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Abstract. In this paper, we introduce the notion of a “category with path ob-
jects”, as a slight strengthening of Ken Brown’s classical notion of a “category

of fibrant objects”. We develop the basic properties of such a category and its

associated homotopy category. Subsequently, we show how the exact completion
of this homotopy category can be obtained as the homotopy category associated

to a larger category with path objects, obtained by freely adjoining certain ho-

motopy quotients. Next, we prove that if the original category with path objects
is equipped with a representable class of fibrations having some basic closure

properties, the methods of algebraic set theory imply that the latter homotopy

category contains a model of a constructive version of Zermelo-Fraenkel set the-
ory. Although our work is partly motivated by recent developments in homotopy

type theory, this paper is written purely in the language of homotopy theory and
category theory, and we do not presuppose any familiarity with type theory on

the side of the reader.

1. Introduction

1.1. Summary. The phrase “path category” in the title is short for “category with
path objects” and refers to a modification of Kenneth Brown’s notion of a category
of fibrant objects [13], originally meant to axiomatise the homotopical properties of
the category of simplicial sheaves on a topological space. Like categories of fibrant
objects, path categories are categories equipped with classes of fibrations and weak
equivalences, and as such they are closely related to Quillen’s model categories which
have an additional class of cofibrations [39, 40, 26]. In particular, the fibrant objects
in a Quillen model category form a category of fibrant objects in Brown’s sense.
Much of this paper is concerned with a homotopically meaningful way of freely (up
to homotopy) adjoining quotients of equivalence relations to a path category, resulting
in a larger path category whose homotopy category has nice exactness properties.

We believe this construction is of interest from the point of view of homotopy
theory. But we were mainly motivated by the recent discovery of the relation between
homotopy theory and type theory. Indeed, the interpretation of the identity types
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from Martin-Löf type theory in Quillen model structures as in [4] has been extended
by Voevodsky to an interpretation of the Calculus of Constructions in the category
of simplicial sets [33] (see also [12, 18, 23, 43, 44]), while on the other hand, any
type theory defines a path category in which the identity types define the homotopy
relation and the dependent types play the rôle of the fibrations [3, 22].

It is possible to interpret the more familiar mathematical language of Zermelo-
Fraenkel set theory in type theory with a suitable universe [1], and thus the question
arises whether it is possible to construct models of set theory out of path categories.
A main result of this paper is that this is indeed possible, and the method of adjoining
quotients to a path category is an important intermediate step in this construction
of such models of set theory. After having adjoined such quotients, the associated
homotopy category turns out to be a pretopos, and it becomes possible to apply the
methods of algebraic set theory [31].

In this way, we believe that this paper contributes to the further understanding of
the many relations between homotopy theory, category theory, type theory and set
theory. We should describe some of these relations in more detail, and explain how
our current work exactly fits in.

1.2. Background. First of all, the relation between Martin-Löf-style dependent type
theory and category theory goes back to the work of Robert Seely [42], who pointed
out the close relation between locally cartesian closed categories and dependent type
theories with constructors for Π- and Σ-types. Indeed, one can obtain such a category
from the syntax of type theory. The relation in the other direction is more subtle than
originally envisaged, mainly because of a mismatch between the up-to-isomorphism
nature of universal constructions in category theory and the strictly equational nature
of the corresponding type-theoretic constructions. This mismatch, known as the
coherence problem, can be addressed in various ways, for example, by means of
Grothendieck’s theory of fibred categories [27] (see also [24, 35]).

The relation between Zermelo-Fraenkel-style set theory and category theory goes
back to Lawvere and Tierney and the theory of elementary toposes [46]. Elementary
toposes per se only model a very restricted form of “bounded” Zermelo-Fraenkel set
theory [28], but work of Freyd [21] and Fourman [20] showed that one can construct
models of full Zermelo-Fraenkel set theory in any Grothendieck topos. These models
of course support a constructive logic and do not validate the Law of the Excluded
Middle, but a simple localisation by a finer Grothendieck topology corresponding to
Gödel’s double negation translation [36] transforms these into models which do satisfy
the Law of Excluded Middle, and are in fact very closely related to the original forcing
models of Cohen [19]. The construction by Freyd and Fourman of these models was
axiomatised and refined in [31], where the authors introduced a categorical notion
of a pretopos equipped with a class of “small” maps, which satisfied axioms that
permit the construction of an object mimicking the cumulative hierarchy of sets, and
satisfying the axioms of ZF.
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The relation between type theory and set theory described by Aczel in [1] has
already been mentioned above. In fact, Aczel’s construction for type theory and the
algebraic set theory construction for pretoposes are closely related and can be unified
in the following way. On the one hand, it is possible to weaken the original axioms of
[31] and develop an analogous theory in a more “predicative” setting, which avoids
the use of objects representing the power set construction that play such a central
rôle in the Lawvere-Tierney theory. On the other hand, it is possible to adjoin
quotients of equivalence relations at the level of type theory (known as setoids in the
type theory literature) which together with the definable morphisms between them
form a pretopos satisfying the axioms of this predicative weakening of algebraic set
theory. This theory provides a clear explanation of the relation between algebraic
set theory, type theory and category theory, and has shown to have various proof-
theoretic applications concerning consistency and the existence of derived rules for
the logical theories involved [38, 10].

The construction of adding quotients is well known in category theory, and goes
under the name of exact completion. It associates to a given category C a larger
category C′ which is universal with respect to the existence of coequalisers of equiv-
alence relations. If C is sufficiently nice, for example if C has finite limits and stable
sums, then the same construction results in a category C′ satisfying the axioms for a
pretopos, see [14, 15, 17]. Taking the exact completion often improves the properties
of a category: for example, C′ will be locally cartesian closed (that is, have internal
homs in every slice) whenever C has this property in a weak form, where weak is
meant to indicate that one weakens the usual universal property of the internal hom
by dropping the uniqueness requirement, only keeping existence (see [16]). We will
see similar phenomena in the present paper.

1.3. Contents. Against this background, let us describe the contents of our paper
in more detail. In the first section, we review the axioms of Brown, and modify his
formulation by adding an axiom which in the Quillen set-up would correspond to the
requirement that all objects are cofibrant. (This cannot be said in such a direct way
in the Brown formalism, in which there are no cofibrations.) One justification for
this modification is that there still are plenty of examples. One source of examples
is provided by taking the fibrant objects in a model category in which all objects are
cofibrant, such as the category of simplicial sets, or the categories of simplicial sheaves
equipped with the injective model structure. More generally, many model categories
have the property that objects over a cofibrant object are automatically cofibrant.
For example, this holds for familiar model category structures for simplicial sets with
the action of a fixed group, for dendroidal sets, and for many more. In such a model
category, the fibrations and weak equivalences between objects which are both fibrant
and cofibrant satisfy our modification of Brown’s axioms. Another justification for
this modification of Brown’s axioms is that they are satisfied by the syntactic category
constructed out of a type theory [3]. In fact, our modified categories of fibrant objects
seem to correspond very closely to dependent type theories in which the usual rules
for the identity types are weakened and the computation rule is only asked to hold
in a propositional form [8].
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We will verify in Section 2 that many familiar constructions from homotopy theory
can be performed in such modified categories of fibrant objects, or path categories as
we will call them, and retain their expected properties. It is necessary for what follows
to perform this verification, but there is very little originality in it. An exception is
perhaps formed by our construction of suitable path objects carrying a connection
structure as in Theorem 2.28 and our statement concerning the existence of diagonal
fillers which are half strict, half up-to-homotopy, as in Theorem 2.38 below. We single
out these two properties here also because they play an important rôle in later parts
of the paper.

In Section 3 we will introduce a notion of exact completion for path categories and
prove the following result:

Theorem 1.1. (= Proposition 3.17 and Theorem 3.14 below) Any path category
C can be completed into a path category Ex(C) with the property that its homotopy
category is the exact completion (in the sense of [17]) of the homotopy category of C.

This paper will mainly be concerned with the homotopy category of Ex(C), which
we will denote by Hex(C). In fact, we will initially construct this category Hex(C)
directly, while we only show later that it is the homotopy category of some other path
category (as in Theorem 3.14). We also study the behaviour of these constructions
under change of base, that is, the passage from C itself to the category of fibrations
over a base object X.

In Section 4, we show that if C has homotopy sums which are, in a suitable sense,
stable and disjoint, then the exact completion Hex(C) is a pretopos (see Theorem
4.10).

Once it has been explained how to obtain a pretopos, we can establish a connection
with the framework of algebraic set theory. Thus, in Section 5, we introduce the
notion of a path category equipped with a special class of “small” fibrations, and
show how in its homotopy exact completion this gives rise to a class of small maps.
We also give various explicit characterisations of these small maps in terms of their
representations in the original path category. These characterisations are then used
in the next section, Section 6, where we study fibrewise internal homs, or Π-types.
We show that if the path category has weak Π-types then its exact completion has
exponentials in every slice, which behave well with respect to the small maps if the
original weak Π-types behave well with respect to the small fibrations. In Section 7
we prove similar results for W-types. These W-types are universal inductive types,
which intuitively represent objects of well-founded trees with a prescribed branching.

In a final section, we will consider the situation where the class of small fibrations
is representable by a “universal fibration” in the familiar sense of homotopy theory,
meaning that every small fibration is homotopy equivalent to a pullback of the uni-
versal fibration. We will show that from this universal fibration, when moved into
the homotopy exact completion, one can construct a W-type a quotient of which is
a model of set theory. As a result we establish the following theorem, which is the
main result of this paper.
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Theorem 1.2. (= Theorem 8.2 below) Let C be a homotopy extensive path category
with weak homotopy Π-types, a homotopy natural numbers object and homotopy W-
types. Assume that F is a class of fibrations in C satisfying axioms (F1-8) and which
contains a small fibration π:E → U such that any other element of F can be obtained
as a homotopy pullback of π. Then Hex(C) contains a model of Aczel’s constructive
set theory CZF.

These last two sections are relatively short, because they rely heavily on earlier
work, on the construction of W-types in exact completions in [7], and the construction
of models of set theory from universal W-types in [38]. Indeed, using these earlier re-
sults, the theory developed in this paper will enable us to quickly draw the conclusion
that any path category equipped with a suitable class of small fibrations contains a
model of Aczel’s constructive version of Zermelo-Fraenkel set theory.

For the convenience of the reader we have also included an appendix where we
list in one place: the axioms for a path category, the relevant axioms for a class of
small fibrations and a class of small maps, as well as a recap of the notion of an exact
category and a pretopos.

1.4. Our approach and related work. At this point it is probably good to add a
few words about our approach and how it relates to some of the work that is currently
being done at the intersection between type theory and homotopy theory.

First of all, we take a resolutely categorical approach; in particular, no knowledge
of the syntax of type theory is required to understand this paper. As a result, we
expect our paper to be readable by homotopy theorists.

Despite being inspired by homotopy type theory, the additions to Martin-Löf type
theory suggested by its homotopy-theoretic interpretation play no rôle in this paper.
In particular, we will not use univalence, higher-inductive types or even functional
extensionality. Indeed, all the definitions and theorems have been formulated in such
a way that they will apply to the syntactic category of (pure, intensional) Martin-Löf
type theory.

In fact, we expect that our definitions remain applicable to the syntactic category
of type theory even when all its computation rules are formulated as propositional
equalities. This was already mentioned in connection with the identity types above,
but we firmly believe that it applies to all type constructors. This idea has guided us
in setting up many of the definitions of this paper. This includes, for example, the
definition of a (weak) homotopy Π-type as in Definition 6.3 below, or the definition
of a universal small fibration using homotopy pullbacks (as in Proposition 8.8 below;
see also [12]).

In addition to the reasons already mentioned in Section 1.3, these considerations
have determined our choice to work in the setting of path categories. As said, our
path categories are related to categories of fibrant objects à la Brown, or fibration
categories as they have been called by other authors. Structures similiar to fibration
categories or their duals have been studied by Baues [6] and Waldhausen [47], for
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homotopy-theoretic purposes. For a survey and many basic properties, we refer to
[41].

More recently, several authors have also considered such axiomatisations in order to
investigate the relation between homotopy theory and type theory. For instance, Joyal
(unpublished) and Shulman [44] have considered axiomatisations in terms of a weak
factorisation system for fibrations and acyclic cofibrations, a set-up which is somewhat
stronger than ours. In our setting we do not have such a weak factorisation system,
and the lifting properties that we derive in our path categories yield diagonals that
make lower triangles strictly commutative, while upper triangles need only commute
up to (fibrewise) homotopy. Our reasons for deviating from Joyal and Shulman are
that in the setting of the weak rules for the identity types such weak liftings seem to
be the best possible; in addition, the category Ex(C) only seems to be a path object
category in our sense, even when C is a type-theoretic fibration category in the sense
of Shulman.

In this paper we have not entered into any ∞-categorical aspects. For readers
interested in the use of fibration categories in ∞-category theory and its relation to
type theory, we refer to the work of Kapulkin and Szumi lo [32, 34, 45].

1.5. Acknowledgments. The writing of this paper took place in various stages, and
versions of the results that we obtain here were presented at various occasions. We
are grateful to the organisers of the Homotopy Type Theory Workshop in Oxford in
2014, TACL 2015 in Salerno and the minisymposium on Homotopy Type Theory and
Univalent Foundations at the Jahrestagung der DMV 2015 in Hamburg for giving
us the opportunity to present earlier versions of parts of this paper. We owe a
special debt to the Newton Institute for Mathematical Sciences in Cambridge and
the Max Planck Institute in Bonn. The first author was a visiting fellow at the
Newton Institute in the programme “Mathematical, Foundational and Computational
Aspects of the Higher Infinite (HIF)” in Fall 2015, while both authors participated
in the “Program on Higher Structures in Geometry and Physics” at the Max Planck
Institute in 2016. At both institutes various parts of this paper were written and
presented. Finally, we would like to thank Chris Kapulkin for useful bibliographic
advice.

2. Path categories

2.1. Axioms. Throughout this paper we work with path categories, a modification
of Brown’s notion of a category of fibrant objects [13]. We will start by recalling
Brown’s definition.

The basic structure is that of a category C together with two classes of maps in C
called the weak equivalences and the fibrations, respectively. Morphisms which belong
to both classes of maps will be called acylic fibrations. A path object on an object B
is a factorisation of the diagonal ∆:B → B × B as a weak equivalence r:B → PB
followed by a fibration (s, t):PB → B ×B.
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Definition 2.1. [13] The category C is called a category of fibrant objects if the
following axioms are satisfied:

(1) Fibrations are closed under composition.
(2) The pullback of a fibration along any other map exists and is again a fibration.
(3) The pullback of an acylic fibration along any other map is again an acyclic

fibration.
(4′) Weak equivalence satisfy 2-out-of-3: if gf = h and two of f, g, h are weak

equivalences then so is the third.
(5′) Isomorphisms are acyclic fibrations.
(6) For any object B there is a path object PB (not necessarily functorial in B).
(7) C has a terminal object 1 and every map X → 1 to the terminal object is a

fibration.

We make two modifications to Brown’s definition, the first of which is relatively
minor. Instead of the more familiar 2-out-of-3 property we demand that the weak
equivalences satisfy 2-out-of-6:

(4) Weak equivalence satisfy 2-out-of-6: if f :A → B, g:B → C, h:C → D are
three composable maps and both gf and hg are weak equivalences, then so
are f, g, h and hgf .

It is not hard to see that this implies 2-out-of-3. We have decided to stick with the
stronger property, as it is something which is both useful and true in all the examples
we are interested in. (See also Remark 2.17 below.)

A more substantial change is that we will add an axiom saying that every acyclic
fibration has a section (this is sometimes expressed by saying that “every object is
cofibrant”). To be precise, we will modify (5′) to:

(5) Isomorphisms are acyclic fibrations and every acyclic fibration has a section.

As discussed in the introduction, one reason we have made this change is that it is
satisfied in the syntactic category associated to type theory [3] and in many situations
occurring in homotopy theory. In fact, axiom (5) will be used throughout this paper
and in this section we will investigate, somewhat systematically, the consequences of
this axiom.

To summarise:

Definition 2.2. The category C will be called a category with path objects, or a path
category for short, if the following axioms are satisfied:

(1) Fibrations are closed under composition.
(2) The pullback of a fibration along any other map exists and is again a fibration.
(3) The pullback of an acylic fibration along any other map is again an acyclic

fibration.
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(4) Weak equivalence satisfy 2-out-of-6: if f :A → B, g:B → C, h:C → D are
three composable maps and both gf and hg are weak equivalences, then so
are f, g, h and hgf .

(5) Isomorphisms are acyclic fibrations and every acyclic fibration has a section.
(6) For any object B there is a path object PB (not necessarily functorial in B).
(7) C has a terminal object 1 and every map X → 1 to the terminal object is a

fibration.

We have chosen the name path category because its homotopy category is com-
pletely determined by the path objects (as every object is cofibrant).

Examples are:

(1) The syntactic category associated to type theory [3]. In fact, to prove that the
syntactic category is an example, it suffices to assume that the computation
rule for the identity type holds only in a propositional form (see [8]).

(2) Let M be a Quillen model category. If every object is cofibrant in M, then
the full subcategory of fibrant objects in M is a path category in our sense.
More generally, if any object over a cofibrant object is also cofibrant, then
the full subcategory of fibrant-cofibrant objects in M is a path category.

(3) In addition, there is the following trivial example: if C is a category with fi-
nite limits, it can be considered as a path category in which every morphism
is a fibration and only the isomorphisms are weak equivalences. By consid-
ering this trivial situation, it can be seen that our theory of the homotopy
exact completion in the next section generalises the classical theory of exact
completions of categories with finite limits.

2.2. Basic properties. We start off by making some basic observations about path
categories, all of which are due to Brown in the context of categories of fibrant objects
([13]; see also [41]). First of all, note that the underlying category C has finite products
and all projection maps are fibrations. From this it follows that if (f, g):P → X ×X
is a fibration, then so are f and g.

Proposition 2.3. In a path category any map f :Y → X factors as f = pfwf
where pf is a fibration and wf is a section of an acylic fibration (and hence a weak
equivalence).

Proof. This is proved on page 421 of [13]. Since the factorisation will be important
in what follows, we include the details here. First observe that if PX is a path object
for X with weak equivalence r:X → PX and fibration (s, t):PX → X ×X, then it
follows from 2-out-of-3 for weak equivalences and sr = tr = 1 that both s, t:PX → X
are acyclic fibrations. So for any map f :Y → X the following pullback

Pf
p2 //

p1

��

PX

s

��

Y
f
// X,
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exists with p1 being an acyclic fibration. We set wf : = (1, rf):Y → Pf and pf : =
tp2:Pf → X. Then pfwf = f and wf is a section of p1. Moreover, the following
square

Pf
p2 //

(p1,pf )

��

PX

(s,t)

��

Y ×X
f×1
// X ×X.

is a pullback, so (p1, pf ) is fibration, which implies that pf is a fibration as well. �

Corollary 2.4. Any weak equivalence f :Y → X factors as f = pfwf where pf is an
acylic fibration and wf is a section of an acyclic fibration.

Definition 2.5. If C is a path category and A is any object in C we can define a new
path category C(A), as follows: its underlying category is the full subcategory of C/A
whose objects are the fibrations with codomain A. This means that its objects are
fibrations X → A, while a morphism from q:Y → A to p:X → A is a map f :Y → X
in C such that pf = q; such a map f is a fibration or a weak equivalence in C(A)
precisely when it is a fibration or a weak equivalence in C.

Clearly, C(1) ∼= C. Observe that for any f :B → A there is a pullback functor
f∗: C(A)→ C(B), since pullbacks of fibrations always exist and are again fibrations.

Proposition 2.6. For any morphism f :B → A the functor f∗: C(A) → C(B) pre-
serves both fibrations and weak equivalences.

Proof. This is proved on page 428 of [13] and the proof method is often called Brown’s
Lemma. The idea is that Axiom 3 for path categories tells us that f∗ preserves acyclic
fibrations. But then it follows from the previous corollary and 2-out-of-3 for weak
equivalences that f∗ preserves weak equivalences as well. �

This proposition can be used to derive:

Proposition 2.7. The pullback of a weak equivalence w:A′ → A along a fibration
p:B → A is again a weak equivalence.

Proof. See pages 428 and 429 of [13]. �

2.3. Homotopy. In any path category we can define an equivalence relation on the
hom-sets: the homotopy relation.

Definition 2.8. Two parallel arrows f, g:Y → X are homotopic, if there is a path
object PX for X with fibration (s, t):PX → X × X and a map h:Y → PX (the
homotopy) such that f = sh and g = th. In this case, we write f ' g, or h: f ' g if
we wish to stress the homotopy h.
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At present it is not clear that this definition is independent of the choice of path
object PX, or that it defines an equivalence relation. In order to prove this, we use
the following lemma, which is a consequence of (and indeed equivalent to) the axiom
that every acyclic fibration has a section.

Lemma 2.9. Suppose we are given a commutative square

D
g
//

w

��

C

p

��

B
f
// A

in which w is a weak equivalence and p is a fibration. Then there is a map l:B → C
such that pl = f (for convenience, we will call such a map a lower filler).

Proof. Let k:D → B ×A C be the map to the pullback with p1k = w and p2k = g,
and factor k as k = qi where i is a weak equivalence and q is a fibration. Then
p1q is an acyclic fibration and hence has a section a. So if we put l: = p2qa, then
pl = pp2qa = fp1qa = f , as desired. �

Just in passing we should note that a statement much stronger than Lemma 2.9
is true, but that in order to state and prove it we need to develop a bit more theory
(see Theorem 2.38 below).

Corollary 2.10. If PX is a path object for X and PY is a path object for Y and
f :X → Y is any morphism, then there is a map Pf :PX → PY such that

PX

(s,t)

��

Pf
// PY

(s,t)

��

X ×X
f×f

// Y × Y

commutes. In particular, if PX and P ′X are two path objects for X then there is
a map f :PX → P ′X which commutes with the source and target maps of PX and
P ′X.

Proof. We obtained the desired maps as a lower filler in:

X
rf
//

r

��

PY

(s,t)

��

PX
(fs,ft)

// Y × Y.

�

The second statement in the previous corollary implies that if two parallel maps
f, g:X → Y are homotopic relative to one path object PY on Y , then they are
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homotopic with respect to any path object on Y ; so in the definition of the homotopy
relation nothing depends on the choice of the path object.

In order to show that the homotopy relation is an equivalence relation, and indeed
a congruence, we introduce the following definition, which will also prove useful later.

Definition 2.11. A fibration p = (p1, p2):R → X × X is a homotopy equivalence
relation, if the following three conditions are satisfied:

(1) There is a map ρ:X → R such that pρ = ∆X .
(2) There is a map σ:R→ R such that p1σ = p2 and p2σ = p1.
(3) For the pullback

R×X R
q2 //

q1

��

R

p1

��

R
p2

// X

there is a map τ :R×X R→ R such that p1q1 = p1τ and p2q2 = p2τ .

Proposition 2.12. If PX is a path object with fibration p = (s, t):PX → X × X
and weak equivalence r:X → PX, then p is a homotopy equivalence relation.

Proof. (1) We put ρ = r.
(2) The map σ is obtained as a lower filler in:

X

r

��

r // PX

(s,t)

��

PX
(t,s)
// X ×X.

(3) Let α be the unique map filling

X

α
%%

r

((

r

""

PX ×X PX
q2
//

q1

��

PX

s

��

PX
t

// X.

The maps s and t are acyclic fibrations, and therefore their pullbacks q1 and q2

are acyclic fibrations as well; in particular, they are weak equivalences. Since
r is also a weak equivalence, the map α is a weak equivalence by 2-out-of-3.
Therefore a suitable τ can be obtained as the lower filler of

X
r //

α

��

PX

(s,t)

��

PX ×X PX
(sq1,tq2)

// X ×X.
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�

In a way PX is the least homotopy equivalence relation on X.

Lemma 2.13. If p = (p1, p2):R→ X ×X is a homotopy equivalence relation on X,
then there is a map h:PX → R such that p1h = s and p2h = t. More generally,
any map f :Y → X gives rise to a morphism h:PY → R such that p1h = fs and
p2h = ft.

Proof. We obtain h as a lower filler of

Y
ρf

//

r

��

R

p

��

PY
(fs,ft)

// X ×X.

�

Theorem 2.14. The homotopy relation ' defines an congruence relation on C.

Proof. We have already seen that if P is a path object on X and there is a suitable
homotopy connecting f and g relative to P , then there is such a homotopy relative
to any path object Q for X. Therefore the statement that ' defines an equivalence
relation on each hom-set follows from Proposition 2.12.

For showing that ' is a congruence (i.e., that f ' g and k ' l imply kf ' gl),
it suffices to prove that f ' g implies fk ' gk and lf ' lg; the former, however, is
immediate, while the latter follows from Corollary 2.10. �

The previous theorem means that we can quotient C by identifying homotopic
maps and obtain a new category. The result is the homotopy category of C and will
be denoted by Ho(C).

Definition 2.15. A map f :X → Y is a homotopy equivalence if it becomes an
isomorphism in Ho(C) or, in other words, if there is a map g:Y → X (a homotopy
inverse) such that the composites fg and gf are homotopic to the identities on Y
and X, respectively. If such a homotopy equivalence f :X → Y exists, we say that X
and Y are homotopy equivalent.

Theorem 2.16. Weak equivalences and homotopy equivalences coincide.

Proof. First note that any section of a weak equivalence f :Y → X is a homotopy
inverse. The reason is that if g:X → Y is a section with fg = 1, then g is a weak
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equivalence as well. Therefore we can find a homotopy h: gf ' 1 as a lower filler of

X

g

��

rg
// PY

(s,t)

��

Y
(gf,1)

// Y × Y.

Since every acyclic fibration has a section, it now follows that acyclic fibrations are
homotopy equivalences. But then Corollary 2.4 implies that every weak equivalence
is a homotopy equivalence.

For the converse direction we also need to make a preliminary observation: if
f, g:A → B are homotopic and f is a weak equivalence, then so is g. To see this
suppose that f is a weak equivalence and there is a map h:A→ PB such that sh = f
and th = g. Since s and t are weak equivalences, it follows from the first equality
that h is a weak equivalence and hence from the second equality that g is a weak
equivalence.

Now suppose f :A→ B is a homotopy equivalence with homotopy inverse g:B →
A. Then in

A
f
// B

g
// A

f
// B

both gf and fg are homotopic to the identity. Therefore both gf and fg are weak
equivalences by the previous observation; but then we can use 2-out-of-6 to deduce
that f is a weak equivalence. �

Remark 2.17. Other authors who work in categorical frameworks similar to ours
often call categories of fibrant objects “saturated” if they have the property that
every homotopy equivalence is a weak equivalence. In our set-up this is derivable, so
our path categories are always saturated in their sense. Note that in order to prove
this we have made our first genuine use of the 2-out-of-6 axiom as opposed to the
weaker 2-out-of-3 axiom: this is no coincidence, as relative to the 2-out-of-3 axiom
the statement that every homotopy equivalence is a weak equivalence is equivalent to
the 2-out-of-6 property (this observation is due to Cisinski; see [41, p. 82–4]). Using
the theory that we will develop in the next subsection it will also not be hard to show
that if a path category only satisfies 2-out-of-3 one can obtain a “saturated” path
category from it by taking the same underlying category and the same fibrations,
while enlarging the class of weak equivalences to include all homotopy equivalences.
This means that restricting to saturated path categories is no real loss of generality;
moreover, all the examples we are interested in are saturated, including the syntactic
category associated to type theory. For these reasons we have decided to restrict our
attention to path categories that are saturated.

Corollary 2.18. Weak equivalences are closed under retracts.

Corollary 2.19. The quotient functor γ: C → Ho(C) is the universal solution to
inverting the weak equivalences.
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Proof. We have just seen that this functor inverts the weak equivalences; conversely,
any functor δ: C → D which sends weak equivalences to isomorphisms must identify
homotopic maps, for if PX is a path object with r:X → PX and (s, t):PX → X×X,
then δ(s) = δ(r)−1 = δ(t). �

2.4. Homotopy pullbacks. Path categories need not have pullbacks; what they do
have are homotopy pullbacks, a notion that we will now recall (see, for example, [41]).

Given two arrows f :A→ I and g:B → I one can take the pullback

A×hI B

(p1,p2)

��

// PI

(s,t)

��

A×B
f×g

// I × I.

This object A×hI B fits in a square

A×hI B
p2 //

p1

��

B

g

��

A
f

// I,

which commutes up to homotopy.

Definition 2.20. Suppose

C
q2 //

q1

��

B

g

��

A
f
// I

is a square which commutes up to homotopy. If there is a homotopy equivalence
h:C → A ×hI B such that qi = pih for i ∈ {1, 2}, then the square above is called a
homotopy pullback square and C is a homotopy pullback of f and g.

Remark 2.21. Clearly, a homotopy pullback is unique up to homotopy, but there
are different ways of constructing it. For example, the homotopy pullback can be
obtained by taking the fibrant replacement of either f or g (or both) and then taking
the actual pullback. Using this one easily checks that the following hold:

Lemma 2.22. (i) If

D //

g

��

B

f

��

C // A

is a homotopy pullback and f is a homotopy equivalence, then so is g.
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(ii) If

F

��

// D //

��

B

��

E // C // A

commutes and the square on the right is a homotopy pullback, then the square
on the left is a homotopy pullback if and only if the outer rectangle is a
homotopy pullback.

2.5. Connections and transport. One key fact about fibrations in path categories
is that they have a path lifting property and allow for what the type-theorists call
transport. The aim of this subsection is to show these facts, starting with the latter.

To formulate the notion of transport we need some additional terminology.

Definition 2.23. Suppose f, g:Y → X are parallel arrows and X comes with a
fibration p:X → I. If pf = pg, then we can compare f :Y → X and g:Y → X with
respect to the path object (s, t):PI(X) → X ×I X of X in C(I): one calls f and g
fibrewise homotopic if there is a map h:Y → PI(X) such that sh = f and th = g,
and write f 'I g, or h: f 'I g, if we wish to stress the homotopy. (If pf = pg
is a fibration, then this is just the homotopy relation in C(I); but, and this will be
important later, this definition makes sense even when pf = pg is not a fibration.)

Recall from Proposition 2.3 that any map f :Y → X can be factored as a weak
equivalence wf :Y → Pf followed by a fibration pf :Pf → X, where Pf = Y ×X PX
is the pullback

Pf
p2 //

p1

��

PX

s

��

Y
f
// X,

while wf = (1Y , rf) and pf = tp2. If f is a fibration, then we can regard both Y
and Pf as objects in C(X) via f and pf , respectively, and wf as a morphism between
them in C(X).

Definition 2.24. Let f :Y → X be a fibration. A transport structure on f is a
morphism Γ:Pf → Y such that fΓ = pf and Γwf 'X 1Y .

The idea behind transport is this: given an element y ∈ Y and a path α:x→ x′ in
X with f(y) = x, one can transport y along α to obtain an element y′ with f(y′) = x′;
in addition, we demand that in case α is the identity path on x, then the element y′

should be connected to y by a path which lies entirely in the fibre over x. In order to
show that every fibration carries a transport structure, we need to strengthen Lemma
2.9 to:
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Lemma 2.25. Suppose we are given a commutative square

D
g
//

w

��

C

p

��

B
f
// A

in which w is a weak equivalence and p is a fibration. Then there is a map l:B → C,
unique up to homotopy, such that pl = f and lw ' g.

Proof. We repeat the earlier proof: let k:D → B ×A C be the map to the pullback
with p1k = w and p2k = g, and factor k as k = qi where i is a weak equivalence and
q is a fibration. Then p1q is an acyclic fibration, so has a section a. So if we put
l: = p2qa, then pl = pp2qa = fp1qa = f . But (the proof of) Theorem 2.16 implies
that ap1q ' 1, so that

lw = p2qaw = p2qap1k = p2qap1qi ' p2qi = p2k = g.

To see that l is unique up to homotopy, note that, more generally, the fact that weak
equivalences are homotopy equivalences implies that if lw ' l′w and w is a weak
equivalence, then l ' l′. �

Theorem 2.26. Every fibration f :Y → X carries a transport structure. Moreover,
transport structures are unique up to fibrewise homotopy over X.

Proof. If f :Y → X is a fibration then the commuting square

Y
1 //

wf

��

Y

f

��

Pf pf
// X

does not only live in C, but also in C(X). Applying the previous lemma to this square
in C(X) gives one the desired transport structure. �

Definition 2.27. Let f :Y → X be a fibration. A connection on f consists of a path
object PY for Y , a fibration Pf :PY → PX commuting with the r, s and t-maps on
PX and PY , together with a morphism ∇:Pf → PY such that Pf ◦ ∇ = p2 and
s∇ = p1.

The idea behind a connection is this: given an element y ∈ Y and a path α:x→ x′

in X with f(y) = x, the connection finds a path β: y → y′ with f(β) = α.

Theorem 2.28. Let f :Y → X be a fibration in a path category C and assume that
PX is a path object on X and Γ:Y ×X PX → Y is a transport structure on f . Then
we can construct a path object PY on Y and a fibration Pf :PY → PX with the
following properties:

(i) Pf commutes with the r, s and t-maps on PX and PY .
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(ii) There exists a connection structure ∇:Pf → PY with t∇ = Γ.

In particular, every fibration f :Y → X carries a connection structure.

Proof. The proof will make essential use of the path object PX(Y ) of Y in C(X).
We will write ρ:X → PX(Y ) and (σ, τ):PX(Y ) → Y ×X Y for the factorisation of
Y → Y ×X Y as a weak equivalence followed by a fibration.

The idea is to construct PY as PΓ in C(X), that is, as the following pullback:

PY

q1

��

q2 // PX(Y )

σ

��

Pf
Γ

// Y.

Since Γ:Pf → Y is a transport structure, there is a homotopy h: Γwf ' 1 in C(X).
This allows us to factor the diagonal Y → Y × Y as (wf , h):Y → PY followed by
(p1q1, τq2):PY → Y × Y , so to prove that this defines a path object on Y we need
to show that the first map is a weak equivalence and the second a fibration. For the
former, note that q1(wf , h) = wf , where wf is a weak equivalence and q1 is an acyclic
fibration, as it is the pullback of σ. For the latter, note that PY = PΓ in C(X) can
also be constructed as the pullback

PY
q2 //

(q1,τq2)

��

PX(Y )

(σ,τ)

��

Pf ×X Y
Γ×XY

// Y ×X Y,

as in the proof of Proposition 2.3, so that (q1, τq2) is a fibration. Moreover,

p1 × 1:Pf ×X Y → Y × Y

is a fibration as well, as it arises in the following pullback:

Pf ×X Y

p1×1

��

p2π1 // PX

(s,t)

��

Y × Y
f×f

// X ×X.

So (p1 × 1)(q1, τq2) = (p1q1, τq2) is a fibration, as desired. In addition, we have a
map Pf : = p2q1:PY → PX, which is also fibration. We now check points (i) and
(ii).

(i) We have to show that Pf commutes with the maps r, s, t on PY and PX.

(1) The r-map on PY is (wf , h), and we have

Pf ◦ rY = p2q1(wf , h) = p2wf = rX ◦ f.
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(2) The s-map on PY is p1q1, and we have

sX ◦ Pf = sp2q1 = fp1q1 = f ◦ sY .
(3) The t-map on PY is τq2, and we have

tX ◦ Pf = tp2q1 = pfq1 = fΓq1 = fσq2 = fτq2 = f ◦ tY ,
where we have used that fσ = fτ is the map exhibiting PX(Y ) as an object
of C(X).

(ii): To construct the connection, we simply put ∇: = (1, ρΓ). Then

sY∇ = p1q1(1, ρΓ) = p1

and
Pf ◦ ∇ = p2q1(1, ρΓ) = p2,

showing that ∇ is indeed a connection. In addition, one has

tY∇ = τq2(1, ρΓ) = τρΓ = Γ,

as desired. �

Remark 2.29. We have just shown that if PX is any path object for X and f :Y →
X is any fibration, one can find a suitable path object PY for Y and a connection
map ∇:Pf → PY for that particular path object. From this it does not follow that
if P ′Y is another path object for Y then one can find a connection ∇′:Pf → P ′Y
as well: in that sense the notion of connection is not invariant. In view of Corollary
2.10 we will have a map ∇′:Pf → P ′Y with s∇′ = p1 and ft∇′ = tp2. We will
occassionally meet such weak connections as well, where the main point about such
weak connections is:

Corollary 2.30. Let f :Y → X be a fibration and PY be an arbitrary path object for
Y . Then there is a map ∇:Pf → PY such that s∇ = p1 and tf∇ = tp2.

We conclude this subsection by noting the following consequence of Theorem 2.28,
which we will repeatedly use in what follows.

Proposition 2.31. If a triangle

Y

p

��

Z
g
//

f
>>

X

with a fibration p on the right commutes up to a homotopy h: pf ' g, then we can
also find a map f ′:Z → Y , homotopic to f , such that for f ′ the triangle commutes
strictly, that is, pf ′ = g.

Proof. Let h: pf ' g be a homotopy and choose a path object PY for Y , a fibration
Pp:PY → PX and a connection structure ∇:Pp → PY as in Theorem 2.28. Put
h′ = ∇(f, h) and f ′: = th′. One may now calculate that

pf ′ = pt∇(f, h) = t ◦ Pp ◦ ∇ ◦ (f, h) = tp2(f, h) = th = g,
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so the triangle commutes strictly for f ′. Moreover,

sh′ = s∇(f, h) = p1(f, h) = f,

so h′ is a homotopy between f and f ′. �

2.6. Lifting properties. At various points (Lemma 2.9 and Lemma 2.25) we have
seen statements to the effect that weak equivalences have a weak lifting property with
respect to the fibrations. Lemma 2.9 said that if

A
m //

w

��

C

p

��

B
n
// D

is a commutative square with a weak equivalence w on the left and a fibration p on
the right, there is a map l:B → C such that pl = n. In Lemma 2.25 we saw that l
could be chosen such that lw ' m. The aim of this subsection is to show that this can
be strengthened even further: we can find a map l such that pl = n and lw 'D m,
where 'D is meant to indicate that lw and m are fibrewise homotopic over D via
p:C → D. This seems to be the strongest lifting property which could reasonably be
expected in our setting.

The proof that this stronger lifting property holds proceeds in several steps. It will
be convenient to temporarily call the weak equivalences w with the desired property
good. So a weak equivalence w will be called good if in any square as the one above
with a fibration p on the right, there is a map l:B → C such that pl = n and
lw 'D m.

Lemma 2.32. (i) Good weak equivalences are closed under composition.
(ii) In order to show that a weak equivalence is good we only need to consider the

case where the map n along the bottom of the square is the identity. In other
words, a weak equivalence w:A → B is good whenever for any commuting
triangle

C

p

��

A
w
//

k

??

B

in which p is a fibration, the map p has a section j such that jw 'B k.
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Proof. (i): Suppose w1 and w2 are good weak equivalences and there is a commuting
square

Z
m //

w1

��

C

p

��

Y

w2

��

X
n
// D

with a fibration p on the right. From the fact that w1 is good we get a map t1:Y → C
such that pt1 = nw2 and tw1 'D m; then, from the fact that w2 is good we get a
map t:X → C such that pt = n and tw2 'D t1. Then tw2w1 'D t1w1 'D m, so t is
as desired.

(ii): Suppose that

A
m //

w

��

C

p

��

B
n
// D

is a commuting square with a fibration p on the right. Pulling back p along n we
obtain a diagram of the form

E

p′

��

n′ // C

p

��

A
w
//

(w,m)
??

B
n
// D

in which E = B ×D C and p′ is a fibration. Note that Proposition 2.6 implies that
we can obtain a path object for E in C(B) by pulling back the path object for C in
C(D) along n:B → D, as in

E //

��

D

��

PB(E) //

��

PD(C)

��

E ×B E //

��

C ×D C

��

B // D,

with all squares being pullbacks.

Now suppose that w is a weak equivalence with property formulated in the lemma.
This means that p′ has a section j such that jw 'B (w,m), as witnessed by some
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homotopy A → PB(E). Composing this homotopy with the map PB(E) → PD(C)
above we obtain a homotopy witnessing that n′jw 'D n′(w,m) = m. So putting
l: = n′j, we have pl = pn′j = np′j = n and lw = n′jw 'D m, as desired. �

Our strategy for showing that any weak equivalence is good is to use the factorisa-
tion of any weak equivalence as a weak equivalence of the form wf :Y → Pf followed
by an acyclic fibration pf :Pf → Y . So once we show that any weak equivalence of
the form wf :Y → Pf is good and any acyclic fibration is good, we are done in view
of part (i) of the previous lemma. We do the latter thing first.

Proposition 2.33. A fibration f :B → A is acyclic precisely when it has a section
g:A→ B with gf 'A 1B.

Proof. If a fibration f :B → A has a section g:A → B with gf 'A 1B , then g is a
homotopy inverse. So f is a weak equivalence by Theorem 2.16.

Conversely, if f :B → A is an acyclic fibration, then it has a section g:A→ B. From
2-out-of-3 for weak equivalences and fg = 1A it follows that g is a weak equivalence.
Therefore

A

g

��

rg
// PA(B)

(s,t)

��

B
(gf,1)

// B ×A B

is a commuting square with a weak equivalence on the left and a fibration on the right.
A lower filler for this diagram is a fibrewise homotopy showing that gf 'A 1B . �

Corollary 2.34. Acyclic fibrations are good.

Proof. We will use part (ii) of Lemma 2.32. So suppose we are given a commuting
triangle of the form

C

p

��

A
w
//

k

??

B

in which p is a fibration and w is an acyclic fibration. The previous proposition tells
us that there is a map a:B → A such that wa = 1B and aw 'B 1A. But then j: = ka
is a section of p with jw = kaw 'B k. �

To show that weak equivalences of the form wf :Y → Pf are good, it will be useful
to introduce a bit of terminology.

Definition 2.35. A morphism f :A→ B is a strong deformation retract if there are
a map g:B → A, a path object PB for B and a homotopy h:B → PB such that

gf = 1A, sh = fg, th = 1, and hf = rf.

The reason is the following:
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Lemma 2.36. Strong deformation retracts are good weak equivalences.

Proof. Let f :A→ B be a strong deformation retract and g and h as in the definition.
Strong deformation retracts are clearly homotopy equivalences, so they are weak
equivalences as well. To show that they are also good, suppose that

C

q

��

A
f
//

k

>>

B,

is a commutative triangle in which q is a fibration. Then consider:

A
k //

f

��

C
1 //

wq

��

C

q

��

B
(kg,h)

// Pq pq
//

Γq

>>

B.

The lefthand square commutes, as

(kg, h)f = (kgf, hf) = (k, rf) = (k, rqk) = (1, rq)k = wqk.

Moreover, the arrows along the bottom compose to the identity on B, because
pq(kg, h) = tp2(kg, h) = th = 1. This means that we can use the transport structure
on q with qΓq = pq and Γqwq 'B 1 to define j as Γq(kg, h). �

So it remains to show:

Proposition 2.37. For any morphism f :Y → X the weak equivalence wf :Y → Pf
is a strong deformation retract.

Proof. The main difficulty is to find a suitable path object for Pf . What we will do
is take the following pullback:

PX ×X PY ×X PX //

(σ,τ)

��

PY

(s,t)

��

Pf × Pf p1×p1
// Y × Y,

where σ and τ intuitively take a triple (α: f(y) → x, γ: y → y′, α′: f(y′) → x′) and
produce (y, α) and (y′, α′), respectively. By construction (σ, τ) is a fibration. The
reflexivity term ρ:Pf → PX ×X PY ×X PX is given by (p2, rp1, p2); in other words,
by sending (y, α: f(y) → x) to (α, r(y), α). We have σρ = τρ = 1, so to show that ρ
is a weak equivalence, it suffices to show this for σ; this map, however, is the pullback
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of the map on the left in

PY ×X PX //

��

PX

s

��

PY
t

//

s

��

Y
f
// X

Y

along p1:Pf → Y and hence an acyclic fibration. So we have described a suitable
candidate for PPf .

We know that p1wf = 1, so to prove that wf is a strong deformation retract we
need to find a homotopy h:Pf → PPf such that σh = wfp1, τh = 1 and hwf = ρwf .
We set

h = (rfp1, rp1, p2).

Then we can compute:

σh = σ(rfp1, rp1, p2) = (srp1, rfp1) = (1, rf)p1 = wfp1

and

τh = τ(rfp1, rp1, p2) = (trp1, p2) = (p1, p2) = 1.

In addition, the equations

hwf = (rfp1, rp1, p2)(1, rf) = (rf, r, rf)

and

ρwf = (p2, rp1, p2)(1, rf) = (rf, r, rf)

hold, showing that hwf = ρwf . �

We conclude that every weak equivalence is good, which we formulate more ex-
plicitly as follows.

Theorem 2.38. If

A
m //

f

��

C

p

��

B
n
// D

is a commutative square with a weak equivalence f on the left and a fibration p on
the right, then there is a filler l:B → C such that n = pl and lf 'D m. Moreover,
such a filler is unique up to fibrewise homotopy over D.

Proof. Any weak equivalence f :A → B can be factored as wf :A → Pf followed by
an acyclic fibration pf :Pf → B. The former is good by Lemma 2.36 and Proposition
2.37, while the latter is good by Corollary 2.34; so f is good by part (i) of Lemma
2.32.
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It remains to show uniqueness of l: but if both l and l′ are as desired, then
lf 'D l′f , so there is a fibrewise homotopy h:A→ PD(C) such that

A
h //

f

��

PD(C)

(s,t)

��

B
(l,l′)

// D ×C D

commutes. A lower filler for this square is a fibrewise homotopy showing that l 'D
l′. �

We are now able to prove that the factorisations of maps as weak equivalences
followed by fibrations are unique up to homotopy equivalence.

Corollary 2.39. If a map k:Y → X can be written as k = pa = qb where a:Y → A
and b:Y → B are weak equivalences and p:A→ X and q:B → X are fibrations, then
A and B are homotopy equivalent; moreover, the homotopy equivalence f :A → B
and homotopy inverse g:B → A can be chosen such that qf = p, pg = q, fa 'X b,
gb 'X a, gf 'X 1 and fg 'X 1.

This means in particular that any two path objects on an object X are homotopy
equivalent, where the homotopy equivalence and inverse can be chosen to behave
nicely with respect to the r, s, t-maps, as in the statement of Corollary 2.39.

3. Homotopy exact completion

3.1. Exactness. This section will be devoted to developing a notion of exact com-
pletion for path categories, generalising the exact completion of a category with finite
limits, as in [14, 15]. In fact, this homotopy exact completion, as we will call it, will
coincide with the ordinary exact completion if we regard a category with finite limits
as a path category in which every morphism is a fibration and only the isomorphisms
are weak equivalences. Another feature of our account is that the category of setoids,
studied in the type-theoretic literature (see, for example, [25, 5]), is the homotopy
exact completion of the syntactic category of type theory.

Initially, we will study this homotopy exact completion directly; in later stages we
will use that it can also be obtained as the homotopy category of an intermediate
path category (see Theorem 3.14 below).

Definition 3.1. Given a path category C one may construct a new category as
follows: its objects are the homotopy equivalence relations, as defined in Definition
2.11, while a morphism from (X, ρ:R→ X×X) to (Y, σ:S → Y ×Y ) is an equivalence
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class of morphisms f :X → Y for which there is a map ϕ:R→ S making

R

ρ

��

ϕ
// S

σ

��

X ×X
f×f

// Y × Y

commute, where f :X → Y and g:X → Y are identified in case there is a map
H:X → S such that

S

σ

��

X
(f,g)

//

H

;;

Y × Y

commutes. This new category will be called the homotopy exact completion of C and
will be denoted by Hex(C).

Remark 3.2. In what follows we will often denote objects of Hex(C) as pairs (X,R),
leaving the fibration ρ:R → X × X implicit. If it is made explicit, then ρ1 and
ρ2 denote the first and second projection R → X, respectively. Also, we will not
distinguish notationally between a morphism f :X → Y in C which represents a
morphism (X,R)→ (Y, S) in Hex(C) and the morphism thus represented; we do not
expect that these conventions will lead to confusion.

Remark 3.3. In this definition we have asked for the existence of fillers making the
diagrams commute strictly; however, in view of Proposition 2.31, it suffices if there
are dotted arrows making the diagrams commute up to homotopy.

Our first task is to outline a proof that Hex(C) is exact (the definition of an exact
category can be found in section A.3 of the appendix). We do this through a sequence
of lemmas.

It will be convenient to first introduce some notation. If f :X → Y is any map and
σ:S → Y × Y is a homotopy equivalence relation, then the pullback

P //

��

S

σ

��

X ×X
f×f

// Y × Y

is a homotopy equivalence relation on X, which will be denoted by f∗σ: f∗S → X×X.
Moreover, if R → X ×X and S → X ×X are two homotopy equivalence relations,
then R ∩ S is the homotopy equivalence relation obtained by taking the following
pullback:

R ∩ S //

��

S

��

R // X ×X.
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Lemma 3.4. The category Hex(C) has finite limits.

Proof. Since (1, P1) is the terminal object, it suffices to construct pullbacks. If
f : (Y, S) → (X,R) and g: (Z, T ) → (X,R) are two maps in Hex(C) its pullback
(W,Q) can be constructed by letting W be the pullback

W

��

// R

��

Y × Z
f×g

// X ×X

and by letting Q be the homotopy equivalence relation on W obtained by pulling back
the homotopy equivalence relation π∗1S∩π∗2T on Y ×Z along the map W → Y ×Z. �

In the previous lemma we have used that if f :X → Y is any map and σ:S → Y ×Y
is a homotopy equivalence relation, then the pullback

P //

��

S

σ

��

X ×X
f×f

// Y × Y

is a homotopy equivalence relation on X, which will be denoted by f∗σ: f∗S → X×X.

Lemma 3.5. A morphism f : (X, ρ:R → X ×X) → (Y, σ:S → Y × Y ) is monic if
and only if there is a morphism h: f∗S → R such that ρh = f∗σ. Therefore every
mono is isomorphic to one of the form f : (X, f∗S)→ (Y, S).

Proof. Use the description of pullbacks from the previous lemma and the fact that
m:A→ B is monic if and only if in the pullback

A×B A
p2 //

p1

��

A

m

��

A
m

// B

we have p1 = p2. �

Lemma 3.6. The category Hex(C) is regular and the covers are those maps

f : (X, ρ:R→ X ×X)→ (Y, σ:S → Y × Y )

for which there are maps g:Y → X and h:Y → S in C such that σh = (1, fg).

Proof. Let us call maps f as in the statement of the proposition nice epis. Then the
proposition follows as soon as we show:

(1) Every map factors as a nice epi followed by a mono.
(2) Nice epis are stable under isomorphism.
(3) Nice epis are covers.
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(4) Nice epis are stable under pullback.

This is all fairly easy: for example, if f : (X,R) → (Y, S) is any map, then it can be
factored as

(X,R)
1 // (X, f∗S)

f
// (Y, S),

where the first map is a nice epi and the second a mono. We leave it to the reader to
check the other properties. �

We record the following corollary for future reference:

Lemma 3.7. If f : (X,R)→ (Y, S) is a cover in Hex(C), then (X, f∗S) ∼= (Y, S).

Proof. If f : (X,R) → (Y, S) is a cover, then (Y, S) is isomorphic to the image of f ,
which, according to Lemma 3.6, is precisely (X, f∗S). �

Lemma 3.8. For every map f : (X,R)→ (Y, S) there exists a factorisation (X,R)→
(X ′, R′)→ (Y, S) where the first is an iso in Hex(C) and the second is represented by
a fibration X ′ → Y in C. In particular, every subobject of (Y, S) has a representative
via a map f : (X, f∗S)→ (Y, S) where f :X → Y is a fibration.

Proof. The map f can be factored as a homotopy equivalence wf :X → X ′ followed
by a fibration pf :X ′ → Y ; this means that there is a map i:X ′ → X such that
wf i ' 1 and iwf ' 1. We obtain R′ by pulling back R along i. We leave verification
of the details to the reader. �

Theorem 3.9. The category Hex(C) is exact.

Proof. In view of the previous lemma it suffices to construct quotients of equivalence
relations f : (Y, f∗(R × R)) → (X × X,R × R) where f :Y → X × X is a fibration
and (X, ρ:R → X × X) is an object in Hex(C). But in this case one can take
(X, τ :R×X Y ×X R→ X ×X), where if we consider R×X Y ×X R heuristically as
the set of triples (r, y, r′) with ρ2(r) = f1(y) and f2(y) = ρ1(r′), then τ sends such a
triple to (ρ1(r), ρ2(r′)). �

Remark 3.10. The set-theoretic notation that we have used in the description of
τ in the previous theorem can be justified in various ways, for example, by using
generalised elements. In that case the description can be understood to say that
R ×X Y ×X R is an object such that maps into it from an object I correspond
bijectively to triples of maps r: I → P, y: I → Y, r′: I → R with ρ2r = f1y and
f2y = ρ1r

′. In addition, the existence of τ derives from the fact that the operation
taking such triples (r, y, r′) to (ρ1r, ρ2r

′) is a natural operation of the form

Hom(I,R×X Y ×X R)→ Hom(I,X ×X).

But then it follows from the Yoneda Lemma that this operation must be given by
postcomposition by some unique map R×X Y ×X R→ X ×X. From now on we will
increasingly rely on such heuristic set-theoretic descriptions; we trust that the reader
can replace these descriptions by diagrammatic ones, if desired.
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3.2. Alternative constructions of the homotopy exact completion. It turns
out that the way we have just described the homotopy exact completion is not always
the most convenient when we try to prove things about it. For this reason we will
now describe two alternative ways of constructing it, where the first is just a minor
variation, while the second is more substantial.

Our first alternative description will make use of the notion of a pseudo-equivalence
relation.

Definition 3.11. Let f = (f1, f2):R→ X ×X be an arbitrary map (not necessarily
a fibration) in a path category C. Then f will be called a pseudo-equivalence relation,
if there are maps ρ:X → R, σ:R→ R and τ :P → R witnessing reflexivity, symmetry
and transitivity of this relation, where P is the homotopy pullback of f1 and f2.

The alternative definition could now be given as follows: take as objects pairs
(X,R), where R is a pseudo-equivalence relation on X, and a morphism

(X, ρ:R→ X ×X)→ (Y, σ:S → Y × Y )

is an equivalence class of morphisms f :X → Y for which there is an arrow ϕ:R→ S
making

R

ρ

��

ϕ
// S

σ

��

X ×X
f×f

// Y × Y

commute up to homotopy, while two such arrows f, g:X → Y are equivalent if there
is a map h:X → S such that (f, g) ' σh.

Proposition 3.12. The category just described is equivalent to Hex(C).

Proof. Any homotopy equivalence relation is also a pseudo-equivalence relation, so
Hex(C) embeds into the category just described. Therefore it remains to check that
any pseudo-equivalence relation ρ:R → X × X is isomorphic to a homotopy equiv-
alence relation in this category. But it can be shown quite easily using the lifting
properties that if ρ is factored as a homotopy equivalence R → R̂ followed by a
fibration ρ̂: R̂→ X ×X, then ρ̂: R̂→ X ×X is a homotopy equivalence relation. �

More significantly, one may also view the homotopy exact completion Hex(C) as
a homotopy category. Indeed, our second way of looking at the homotopy exact
completion is to regard Hex(C) as the result of a two step procedure, where one first
constructs out of any path category C a new path category Ex(C), from which Hex(C)
can then be obtained by taking the homotopy category.

The objects of Ex(C) are again homotopy equivalence relations, as defined in Def-
inition 2.11, while a morphism from (X, ρ:R → X × X) to (Y, σ:S → Y × Y ) is a
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morphisms f :X → Y for which there exists a map ϕ:R→ S making

R

ρ

��

ϕ
// S

σ

��

X ×X
f×f

// Y × Y

commute (we call such a map ϕ a tracking). For any two such arrows f, g:X → Y
we will write f ∼ g if there is a map H:X → S such that (f, g) = σH:X → Y × Y .
This relation defines a congruence on Ex(C) and we will choose our fibrations and
weak equivalences in such a way that this will become the homotopy relation on this
path category.

A morphism f as above is said to be a fibration in Ex(C) if:

(1) f is a fibration in C, and
(2) if X ×Y S is the pullback

X ×Y S
p2 //

p1

��

S

σ1

��

X
f

// Y,

there is a map ∇:X ×Y S → R in C (“a weak connection structure”) such
that ρ1∇ = p1 and fρ2∇ = σ2p2.

And f will be weak equivalence in Ex(C) if there is a map g: (Y, S) → (X,R) such
that fg ∼ 1Y and gf ∼ 1X .

Lemma 3.13. A fibration f : (X, ρ:R → X ×X) → (Y, σ:S → Y × Y ) in Ex(C) is
acyclic if and only there is a map a:Y → X in C such that fa = 1Y and af ∼ 1X .
Indeed, such a map a:Y → X in C will automatically be a map in Ex(C).

Proof. If f is acyclic, there is a map g: (Y, S) → (X,R) such that fg ∼ 1Y and
gf ∼ 1X . The former gives one a map H:Y → S such that σH = (fg, 1). We put
a: = ρ2∇(g,H). Then

fa = fρ2∇(g,H) = σ2p2(g,H) = σ2H = 1Y

and ∇(g,H) witnesses that g ∼ a, so af ∼ gf ∼ 1X .

Conversely, if a:Y → X is such that fa = 1Y and af ∼ 1X , then a can be regarded
as a map (Y, S) → (X,R). To show this, we use set-theoretic notation: for if s ∈ S
connects y0 and y1, that is, if σ1(s) = y0 and σ2(s) = y1, then t0: = ∇(a(y0), s)
connects a(y0) with some point x such that f(x) = y1. But then from the witness
of 1X ∼ af we find a t1 connecting x and a(f(x)) = a(y1). So in order to obtain a
tracking for a we should send s to the composition of t0 and t1, using the transitivity
of R. �
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Theorem 3.14. The category Ex(C) is a path category whose homotopy category is
equivalent to Hex(C).

Proof. We check the axioms.

(1) Fibrations are closed under composition. If f : (X, ρ:R→ X×X)→ (Y, σ:S →
Y × Y ) and g: (Y, σ:S → Y × Y ) → (Z, τ :T → Z × Z) are fibrations with
weak connections ∇f :X ×Y S → R and ∇g:Y ×Z T → S, respectively,
then gf is a fibration with weak connection ∇gf :X ×Z T → R defined by
∇gf (x, t): = ∇f (x,∇g(f(x), t)).

(2) The pullback of a fibration along any map exists and is again a fibration.
If f : (X, ρ:R → X × X) → (Y, σ:S → Y × Y ) is a fibration with weak
connection ∇f and g: (Z, τ :T → Z × Z) → (Y, σ:S → Y × Y ) is tracked by
ϕ, then we can construct its pullback by taking X ×Y Z together with the
homotopy equivalence relation π∗1R ∩ π∗2S. The projection X ×Y Z → Z has
a weak connection structure: given a pair (x0, z0) with f(x0) = g(z0) and an
element t ∈ T from z0 to z1, the element s: = ϕ(t) ∈ S connects f(x0) = g(z0)
and g(z1). So by the weak connection on f one obtains an element r ∈ R
connecting x0 to some x1 with f(x1) = g(z1). So (r, t) connects (x0, z0) to
some point (x1, z1) in X ×Y Z above z1.

(3) The pullback of an acyclic fibrations along any map is again an acyclic fibra-
tion. If in the situation as in (2) the map f has a section a with af ∼ 1, then
the projection π2:X×Y Z → Z has a section b defined by b(z) = (a(g(z)), z).
It is clear that bπ2 ∼ 1.

(4) Weak equivalence satisfy 2-out-of-6. This follows from the fact that ∼ is a
congruence.

(5) Isomorphisms are acyclic fibrations and every acyclic fibration has a section.
Immediate from the previous lemma.

(6) The existence of path objects. If (X, ρ:R→ X×X) is a homotopy equivalence
relation with e:X → R witnessing reflexivity (so ρe = ∆X), then we can
factor the diagonal on X as:

(X,R)
e // (R, ρ∗1R)

ρ
// (X ×X,R×R),

where ρ1:R→ X is an acyclic fibration left inverse to the first map. We leave
the verifications to the reader.

(7) The category has a terminal object and every map to the terminal object is
a fibration. The terminal object is (1, P1). The verification that the unique
map X → 1 is always a fibration (X,R)→ (1, P1) in Ex(C) is trivial.

Note that it follows from the description of the path objects in (6) that the relation
∼ is precisely the homotopy relation in Ex(C): for if f, g: (Y, σ:S → Y × Y ) →
(X, ρ:R→ X ×X) are two parallel maps and H:Y → R witnesses that f ∼ g, then
H is also map (Y, S) → (R, ρ∗1R) which is tracked by any tracking of f . Therefore
Ex(C) is a path category whose homotopy category is equivalent to Hex(C). �
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3.3. The embedding. In the theory of exact completions of categories with finite
limits the embedding of the original category into the exact completion plays an
important rôle. For homotopy exact completions there is a similar functor

i: C → Hex(C)

obtained by sending X to (X,PX). In this subsection we will try to determine which
properties from the theory of ordinary exact completions continue to hold and which
ones seem to break down.

First of all, we should note that the functor i is full, but not faithful: indeed, its
image is equivalent to the homotopy category Ho(C).

In the ordinary theory of exact completion the functor i preserves finite limits.
Here one has:

Proposition 3.15. The functor i: C → Hex(C) sends homotopy pullback squares to
pullback squares. In particular, it sends pullbacks of fibrations to pullbacks.

Proof. Since i sends homotopy equivalences to isomorphisms, it suffices to check that
i sends any pullback square in C

C ×A B

q

��

g
// B

p

��

C
f

// A

in which all maps are fibrations to a pullback square in Hex(C).

Using the description of pullbacks in Ex(C) in the proof of Theorem 3.14 the
pullback of the images of f and g there is C ×A B together with the homotopy
equivalence relation g∗PB∩q∗PC. Since weak equivalences are stable under pullback
along fibrations and g and q are fibrations, both g∗PB and q∗PB are homotopic to
P (C ×A B). Therefore the image in Ex(C) of a pullback involving only fibrations
remains a pullback involving only fibrations in Ex(C). Since Proposition 2.31 implies
that the pullback of a square involving only fibrations remains a pullback square in
the homotopy category, the proposition follows. �

In the ordinary theory of exact completions the objects in the image of i are, up
to isomorphism, the projectives (an object P in an exact category is projective if any
cover e:X → P has a section). That does not seem to be the case here, but we do
have the following useful result:

Proposition 3.16. The objects in the image of the functor i: C → Hex(C) are projec-
tive and each object in Hex(C) is covered by some object in the image of this functor.

Proof. It follows immediately from Lemma 2.13 and the characterisation of covers
in Lemma 3.6 that objects of the form iX are projective, while maps of the form
1: (X,PX)→ (X,R) are covers. �
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Proposition 3.17. The category Hex(C) is the exact completion of Ho(C) as a weakly
lex category, as defined in [17].

Proof. This follows from Theorem 3.9 and Proposition 3.16 above and Theorem 16
in [17]. �

We will also be concerned with objects that are internally projective.

Definition 3.18. Let E be an exact category. An object P in E is internally projective
if for any T in E , any cover Y → X and any map T × P → X, there are a cover
e:T ′ → T and a map T ′ × P → Y making the square

T ′ × P //

e×1

��

Y

��

T × P // X

commute. A morphism f :P → A in E is a choice map if it is internally projective in
the slice category E/A.

Lemma 3.19. Let E be an exact category and P be a collection of objects in E with
the following three properties:

(1) The objects in P are closed under finite products.
(2) The objects in P are projective.
(3) For every object E in E there is a cover P → E with P ∈ P.

Then each object in P is internally projective.

Proof. Suppose we are given an element P in P, a cover Y → X and a map T ×P →
X. Then the third property allows us to choose T ′ ∈ P together with a cover
e:T ′ → T ; the first property tells us that T ′ × P belongs to P, while the second
property tells us that it is also projective. So if we pull back the cover Y → X along
T ′ × P → T × P → X, the resulting cover will have a section. Therefore there is a
map T ′ × P → Y making the resulting square commutative. �

Corollary 3.20. Objects of the form iX are internally projective in Hex(C) and
morphisms of the form i(f): i(Y )→ i(X) are choice maps in Hex(C).

Proof. The first statement follows from the fact that objects of the form iX satisfy all
the properties in the previous lemma. In the same fashion one shows that objects of
the form i(g): i(Y )→ i(X) where g is a fibration satisfy the properties of the previous
lemma in Hex(C)/i(X). Therefore maps of the form i(f) are choice maps, because
the factorisation of maps as homotopy equivalences following by fibrations shows that
any such is isomorphic to one of the form i(g) with g being a fibration. �

Another aspect of the theory of exact completions is that the subobject lattices of
objects of the form iX can be described concretely as a poset reflection.
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Proposition 3.21. Let X be an object in a path category C. The subobject lattice of
iX in Hex(C) is order isomorphic to the poset reflection of C(X).

Proof. Lemma 3.8 tells us that every subobject of iX in Hex(C) has a representative
given by a map f : (Y,R) → (X,PX) where f is a fibration and R = f∗PX. If
h: (Z, S) → (Y,R) is a map over iX between two such representatives g: (Z, S) →
(X,PX) and f : (Y,R) → (X,PX), then fh ' g. But then there is also a map
h′:Z → Y homotopic to h such that fh′ = g. Since h and h′ are homotopic, h′ also
has a tracking as a map (Z, S) → (Y,R) in Hex(C) and as such h and h′ represent
the same map. In fact, any map h′ such that fh′ = g will have tracking as a map
(Z, S) → (Y,R) because we are assuming that S = g∗PX and R = f∗PX. It
follows that the subobject lattice of iX in Hex(C) is the poset reflection of C(X), as
claimed. �

Another aspect of the classical theory of exact completions is that exact comple-
tion and slicing commute. That fails for path categories; in fact, we only have the
following.

Proposition 3.22. Let C be a path category and X be an object in C. Then Hex(C)/i(X)
is a reflective subcategory of Hex(C(X)).

Proof. Let us first take a closer look at Hex(C)/i(X). Objects in this category
are morphisms f : (Y, S) → (X,PX) in Hex(C), that is, homotopy classes of arrows
f :Y → X with a tracking S → PX. Using the factorisation of arrows as homotopy
equivalences followed by fibrations in Ex(C), we may assume that f is an Ex(C)-
fibration. This means that we may assume that the objects in this category are pairs
consisting of a fibration f :Y → X and a homotopy equivalence relation σ:S → Y ×Y
for which there is a weak connection structure ∇:Y ×X PX → S as well as a map
S → PX making

S //

σ

��

PX

(s,t)

��

Y × Y
f×f
// X ×X

commute.

Furthermore, the morphisms in Hex(C)/i(X) are equivalence classes of arrows

ϕ: (g:Z → X,R)→ (f :Y → X,S)

such that f ◦ ϕ ' g and for which a tracking R → S exists, while ϕ and ϕ′ are
equivalent in case there is map H making

S

��

Z

H

;;

(ϕ,ϕ′)

// Y × Y
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commute. Since we are assuming that f is a fibration, it follows from Proposition
2.31 that we may just as well assume that ϕ satisfies fϕ = g. If both ϕ and ϕ′ are
such representations, then they represent the same arrow in Hex(C)/i(X) if there is
a dotted filler as in

T //

��

S

��

Z
(ϕ,ϕ′)

//

;;

Y ×X Y // Y × Y,

where the square is a pullback.

This suggests the correct definition of the embedding ρ: Hex(C)/i(X)→ Hex(C(X)).
Note that objects in Hex(C(X)) consist of pairs (f, Y → X,T → Y ×X Y ), where
f is a fibration and T → Y ×X Y is a homotopy equivalence relation in C(X). So
we can define a functor ρ: Hex(C)/i(X)→ Hex(C(X)) by sending (f :Y → X,S) to f
together with the homotopy equivalence relation in C(X) obtained as the pullback

T //

��

S

��

Y ×X Y // Y × Y.

This functor ρ has a left adjoint λ: Hex(C(X))→ Hex(C)/i(X). The quickest way
to define it is to use the factorisation in C: starting from a pair (f :Y → X,T → Y ×X
Y ) we can factor the composition of T → Y ×X Y with the inclusion Y ×X Y → Y ×Y
as a homotopy equivalence followed by a fibration:

T
∼ //

��

S

��

Y ×X Y // Y × Y.

Using the lifting properties one can now show that S → Y × Y is a homotopy
equivalence relation and that λ defines a left adjoint to ρ.

To complete the proof we have to show that λρ ∼= 1. So suppose we are given a
fibration f :Y → X and a homotopy equivalence relation σ:S → Y × Y for which
there are a weak connection ∇:Y ×X PX → S as well as a tracking S → PX.
Construct the following four pullbacks:

T //

��

S∗ //

��

S

��

Y ×X Y //

��

Y ×X PX ×X Y //

��

Y × Y

��

X
r

// PX
(s,t)

// X ×X.
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Note that all four arrows in the lower righthand square are fibrations; since S → Y ×Y
is a fibration, the maps S∗ → Y × Y and S∗ → PX are fibrations as well. From the
latter it follows that T → S∗ is a weak equivalence since r:X → PX is. Therefore
applying ρ to (f, S) yields T → Y ×X Y and the result of applying λ to that is
S∗ → Y × Y . Therefore it remains to construct a suitable map S → S∗ over Y × Y :
but the existence of such a map follows from the universal property of S∗ and the
existence of a tracking S → PX. �

Remark 3.23. The adjunction λa ρ in the proof above is not an equivalence: indeed,
consider the category of topological spaces, and take for f :Y → X the universal
cover R→ S1 of the circle and let ∆:Y → Y ×X Y be the diagonal. Then λ(f,∆) ∼=
(R, PR) ∼= 1 and ρλ(f,∆) ∼= 1, but (f,∆) 6∼= 1. In the same way one can show that
λ does not preserve finite products (if it would our treatment of Π-types below could
have been simplified considerably). For λ(f,∆) × λ(f,∆) ∼= 1, while (f,∆) × (f,∆)
is Y ×X Y with the diagonal, so

λ((f,∆)× (f,∆)) = (Y ×X Y, P (Y ×X Y )),

which is isomorphic to Z with the discrete topology.

In the remainder of this section we will try to characterise the image of ρ in
Hex(C(X)). In order to do this, we introduce the following notion.

For the moment, fix a fibration f :Y → X and a homotopy equivalence relation
τ :T → Y ×X Y in C(X); so, in effect, we are fixing an object in Hex(C(X)).

Definition 3.24. A transport structure relative to T , or a T-transport, is a map
Γ:Y ×X PX → Y such that:

(1) fΓ = tp2, and
(2) there is a map L:Y → T such that τL = (1,Γ(1, rf)).

Proposition 3.25. T -transports exist and are unique up to T -equivalence; more
precisely, if Γ and Γ′ are two T -transports, there will be a map H:Y ×X PX → T
such that τH = (Γ,Γ′).

Proof. For T = PX(Y ) a T -transport structure is the same thing as an ordinary
transport structure. Because there will always be a map PX(Y ) → T over Y ×X Y ,
every ordinary transport structure is also a transport structure relative to T . In
particular, transport structure relative to T exist since ordinary ones do.

To show essential uniqueness, let Γ and Γ′ be two T -transports. Then Γ(1, rf)
and Γ′(1, rf) will be T -equivalent, as they are both T -equivalent to the identity on
Y . This means that there is a map K making

Y

(1,rf)

��

K // T

τ

��

Y ×X PX
(Γ,Γ′)

// Y ×X Y



36 EXACT COMPLETION OF PATH CATEGORIES AND ALGEBRAIC SET THEORY

commute. But since τ is a fibration and (1, rf) is a weak equivalence, we get the
desired map H from the usual lifting properties. �

Proposition 3.26. T -transports preserve T -equivalence. More precisely, if Γ is a
T -transport, there will be a map H:T ×X PX → T such that

τ1H = Γ(τ1p1, p2) and τ2H = Γ(τ2p1, p2).

Proof. If Γ is a T -transport, then

Γ(1, rf)τ1 'T τ1 'T τ2 'T Γ(1, rf)τ2:T → Y.

Therefore there is a map K making

T
K //

(1,rfτ1)

��

T

τ

��

T ×X PX
τ×X1

// Y ×X Y ×X PX
(Γ(p1,p3),Γ(p2,p3))

// Y ×X Y

commute, and H is obtained as a lower filler of this diagram. �

Definition 3.27. Let (f, T ) be an element of Hex(C(X)), so f :Y → X is a fibration
and T → Y ×X Y is a homotopy equivalence relation in C(X). We call such an
object stable if the action of loops in X on the fibres of f by the (essentially unique)
T -transport Γ:Y ×X PX → Y is T -trivial: so if f(y) = x and α is a loop at x, then
Γα(y) 'T y.

Theorem 3.28. Let C be a path category and X be an object in C. Then Hex(C)/i(X)
is equivalent to the full subcategory of Hex(C(X)) consisting of the stable objects.

Proof. Note that objects in the image of ρ are always stable: for suppose T is the
restriction to Y ×X Y of some homotopy equivalence relation σ:S → Y × Y over
(X,PX). We may assume that f : (Y, S) → (X,PX) is an Ex(C)-fibration, so that
there is a weak connection structure ∇:Y ×X PX → S. From this we obtain a T -
transport Γ given by Γ = σ2∇. If f(y) = x and α is a loop at x, the weak connection
∇ tells us that Γα(y) 'S y; but then also Γα(y) 'T y, by definition of T .

Conversely, let (f :Y → X, τ :T → Y ×X Y ) be an element of Hex(C(X)), and
let Γ:Y ×X PX → Y be the essentially unique T -transport. Compute the following
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pullbacks:

T

τ

��

S

��

oo T ∗

τ∗

��

oo

Y ×X Y Y ×X PX ×X Y

vv

Γ×X1
oo

��

Y ×X Y

��

oo

Y × Y

f×f
��

PX

(s,t)vv

X
r

oo

X ×X
From the fact that Γ is a T -transport it follows that that there are maps between
T and T ∗ which commute over Y ×X Y . In other words, (Y, T ) and (Y, T ∗) are
isomorphic in Hex(C). But since T ∗ → S, as a pullback of r:X → PX along a
fibration, is a weak equivalence, we see that λ(Y, T ) is (Y, S → Y × Y ). Therefore
ρλ(Y, T ) is the element in Hex(C(X)) consisting of f :Y → X together with the
following homotopy equivalence relation in C(X): y1 and y2 over the same x are
related if there is a loop α on x such that Γα(y1) 'T y2. But if (Y, T ) is stable, this
is equivalent to y1 'T y2; so in this case ρλ(Y, T ) ∼= (Y, T ). �

This theorem gives us a useful way of thinking about the slice category Hex(C)/i(X):
especially when we have to deal with small maps, it is more convenient to think about
the stable elements in Hex(C(X)).

4. Sums

4.1. Definition. This section will be devoted to a study of homotopy initial objects
and homotopy sums in a path category. These can be defined quite simply as objects
that become initial objects and sums in the homotopy category. That is:

Definition 4.1. An object 0 is homotopy initial if for any object A there is a map
f : 0 → A and any two such maps are homotopic. A homotopy sum or homotopy
coproduct of two objects A and B is an object A+B together with two maps iA:A→
A + B and iB :B → A + B such that for any pair of maps f :A → X and g:B → X
there is a map h:A+B → X, unique up to homotopy, such that hiA ' f and hiB ' g.

This is not quite what the type theorist would expect: the type-theoretic axiom for
the initial object, for example, says that any fibration A→ 0 has a section. However,
this condition turns out to be equivalent.

Proposition 4.2. In a path category an object 0 is homotopy initial if and only if
any fibration f :A→ 0 has a section.

Proof. Suppose we are given a fibration f :A→ 0. If 0 is homotopy initial, then there
is a map g: 0→ A with fg ' 1. So by Proposition 2.31 there is a map g′: 0→ A such
that fg′ = 1.
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Conversely, suppose 0 is such that any fibration A → 0 has a section. For any
object B the second projection π2:B × 0 → 0 is a fibration, so there is a map
a: 0 → B × 0 such that π2a = 1; but then f = π1a is a map 0 → B. In addition, if
g: 0→ B is another map, then we can take the pullback

Q

��

// PB

(s,t)

��

0
(f,g)

// B ×B

giving rise to a fibration Q→ 0. This map has a section, and composing this section
with the map Q→ PB gives rise to a homotopy between f and g. �

In the same way one has:

Proposition 4.3. An object A+B together with maps iA:A→ A+B and iB :B →
A+B is the homotopy sum of A and B if and only if for any fibration p:C → A+B
and any pair of maps a:A→ C and b:B → C such that pa = iA and pb = iB, there
is a map σ:A+B → C such that pσ = 1, σiA ' a and σiB ' b.

Proof. ⇒: Suppose we are given a fibration p:C → A + B together with maps
a:A→ C and b:B → C such that pa = iA and pb = iB . We know that there is a map
h:A+B → C such that hiA ' a and hiB ' b. In addition, we must have ph ' 1, so
by Proposition 2.31 there is a map σ:A+B → C such that pσ = 1 and σ ' h; hence
σiA ' hiA ' a and σiB ' hiB ' b.

⇐: Let f :A → X and g:B → X be two maps. We want to show that there is a
map h:A + B → X, unique up to homotopy, such that hiA ' f and hiB ' g. Put
C = X× (A+B) and consider the projection π2:C → A+B together with the maps
(f, iA):A → C and (g, iB):B → C. By assumption, there is a map σ:A + B → C
such that π2σ = 1, σiA ' (f, iA), σiB ' (g, iB). So if we put h = π1σ:A + B → X,
then hiA ' f and hiB ' g, as desired. If h′:A+B → X satisfies the same equations,
then we can take the following pullback:

Q
p2 //

p1

��

PX

(s,t)

��

A+B
(h,h′)

// X ×X

giving rise to a fibration Q→ A+B. In addition, since (h, h′)iA ' (f, f) = (s, t)rf ,
there is a map u:A → PX such that (s, t)u = (h, h′)iA and a map k:A → Q such
that p1k = iA; similarly, there is a map l:B → Q such that p1l = iB . So p1 has a
section and composing this section with p2 yields the desired homotopy between h
and h′. �

Proposition 4.4. Suppose C is a path category with homotopy sums.

(i) If 0 is homotopy initial, then 0 +X ' X for any object X.
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(ii) f + g:X + Y → A+B will be a homotopy equivalence if both f :X → A and
g:Y → B are.

(iii) P (A+B) ' PA+ PB.

Proof. Parts (i) and (ii) are immediate consequences of the fact homotopy equiva-
lences are precisely those maps which become isomorphisms in the homotopy category,
while homotopy initial objects become initial objects and homotopy sums become or-
dinary sums in the homotopy category.

(iii): It follows from (ii) that the canonical map A + B → PA + PB is a weak
equivalence. So the lifting properties give us a map PA + PB → P (A + B) making
the top triangle in

A+B //

��

P (A+B)

��

PA+ PB //

22

A×A+B ×B // (A+B)× (A+B)

commute up to homotopy. Since the map along the top is a homotopy equivalence,
so is PA+ PB → P (A+B). �

4.2. Homotopy extensive path categories. For later purposes we do not only
need homotopy sums to exist, but they should also have properties like disjointness
and stability, as ordinary categorical sums have in an extensive category. So we need
a suitable notion of extensivity for path categories.

Definition 4.5. Suppose C is a path category.

(1) A homotopy sum A+B in C is stable, if for any diagram of the form

C //

��

X

��

D

��

oo

A // A+B B,oo

the top row is a homotopy coproduct whenever both squares are homotopy
pullbacks.

(2) A homotopy sum A+B is disjoint if the square

0 //

��

B

��

A // A+B

is a homotopy pullback.
(3) If C has a homotopy inital object and homotopy sums which are both stable

and disjoint, then C will be called homotopy extensive.

Proposition 4.6. Let C be a path category with stable homotopy sums and a homo-
topy initial object.
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(i) The distributive law X × (A+B) ' X ×A+X ×B holds.
(ii) The homotopy initial object 0 is strict: any map X → 0 is a homotopy

equivalence.
(iii) The functor C(A+B)→ C(A)×C(B) is homotopy conservative (i.e., detects

homotopy equivalences).

Proof. Property (i) is a special case of stability, as applied to the following diagram:

X ×A //

��

X × (A+B)

��

X ×B

��

oo

A // A+B B.oo

To prove (ii), note that given any arrow f :X → 0 the diagram

X

f

��

1 // X

f

��

X

f

��

1oo

0
1
// 0 0

1
oo

consists of two (homotopy) pullbacks. So the top row is homotopy coproduct diagram
by stability and therefore any two parallel arrows with domainX are homotopic. This,
in combination with the existence of a map f :X → 0, implies that X is a homotopy
initial object and f is a homotopy equivalence.

To prove (iii), suppose f :Y → X is a map in C(A+B) and let fA:YA → XA and
fB :YB → XB be the pullbacks of f along A→ A+B and B → A+B, respectively. If
both fA and fB are homotopy equivalences, then so is fA + fB :YA +YB → XA +XB

by Proposition 4.4.(ii). But if the sums in C are stable, then YA + YB ' Y and
XA +XB ' X, so f is a homotopy equivalence, as desired. �

Proposition 4.7. Suppose C is a path category which has a homotopy initial object
and homotopy sums. Then C is homotopy extensive if and only if the following two
conditions are satisfied:

(i) If C → A and D → B are two maps, then

C //

��

C +D

��

D

��

oo

A // A+B B,oo

consists of two homotopy pullbacks.
(ii) The functor C(A+B)→ C(A)× C(B) is homotopy conservative.

Proof. ⇒: In view of Proposition 4.6.(iii) it remains to show that (i) holds in all
homotopy extensive path categories. To this purpose consider a homotopy pullback
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of the form

C ′ //

��

C +D

��

A // A+B.

We would like to show that C ′ ' C, and since we have already shown that the
functor C(C +D)→ C(C)× C(D) is homotopy conservative, it suffices to prove that
the following two squares are homotopy pullbacks:

(1)

C

��

// C

��

C ′ // C +D

0

��

// D

��

C ′ // C +D

By pasting of homotopy pullbacks, the second square is a homotopy pullback if and
only if

0 //

��

D

��

A // A+B

is. But the latter square can be decomposed as

0 //

��

D

��

0

��

// B

��

A // A+B.

Here the bottom square is a homotopy pullback by the disjointness of the homotopy
sums and the top square is a homotopy pullback by Proposition 4.6.(ii). We conclude
that the second square in (1) is a homotopy pullback.

In the same way one can show that

0

��

// C

��

D′ // C +D

is a homotopy pullback, where D′ is the homotopy pullback in

D′ //

��

C +D

��

B // A+B.
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Now consider

C ′′

��

// C

��

0oo

��

C ′ //

��

C +D

��

D′oo

��

A // A+B Boo

in which all squares are homotopy pullbacks. By stability of sums we have that
C ' C ′′ + 0 ' C ′′. This shows that also the first square in (1) is a homotopy
pullback.

⇐: Suppose (i) and (ii) are satisfied. To show that the homotopy sums are stable,
suppose that

C //

��

X

��

D

��

oo

A // A+B B,oo

consists of two homotopy pullbacks. We have to show C + D ' X. Without loss of
generality we may assume that both X → A+B and C +D → A+B are fibrations.
Therefore it suffices to prove that C+D and X are homotopy equivalent after pulling
back along A→ A+B and C → C +D. But for both C +D and X the results are
homotopy equivalent to C and D, respectively, so C +D ' X.

To see that homotopy sums are disjoint, note that (i) implies that

0 //

��

0 +B

��

A // A+B

is a homotopy pullback. �

Proposition 4.8. Let C be a homotopy extensive path category. If the following
squares

X ′ //

��

X

��

A′ // A

Y ′ //

��

Y

��

B′ // B

are homotopy pullbacks in C, then so is

X ′ + Y ′ //

��

X + Y

��

A′ +B′ // A+B.
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Proof. Let P be such that

P //

��

X + Y

��

A′ +B′ // A+B

is a homotopy pullback. To show that P is a homotopy sum of X ′ and Y ′ it suffices,
by stability, to show that both

(2)

X ′ //

��

P

��

A′ // A′ +B′

Y ′ //

��

P

��

B′ // A′ +B′

are homotopy pullbacks. To see this for the first square, note that we have a com-
muting cube

P //

��

X + Y

��

X ′

::

//

��

X

;;

��

A′ +B′ // A+B.

A′

;;

// A

;;

Since the front, the back and the right face are homotopy pullbacks, the same holds
for the left face. A similar cube shows that the second square in (2) is a homotopy
pullback as well. �

4.3. Homotopy exact completion. If C is a homotopy extensive, then Hex(C) will
not only be exact: it will be a pretopos. This subsection will be devoted to a direct
proof of this fact. (Alternatively, we could have appealed to Proposition 3.17 above
and Section 3.4 in [17]. For the definition of a pretopos, see Section A.3 of the
appendix.)

Proposition 4.9. Homotopy initial objects become initial objects in the homotopy
exact completion.

Proof. Let (X,R) be an arbitrary object in the homotopy exact completion with a
fibration ρ:R → X ×X. If 0 is homotopy initial, there will be maps f : 0 → X and
g: 0→ R. Now (f, f) ' ρg, so by Proposition 2.31 there is also a map g′: 0→ R such
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that (f, f) = ρg′. Hence the square

0
g′

//

r

��

R

ρ

��

P0
(fs,ft)

// X ×X

commutes. Since it has a weak equivalence on the left and a fibration on the right,
there is a map P0 → R to track f , showing the existence of a morphism (0, P0) →
(X,R) in the homotopy exact completion. To prove uniqueness, note that if there
are two maps f, f ′: 0→ X then (f, f ′) ' ρg, which shows that f and f ′ are identical
as maps in the homotopy exact completion (see Remark 3.3). �

Theorem 4.10. If C is a homotopy extensive path category, then its homotopy exact
completion Hex(C) is a pretopos.

Proof. It will be convenient to use the first alternative description of Hex(C) in terms
of pseudo-equivalence relations. So let R → X ×X and S → Y × Y be two pseudo-
equivalence relations.

If R + S and X + Y are the homotopy sums, then from the maps X × X →
(X + Y )× (X + Y ) and Y × Y → (X + Y )× (X + Y ) and the universal property of
R+ S we obtain a map

R+ S → (X + Y )× (X + Y ).

Using the properties of homotopy extensive categories that we have established, one
can show that this map is a pseudo-equivalence relation and indeed the sum of R→
X ×X and S → Y × Y in the homotopy exact completion. The (easy) verification
that these sums are stable and disjoint is left to the reader. �

5. Small maps

5.1. Small fibrations and small maps. The main purpose of this section is to
show that a class of small fibrations in a path category C gives rise to a class of small
maps in the pretopos Hex(C) having properties similar to those in [31]. In order to
describe how we do this, we will need the following definition taken from [9]:

Definition 5.1. A commuting square in an exact category of the form

D
q
//

g

��

C

f

��

B
p
// A

will be called a covering square if both p and the inscribed map D → B ×A C to the
pullback are covers. If g and f fit into a covering square as shown, then we will say
that g covers f or that f is covered by g.
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So let C be a path category and F be a class of fibrations in C. We will refer to
the elements of F as the small fibrations and assume that F satisfies the following
axioms:

(F1) If in a homotopy pullback square

Y ′

f ′

��

// Y

f

��

X ′
p
// X

both f and f ′ are fibrations, then f ′ belongs to F whenever f does.
(F2) F contains all isomorphisms.
(F3) F is closed under composition.
(F4) If Y → X belongs to F , then so does PX(Y )→ Y ×X Y .

Note that it follows from (F1) that the property of being a small fibration is homotopy
invariant, meaning that if h = g′fg and h and f are fibrations and g and g′ are
homotopy equivalences, then f will belong to F if and only if h does. Therefore the
validity of (F4) is independent of the particular choice of path object.

Consider the homotopy exact completion Hex(C) of C and the functor

i: C → Hex(C).
A map f :Y → X in Hex(C) will be called quasi-small if it is covered by a map of
the form i(g) where g belongs to F ; and f will be called small if both f itself and
Y → Y ×X Y are quasi-small.

Proposition 5.2. If f is small fibration, then i(f) is small.

Proof. If f :Y → X is a small fibration, then i(f) is clearly quasi-small; so it remains
to show that i(Y )→ i(Y )×i(X) i(Y ) is quasi-small. First of all, i preserves pullbacks
along fibrations, so i(Y ×X Y ) ∼= i(Y ) ×i(X) i(Y ). In addition, i turns homotopy
equivalences into isomorphisms, so i(Y ) ∼= i(PX(Y )). Therefore i(Y ) → i(Y ) ×i(X)

i(Y ) is isomorphic to i(PX(Y ))→ i(Y ×XY ), which is quasi-small by axiom (F4). �

In order to say something more about the small maps, we first need to obtain some
results about the class of quasi-small maps.

Lemma 5.3. The following are equivalent for a map f : (Y, S)→ (X,R) in Hex(C):

(i) f is quasi-small.
(ii) For any epi i(A)→ (X,R) there is a covering square of the form

iB

i(g)

��

// (Y, S)

f

��

iA // (X,R)

with g:B → A a small fibration in C.



46 EXACT COMPLETION OF PATH CATEGORIES AND ALGEBRAIC SET THEORY

(iii) There is a covering square of the form

iZ

i(g)

��

// (Y, S)

f

��

iX
1
// (X,R)

with g:Z → X a small fibration in C.

Proof. Since (ii) ⇒ (iii) and (iii) ⇒ (i) are obvious, we only have to prove (i) ⇒ (ii).

So suppose

iD

i(h)

��

q
// (Y, S)

f

��

iC
p
// (X,R)

is a covering square with h:D → C a small fibration in C and assume in addition
that e: i(A) → (X,R) is epi. Since i(A) is projective and the functor i is full, there
is a map v:A→ C such that e = pi(v). If g is the result of pulling back h along v in
C, then g is a small fibration by (F1); as i preserves pullbacks of fibrations, i(g) will
cover f , as desired. �

Proposition 5.4. Let C be a path category and F be a class of fibrations in C satis-
fying (F1-4). If S is the class of quasi-small maps in Hex(C) determined by F , then
S satisfies the following axioms:

(S1) In a pullback square

Y ′

f ′

��

// Y

f

��

X ′
p
// X

f ′ belongs to S whenever f does.
(S2) If in a pullback square as the one above, the map p is a cover, then f belongs

to S whenever f ′ does.
(S3) S is closed under composition.
(S4) S contains all isomorphisms.
(Q) In a commutative triangle

Z
p

//

g
  

Y

f~~

X

in which g belongs to S and p is a cover, f also belongs to S.
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Proof. It is immediate from the definition that the quasi-small maps satisfy both (S2)
and (Q). So we check the other axioms.

(S1): Suppose

Y ′

f ′

��

// Y

f

��

X ′
p
// X

is a pullback in which f is covered by a map of the form i(g), where g:B → A is a
small fibration in C. We can construct a cube

W

!!

//

��

iB

i(g)

��

  

Y ′ //

f ′

��

Y

f

��

V //

!!

iA

  

X ′ // X

in which the bottom and top face are pullbacks, so that the face at the back becomes
a pullback as well and the face on the left becomes a covering square. We can
cover V by an object in the image of i, via i(A′) → V say, and, since i is full, the
composed map i(A′) → i(A) is of the form i(h) for some h:A′ → A in C. Since i
preserves pullbacks of fibrations, we may compute the pullback of i(g) along i(h) by
first taking the pullback of g along h in C and then applying i. The result will be
some i(g′) where g:B′ → A′ is a small fibration in C by axiom (F1): since f ′ will be
covered by this map, f ′ will be quasi-small, as desired.

(S3): Suppose f :Y → X is covered by i(f ′): i(B′)→ i(A′) and g:Z → Y is covered
by i(g′): i(C ′)→ i(B′′), as in:

i(B′)
p
//

i(f ′)

��

Y

f

��

i(A′) // X

i(C ′′) //

i(g′′)

��

Z

g

��

i(B′′)
q
// Y

In fact, Lemma 5.3 tells us that we may assume that B′ = B′′, so that f ′ and g′ can
be composed. But then f ′g′ is a small fibration, by axiom (F3), and i(f ′g′) covers
fg, as desired.
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(S4): The functor i preserves the terminal object, so (F2) and Proposition 5.2
imply that 1→ 1 is quasi-small in Hex(C). But if f :Y → X is an isomorphism, then

Y

f

��

// 1

��

X // 1

is a pullback. So (S1) implies that f is quasi-small. �

From now on we will assume that C is a homotopy extensive path category, so that
C has well-behaved homotopy sums and Hex(C) is a pretopos (see Theorem 4.10). In
that case it makes sense to require the following additional properties for our class of
small fibrations F :

(F5) If two maps Y → X and Y ′ → X ′ both belong to F then so does a fibrant
replacement of Y + Y ′ → X +X ′.

(F6) The maps 0→ 1 and 1 + 1→ 1 belong to F .

Note that since smallness is a homotopy invariant property of fibrations, axiom (F5)
is unambiguous and does not depend on the particular choice of a fibrant replacement.

Proposition 5.5. Let C be a homotopy extensive path category and F be a class
of fibrations in C satisfying axioms (F1-6). If S is the class of quasi-small maps
determined by F in Hex(C), then S satisfies axioms (S1-4) and (Q), as well as:

(S5) If two maps Y → X and Y ′ → X ′ both belong to S then so does their sum
Y + Y ′ → X +X ′.

(S6) For any object X the map 0→ X belongs to S.
(S7) If Y → X and Z → X belong to S, then so does Y + Z → X.

Proof. It remains to check axioms (S5-7).

(S5): This is a consequence of the combination of the following: axiom (F5), the
fact that under the functor i homotopy sums become sums, and the fact that in a
pretopos the sum of two covering squares is again a covering square.

(S6): The functor i maps homotopy initial objects to initial objects, so 0 → 1 is
quasi-small in Hex(C) by Proposition 5.2 and (F6). For any object X the square

0

��

// 0

��

X // 1

is a pullback, so 0→ X is quasi-small by (S1).

(S7): For any two quasi-small maps Y → X and Z → X the map Y + Z → X is
the composition of Y + Z → X +X and X +X → X, so to prove that Y + Z → X
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is quasi-small it suffices by (S3) and (S5) to prove that X + X → X is quasi-small.
For this it suffices to prove that 1 + 1→ 1 is quasi-small, because

X +X //

��

1 + 1

��

X // 1

is a pullback. But from the fact that the functor i maps homotopy sums to sums
and the fact that (F6) holds for F , one obtains that 1 + 1 → 1 is quasi-small in
Hex(C). �

Theorem 5.6. Suppose that C is a homotopy extensive path category and F is a
class of small fibrations in C satisfying axioms (F1-6). If S is the class of small
maps in Hex(C) determined by F , then S satisfies axioms (S1-7) from the previous
proposition, as well as:

(S8) Suppose R→ Y ×X Y is an equivalence relation in E/X with quotient Y → Q
as in

R
//
//

  

Y

��

// Q

~~

X.

If R→ X and Y → X belong to S, then so does Q→ X.
(S9) Suppose

Z
f

//

h   

Y

g
~~

X

is a commutative triangle. If both g and h belong to S, then so does f .

Proof. It is not hard to verify that any class of “open maps” satisfying (S1-7) and
(Q) in a pretopos determines a class of “étale maps” satisfying (S1-9) by declaring
a map f :Y → X to be étale if both f and Y → Y ×X Y are open (compare [30,
Proposition 1.6]). �

Definition 5.7. In general, any class of maps S in a pretopos E satisfying axioms
(S1-9) will be called a class of small maps; if S is such a class, its elements will be
called small.

Remark 5.8. If S is a class of small maps in a pretopos E , it also has the following
property:

If a map h:Z → X ∈ S is written as h = gf with g:Y → X a mono
and f :Z → Y an epi, then g belongs to S.

To see this, assume that h:Z → X is small; then Z ×X Z → X is small by (S1) and
(S3). Since g is monic, the kernel pairs of h and f coincide and Z×Y Z → X is small
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as well. In a pretopos every epi is the coequalizer of its kernel pair, so the fact that
g is small now follows from (S8).

5.2. Small maps characterised in terms of Ex. We continue to work in the
setting of Theorem 5.6; that is, C is a homotopy extensive path category equipped
with a class of small fibrations F satisfying axioms (F1-6).

In our discussion of Π-types below it will be convenient to have a more explicit
description of the small maps in Hex(C). As we will show in this subsection, this can
be done using the fibrations in Ex(C).

Lemma 5.9. A map ϕ: (Y, S)→ (X,R) in Hex(C) is quasi-small if and only if there
are

(i) a fibration f : (Z, T ) → (X,R) in Ex(C) whose underlying map f :Z → X is
a small fibration, and

(ii) an isomorphism (Y, S) ∼= (Z, T ) in Hex(C) making

(Y, S)

ϕ
$$

∼= // (Z, T )

f
zz

(X,R)

commute.

Proof. Recall from Theorem 3.14 that the pullback of a fibration f : (Z, T )→ (X,R)
along the projective cover iX → (X,R) is (Z, T ′) with T ′ = T ∩ f∗PX. This means
that if (i) and (ii) hold, then

iZ //

i(f)

��

(Z, T )

f

��

iX // (X,R)

is a covering square, showing that both f and ϕ are quasi-small.

To show the converse, assume without loss of generality that ϕ is a fibration
(Y, S) → (X,R) in Ex(C). It follows from Lemma 5.3 that ϕ is quasi-small if and
only if there exists a covering square of the form

iZ

if

��

// (Y, S)

��

iX // (X,R)
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with f a small fibration in C. Such a covering square can be decomposed as a pullback
and an epi, as in

iZ

i(f)
""

// // (Y, S′) //

��

(Y, S)

g

��

iX // (X,R)

where S′ = S ∩ g∗PX. Let k:Z → Y be a morphism representing the epimorphism
i(Z) → (Y, S) in Hex(C). Since the diagram commutes, the maps kg and f are R-
equivalent; so, using the weak connection structure on g, we can replace k by an
S-equivalent map k′ such that gk′ = f . In other words, we may assume that gk = f
and from now on we will.

Put T = k∗S. Then (Z, T ) ∼= (Y, S) (see Lemma 3.7), so the proof will be finished
once we show that f : (Z, T ) → (X,R) is a fibration in Ex(C). Therefore it remains
to construct a weak connection structure Z ×X R→ T .

To avoid having to draw cumbersome diagrams, we will describe this weak con-
nection using the language of elements. So suppose f(z0) = x0 and r ∈ R connects
x0 and x1. Using the weak connection structure on g we find y1 ∈ Y with g(y1) = x1

and an element s1 ∈ S connecting k(z0) and y1. From the fact that i(Z)→ (Y, S′) is
an epimorphism, one obtains an element z2 ∈ Z, an element s2 ∈ S and a path α in
PX with s2 connecting y1 and k(z2) and α connecting x1 and f(z2). Using α and the
fact that f is a fibration in C we find an element z1 ∈ Z with f(z1) = x1 and a path
β in Z connecting z2 and z1. It remains to check that z0 and z1 are T -equivalent,
in other words, that k(z0) and k(z1) are S-equivalent: note that there is a path k(β)
connecting k(z2) and k(z1) and therefore there is also an element s3 ∈ S connecting
them. So the following chain

k(z0)
s1 // y1

s2 // k(z2)
s3 // k(z1)

gives us what we want. �

Lemma 5.10. (i) Monomorphisms are small if and only if they are quasi-small.
(ii) A monomorphism A → i(X) in Hex(C) is small if and only if under the

correspondence with the poset reflection of C(X) (see Proposition 3.21) the
corresponding equivalence class contains a small fibration Y → X.

Proof. (i): If m:A → X is a monomorphism, then the diagonal ∆:A → A ×X A is
an isomorphism and any isomorphism is quasi-small.

(ii): In view of Lemma 3.5 we may assume thatA→ iX is of the form (Z,m∗PX)→
(X,PX) for a fibration m:Z → X in C. Lemma 5.3 tells us that this map is
(quasi-)small if and only if there is small fibration f :Y → X in C and an epi
e: (Y, PY ) → (Z,m∗PX) such that me ' f . Since m is a fibration, we may assume
that me = f . Then from the fact that e is an epi we have (Y, f∗PX) ∼= (Z,m∗PX)
(see Lemma 3.7). In particular, there is a map d:Z → Y with fd ' m and hence
also a map d′:Z → Y with fd′ = m (because f is a fibration too). In other words,
m and f are identified in the poset reflection of C(X). �
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Theorem 5.11. A map ϕ: (Y, S) → (X,R) in Hex(C) is small if and only if there
are

(i) a fibration f : (Z, T ) → (X,R) in Ex(C) whose underlying map f :Z → X is
a small fibration, and

(ii) a small fibration U → Z ×X Z which becomes identified with the pullback

V //

��

T

��

Z ×X Z // Z × Z

in the poset reflection of C(Z ×X Z), and
(iii) an isomorphism (Y, S) ∼= (Z, T ) in Hex(C) making

(Y, S)

ϕ
$$

∼= // (Z, T )

f
zz

(X,R)

commute.

Proof. By definition, a map ϕ: (Y, S) → (X,R) is small if and only if both ϕ itself
and its diagonal (Y, S) → (Y, S) ×(X,R) (Y, S) are quasi-small. If we first replace ϕ
by a fibration (Z, T ) → (X,R) in Ex(C) and observe that (Z, T ) ×(X,R) (Z, T ) ∼=
(Z ×X Z, T × T ), the latter is equivalent to saying that the map m in the pullback

(P,E)

m

��

n // (Z, T )

��

i(Z ×X Z) // (Z ×X Z, T × T )

is quasi-small. If we construct the pullback (P,E) in the canonical manner, P will
consist of 5-tuples (z0, z1, z, t0, t1) where z0 and z1 are elements of Z living over the
same element in X, z is another element of Z and t0 ∈ T connects z0 and z, while
t1 ∈ T connects z1 and z; moreover, m projects onto the first two coordinates, n
projects onto the third and E = m∗P (Z ×X Z) ∩ n∗T . It is not hard to see that
(P,E) is isomorphic to (V,Q), where V is the pullback

V //

p

��

T

��

Z ×X Z // Z × Z

and Q = p∗P (Z ×X Z). So the previous lemma implies that m is quasi-small if and
only if in the poset reflection p:V → Z×X Z becomes identified with some small map
U → Z ×X Z. The theorem now follows. �
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This theorem has the following consequence which will be especially useful in our
subsequent discussion of Π-types.

Corollary 5.12. A morphism ϕ:A → i(X) in Hex(C) is small if and only if under
the equivalence with the stable objects in Hex(C(X)) it is isomorphic to an object of
the form (f :Z → X, τ :U → Y ×X Y ) where both f and τ are small fibrations.

6. Π-types

In this section, we study a form of function space in path categories and the
structure these function spaces induce on the homotopy exact completion. We are
guided by the relevant properties of the classical exact completion of categories with
finite limits, where the existence of a weak kind of internal hom-object in every slice
of the original category implies that every slice of the exact completion has actual
internal homs, i.e., is a locally cartesian closed category [16]. These weak internal
hom-objects enjoy the existence condition for the internal hom in the sense that any
map A × B → C gives a map A → Hom(B,C), but the latter is not required to be
unique. A similar situation arises in type theory, and the path categories constructed
as syntactic categories of dependent type theories only possess such weak internal
homs. It is important to realise that for these type-theoretic categories there is a
priori no uniqueness condition involved at all, not even in a up-to-homotopy sense.
(Uniqueness up to homotopy is related to an additional property of type theory called
function extensionality, see Remark 6.2 below.)

More generally, dependent type theories usually include a type constructor for Π-
types. For a path category C arising as the syntactic category of such a type theory,
the pullback functors C(B)→ C(A) along fibrations B → A have a weak kind of right
adjoint (weakness here is meant in the same sense as for internal homs above).

In this section, we will define notions of weak homotopy exponential and weak
homotopy Π-type in the context of an arbitrary path category C. The notion of weak
homotopy Π-type is sufficiently strong to ensure that the homotopy exact completion
Hex(C) is locally cartesian closed if C has weak homotopy Π-types. In particular,
for the special case where C is a category with finite limits and every map in C
is a fibration and every weak equivalence in C is an isomorphism, our notion of
having weak homotopy Π-types corresponds to the notion of weak local cartesian
closure from [16]. In addition, these notions are sufficiently weak to ensure that these
structures exist in the syntactic path category obtained from a type theory possessing
the corresponding type constructions, even if in the type theory the computation rules
would hold only in a propositional form.

6.1. Definition and properties. Throughout this section C will be a path category.

Definition 6.1. For objects X and Y in C a weak homotopy exponential is an object
XY together with a map ev:XY × Y → X such that for any map h:A × Y → X
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there is a map H:A→ XY such that

XY × Y ev // X

A× Y
h

;;

H×1

OO

commutes up to homotopy. If such a map H is unique up to homotopy, then XY is
a homotopy exponential.

Remark 6.2. Suppose C has weak homotopy exponentials. One can prove that a
weak homotopy exponential XY in C is an ordinary homotopy exponential precisely
when there is a morphism e: (PX)Y → P (XY ) making both these squares commute
up to homotopy:

(PX)Y × Y

ev

��

se×1
// XY × Y

ev

��

PX
s

// X

(PX)Y × Y

ev

��

te×1
// XY × Y

ev

��

PX
t

// X

In other words, ordinary homotopy exponentials are those weak homotopy expo-
nentials that satisfy what type-theorists call function extensionality (indeed, in the
syntactic category the morphism e would be a proof term for the type-theoretic trans-
lation of the statement that two functions f, g:Y → X are equal if f(y) and g(y) are
equal for every y ∈ Y ). This principle is not valid in the syntactic category associated
to type theory, and for this reason the homotopy exponentials in the syntactic cate-
gory are only weak. The same applies to the homotopy Π-types that we will define
below: the syntactic category only has these in the weak form.

Definition 6.3. The category C has weak homotopy Π-types if for any two fibrations
f :X → J and α: J → I there is a an object ΠαX = Παf in C(I), that is, a fibration
ΠαX → I, together with an evaluation map ev:α∗ΠαX → X over I, with the
following weak universal property: for any map g:Y → I and m:α∗Y → X over J
there is a map n:Y → ΠαX over I such that m:α∗Y → X and ev ◦ α∗n:α∗Y → X
are fibrewise homotopic over J . If up to fibrewise homotopy over I the map n is
unique with this property, we call Παf and ev:α∗ΠαX → X a homotopy Π-type.

Remark 6.4. We will not need this observation, but we would like to point out that
in the definition above it is sufficient to consider only fibrations g:Y → I.

In the proofs of the following two propositions we only give the constructions:
verifications are left to the reader.

Proposition 6.5. If C has (weak) homotopy Π-types then each C(I) has (weak)
homotopy exponentials.

Proof. Given Y,Z ∈ C(I) one defines ZY in C(I) as Πα(π2), where α:Y → I and
π2:Z ×I Y → Y . �
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Proposition 6.6. Let C be a path category with (weak) homotopy Π-types. Given a
fibration p:Z → Y and a (weak) homotopy exponential (Y X , ev), there is a (weak)
homotopy exponential (ZX , ev) and a fibration pX :ZX → Y X such that

(i) The diagram

ZX ×X ev //

pX×X
��

Z

p

��

Y X ×X
ev
// Y

commutes.
(ii) For each T the diagram

Ho(C)(T,ZX)

��

// Ho(C)(T ×X,Z)

��

Ho(C)(T, Y X) // Ho(C)(T ×X,Y )

in Sets has the property that the map from Ho(C)(T,ZX) of the inscribed
pullback is an isomorphism in case ZX is a homotopy exponential, and an
epimorphism in case ZX is a weak homotopy exponential.

Proof. Given Y X with its evaluation ev:Y X ×X → Y let q be the pullback

P //

q

��

Z

p

��

Y X ×X
ev
// Y,

and let ZX be Ππ1(q), where π1:Y X ×X → Y X . �

Corollary 6.7. Suppose p:Z → Y is a fibration and pX :ZX → Y X is the fibration
obtained from it as in the previous proposition. Then any section s:Y → Z induces
a section sX of pX such that

Y X ×X ev //

sX×1X

��

Y

s

��

ZX ×X
ev
// Z

commutes up to homotopy.

Proof. Consider the diagram in (ii) in the previous proposition with T = Y X . Using
that the map to the inscribed pullback is an epimorphism, one finds a map σ:Y X →
ZX that upon postcomposition with pX is homotopic to the identity and such that

ev(σ × 1X) ' s ev.
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Using that pX is a fibration, one may replace σ by a homotopic map sX such that
pXsX = 1 and ev(sX × 1X) ' s ev. �

6.2. Homotopy exact completion. The main goal of this section is to show that
Hex(C) is locally cartesian closed, whenever C has weak homotopy Π-types. We will
only outline the constructions here, as a detailed verification that they indeed have
the required properties is both straightforward and cumbersome.

Proposition 6.8. If C has weak homotopy Π-types, then Hex(C) has exponentials.

Proof. Assume C has weak homotopy Π-types, and let (X,R) and (Y, S) be two
objects in Hex(C); our goal is to construct the exponential (X,R)(Y,S).

The idea is to take (W,Q) where W is the pullback:

W //

p

��

RS

��

XY

δ
// (X ×X)Y×Y // (X ×X)S .

Here δ is a map making

XY × Y × Y δ×1
//

ε
++

(X ×X)Y×Y × (Y × Y )

ev

��

X ×X

commute up to homotopy with ε = (ev(p1, p2), ev(p1, p3)), while the map RS →
(X ×X)S has the properties from Proposition 6.6; in particular it is a fibration and
the pullback W does indeed exist. The object Q is obtained as the pullback

Q //

��

RY

��

W ×W
p×p

// XY ×XY ∼= (X ×X)Y ,

where we have used that XY ×XY acts a suitable weak homotopy exponential (X ×
X)Y . In addition, the map on the right is built in accordance with Proposition 6.6;
this means in particular that it is a homotopy equivalence relation and therefore the
same is true for Q → W ×W . We leave it to the reader to verify that (W,Q) is
indeed an exponential. �

Theorem 6.9. Let C be a path category. If C has weak homotopy Π-types, then
Hex(C) is locally cartesian closed.

Proof. We need to prove that each slice category Hex(C)/I has exponentials. For
this it suffices to consider the case where I = iZ: any object in Hex(C) is covered by
such an object (see Proposition 3.16), so the general case follows by descent. Indeed,
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if p:P → I and q:Q → P ×I P are covers in an exact category E and both E/P
and E/Q are cartesian closed, then the exponential of (X → I)(Y→I) in E/I may be
computed from two exponentials in E/Q and E/P by the taking the coequalizer of
the two parallel arrows along the top in the diagram below:(

(X ×I Q)(Y×IQ)
)
Q

//

//

��

(
(X ×I P )(Y×IP )

)
P

��

Q
//

// P.

We have proved in Theorem 3.28 that Hex(C)/iZ is equivalent to the full sub-
category of Hex(C(Z)) on the stable objects. It follows from Proposition 6.5 and
Proposition 6.8 that Hex(C(Z)) has exponentials, so it suffices to prove that if we
take an exponential of two stable objects in this category, then the result is again
stable.

So let (f :X → Z, ρ:R→ X ×Z X) and (g:Y → Z, σ:S → Y ×Z Y ) be two stable
objects in Hex(C(Z)). These will have two (essentially unique) transport structures
ΓX :X×ZPZ → X and ΓY :Y×ZPZ → Y ; recall that stability means that Γ(x, α) 'R
x and Γ(y, α) 'S y whenever α is a loop in Z.

So let (h:W → Z, q:Q → W ×Z W ) be the result of computing the exponential
(X,R)(Y,S) over (Z,PZ) as in the previous proposition. This object has a transport
structure as well, which is probably best described in words. What this action should
do is to associate to every w ∈ W living over z ∈ Z and path α from z to z′ a new
element w′ ∈ W over z′. Such a w′ is intuitively a function, so let y′ ∈ Y be an
element over z′. We can transport y′ back along the inverse of α to an element y over
z; to this y we can apply w and obtain an element x over z. Using transport again,
but now on x ∈ X and α we find an element x′ ∈ X over z′. The idea is to set w′

to be the function sending y′ to x′. Proposition 3.26 implies that w′ will be tracked
whenever w is.

If α is a loop, then y′ would be S-equivalent to y and x would be T -equivalent to
x′. This means that w and w′ would be Q-equivalent, showing that (W,Q) is stable,
as desired. �

Remark 6.10. One could also have derived Theorem 6.9 from Proposition 3.17
above and the results in [16]. We have included a direct proof of Theorem 6.9 here,
for several reasons. The main one is that we need the description of the exponentials
in Hex(C) that this proof provides for our proof of Theorem 6.11 below; moreover,
this description only makes sense in the specific context of exact completions of path
categories and would not work in the more general context of exact completions of
categories with weak finite limits.

In addition, these constructions can also be used to show that Ex(C) has homotopy
Π-types whenever C has weak homotopy Π-types. In view of Remark 6.2 this means
that Ex(C) satisfies a form of function extensionality even when C does not. We plan
to take this up in future work.
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Theorem 6.11. Let C be a path category with weak homotopy Π-types, and let F be
a class of fibrations in C satisfying axioms (F1-4) as well as:

(F7) If f :Y → X and g:Z → Y belong to F , then so does Πf (g)→ X.

If S is the class of small maps determined by F in Hex(C), then the class S satisfies:

(S10) For any Y → X and Z → X in S, their exponent (ZY )X → X in E/X
belongs to S.

Proof. Let C and F be as in the theorem. To prove (S10) it again suffices, by descent,
to consider the case where X = iA. But in that case we use again Theorem 3.28 to
identify Hex(C)/iA with the full subcategory of Hex(C(A)) on the stable objects.

So let (X,R) and (Y, S) be two stable objects in Hex(C(A)) and assume that they
correspond to small maps (X,R) → iA and (Y, S) → iA. In view of Corollary 5.12
this means that we may assume that X → A, R→ X×AX, Y → A and Y → S×AS
are all small fibrations. But if we then follow the construction of the exponential
(X,R)(Y,S) over iA as in Proposition 6.8 the result is an object (W,Q) where both
W → A and Q→W×AW are small fibrations by (F6). This proves the theorem. �

7. W-types

What the previous section did for Π-types, this section will do for inductive types;
in particular, we will look at the natural numbers and a certain type of well-founded
trees called W-types. More concretely, we will formulate a notion of a homotopy
natural numbers object and a homotopy W-type and prove that if a path category
C has such structure its homotopy exact completion Hex(C) has a genuine natural
numbers object or genuine W-types; in addition, the definitions are chosen in such
a way that they will apply to the syntactic category associated to Martin-Löf type
theory with W-types.

For the definition of genuine W-types in a locally cartesian closed category we refer
to [37]; we will also make heavy use of the results from [7].

7.1. Homotopy natural numbers object. A homotopy natural numbers object we
define, like a homotopy sum, as a natural numbers object in the homotopy category.

Definition 7.1. An object N together with maps 0: 1 → N and s:N → N is a
homotopy natural numbers object (hnno) if for any pair of maps y0: 1 → Y and
g:Y → Y there is a map h:N → Y , unique up to homotopy, such that h0 ' y0 and
hs ' gh.

Proposition 7.2. An object N together with maps 0: 1 → N and s:N → N is a
homotopy natural numbers object if and only if for any commuting diagram of the
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form

X
f
//

p

��

X

p

��

1
0
//

x0

??

N
s
// N

where p is a fibration, there is a section a:N→ X of p such that a0 ' x0 and as ' fa.

Proof. The argument is very similar to proofs of both Proposition 4.2 and Proposition
4.3, so we will not give many details here. Let us just point out how one proves that
if 0: 1→ N and s:N→ N are as in the statement of the proposition, then for any pair
of maps y0: 1 → Y and g:Y → Y and for any pair of maps h, h′:N → Y such that
h0 ' y0 and hσ ' gh and h′0 ' y0 and h′σ ' gh′, one must have h ' h′. For this
one constructs the pullback

X

p

��

// PY

(s,t)

��

N
(h,h′)

// Y × Y.

Since h0 ' y0 ' h′0, there is a map x0: 1 → X such that px0 = 0; in addition there
is a map Pg:PY → PY such that (s, t)Pg = (g× g), which implies that there is also
a map f :X → X such that pf = sp. It follows that p has a section and hence that h
and h′ are homotopic. �

Proposition 7.3. If C is a path category and N is a homotopy natural numbers object
in C, then it becomes a natural numbers objects in the homotopy exact completion
Hex(C). If, in addition, C comes equipped with a class of small fibrations satisfying
axioms (F1-4), as well as

(F8) The map N→ 1 belongs to F ,

then the class of small maps in Hex(C) determined from F satisfies:

(S11) The map N→ 1 belongs to S.

Proof. This is a straightforward verification which we leave to the reader. �

7.2. Homotopy W-types. In this subsection we will assume that C comes with a
particular choice of (weak) homotopy Π-types. In that case there is for any fibration
f :B → A an assigment X 7→ Pf (X) given by:

Pf (X) = ΣAΠf (π1:B ×X → B).

Proposition 7.4. If Pf (X) is a particular choice for X and p:Y → X is a fibration,
we can choose Pf (Y ) in such a way that Pf (p):Pf (Y )→ Pf (X) is again a fibration
and any section s of p induces a section Pf (s) of Pf (p).
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Proof. The proof is analogous to that of Proposition 6.6 and of Corollary 6.7. Any
particular choice of Pf (X) comes equipped with an evaluation map ev:Pf (X)×AB →
X. If p:Y → X is a fibration, then one can obtain a choice of Pf (Y ) with a fibration
Pf (p):Pf (Y ) → Pf (X), as follows. One starts by pulling back p:Y → X along
ev:Pf (X) ×A B → X, resulting in some fibration g:Z → Pf (X) ×A B. Writing
π1:Pf (X) ×A B → Pf (X) for the first projection, one obtains a suitable choice of
Pf (p) as Ππ1

(g). �

Definition 7.5. Let f :B → A be a fibration. A homotopy W-type for f is an object
W together with a map sup:Pf (W )→W such that for any commuting square of the
form

Pf (X)

Pf (p)

��

a // X

p

��

Pf (W )
sup
// W

in which p:X →W is a fibration and Pf (X) and Pf (p) are constructed as in Propo-
sition 7.4, there is a section s:W → X of p such that s ◦ sup ' a ◦Pf (s), where Pf (s)
is the section of Pf (p) provided by Proposition 7.4.

Theorem 7.6. If sup:PfW → W is a homotopy W-type associated to a fibration
f :B → A, then sup is a homotopy equivalence.

Proof. Our first idea is to regard W×Pf (W ) is a Pf -algebra and π1:W×Pf (W )→W
as a Pf -algebra morphism. Construct Pf (π1):Pf (W ×Pf (W ))→ Pf (W ) in the usual
way and let µ = (sup, 1)Pf (π1). Then

Pf (W × Pf (W ))
µ
//

Pf (π1)

��

W × Pf (W )

π1

��

PfW sup
// W

commutes, hence π1 has a section s:W →W ×Pf (W ) such that s ◦ sup ' µ ◦Pf (s).
Let ρ: = π2s. Then:

ρ sup = π2 s sup ' π2 µPf (s) = Pf (π1)Pf (s) = 1.

It remains to show that sup ρ ' 1. To that purpose consider the pullback

Q

δ

��

γ
// PW

(s,t)

��

W
(1,sup ρ)

// W ×W.

Our next task is to construct a Pf -algebra structure on Q in such a way that δ
becomes a morphism of Pf -algebras: as soon as we do this δ will have a section and
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we obtain a homotopy between 1 and sup ρ, as desired. But note sup ρ sup ' sup, so
there is a map H:Pf (W )→ PW such that

Pf (W )
H //

sup

��

PW

(s,t)

��

W
(1,sup ρ)

// W ×W

commutes, and hence there is a map β:Pf (W ) → Q such that δβ = sup. But this
means that

Pf (Q)
βPf (δ)

//

Pf (δ)

��

Q

δ

��

Pf (W )
sup
// W

exhibits Q as an object with a Pf -algebra structure making δ into a morphism of
Pf -algebras, as desired. �

7.3. W-types. The aim of this subsection is to show that Hex(C) will inherit W-
types if C has homotopy W-types. We make use of the results from [7], in particular
Theorems 29 and 30 therein, which we recall here for the convenience of the reader.

Theorem 7.7. [7, Theorem 29] Suppose E is a locally cartesian closed pretopos with
a natural numbers object, and suppose

B // //

f

��

Y

g

��

A // // X

is a commutative square in E such that both the arrow A→ X along the bottom and
the inscribed arrow B → A ×X Y from B to the pullback are epis. If f is a choice
map for which a W-type exists, then there also exists a W-type for g.

Theorem 7.8. [7, Theorem 30] Let E be a locally cartesian closed pretopos with a
natural numbers object, and f :B → A be a choice map in E. Suppose, moreover, that
there is an object V together with an epimorphism s:V → Pf (V ) such that V is the
only subobject R of V for which the following statement holds in the internal logic of
E:

(∀v ∈ V, a ∈ A, t:Ba → V ) if s(v) = (a, t) and tb ∈ R for all b ∈ Ba, then v ∈ R.
Then a W-type for f exists.

But we will also need the following lemma.

Lemma 7.9. Assume C is a path category with a particular choice of weak homotopy
Π-types. Let (X, ρ:R → X × X) be an arbitrary object in Hex(C) and Y be an
arbitrary object in C.
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(i) The object XY ×XY in C can act as a suitable weak homotopy exponential
(X ×X)Y .

(ii) The fibration

ρY :RY → (X ×X)Y ∼= XY ×XY

computed as in Proposition 6.6 is a homotopy equivalence relation.
(iii) The object (XY , ρY ) has the universal property of the exponential (X,R)iY

in Hex(C). In particular, the exponential (X,R)iY in Hex(C) is covered by
i(XY ).

(iv) If C = D(I) for some path category D with weak homotopy Π-types and both
(X,R) and iY are stable in C, then so is (X,R)iY .

Proof. This is shown by a direct verification, which we leave to the reader. Item (iv)
follows directly from the proof of Theorem 6.9. �

Lemma 7.10. Assume C has all the structure discussed so far, so that Hex(C) is a
locally cartesian closed pretopos with natural numbers object. Assume f :B → A is a
fibration in C whose homotopy W-type exists in C. Then the W-type associated to if
exists in Hex(C).

Proof. We work towards applying Theorem 7.8. First of all, maps of the form if
where f :B → A is a fibration in C are choice maps in Hex(C) by Corollary 3.20. In
addition, item (iii) of the previous lemma implies that Pf (iX) is covered by iPf (X).
So if V = iW , where W is the homotopy W-type associated to f in C, then one
obtains a cover

s:V = iW∼= // iPf (W ) // // Pf (iW ) = Pf (V )

in Hex(C). Therefore it remains to show that the only subobject R of V for which

v ∈ V, s(v) = (a, t) and tb ∈ R for all b ∈ f−1(a) imply that v ∈ R

holds, is the subobject V itself. But any subobject R of V can be covered by an
element iX; in addition, we may assume that p:X →W is a fibration (if not, factor
this map as a homotopy equivalence X ' X ′ followed by a fibration X ′ → W and
replace X by X ′). The condition we just stated implies that the image of the map
i(PfX → PfW →W ) lands in R, which, by projectivity of iPf (X), fullness of i and
Proposition 2.31, means that there is a map t:PfX → X making

PfX
t //

��

X

p

��

PfW // W

commute in C. So p has a section, which implies R ∼= V , as desired. �

Theorem 7.11. Assume C has all the structure discussed so far, so that Hex(C) is
a locally cartesian closed pretopos with natural numbers object. If C has homotopy
W-types, then Hex(C) has all W-types.
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Proof. The idea is to show that any map g:Y → X in Hex(C) fits into a diagram of
the form

iB

if

��

// // Y

g

��

iA // // X

in which both iA → X and iB → iA ×X Y are epis, and f :B → A is a fibration in
C. Because in that case the map if on the left is a choice map by Corollary 3.20, so
a W-type for g will exist by the previous lemma and Theorem 7.7.

But any objectX can be covered by an object of the form iA. If pull back g:Y → X
along this cover, then one can cover the resulting pullback by some object iB. Since
the functor i is full, the resulting map iB → iA is of the form if for some map
f :B → A. Without loss of generality, we may assume that f is a fibration (if not,
factor this map as a homotopy equivalence B ' B′ followed by a fibration B′ → A
and replace B by B′). This proves the theorem. �

Theorem 7.12. Assume C has all the structure discussed so far, so that Hex(C) is
a locally cartesian closed pretopos with natural numbers object and W-types. Assume
also that C comes equipped with a class of small fibrations F satisfying axioms (F1-8),
as well as:

(F9) For a commutative diagram

B
f

//

  

A

~~

X

with all maps in F , the W-type WX(f) taken in C(X) (which is a fibration
in C with codomain X) belongs to F .

Then the class of small maps S in Hex(C) determined from F satisfies axioms (S1-11)
as well as

(S12) For a commutative diagram

B
f

//

  

A

~~

X

with all maps in S, the W-type WX(f) taken in E/X (which is a map in E
with codomain X) belongs to S.

Proof. Let f :B → A and A→ X be maps in Hex(C) belonging to S. It follows from
the proof of Proposition 5.4 that these maps fit into a double covering square of the



64 EXACT COMPLETION OF PATH CATEGORIES AND ALGEBRAIC SET THEORY

form

iB′ //

if ′

��

B

f

��

iA′ //

iα′

��

A

α

��

iX ′
e
// X

in which f ′ and α′ are small fibrations in C. Hence e∗f is covered by if ′. We will
argue that WiX′(e

∗f) is small in Hex(C)/iX ′, from which it follows by descent that
WX(f) is small in Hex(C)/X.

At this point we need to take a closer look at the proof of Theorem 29 in [7].
This proof constructs the W-type for e∗f as a subquotient of the W-type for if ′

in Hex(C)/iX ′. In fact, it defines, using the internal logic, a symmetric and transi-
tive relation R on W (if ′) and then constructs W (e∗f) as the R-reflexive elements
quotiented by R. By inspection of the formula defining R, and using the closure prop-
erties of S, one sees that the map R→W (if ′)×W (if ′) is small. Because W (if ′) is
small in Hex(C)/iX ′ by (F7), the same is true for W (e∗f) by (S8). This finishes the
proof. �

8. Models of constructive set theory

As discussed in the introduction, in [1] Aczel gave an interpretation of constructive
set theory in Martin-Löf type theory with inductive types and one universe. In a
subsequent paper [2] Aczel considered extensions of CZF with axioms guaranteeing
the existence of inductively defined sets; in particular, he introduced the Regular
Extension Axiom (REA) and proved that if the universe in type theory is closed
under W-types, his interpretation also validates (REA). An alternative based on W-
types and a weak choice principle called the Axiom of Multiple Choice, which is closer
to the categorical semantics that we develop here, can be found in [11].

Aczel’s interpretation of CZF in type theory works more generally, as the authors
of [38] show. Using the language of algebraic set theory introduced in [31], they show
that if E is a locally cartesian closed pretopos with W-types and S is a suitable class
of small maps, then one can imitate Aczel’s construction to obtain a model of CZF
inside E . Indeed, the following is essentially Theorem 7.1 from [38]:

Theorem 8.1. Let E be a locally cartesian closed pretopos with W-types, and let S
be a representable class of small maps in E satisfying the Axiom of Multiple Choice,
as well as axioms (S10) and (S11). Then E contains a model of Aczel’s constructive
set theory CZF. If S also satisfies (S12), then in this model the Regular Extension
Axiom is valid as well, as is the alternative formulated in [11].

What we will do in this section is to use this theorem to show that one can also
obtain models of CZF from path categories C equipped with a class of small fibrations
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F . Of course, we need some conditions on both C and F for this to work. In fact,
C should be a homotopy extensive path category with weak homotopy Π-types, a
homotopy natural numbers object and homotopy W-types: this will guarantee that
Hex(C) is a locally cartesian closed pretopos with W-types. Also, F should satisfy the
axioms (F1-8), ensuring that the class of small maps derived from F satisfies axioms
(S1-11).

In fact, just two pieces of the puzzle are missing that prevent us from applying
Theorem 8.1 directly. First we need to investigate when the Axiom of Multiple Choice
holds for a class of small maps in Hex(C) determined by a class of small fibrations in
C. It turns out that this is always the case: we will show this in the first subsection.
In the second subsection we will formulate an appropriate notion of universe for F
and show that this leads to a representable class of small maps in Hex(C). This puts
the last piece in place, so that we can derive the main result of this paper.

Theorem 8.2. Let C be a homotopy extensive path category with weak homotopy
Π-types, a homotopy natural numbers object and homotopy W-types. Assume that
F is a class of fibrations in C satisfying axioms (F1-8) and which contains a small
fibration π:E → U such that any other element of F can be obtained as a homotopy
pullback of π. Then Hex(C) contains a model of Aczel’s constructive set theory CZF.
If F satisfies (F9) as well, then in this model the Regular Extension Axiom holds, as
does the alternative formulated in [11].

Throughout this section E will be a locally cartesian closed pretopos with W-types.

8.1. Axiom of Multiple Choice. In order to formulate the Axiom of Multiple
Choice, we first need the notion of a collection square from [9].

Definition 8.3. Recall from Definition 5.1 that a commuting square of the form

D
q
//

g

��

C

f

��

B
p
// A

will be called a covering square if both p and the inscribed map D → B ×A C to the
pullback are covers. Such a covering square will be called a collection square if the
following statement holds in the internal logic of E :

For any a ∈ A and epi e:E → Ba there are c ∈ p−1(a) and h:Dc → E
such that eh(d) = q(d) for any d ∈ Dc.

The following is a corrected formulation of the Axiom of Multiple Choice from [38]
(see [11]):



66 EXACT COMPLETION OF PATH CATEGORIES AND ALGEBRAIC SET THEORY

Definition 8.4. Let S be a class of small maps in E . The class S satisfies the Axiom
of Multiple Choice (AMC) if any small map f :Y → X fits into a diagram of the form

D

��

// A×X Y

q∗f

��

// Y

f

��

C // A
q

// X

in which the square on the right is pullback with a cover q at the bottom, while the
left hand square is a collection square in which all maps are small.

Proposition 8.5. Suppose C is a homotopy extensive path category with weak homo-
topy Π-types, a homotopy natural numbers object and homotopy W-types. In addition,
let F be a class of maps satisfying axioms (F1-6). Then the class of small maps S in
Hex(C) determined by F satisfies the Axiom of Multiple Choice.

Proof. From the way S is determined by F it follows that if f :Y → X is small, then
it fits into a diagram

i(B)

i(g)

��

// // i(A)×X Y

��

// Y

f

��

i(A)
1

// i(A) // // X

in which the left square is covering, the right one is a pullback and g belongs to F .
Because i(g) is a choice map by Corollary 3.20, the square on the left is a collection
square; and because i(g) is small by Proposition 5.2 and S satisfies axioms (S1) and
(S9), every arrow in the left square is small. �

8.2. Universes. The only ingredient for building a model of CZF which is missing
at this point is a universe. We first formulate an appropriate notion of universe for a
class of small maps.

Definition 8.6. A class of small maps S is representable if it contains a map π:E →
U (“a representation”) such that for any f :B → A ∈ S there is a diagram of the
form

B

f

��

D

��

//oo E

π

��

A C //
e
oooo U

in which both squares are pullbacks and e is a cover.

Lemma 8.7. Let A be a class of “open maps” in E satisfying axioms (S1-7) and
(Q) from Proposition 5.5, and let S be the class of small maps obtained from A by
declaring a map f :B → A to be small if both f itself and B → B ×A B belong to A,
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as in Theorem 5.6. Suppose there is a map π:E → U belonging to A such that for
any f :B → A ∈ A there is a diagram of the form

B

f

��

D

��

//oo E

π

��

A C //
q
oooo U

in which the square on the right is a pullback and the square on the left is covering.
Then S is representable.

Proof. As this is a variation on argument that has appeared in the literature on
algebraic set theory before (see, for example, [9, Proposition 4.4]), we only give the
construction of the representation π′:E′ → U ′ for S. Using the interal logic of E , we
define U ′ to be the collection of triples (u ∈ U, v ∈ U, p:Ev → Eu × Eu) with Im(p)
an equivalence relation on Eu, while the fibre E′u′ over such a triple u′ = (u, v, p) is
defined to be Eu/Im(p). �

Proposition 8.8. Suppose C is a homotopy extensive path category with weak homo-
topy Π-types, a homotopy natural numbers object and homotopy W-types. In addition,
let F be a class of maps satisfying axioms (F1-6), and S be the class of small maps
determined by F in Hex(C). If there is a small fibration π:E → U in C such that any
f :B → A ∈ F fits into a homotopy pullback of the form

B

f

��

// E

π

��

A // U,

then S is representable.

Proof. Suppose C and F have the properties in the statement of the proposition.
From the way F determines the quasi-small maps in Hex(C) it follows immediately
that these quasi-small maps satisfy the hypotheses of the previous lemma. Therefore
it follows from that lemma that S is representable. �

This completes the proof of Theorem 8.2.

Appendix A. Axioms

In this appendix we have collected some definitions and axioms that are used
throughout the paper.
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A.1. Path categories. Usually, the setting of this paper is that we are given a
category C together with two classes of maps called the weak equivalences and the
fibrations, respectively. Morphisms which belong to both classes of maps will be
called acylic fibrations. A path object on an object B is a factorisation of the diagonal
∆:B → B×B as a weak equivalence r:B → PB followed by a fibration (s, t):PB →
B ×B.

Definition A.1. The category C will be called a category with path objects, briefly a
path category, if the following axioms are satisfied:

(1) Fibrations are closed under composition.
(2) The pullback of a fibration along any other map exists and is again a fibration.
(3) The pullback of an acylic fibration along any other map is again an acyclic

fibration.
(4) Weak equivalence satisfy 2-out-of-6: if f :A → B, g:B → C, h:C → D are

three composable maps and both gf and hg are weak equivalences, then so
are f, g, h and hgf .

(5) Isomorphisms are acyclic fibrations and every acyclic fibration has a section.
(6) For any object B there is a path object PB (not necessarily functorial in B).
(7) C has a terminal object 1 and every map X → 1 to the terminal object is a

fibration.

A.2. Small fibrations. Let C be a fibration and F be a class of fibrations in C. For
F we will consider the following axioms:

(F1) In a homotopy pullback square

Y ′

f ′

��

// Y

f

��

X ′ // X

in which both f ′ and f are fibrations, f ′ belongs to F whenever f does.
(F2) F contains all isomorphisms.
(F3) F is closed under composition.
(F4) If Y → X belongs to F , then so does PX(Y )→ Y ×X Y .
(F5) If two maps Y → X and Y ′ → X ′ both belong to F then so does a fibrant

replacement of Y + Y ′ → X +X ′.
(F6) The maps 0→ 1 and 1 + 1→ 1 belong to F .
(F7) If f :Y → X and g:Z → Y belong to F , then so does Πf (g)→ X.
(F8) The map N→ 1 belongs to F .
(F9) For a commutative diagram

B
f

//

  

A

~~

X
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with all maps in F , the W-type WX(f) taken in C(X) (which is a fibration
in C with codomain X) belongs to F .

The axioms (F1-4) make sense in any path category. The natural setting for axioms
(F5-6) is that of a homotopy extensive path category, while for (F7), (F8) and (F9)
one assumes the existence of (weak) homotopy Π-types, a homotopy natural numbers
object and homotopy W-types, respectively.

A.3. Exact categories and pretoposes. For more information on the following
notions and results, we refer to part A of [29].

Definition A.2. Let E be a category. A map f :B → A in E is a cover if the only
subobject of A through which it factors is the maximal one given by the identity on
A. A category C is regular if it has all finite limits, every morphism in C factors as a
cover followed by a mono and covers are stable under pullback.

In a regular category a map is a cover iff it is a regular epi (meaning that it arises
as a coequalizer) iff it is the coequalizer of its kernel pair.

Definition A.3. A subobject R ⊆ X×X is an equivalence relation if for any object
P in E the image of the induced map

Hom(P,R)→ Hom(P,X)×Hom(P,X)

is an equivalence relation on Hom(P,X). In a regular category a quotient of an
equivalence relation is a cover X → Q such that

R //

��

X

��

X // Q

is a pullback. (Hence R //
// X is the kernel pair of X → Q and the latter is the

coequalizer of the former.)

Definition A.4. A regular category E is called exact (or effective regular) if every
equivalence relation has a quotient. If E also has disjoint and stable sums, E is called
a pretopos.

In a pretopos covers and epis coincide.

A.4. Small maps. Let E be an exact category and S be a class of maps in E . In
this setting we consider the following axioms:

(S1) In a pullback square

Y ′

f ′

��

// Y

f

��

X ′
p
// X

f ′ belongs to S whenever f does.



70 EXACT COMPLETION OF PATH CATEGORIES AND ALGEBRAIC SET THEORY

(S2) If in a pullback square as the one above, the map p is a cover, then f belongs
to S whenever f ′ does.

(S3) S is closed under composition.
(S4) S contains all isomorphisms.
(S5) If two maps Y → X and Y ′ → X ′ both belong to S then so does their sum

Y + Y ′ → X +X ′.
(S6) For any object X the map 0→ X belongs to S.
(S7) If Y → X and Z → X belong to S, then so does Y + Z → X.
(S8) Suppose R→ Y ×X Y is an equivalence relation in E/X with quotient Y →

Y/R as in

R
//

//

��

Y

��

// Y/R

}}

X.

If R→ X and Y → X belong to S, then so does Y/R→ X.
(S9) Suppose

Z
f

//

h   

Y

g
~~

X

is a commutative triangle. If both g and h belong to S, then so does f .
(S10) For any Y → X and Z → X in S, their exponent (ZY )X → X in E/X

belongs to S.
(S11) The map N→ 1 belongs to S.
(S12) For a commutative diagram

B
f

//

  

A

~~

X

with all maps in S, the W-type WX(f) taken in E/X (which is a map in E
with codomain X) belongs to S.

Axioms (S1-4) and (S8-9) make sense in any exact category. In a pretopos one may
also consider the axioms (S5-7); indeed, a class of maps satisfying axioms (S1-9) will
be called a class of small maps.

The natural environment to consider the other axioms (S10), (S11) and (S12) is
a category E which is locally cartesian closed, has a natural numbers object or has
W-types, respectively.
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