',idgi,) € desc(R', Q',Q°), y** = (((0), —1),Q%, ((2,((0)).{(0)}))) €
desc(R?), B* = (y*,idgz .) € desc(R? Q*, Q°) for e € {1,2}. Note that if
[ is a level-3 EM blueprint, d € {0,1}, then T'(R') contains the axiom

o) =Gt = Cgi

and T'(R?) contains the axiom

Q2O Q21
C((O)) = Cy20 = Cy21 = CBQO = CB21'

Lemma 5.29. Suppose T is a level-3 EM blueprint. Suppose d € {1,2}, T
is a finite level < 2 tree.

. d
1. MF R % = Mr rigr, Cﬁng’* = (1de®T)1}“% .
2. If Q' is a subtree of T, then jF R1 o ((bF R Yerri0) = CrorieTB! -
3. Fore € {1,2}, if Q* is a subtree of T, then]F Rg O(gbr R2.x )" Herr2 (o)) =

CF,RQ(X)T,BQE

Proof. 1. Put Y = R%, ¢ = cryy o), R=Y ®&T, p = idg factoring (R,Y, T),
Y = idy,, factoring (Y R). We only prove the typical case when d = 2. Put

y = (((0)),Q° (e, x, W)) € desc(Y'). We have to show that

ran(¢Ly.,) = ran(p} 7).

128



The C direction: If a € Mry, then j&y(a) = pi" o yf(a). If Q is finite,
7 factors (Q%, T ® Q), then 7' =pgr idrgg. o factors (Q°, (T ® Q) ® Q°)
and (y,7’) € dom(Y ® (T'® @)). Hence,

Y,T
(WT@Q(C((O))))MF’Y =Cry,(y,n) = Pr (CF,R,L;7%1~7Q(y,7r/)>'

If w factors (Q*, T®Q), e € {0,1}, then 7’ =pgp idrgg.. o factors (Q*, (T®
Q) ® Q*) and (y*,7') € dom(Y @ (T ® Q)). Argue similarly.

The O direction: By definition.

2,3. Simple computation. [

Lemma 5.30. Assume Aj-determinacy. Suppose I' is an iterable, weakly
remarkable level-3 EM blueprint. The following are equivalent:

1. T is remarkable.

2. The map v = cr, s continuous.
3. There exist vo, V1,72 such that for d € {0,1,2}, Cfmsé[TQ](yd) = ug and
crqy ={crp: B <7a}-

In particular, if Hé—determinacy holds, then 0% is remarkable, and hence

3)

the map v +— ¢y’ 1s continuous.

Proof. 1 = 2: Suppose v < 6:1,) is a limit of limit ordinals. By Lemma m
there exists a [T}-wellfounded tree Y such that v = [((0))]y-

Case 1: of [Tz]W) =w.

Then R is a subtree of Y and A =pgr {a € w<* : a <pk ((0)),(a) €
dom(Y)} has limit order type. By indiscernability, cf. y (g)) = SUPaca ¢Fy, (4)-
By weak remarkability, for a € A, Mty [ty () = MY yy,)- By remarkabil-
1y, Az 00 18 continuous at .y (g))- It follows that Cr = SUPg. Cr 5.

Case 2. cf 3" 2](fy) = ug, d € {1,2}.

Then R?is a subtree of Y. Let F((a) = [B!]ygr for a < uy represented by
T. Then sup,_,, F'(a) = 7. By remarkability, Lemmaand absoluteness,
supa<ud CF,F(a) = Cy.

2 = 3: Trivial.

3 = 1: By Lemma , there exist I1}-wellfounded trees Y? for d €
{0,1,2} such that 74 = [((0))]y. Reverse the argument in 1 = 2. O
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Definition 5.31 (Level < 2 correctness). A level-3 EM blueprint I is level
< 2 correct iff for each finite level-3 tree Y, for each y € dom(Y'), putting
X = Yiee(y), T(Y) contains the following axiom:

If ¢ = ¢y, b= (¢x.)"'(c), £ > cis a cardinal and strong cutpoint, then

Y Collw:6) gatisfies t@llowing:
1. If & = (“0a) (d,0)edom(x) 18 Tepresented by both 7" and T”, then ((j% )% (K£),
U )0) ~ps (GEIFKIE), G ) (1)), Here (j¥)" stands for
the direct limit of (j)Z(’f/)K for Z, Z' finite subtrees of U, Z a finite sub-

tree of Z’, and ( ]§§5)K stands for the tail of the direct limit map from
(7%, (K) to (5%,.) (K).

2. Let F(a) = mr )K(KKLOO((].})((:Z)K(Z))) for @ represented by 7. Then
[Flix = Trjeoo(0)-

Lemma 5.32. Suppose I is a level-3 EM blueprint, Y s a finite level-3 tree,

T is a finite level < 2 tree, y € dom(Y), y = (y, X, (e,a:,W;) € desc(Y),
B = (y,idx.) € desc(Y, X,Q°). Then

1. M?Y,y = Mrye,r, ¢?€,Y’y = (idy(@yT)?’T, where idyg,r factors (Y ®,
T.Y,7).

2. If X s a subtree of T', then jffg o (ng}ﬁy)il(cr,iﬂy) = Crye,X,B-
Proof. 1. Put ¢ = cry,, R=Y ®,T, p =1idg, ¥ = idy, factoring (Y, R),
Yyl = (X, (e,z,W)),y = (v, X, (e, 7, Wi) We have to show that

ran(¢,,) = ran(pl").

The C direction: If a € My, then jl\ (a) = pi T o ap(a). If Q is finite,
7 factors (X,T ® @), then 7’ =pgp idrgg.om factors (X, (T ® Q) ® X)
and (y,n') € dom(Y ® (T ® Q)). L{,}T’Q(y,w’) is of the form (B, 7) where
B = (y,¢) € dom(Y ®,T). Hence,

("9 e,))MY = eryyr) = P (CrRB)-

The 2 direction: If B € dom(Y ® Q°), then ¢fy g = jfy (cryy-1(m)). If
B = (y,n) € dom(R), then c%’Y?B € ran(¢§’y7y) by definition.
2. Set X =T in part 1. n

It is straightforward to compute that if Y, y, y, B are as in the assumption

of Lemma then
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1. ifa = (daz)(d@)edom(x) is represented by both T"and 7", then [B]yg,r =
HBHY@)yT’;

2. letting G(d) = [B]yg,r for @ represented by T', then [y]y = [G],x.

From Lemmas [5.32], and absoluteness, we conclude:

Lemma 5.33. Assume Aj-determinacy. Suppose I is an iterable level-38 EM
blueprint. Then the following are equivalent.

1. T s level < 2 correct.

2. For any potential partial level < 2 tower (X, (e,x,W)) of continuous
type, if F' € (5%)()(7(6’”"’”/3”, then

crxF),x = [0 crp@ux

3. For any potential partial level < 2 tower (X, (e,x,W)) of continuous
type, there exists F' € ((5(%)()(’(6’9””‘/3)T satisfying

Crx,(F),x = [0 e (@

In particular, if Hé—determ@'nacy holds, then 0% is level < 2 correct, and
hence, if F' € (5§)(X’(E’X’W3)T, then

3)

(3)
CX[F], x

= [C_f — CF(&)]#X.
Theorem 5.34. Assume Hé—determinacy. Then 03 is the unique iterable,
remarkable, level < 2 correct level-3 EM blueprint.

Proof. Tt remains to show uniqueness. Suppose I',I" are both iterable re-
markable level-3 EM blueprints. We carry out a “comparison” between I'
and I'". By Corollary the function v — (cry, crv ) is BY(L,T7) in the
codes, and hence belongs to L[T3,I,T']. By Lemma [5.30] there is a club
C € L[T;,T,T"] such that v = cr, = ¢pv for any v € C. By Lemma[5.33] if
Y c [C] (Q,(d,q,P))T) then Y =CrQy = CI.Q,y-

Suppose R is a finite level-3 tree. Let ¥ € [C]®T. By Lemma , we
can find a ITi-wellfounded Y extending R so that [0y € C and for any
r € dom(R), v, = [r]y. Then (M y)o = (M y)oo = M2_700|cf[3])]y+w and for
any r € dom(R), mag oo (Cly,) = WM;/MOO(C’E/’Y,T) = ,. This ensures that
(Miy; (b y,)redom(r)) is elementarily equivalent to (M v (¢fv vy, )redom(R))-

Hence, I'(R) = I''(R). O
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The existence of an iterable, remarkable, level < 2 correct level-3 EM
blueprint is a purely syntactical definition of a large cardinal. The minimum
background assumption to make sense of it is Aj-determinacy. However,
its existence and uniqueness is proved under boldface II3-determinacy. It is
unclear if the assumption of boldface IT3-determinacy can be weakened, at
least to Ai-determinacy-+II3-determinacy. To draw a complete analogy with
the level-1 sharp, one would naturally ask

Question 5.35. Assume Aj-determinacy. Are the following equivalent?
1. There is an iterable, remarkable, level < 2 correct level-3 EM blueprint.
2. There is an (wy, w )-iterable M.
3. II}-determinacy.

Theorem 5.36. Assume Aj-determinacy. If there is an iterable, remark-
able, level < 2 correct level-3 EM blueprint, then I13-determinacy holds.

Proof. Let I' be an iterable, remarkable, level < 2 correct level-3 EM blueprint.
Suppose A C Ris IT} and G is the game on w with payoff set A. Let (Ry)scp<w
be an effective regular level-3 system such that x € A <+ R, =prr Up<wRap is
IT}-wellfounded. By iterability of I', M3, o is a II3-iterable mouse. Working
in M. o, define the auxiliary game H (CE(O))) where in rounds 2n and 2n + 1,

I plays z(2n) € w, v, € ¢(0)), 11 plays x(2n +1). Player I is said to follow the
rules at stage k iff letting r, € dom(Ryy+1) \ dom(Ryy,) for n < k, then for
any n < m < k, Ty, = (rm)— = Y < j(RzTnnLl)tree(rn)7(R1Fm+1)tree(rm)(f)/n>. Players
I wins H(c())) iff he follows the rules at every finite stage k. H(c(qy)) is a

closed game for Player I, hence determined in M7, .

Case 1: My, po ="0 is a winning strategy for Player I in H(cqoy)”-

Let o* be the strategy for Player I in G obtained by following ¢ and
ignoring the auxiliary moves 7,. If z is (in V) a complete run according

to o, then R, € p[&M;RO]. By Xj-correctness of set-generic extensions of

My, p[&MF’RO] C p[Ss). Hence € A. This shows ¢* is winning for Player
L

Case 2: My po =0 is a winning strategy for Player II in H(c((y))”-
We define a strategy o for II in G as follows: if lh(s) = 2n + 1, then
o(s) = a iff the formula

U((S(O),CL), s(1),..., (s(2n),cﬁ)) =a

belongs to I'(Rgy+1), where 7, € dom(Rgx11) \ dom(Rgx). We claim that o
is a winning strategy for Player II. Suppose otherwise and x is a complete
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run according to ¢* but x € A. Then R, is [I}-wellfounded. Let N =
M*(T, R}), where R} extends R,, dom(R}) = dom(R,) U{((1))}, RF((1))
has degree 0. By iterability of I', A/ is a IIi-iterable mouse. By coherency
of I, N %0 is a winning strategy for Player II in (H(c(1))))"”. However,

x P (crkN Jk<w 1S a complete run according to ¢ which is legal according to

the rules of (H(c((l))))N. In V, the tree of attempts of building a complete
run according to o which is legal according to the rules of (H(c(y))" is

illfounded. By absoluteness of wellfoundedness, N can see such a complete
run. Contradiction. [

Theorem is a generalization of Martin’s theorem that 0% implies
[I}-determinacy. It proves 1 = 3 in Question m For a real z, a level-3
EM blueprint over x is the obvious generalization of Definition [5.14} i.e., a
function T' that sends R to I'(R), a complete consistent £2-theory contain-
ing the additional axioms “z € R” and “z(i) = j” when z(i) = j. Assume
H;-determinacy, 3% is the unique iterable, remarkable, level < 2 correct
level-3 EM blueprint over x. Thus, in combination with Neeman [37,|3§]
and Woodin [43], we reach an affirmative answer to the boldface version of

Question [5.35

Theorem 5.37. Assume Aj-determinacy. The following are equivalent.

1. For all x € R, there is an iterable, remarkable, level < 2 correct level-3
EM blueprint over x.

2. For all x € R, there is an (wy,w;)-iterable M (x).
3. TIi-determinacy.

Recall the basic fact that L is the Skolem hull of the class of Silver indis-
cernibles. We exploit its higher level analog. Clearly, M,  is not the Skolem

hull of {cg??a . a respects X }, as by remarkability, the Skolem hull contains

only countably many ordinals below . The missing part will be generated

by ordinals below u,, in a specific way.

Lemma 5.38. Suppose N is Ii-iterable and satisfies 03% (0). Then for any
limit ordinal o € N,

TN oo(@) = sup{mnr oo (B) : T is Iy-wellfounded, B < ji(a)}.

Proof. Let the universality of level < 2 ultrapowers axiom be the following:

133



If « is a limit ordinal and ¢ > «a is a cardinal and cutpoint,
then VOl satisfies e oo(a) = sup{mryr(xie)oo(B) : T is
IT}-wellfounded, 8 < (j7)* (@)}, where (j7 )K denotes the direct
limit of (j7")% for 7" a finite subtree of T.

By elementarity and absoluteness, it suffices to show that M, ., is a model
of this axiom. Fix a < 83.

Case 1: cf s} [TQ](Oé) = w.

Then M, = “cf(a) is not measurable”. So when a < § < d3, (M
“TK|¢,00 1S continuous at o”.

L1 [T2]

Case 2: cf %" 7 (a) = uy.

Let I : u; — a be order preserving and cofinal, F' € Lgi[Tb]. Let 2 € R
so that F'is Aj-definable over L:[T5, 2] from {T%,z}. Let P € F,. and
a,F € P so that mpoo(@, F) = (o, F). Let @ = (L[S3])”. So for any
M}-wellfounded T, QT = (L[S;))?" and j5 = j% [ Q7. By absoluteness, it
suffices to show that

)Cou(w,g) =

a = sup{mpr oo (8) : T is Ij-wellfounded, 3 < jH(a)}.
This would follow from
uy = sup{mpr o, (8) : T is Ilj-wellfounded, 3 < (E)PT}.

The last equality is because {mpr o0 jg’T((seedg,(D)))P) : T is TIi-wellfounded,
T’ is a finite subtree of T, (0) € T"} is a subset of the right hand side and
has order type w.

Case 3: cf [TZ](Oé) = Uy.
Similar to Case 2. O]

Definition 5.39. If A is a structure that satisfies Axioms [IH3] in Defini-
tion [5.14] and the universality of level < 2 ultrapowers axiom, then

On

is the direct system consisting of models N7 for which T is a ITi-wellfounded
level < 2 tree and maps WffT/ - NT — N for 7 minimally factoring T, T".
Define

N = dirlim G,
TNT Now NT — N is tail of the direct limit map.
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If in addition, A is countable ITi-iterable mouse, then Gy is a subsystem
of Zys. By Lemma [5.38] Gy is dense in Zy, so there is no ambiguity in the
notation Ny:

Lemma 5.40. Suppose N is a countable I13-iterable mouse and satisfies
Azioms [I{3 in Definition [5.1]] and the universality of level < 2 ultrapowers
aziom. If m : N'— P is an iteration map, then there exist a I1i-wellfounded
T and v : P — NT such that 1 o m = ji and ) is essentially an iteration
map.

The direct system Gy is useful even when N is not Hé—iterable. In the
proof of the level-4 Kechris-Martin theorem in Section [7], we will inevitably
have to deal with partially iterable level-3 EM blueprints. The structure N
will be the EM model built from a partially iterable level-3 EM blueprint.
The advantage of the (possibly illfounded) direct limit N is that the order
type of its ordinals is easily codable by a subset of u,. If X is a finite level
< 2 tree, a € N, 5 = (dﬁx)(d,x)edom(x) is represented by both 7" and 7", then

TAT o0 © Jr (@) = TAT o0 © jf\(/T/(a). We can define
X,T
TN X, Fi00(@) = TAT 00 0 Gy (@)
for 5 represented by T". So
Noo ={Ty x Goo(@) 1 a € N, X finite level <2 tree, 5 € [wi]¥T}.

Essentially, the inner model theoretic comparison between mice is replaced
by the comparison between IT3-wellfounded level < 2 trees in Theorem m
A level < 3 code for an ordinal in 8} is of the form

(R, 7, X, 5,77

such that R is a finite level-3 tree, ¥ respects R, X is a finite level < 2 tree, 5
respects X, and o is an £#-Skolem term for an ordinal. It codes the ordinal

(.7, X, 8,707 =7y

M*
RaX,g,OO (U 0%#.R ((C_’/‘)Tedom(R)>>-

By Lemmas [5.40 every ordinal in &3 has a level < 3 code. The evaluation
function on level < 3 codes is ¥j(0°#), and hence definable over M;_(0°#).

5.5 Level-3 indiscernibles
If 7 respects a level-3 tree R, define

3
Cy = (Cg%t)ree(r)y,yr)redom(R)
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which strongly respects R. Comblned with Lemma [4.61], this leads to the
order of level-3 indiscernibles for M, (Q) < cQ, , iff letting (vi)1<i<k be
the Q- approxnnatlon sequence of ~ and (V) 1<i<k be the @'-approximation
sequence of 7/, then (v;)1<i<k™(—1) <srx (V))1<i<w(—1). We prove the
general remarkability property of 03# based on this order.

Lemma 5.41 (General remarkability). Suppose ¥ and 7' both respect a finite
level-3 tree R. Suppose r € dom(R) and for any s <% r, v, = .. Then for
any L-Skolem term T,

Proof. Assume TM;"X’ (c5) < cgt)ree(r)m. If s € dom(R) and r <% s let I(s) be
the largest Isothat (r[)f = (s [l)R It is easy to find 4 € [83]"" for I < 1h(r)
so that 70 = 7, Y80 = 5" and 4! # 7’“ — (r 2B sAl(s) =1). Thus, we
may assume a fixed [y so that 75 # 7. implies I(s) = lp. The case Iy = 0 is
just Lemma [5.24] Assume now [y > 0. Note that I(s) = [y also implies that
Rivee(s110) = Riree(r [1p). A sliding argument similar to Lemma reduces
to the special case that (Ih(s) =1h(s") = lp+1Al(s) = 1(s) =1y) = 7s < Vs
Let (Y,p,p’) be the amalgamation obtained by Lemma so that p,p/
both factor (R,Y) and if 5,8 € (03] and (Ih(s) = lh( ) =l+1AIs) =
I(s") = lo) = 05 < &y, then 5@ € [83)"1, where 0@ &' = € ey = 0r,
€p/( r) ol Put p e D iff c = 1. By indiscernability, we may assume that
3,4 € [D]f", so that & = ¥, ¢ = 7. It is easy to construct 5 € (53] 7
for € < 7, so that 7@ 0t € [8} ]YT and n < £ <7, — 67 @ 6¢ € [65]Y1. Put
¢ = 72 (c5,). By indiscernability, it suffices to show that €7 = ¢ for some
(or equivalently, for any) n < & < 7,. Suppose otherwise. By indiscernability
again, either n < £ <7, = € > et orn < € < 7, — €7 < €&, The former
gives a descending chain of ordinals. The latter implies that 7, < 72 (c5),
contracting to our assumption. O

Recall that if ¢ < ¢ are consecutive L[x]-indiscernibles, then L[z#] =
¢ < ¢*. The level-3 version is similar.

Lemma 5.42. Assume H -determinacy. For any cw <€ 1I® there is an
L-Skolem term 7 such that M (0%) |= “r(sup(I® N §),-) is a surjection

from sup(I®) N &) onto €.

Proof. The evaluation function on level < 3 codes is ¥1(0%#), and hence is
definable over M£m<03#>' If (R,7,X, B, "o") and (R,7, X, 3, fo1) are both
level < 3 codes an ordinal below & and Vr (7, < & — 7. = 7.), then by
Lemmal5.41] they must code the same ordinal. This easily defines a surjection
from sup(I®® N ¢) onto & in M, (0%#). O
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By Lemmal4.61] for any finite level-3 tree R, if A < A’ then “ca < ca/” is
true in 0°#(R), if A ~ A’ then “ca = ca/” is true in 0°#(R). For notational
convenience, if X is a finite level < 2 tree and v = [F],x is a limit ordinal,

define cg?,)7 =[d— cg’() &)

In

],x; define céi);l = &5. Ordinals of the form cg?)7 when
Y3 )

X # ) are definable from elements in I® over M;_: If the X-approximation
sequence of v is (v;)1<i<k, (@, (di, Gi, P;)i<in(g)) is the X-potential partial level
< 2 tower induced by v, 7 : Q — X is the induced level-2 factoring map,
then

1. if v is of X-discontinuous type, then cgi)7 = (cg,)%);
2. if v is of X-continuous type, ()~ is the subtree of () obtained by re-
moving (d, qx), then cg?% =1%o jﬁ;’Q(CS,)yk,l)'
Define I®) =the closure of I® under the order topology. Every ordinal
in I® is of the form cg?,)7 where X is finite and v < &3 is a limit. Thus, if

A = (r,m,T) € desc™(R) and 7 strongly respects R, then cgfﬁm € I® and is

a limit point of 1®).
Given Yo, . - -, Yoy Vo, - - -V, € IO
tree R, nodes rq,...,r, € dom(R)

cgi)ree (ri). 607 Vi = cgt)m(n) s for any i« < n. By indiscernability, if ¥ is a shift of

a shift of 4" iff there exist a level-3

, Y is
, 0,0" both respecting R such that ~; =

7', then for any L-formula ¢,

My, | (7) & oY)

Lemma 5.43. Suppose R is a finite level-3 tree, T is an L-Skolem term, 7
strongly respects R. Suppose A = (r,m,T) € desc™(R). Then

7Moo (e5) < c(TB:)WA —

M o (c%?’)) < min(I(3) \ sup{c(?’) A = (7, T <EAY).

T v ar

Proof. Suppose V2 (cy) < Cg?’)WA. Let 6 = min(/® \ sup{c(Tg,{vA, A =

(r', 7', T") <% A}). We shall show that {0’ : c57 () is a shift of c57(8)} is
cofinal in 4. From this and indiscernability, 72 (¢c5) < 4.

If r =0, then § = C(yfi)w where a = max.,, R{0}. So {¢' : ¢57(') is a
shift of c57(8)} is cofinal in ya = Jj.

Suppose now r = (r,Q, (d,q,P;) # 0, Ih(r) = k, ucf(R(r)) = (d*,q"),
and if d* = 1 put ¢* = q*, if d* = 2 put q* = (¢*, P*, p").

Case 1: r is of discontinuous type, (A) ends with —1.
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Let s = max.,, R{r,—} and s = (s,Q, (d,q,P;). Then 6 = c(TS";T(%)W.
It is easy to compute that {¢" : ¢57(d’) is a shift of c¢57(J)} is cofinal in ya.

Case 2: r is of discontinuous type, (A) ends with an ordinal.

If either dj, = 1 or dy = d* = 2/ Aq* € desc(AQ), let 7 factor (Q,T) so that
T agrees with 7 on dom(Q) \ {(d*, ¢*)}, 7(d*, ¢*) = pred(w, T, (d*,q*)). Then

0= cgi)’)TT(%) +- Otherwise, let U be the subtree of T' obtained by removing
pred(w, T, (d*,q")) from its domain. Then ¢ = CS);U(%)W' In either case,
{6" : ¢57(¢") is a shift of ¢ ()} is cofinal in 4.

Case 3: r is of continuous type.

Similar to Cases 1 and 2. O

Lemma 5.44. Suppose R is a finite level-3 tree and A = (v, 7, T) € desc™(R),
r # (), 5 strongly respects R. Then c%A is a cardinal in M, .

Proof. Otherwise, 72 (c5) is a wellordering on o =pgy cardM;»OO(cgi )VA) of

order type Cg)m and a < Cg?,)m‘ Put 8 = min(/® \sup{cg,%)ﬁA/ Al =

(r', 7', T') <® A}). By Lemma[5.43, o < . By Lemma [5.41] if 0 respects R
and Vs (05 < B — 05 = 75), then 7722 (c5) = 72 (¢5), and hence ya = 4.
However, it is easy to find such 5 satisfying da > va. O

6 The boldface level-3 sharp

From now on, we assume ITj-determinacy. Recall that L[T3] = (J,op L[T5, ).
Every subset of 83 in L[T3] is definable over M;_(z) for some z € R. All the
results in Section [5| relativize to any given real z. If R is a II}-wellfounded
level-3 tree, M s# g is the EM model built from 2*#(R). R ML

3# R’
cgé}ﬁ, cﬁj%, Ca s 19(03), 1:953) have obvious meanings. Fixing z, the function

(Q,7) — cg’ém is $3(«*#) in the codes and hence is definable over M (2*#).

6.1 Homogeneity properties of S

A level < 3 tree is of the form R = (°R,'R,%R,3R) so that <R =pgp
(°R,'R,?R) is a level < 2 tree and >R is a level-3 tree. If T is a level < 2 tree
and Y is a level-3 tree then T @ Y denotes the level < 3 tree (T, 'T,T,Y).
R is ITi-wellfounded iff %R is I -wellfounded and ®R is II}-wellfounded.
Suppose R is a level < 3-tree. Define dom(R) = Ug{d} x dom(‘R),
desc(R) = Ug{d} x desc(‘R). If § respects <2R and 7 respects *R, define
3@ N = § = (64) (d,r)edom(r) Where ¥, = 93, for (d,r) € dom(=*R) and
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3%, = 7, for r € dom(®R). Define A®@ B ={f®7:5¢€ A7e B} If
E C w and C C 61, define [E,C]R" = [E]™" @ [C]R". § respects R iff
Je [wi, 8371 A finite level < 3 tree R induces a filter 4% on finite tuples in
d3, originated from the weak partition property of 83 under AD. uf is the
higher level analog of the n-fold product of the club filter on w;.

Definition 6.1. Assume Hé—determinacy. Let R be a finite level < 3 tree.

We say
Acpulf

iff there are clubs F C wy, C C 6% such that F,C € L[T3] and
[E,C)"T C A.
If Y is a finite level-3 tree, put A € p iff [w]9"T @ A € pu@°®Y.

pft is an L[T3]-measure, the reason being as follows. Every A € L[T3]
is definable over M, (x) from {r} for some real z. By indiscernability
and remarkability, the section A* =pgp {5 - B o 053327 € A} is invariant
in ¥ € [83]%. So C = {cfzc . € < 81} and some E deciding the p~%-
measure of A* works. p® is the product measure on L[T3] of =% and .
Let j® = jf[RTg] be the ultrapower map from L[T3] to L[j#(T3)]. For any
r € R, j® is elementary from L[T3, x| to L[j%(T3),z]. By indiscernability
and remarkability again, if @ < &3 and F : [wy, 83" — o, F € L[T3],
then there is z € R and G' € Ly [13] such that for any 7 € (6271, for any

3 ew]B, F(3®7) = G(f3). Therefore,
185 =578,
For (d,r) € dom(R) U {(3,0)}, let
seed@,r)

be the element represented modulo p# by the projection map 7 +— %,. If R
is IT3-wellfounded, the direct limit of 5% for R’ a finite subtree of R” and
R’ a finite subtree of R is wellfounded, and we let j% : L[Ts] — L[j"(73)] be
the direct limit map; if R is a finite subtree of R then ;&7 : L[/ (T3)] —
L[j®(T3)] is the tail of the direct limit map. If (d,r) € dom(R'), R’ is a finite
subtree of R, then seed&r) = jR/’R(seedfgm)). Let

seed = (Seedzyr))(d,r)edom(R)‘
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If Y is a IIi-wellfounded level-3 tree, then j¥ = oY seed}j = seedgjgy,
seed’ = (seed )ycdom(y)-

In particular, seedng) = j7(8}), seed&r) = seed(iz}f) when d < 2. If A €
desc™(®R’), r € desc*(*R’), R’ finite subtree of R, let seed&A) = RV
Yalm), seed(y = 7R ([7 = Bl ,w). By Lemma, seed(; o) < seed(} o1,
iff A < A'; seed&A) = seedg’A,) iff A~ A seedf;A) for finite R is the higher
level analog of uniform indiscernibles. If YV is a II}-wellfounded level-3 tree

and A € desc™(Y), y € desc*(Y), let seedy = seed% f;/, seedY = seed% ;‘IB)Y.

We will show in Section that seed (3,4) = = seed A for A € desc™(R).

Under full AD, the set of seedg,@) for finite R is exactly {Nepq tw <€ <
w*”} by Martin [13, Theorem 4.17] and Jackson [12]. The set of seedg,@)
for finite R and their limit points will be level-3 indiscernibles. The rest of
this paper will contain a thorough analysis of the structure of level-3 uniform
indiscernibles.

6.2 Level-3 uniform indiscernibles

Definition 6.2. If R is a finite level < 3 tree, a is an R-uniform indiscernible
iff o € e JH(IY).

By Lemma [5.43] the set of R-uniform indiscernibles is the closure of
{seed(§ ) : A € desc™(*R)}, which has order type & 4 1 if [(]sz = ¢ By
Lemmas , « is an R-uniform indiscernible iff a > &3 is a cardinal in
L[j%(T5)]. In particular, the least R-uniform indiscernible is d3.

Recall that if R is a level-3 tree, s € dom(R), then R [s the subtree of
R whose domain consists of r for which (r) <gx (s). If R is a level-3 tree
and A € desc™(R), we let R A be the subtree of R whose domain consists
of r for which (r) <px (A). If R is a level < 3 tree and A € desc™(°R),
s € dom(R), let R[(3,A) ==R& PR|A), R|(3,s) ==*R® (°R|s).

Lemma 6.3. Assume I1}-determinacy. Suppose R is I1}-wellfounded level <

3 tree and A € desc™ (°R). Then j7A)R is the identity on L jre.a) g1 [ (T5)].
Furthermore, if s € dom(°R) and lh(s) = 1, then j¥39)(§3) = seed&s).

Proof. Using a direct limit argument, it suffices to prove the case when R

is finite. We prove that er(S’A)((ié) is contained in the range of jHGA)MR
Suppose a = [G],r < seedg Ay € R, 7 is an L-Skolem term such that

G(H) = TMim(I) ,7) for any 7 € [w1,5 }ET and G(7) < 3ya for pf-ae.
5. By Lemma | if 3 respects 2R, § and & both strongly respects R
and Vr ((3,r) € dom(R 1 (3,A)) — %, = %), then V2= (2 f & ¢ 3§) =
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M5 oo () (g;,g@ cig()?). Using the fact that (Q,~) — cgjgﬁ is definable over

M, (2*#), we can find an £-Skolem term o such that for p"-a.e. 7,

— - 1‘3#
G(7) = oM@ (3 (B) (40 cdom(R(3.A)))-

Hence, a = j73A)4(3) where f = oer(&A)(Mioo(’”S#))(xS#,seedRK‘g’A)). This
also implies that jAGA)(§1) > seed& a)- The “furthermore” part is due to
unboundedness of level-3 sharps. O

Suppose Y is a level < 3 tree, T'is a level < 2 tree. A (Y, T, x)-description
is of the form B = (d, (y, 7)) so that either d = 3 A (y, ) € desc(*Y, T, ) or
d<2A(d,(y,7)) € desc(S%, T, *). As usual, B = (d, (y, 7)) is abbreviated
by (d,y, ). If Q is a finite level < 2 tree, a (Y, T, Q)-description is (3, (y, 7))
so that (y,7) € desc(*y;T,Q). If P is a finite level-1 tree, a (YT P)-
description is (2, (y, 7)) so that (2,(y, 7)) € desc(S%,T,P). A (Y,T,—1)-
description is (1, (y,®)) so that y € dom(Y). desc(Y,T, ), deSC(Y T Q),
etc. denote the sets of relevant descriptions. If Y, T are finite,

seedg’T € L(jy OjT<T3))

is the element represented modulo u¥ by idg’T.

Suppose that R,Y are level < 3 trees and T is a level < 2 tree. p
factors (R,Y,T) if p is a function on dom(R), =% =pgr p | dom(=?R) factors
(<2R =%, T) and 3 =pgp ! I dom(®R) factors (°R,%Y,T). p factors (R,Y) iff

% factors (2R, <2Y) and 3p factors (°R,%Y"). Suppose that p factors (R, Y, T).
If F € (w1, 63)YT, then

FpT : [(,L)l]TT — [wl, 6§]RT

— —

is the function that sends £ to F<T2 &) @ Fyg( ). If T is finite,
id"
is the function [F]* — [F)],r. If Y is also finite,

seedYT [dYT] € L(5¥ o j7(13)).

By Los$ and Lemmas |4.50|,|4.51H4.63H4.64|,|3.18”4.46|, for any A € uf?, SeedZ’T €
7Y 0 jT(A). We can unambiguously define

Pt L(GN(Ty) = LG 0" (T3))
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by sending j(F)(seed™) to j¥ o j7(F)(seed’’”). In general if Y, T are TI3-
wellfounded and T is I}-wellfounded, then p¥7 o jHf = j¥'Y o j0WT'1)) o
(P)Y"T for R,Y' T finite subtrees of R,Y,T respectively and p =pl
dom(R') factoring (R, Y, T"), where j ("1 = U, i’ (57T | LT (T3), x]).
In particular, p¥'To R(dl) = j¥(63). If A € desc™(°R), then p"7 (seed(} 5)) =
seed (g 57 (a))-

IfY is a level < 3 tree and T is a level < 2 tree, then

YRT=CYeT)eYaT)

is (modulo an isomorphism) a level < 3 tree. The domain of Y ®T consists of
B = (d,(y,n)) € desc(Y, T, *). So p factors (R, Y, T) iff p factors (R, Y @T).
The identity map idygr : B — B factors (Y @ T,Y, T).

Lemma 6.4. Suppose Y is a I13-wellfounded level < 3 tree and T is a 13-
wellfounded level < 2 tree. Then LjY@T(éé)[jY(gT(Tg)] L;vs )[ o j1(Ty)]

Y, T

and (idygr)"" is the identity map on Ljver gy [7" " (T3)].

Proof. Assume without loss of generality that Y, T are finite. Put R =

Y @ T and p = idygr. Then p¥T(uf ulb ay) = ué’ﬁT(A)) for any A € desc™(°R)

and VB € desc*(Y) JA € desc™(R) p'(A) ~¥ B. Recall that the set
of LL[j®(Ts)]-cardinals in the interval [83,j7(83)] is exactly {uf} ) : A €
desc™(®R)}. For any z € R, p¥'T | L[j®(T3), ] is elementary from L[j7(T3), z]
to L[j¥ 047 (T3), z]. Hence, it suffices to show that p**” [ &3 is the identity and
whenever [|A||_ss is a successor cardinal, then p**" is continuous at ug’ A)

By Lemma and Corollary Gt ey = R 1o} = Yo 1oy =
7Y 047181, By indiscernability and remarkability, p¥'T [ 83 = <27 |6l is
the identity map.

Suppose [|A||_sx is a successor cardinal and we prove that p" is contin-

uous at seed(3 A) Suppose a < Seed a)- There is x € R such that
@ < min(j (1(3))\Sup{u313> B <. p'(A)}).

Let 8 = min(j7(1) \ sup{seed(j gy : B <} A}). Then 3 < sced(} 5, and by

induction and elementarity,
PP (B) = min(" o 5T (L) \ sup{ufy ) - B <) pT(A)}) > o
the last inequality from j7(I%) C I!¥ and elementarity of ;¥ O

Lemma 6.5. Suppose Y, Y are I1}-wellfounded level < 3 trees. Then [(]sy =
[0y iff 5 (85) = 3" (83). [0y < [0 iff 5 (d5) < j*"(83)-
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Proof. If [0]sy < [0]sy~ then by Theorems and 4.71] there exist a finite
T and p that factors (Y,Y’,T). So p¥"To Y( 3) =77 (83), yielding j¥ (83) <
77 (6. So Wiy = [0y, implics ¥(81) = 77/ (8). I [Wy < [0l we
further obtain B € desc(*Y”, T, %) such that 1h(B) = 1 and [B]sy:gr = [0]sy-
Put Z = (Y ®T) | (3,B). Then p factors (Y, Z). Hence j¥(83) < 7%(63).
By Lemma the factor map j%Y ®7 is the identity on Lz s1)[57(83)] and

3% (83) = seedé‘gf By Lemma seedé%r <jV oy (51) iY'(8). O

Lemma 6.6. Suppose Y is a finite level < 3 tree and A € desc™(*Y). Sup-
pose ||Al|_sy =& and R is a finite level < 3 tree such that [(]sg = &. Then
seedé’A) = j1(8)).

Proof. It A = (0,0,0), this is exactly Lemma [6.5] Suppose A # (0,0,0).
Let T be a finite level < 2 tree and let p minimally factor (R,Y,T). Let
B € desc(*Y,T,*) such that 1h(B) = 1 and [Blsygr = ¢ Put B =
(y,7) € desc(®,T,Q). A routine computation gives A ~ (y,7,T ® Q).
So seed‘f,f9 = seedY®T) Put Z =Y ®T [ (3,B). Then [0]sz = [0]szr- By

Lemma | j%(83) = seedé%r). By Lemma , §1(83) = j%(83), and we are
done. O

Definition 6.7. In view of Lemma [6.6], we define the level-3 uniform indis-
cernibles:

1. ugzl = j%(83) when ¢ < w*’, R is a ITl}-wellfounded level < 3 tree and
[0]r = €
) _ (3)

2. If 0 < £ <w*” is a limit, then U’ = SUP, ¢ Un .

If R is a finite level < 3 tree and [0]sgr = ¢, then the set of R-uniform
indiscernibles is {u7(73 0 <n < €&+ 1} and we have Seed(3 A) = ugl for
[A] Zsr =7

The next lemma is the higher level analog of 85 = us.

Lemma 6.8. Assume IT3-determinacy. Then &y = ug?’).

Proof. If W is a X}(x) wellfounded relation on R, then W is &3-Suslin
via a tree in L[T3,z], so by Kunen-Martin and Lemma [5.42] rank(WW) <
((63)") M7 < min(j7( 963#)\(5§+1)) <uf) as [N =w=T1 Ifa <u’,
pick z such that o < min(j%’ ( ) \ (51 +1)). Lemmam gives a surjection
f: 8% — a which is definable over ;% (M, (z)) from {d},z}. From f we

2,00

can deﬁne a AL(2*") prewellordering of length a. O
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6.3 The level-4 Martin-Solovay tree

Let R* be the unique (up to an isomorphism) level-3 tree such that

1. for any finite level-3 tree Y, there exists p which minimally factors
(Y. R);

2. if r € dom(R™) then there exist a finite Y and p which minimally
factors (Y, R) such that r € dom(p).

In other words, R is the minimum IT}-wellfounded level-3 tree that is univer-
sal for finite level-3 tree in terms of minimal factorings. We fix the following
representation of R*°, whose domain consists of finite tuples of ordinals in

w
ww.

1. (&) € dom(R™) iff 0 < & < w*”. R>®((&)) is the Q% partial level < 2
tree induced by &;.

2. If r = (&,...,&-1) € dom(R*), then r— (&) € dom(R™) iff & <
w*” and there exists a completion Q" of R*(r) such that the Q-
approximation sequence of & is (§1)1<z<ka if (&) € dom(R>) and
Q" is the unique such completion, then R (r~(&)) is the QT -partial
level < 2 tree induced by g;

Therefore, [0]gr = u, and if r = (&1, ...,&) € dom(R™), then [r]r = . If
Y is a finite level-3 tree, then the map y — 7, minimally factors (Y, R), where
if ([[y Z]]y)1<2<1h (fl, .. ;élh y ) then Ty = (517 . 7£1h(y))~ If0 < f < w“’w,
let RP = R> [(5) By Lemma , if 0 < & < w*”, then the factoring map

G FT s the identity on L ree , [T (T3)] and j7%¢ (83) = seedf’g<> = u!¥.
J ¢ (d3) ¢

In particular, %7 (83) = uf’w)w.

R will be the tree based on which level-3 sharp codes for ordinals below
uu(izw are defined.

LO® is the set of v € R such that X, is a linear ordering of u,,, where v
X, is the A} surjection from R onto P((V,,Uu,)<), defined in Corollary 2.12]
and renamed in the beginning of Section . wWO®) = WO(()3) is the set of
v € LO® such that X, is a wellordering of u,,. Wog?’) is 3. For v € WO®),
put ||v|| = 0.t.(X,). Every ordinal in &} is of the form ||v| for some v €
WO

A level—S’ sharp code is a pair (77, 2%%) where 7 is an £27”-Skolem term

for an ordinal without free variables. For 0 < & < w*”, WOS’) is the set of
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level-3 sharp codes (77, %) such that 7 is an £2%€ -Skolem term. WOS’) is
IT} for 0 < ¢ < w*”. The ordinal coded by (7, x3#) is

.RO© _ . RO®
‘<l_7-—l’ IS#)‘ _ 7_(] (Mj o, );seed )

For each ¢, WOS’) is II}. By Lemma , if (777, 2%%) € WOS’) and 7 =

0(Z, ¢y - -+ ), 0 is an L-Skolem term, then
.R2° — oo
|<|—T—|,J,’3#>| =gl ¢ Ms.00) (g, seedff et )

Lemma 6.9. The relations v, w € WOS’UZW Alv| = |w| and v,w € WOS)L A

lv| < |w| are both A}.

Proof. !('—Tj,x?’#}! = ‘('—T"', (l’/)3#>‘ iff 7 =0, crpsvs0r), T =0T 00,0 ),s
0,0’ are L-Skolem terms, and for some finite level-3 tree Y and some p factor-

ing (Y, R*) such that 77 C ran(p), “o((2)ief; Cp-1(r1)s - - ) = 0 ((Z)rights Cp-1(1y5 - )7
is true in (x @ 2/)3# (V). O

Recall that WO,, is the set of (level-1) sharp codes for ordinals below u,,.
The connection between level-3 sharp codes and level-1 sharp codes or WO
is also Al. For instance, the relation “v € WOS?W ANw € WO, A |v| = |w|”
is Al

If I is a pointclass, say that A C ufgw x Ris in I' iff {(v,2) : v €

WOfizw A (Jv],z) € A} is in T. T acting on subsets of product spaces is
defined in the obvious way.

Lemma 6.10. 1. Suppose that ¢ < n < w*" and p factors (REO,REO).
Then pfa [u?) is AL, uniformly in (£,m, p).

2. Suppose that ¢ < w*” and Q, Q" are finite level < 2 trees, Q) is a subtree
of Q. Then jF&(@Q)) [uég) is AL, uniformly in (£,Q,Q").

Proof. 1. a < uf)/\,oﬁ"?vo () = f iff there exist # € R, an £-Skolem term 7 and
r1,. ..,y such that r; € dom(Rg®) for any i and o = (7 (z, ¢y - -, 6, ), 2),
B = (T(&, Cpra)s - -+ Cotra)) s ).

2. a < ugg) /\j(Rgo’(Q’Q/))(a) = [ iff there exist x € R, an £-Skolem term 7
and 71, ..., 7, such that r; € dom(Rg°) for any i and o = ("7(z, ¢y, ., ¢, ), 37,
B = (9 (r(@ ey ) 7). O
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By Lemma [5.42} the set of uncountable L[j%™ (T3)]-cardinals < u®

e 18
the closure of

{u, -1 <n <w}U{seedi : A € desc™(R™)}.

By Lemma , if A = (r,n,T) € desc™(R>®), r = (r,Q, (d,q,P;), ro=
(&)1<i<k and seed’” > 83 is a successor cardinal in L[j%™ (T3)], then r is of
discontinuous type, & is a successor ordinal, and letting " = (&;)1<ij<r ™ (& —

1), v =(,Q, (d,q,P;), A’ = (v, 7, T), then
{(&%#, V) (g, ca’)") i x € R, 7 is an L£-Skolem term for an ordinal}

is a cofinal subset of seedf .

A level-3 EM blueprint over a real I' is completely decided by I'(R>).
I is coded into the real zr € 2¥ where z(k) = 0 <> k € I'(R>). We shall
identify I' with zr when no confusion occurs. We define the level-4 Martin
Solovay tree Ty which projects to {z°# : x € R}. T, will be A} as a subset
of (w x ufzw)“’, the complexity based on Lemma |6.10]

Let T be a recursive tree so that z € [T] iff z is a remarkable level-3 EM
blueprint over a real. Let (7;)1<;<., be an effective enumeration of dom(R>)

and let (7;)k<. be an effective enumeration of all the £-Skolem terms for an
(3)

ww?

ordinal, where 74 is f(k) + l-ary. Ty is the tree on 2 X u . where

(t,a) e Ty
iff t e T and

Loif & < < W, r,., 150 € dom(RR), r1,..., 750y € dom(Ry°), p
factors (R, R;°),

b}

e B : .
() if “7(Z, Cp(ra)s -+ Coryuy)) = TU(@; Cryy oo+ )7 18 true in ¢, then

P (ag) = au;

(b) i “Ti (@ Cor)s - - -5 Cotrpy)) < &y Criy -5 Crpy)” I8 tTUE in ¢, then

pf (o) < au;

2. & < W, 71, Pamax(fk), £ € dom(R™® 1), Q, Q" are finite level < 2

trees, @ is a subtree of Q’, “j99 (1y(z, Criseees Crp)) = TUZ, Cry ooy Crpyy)
is true in ¢, then j(R?’(Q’Q/))(ak) = q.

Theorem 6.11. p[Ty] = {23 : © € R}. Furthermore, for any x € R,
(7’,5] (]\42“”(33)))(30,seedf”1 ,...,seed?ﬂk)))Mw is the honest leftmost branch of

(T) o -
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iR - x o} (<]
Proof. By definition, for any z, (3%, (T,i] (Moo )))(.17, seed™ ... ,seedffw))k@) €

[Ty]. Suppose now (z, §) € p[Ty]. Let = be a real so that z codes a remarkable

level-3 EM blueprint I" over x. We need to show that z is iterable and for
iR S x (e o] ']

any k, T,EJ (Moo )))(z, seedﬁ ,...,seedf}(k)) < B. For each k, pick a finite

subtree Y; of R® and Fy, : [63)"*" — &3 such that {ri,...,7;x} C dom(Y3),

F € L[T3] and j"»%7([Fi] %) = Be. By L[Ts]-countable completeness of the

club filter on 83, we can find a club C' in 8§} such that C' € L[T3] and

1. if £ <np < w¥, Y, is a subtree of R, Y] is a subtree of Ry, p factors

(B, Ry),

() 3f “Te(@, Cor)s - -+ s Cplrpay)) = TU(Es Crys e v v s Crpyy)” 18 true in T(R),
7 € [CTT, then Fyy(, [ dom(Y3)) = Fy(7 [ dom(Y7));

(b) i “Th(Z, Cotra)s -+ s Colrp)) <T@y iy o5 Crpy)7 I8 true in D(R™),

7 € [C)FT, then Fy(¥, dom(Yy)) < Fy(¥ | dom(Y))).

2. if £ < w¥”, Y}, Y, are subtrees of R, Q, Q' are finite level < 2 trees,

Q iS a Subtree Of Q/a “jQ’Q/(Tk (ga Cia o 7CTf(k)>) =T (i? &7 e aCTf(l))”
is true in T(R>), ¥ € [C]%, then j9@(F(7 | dom(Y:))) = F( |
dom(Y;)).

Suppose S is a ITi-wellfounded level-3 tree. We show that My g is a II3-
iterable z-mouse. Put N' = Mrgs. Put n € Cy iff C' N7 has order type 7,
n € D iff Cy N7y has order type n. Fix § € [D]°T. We define an embedding

0: Ord" — 4}

as follows. If o is an £-Skolem term, sy, ..., s, € dom(R), R is a finite subtree
of S, a = (U(ci,...,ci))/\/7 p factors (R, Y%), Ti(cr,...,¢rq,) is logically

equivalent to o (Cp(s,)s - - -5 Co(sn))s Je [Col"*1, 8,(5) = 75 for any s € dom(R),
we put

0(a) = Fi,(9).

0 is well defined: Suppose o’ is another £-Skolem term, s}, ... s/, € dom(R'),

) On!

R’ is a finite subtree of S, “o(z,cs,,...,¢5,) = o'(x,¢q;,... ¢y ,)" is true
in I'(S), p' factors (R, Yy), mw(x, ¢y, - ,crﬂk,)) is logically equivalent to
o' (&, Cp(sy)s -+ Cs ), O € [Col"™T, 0,5y = 75 for any s € dom(R’). Pick
£,& < w¥ such that Y} is a subtree of Rg°, Vi is a subtree of Rg’. Let
(Y*, 1,1/, &) be the amalgamation of (Y}, ) and (Yy/, &), obtained by Lemmam.

147



That is, Y* is a finite level-3 tree, ¢ factors (Y, Y™*), ¢/ factors (Y, Y™),
€€ [Co]"™, ey = &y for y € dom(Y), ey = 0, for y € dom(Yy). So
“O(Z, Cpop(sr) ) = (L, Cprop(sy), -~ )7 is true in D(Y*). Pick n < w*”
large enough so that there exist ¢,¢" factoring (Rg°, Ry°), (RgF, )°) re-
spectively and ¢* factoring (Y, R)°) such that ¢* o9 = ¢ [ dom(Y}),
¢p* o) = ¢ [dom(Yr). So “0(z, Cpop(si); - - ) = 0 (L, Coropr(sr),--- )" 1 true

in ['(R>). Let n(z, ¢y, ..., ¢ ppy) be logically equivalent to o(z, cpop(sy)s - - - )-
So “Te(x, Co(ry)s - --) = T(z, Crysee )" and “m(z, cpry), - o) = T2, Crysee )”

are both true in I'(R*). We can find @ € [C]™T so that ay-(,) = €, for any
y € dom(Y*). By assumption, Fy(6) = F}(@) = Fi(0).

Similar arguments show that € is order preserving and 6”((S3)") C Ss. So
N is wellfounded and p[(S3)V] C p[Ss]. We then show that N is IT}-iterable.
By Lemma [5.24] N has cofinally many cardinal strong cutpoints. For each
cardinal strong cutpoint & of N, by definition of S5, NN =“N|¢ is
IT3-iterable A S5 projects to the set of IIi-wellfounded level-3 towers”. The
fact that p[(S3)V] C p[Ss] implies that AU« is ¥l correct. So N is
genuinely IT}-iterable. By varying &, N is IIi-iterable.

R (M5 (ac));seedROo

Next, we show that for any k, T,Ej e
embedding

) < Br. We define an

0: {T,EMQ_’“’(IW) 7 e Dk < w} — 63
by H(T,EM;’""(IW)) = Fy(7]dom(Y})). A similar argument shows that 6 is well
ROOT7 TIEM;’OO(CE)”?) <

defined and order preserving. In particular, for any ¥ € [D]

iR (M (x));seed B
Fy(7 dom(Y%)). Hence, T,ij (M oo (P)iseed ) Bk O

7 The level-4 sharp

7.1 The level-4 Kechris-Martin theorem

For a countable structure P in the language of premice that satisfies Ax-
ioms in Definition [5.14] and the universality of level < 2 ultrapowers
axiom, the direct limit P, is defined in Definition [5.39] The wellfounded
part P, is always transitive. Recall that every ordinal in P, is of the form
Tp x joo(@) Where a € OrdV, X is a finite level < 2 tree, § € [wi]¥". The

relation “v € LO® codes the order type of Ord”™” is uniformly Aj in the
code of P.

For x € R, a putative x-3-sharp is a remarkable level-3 EM blueprint over
x that satisfies the universality of level < 2 ultrapowers axiom. Suppose x*
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is a putative z-3-sharp. For any limit ordinal o < &3, we can build an EM
model

*
Mo

as follows. Let R be a level-3 tree such that [0z = . Then M. , =
(M- r)oo- This definition is independent of the choice of R. Suppose R’ is
another level-3 tree and [()] g = «, and suppose without loss of generality that
p minimally factors (R, R') by Theorem {4.71] Then pZ;R/ P Mg = M g
induces a canonical embedding ¢ : (M. g)oc = (M ). Let T' be TI;-
wellfounded and let ¢ minimally factor (R', R®T). Then 457 M g —
M;ER induces a canonical embedding ¢’ : (M} p)eo — (M g)oo- By
coherency, ¢’ o ¢ = id and hence ¢ = ¢’ = id. We say that z* is a-iterable iff
a is in the wellfounded part of M. .

A putative level-3 sharp code for an increasing function is w = (777, x*)
such that x* is a putative z-3-sharp, 7 is a unary £Z-Skolem term and

“You,v'((v,0" € Ord Av < V') = (7(v) € Ord AT(v) < 7(v')))”

is true in 2*(()). The statement “ (77", z*) is a putative level-3 sharp code for
an increasing function, x* is a-iterable, r codes the order type of 7=*.o(a)”
about ((7,z*),r) is 33 in the code of a. In addition, when z* = 2%,
("r7, x*) is called a (true) level-3 sharp code for an increasing function.

Lemma 7.1. Assume Aj-determinacy. Suppose r < uf’jw 15 an uncountable

cardinal in L[j77(T3)]. If A is a Xk(z) subset of k and sup A < k, then
Jw € Al(x) N WOS& (sup A < |w| < k).

Proof. Let x = 0. The lemma is trivial if & is a limit cardinal in L[j%™ (73)].
Suppose now & is a successor cardinal in L[ (T3)]. Let B be II} such that
w e WOC(jzw Alw| e Aiff Jy (w,y) € B.

Case 1: w; < Kk < Ug.

The lower level proof in [23] carries over almost verbatim, except the
game becomes Y} for the winner and hence a Al winning strategy can be
found by Moschovakis third periodicity [36].

Case 2: k = 03 = u§3>.

Suppose A C &} is X! and sup A < 83. Let B be II} such that w &
WOS?W Nw| € Aiff Jy (w,y) € B. Consider the game in which I produces
v, 1T produces (w,y). II wins either v ¢ WO® or v,w € WO® A |jv] <
|lw|| A (w,y) € B. T has a winning strategy, and so has a Al winning strategy
7 by Moschovakis third periodicity. By boundedness, {||7 * z|| : € R} has
a A}(7) bound, hence has a Al bound.
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Case 3: k = seed’ > 6§, A € desc™(R™).
Put A = (r,n,T), r,Q,(d,q, P ) T—gzggk Then r is of
discontinuous type and fk is a successor ordmal. Put 7" = (§)1<icr™ (S — 1),
= (/r‘/7 Q? (d7 Q’ P )7 A'/ = (r/7 7T’ T)'
Consider the game in which I produces ("7, a*), II produces ({"o, b*), y).
IT wins iff

1. If ("7, a*) is a putative level-3 sharp code for an increasing function,
then so is ("o, b*). Moreover, for any n < 83, if

a* is n-iterable A 7M1 (n) € wip(Mg- )
then

b* is n-iterable A o™ (n) € wip(My- ) A 7M1 (i) < oMo (1),

2. If ("7, a*) is a true level-3 sharp code for an increasing function, a* =
a*#, then (02" V) (ca J1,17), y) € B.

This game is X} for Player I. Player I has a winning strategy, and so has

a Al winning strategy f. Let o be the £Zf”-Skolem term for ! ;WT(C Nt

where x = 1%, Let

w= (0, (7))
So w € WOEJ‘?W is Al and |w| < seed’. We show that sup A < |w| using a
boundedness argument. For each n < Jé, Let Z, be the set of r € LO® such

that there are putative level-3 sharp codes for increasing function on ordinals
(", a*), ("o",b*) and an ordinal § < n such that

L (" a*) = f* ("0, b*);

2. for any 3 < 3, b* is B-iterable, aMb*m(g)(B) € wip(My ), oM (B) <
UR

3. a* is B-iterable, 7™e*n(3) has order type coded in 7.

Zyisa 3.1 set in the code of . Since f is a Wmnlng strategy forl, Z, C wo®)

By Corollary. {l|r|l : r € Z,} is bounded by cf +o- Hence, if ("0, 0%) is a
true level-3 sharp code for an increasing function g and ("1, a*) = fx("o, b%),
then ("7, a*) is a true level-3 sharp code for an increasing functlon h and for

any 1 < dj such that ¢’n C n, h(n) < cﬁ)ﬁw Let n € C iff ¢'n C n. By

Lemmal5.33| for any v € j7(C), j7(h)(y) < 0;3)T7+w Hence, sup A < |w|. O
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Based on Lemma the proof of the following theorem is completely
in parallel to the level-2 Kechris-Martin theorem in [23] or [39]. It is proved
by induction on the LL[j#" (T3)]-cardinality of sup(A). A key step uses the
following observation: by Lemma , if jw| < seed  and A = succ_ = (B)
then there is a Al(w) surjection from seedsy  onto |w|.

Theorem 7.2. Assume Aj-determinacy. If A is a nonempty I1L(x) subset

of uii)w, then Jw € Al(x) (Jlw| € A). So the pointclass 11} is closed under
®3)

www .

quantification over u
Definition 7.3. k7 is the least (7}, z)-admissible ordinal.

Using Theorem [7.2] we obtain the level-4 version of Theorem [2.1] The
proof is parallel to [23] and [3], using Moschovakis set induction in one di-

rection and the Becker-Kechris game in the other direction.
Theorem 7.4. Assume Aj-determinacy. Then for each A C uf’w)w x R, the

following are equivalent.
1. AsTI}.
2. There is a X1 formula o such that (o, x) € A iff L [Ty, 2] = o(Ty, o, ).
The ordinal % is defined in a different way in [27]:
M = sup{|W|: W is a A}(x) prewellordering on R},
kg = sup{As” : M (2) £ay (2,9)}-

In parallel to [23], these two definitions are equivalent, and in fact,

Af = sup{¢ < ki : £ is Aj-definable over L,z [Ty, x] from {7y, z}},

T
5

ki = sup{o.t.(W) : W is a Al(x, <u®.) wellordering on R}.

w

Moreover,

Va < u®, 3w e WOSL (lw|=a A" < KE).

ww?

7.2 The equivalence of z*# and M (z)

Suppose z is a real and § < uf’gw. A subset A C R is 8-II3(z) iff there is a
I} (x) set B C ufgw x R such that A = Diff B. -II}(z) acting on product
spaces of w and R is defined in the obvious way. Lightface -II} and boldface
S-I1} have the obvious meanings.

In parallel to the proof of Lemma we have
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Lemma 7.5. Assume Aj-determinacy. Suppose & < w* and m < w. If A
is (u))"IIi(x), then A is O*((€ + 1)-1(x)).

If S is a finite regular level-3 tree, let ST be the level-3 tree extending
S where dom(S*) = dom(S) U {((1))} and c¢f(S((1))) = 0. Thus, [0]s+ =

[W)]]S +w. If g: (fs)sEdom(S'*) respects S+7 put E_ - (gs)sedom(S)‘
If 2 € Rand a < &3, let N, o(r) = P where 1Pll<pym = @ In

particular, /\fc<3) oo(af:) = Mgoo(x)!cg’&

Lemma 7.6. Assume Al-determinacy. Let € < w*”. If A is D2(E-I14(x)),
then A is qu—Hé(x).

Proof. Let S be a regular level-3 tree such that [0]s = . By Lemma m
if (y,r) € R?, C' C R is &I1i(y, ), then we can effectively find a formula ¢
such that Player I has a winning strategy in G(C) iff

"oy, ) € (y,r)*(9).

Suppose A = OB, where B C R? is D(é\—H%) Suppose ¢ is an L-formula such
that

(y,T) €B < ,_90<y7ra (ﬁ)sedom(S))—l € (yﬂﬂ)g#(s)

For ordinals E respecting ST, say that M is a Kechris-Woodin non-determined
set with respect to (y, &) iff

1. M is a countable subset of R.
2. M is closed under join and Turing reducibility.

3. Vo € M 3ve M Ne, ooy, 0 ®0) =y, 0 ®v,).

4. Yo € M Fve M Ny ooy ®0) = 0y, 0 ® 0,67).

—

Say that z is (y, §)-stable iff z is not contained in any Kechris-Woodin non-

determined set with respect to (y, €). z is y-stable iff z is (y, £)-stable for all

grespecting ST. The set of (y, z) such that z is y-stable is IT}. By the proof
of Kechris-Woodin [29], for all y € R, there is z € R which is y-stable. Let

<§ be the following wellfounded relation on the set of z which is (y, g)—stable:

—

7 <5z zis (y,&)-stable A z <7 2'A
VO' ST z HU ST Z/ -/\/’E((l)),oo(ya o® U) ): _'So(yv o v, g_)
Vo <rz3Jv<r 2 ‘/\/’5((1)),00(%@ ® J) ): go(y,v ® o, f_)
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If z is y-stable, let f* be the function that sends 5 to the rank of z in <§. Then
J, 1s a function into 3. By l-absoluteness between V and N« where

N € Fooo(y,2) and maroo(n) = &(1)), We can see f7 [ {E € [8551 : &) is
a cardinal cutpoint of M, (y,2)} is definable over M, (y, z) in a uniform
way, so there is a £5-Skolem term 7 such that for all (y,z) € R2, if z is

y-stable, Erespects S, &) is a cardinal cutpoint of M, (y, z), then

—

F(&) = T2 (y, 2,€).

Let g+ _
5; = 77 (MQ,oo(y7z))(y’ 2, seedR+)-

The function
(y,2) — B

is A} in the level-3 sharp codes. The rest is in parallel to the proof of
Lemma [4.3] O

Lemma [7.5| and Lemma are concluded in a simple equality between
pointclasses.

Theorem 7.7. Assume Aj-determinacy. Then for x € R,

D% (<uy,-TIL(2)) = <u®L -ITL(2).

w

Hence by Theorem [].5,
Dl (<w i (z)) = <ul®h TTi(2).
The level-4 sharp is defined in parallel to the end of Section [4.1]
Definition 7.8.

OTar — {("¢!, @) : @ is a Xy-formula, o < u® Lys Ty, 2] = (T, z,a).}

W

Definition 7.9.
# = {(0, ) Ja < u (TP, ) ¢ OT AV < a(, ) € OT0))

J,‘4# — {(7% r(p—|7 I—l/)—l) ‘< wA (r¢17 '—1/1—') c x4#

wwn .

Applying Theorem [7.7] to the space w, in combination with Theorem
we reach the equivalence between z*# and M (x).

Theorem 7.10. Assume Aj-determinacy. Then x*# is many-one equivalent
to Mf(m), the many-one reductions being independent of x.
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