
MEASURES AND FIBERS

PIOTR BORODULIN-NADZIEJA

Abstract. We study measures on compact spaces by analyzing the properties of fibers of
continuous mappings into 2ω. We show that if a compact zerodimensional space K carries
a measure of uncountable Maharam type, then such a mapping has a non-scattered fiber
and, if we assume additionally a weak version of Martin’s Axiom, such a mapping has a
fiber carrying a measure of uncountable Maharam type. Also, we prove that every compact
zerodimensional space which supports a strictly positive measure and which can be mapped
into 2ω by a finite-to-one function is separable.

1. Introduction

We say that a compact space K is ϕ-fibered (or has fibers satisfying ϕ) if there is a
compact metric space M and a continuous function f : K → M such that f−1[{x}] has
property ϕ for each x ∈M . So, we can consider e.g. n-fibered, finitely-fibered, metrizably-
fibered or spaces with scattered fibers.

Questions about properties of fibers of continuous mappings to metric spaces appear
quite naturally in many contexts. The question if it is consistent that all perfectly normal
compact spaces are 2-fibered is one of the most important questions of set theoretic topol-
ogy (see [Gru90]). Metrizably- and finitely-fibered spaces were considered in the context
of spaces with a small diagonal (see e.g. [Gru02], [DH12]) and of Rosenthal compacta (see
e.g. [KM11]). Non-separable linearly-fibered spaces are in a sense direct generalizations of
the Suslin line and were studied by Moore ([Moo99]) and Todorčević ([Tod00], see also
Example 4.4).

The systematic study of metrizably-fibered spaces was undertaken in [Tka94]. Indepen-
dently, Tkachenko ([Tka91]) considered a slightly weaker notion than being ϕ-fibered. We
say that a space K is ϕ-approximable if there is a countable cover by closed sets such that
the maximal intersections of elements of this cover have property ϕ (by replacing “closed
sets” with “zero sets” we obtain an equivalent definition of ϕ-fibered space, see [Tka94,
Proposition 2.1]). Tkachenko investigated e.g. for which properties ϕ spaces satisfying ϕ
are ϕ-approximable.

In this article we will examine how the existence of certain types of measures affect the
properties of fibers. For the sake of this section say that a compact space K has property
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A(κ) if it can be mapped continuously onto [0, 1]κ and K has property M(κ) if it carries
a measure of Maharam type κ (see Section 2 for the definitions). Loosely speaking by
determining for which κ a compact space has A(κ) we can measure its combinatorial
complexity and similarly using M(κ) we can measure its measure-theoretic complexity.

Note that for each κ the property A(κ) impliesM(κ). In general, the converse holds only
for some κ’s. For example, the scattered spaces (i.e. those which do not have A(ω)) only
carry purely atomic measures and so they do not have M(ω). Fremlin proved that under
MAω1 the property A(ω1) is equivalent toM(ω1) and there are many consistent examples of
spaces withM(ω1) and without A(ω1). For the results concerning the relationship between
A(κ) and M(κ) we refer the reader e.g. to [Ple02]. In this article we will be interested only
in cases when κ ≤ ω1.

LetK be a compact zerodimensional space and let f : K → 2ω be a continuous mapping.
Of course, A(ω) is not necessarily inherited by fibers of f , since K having A(ω) can be
even 1-fibered. However, Tkachenko proved that if K has A(ω1), then one of the fibers of
f has A(ω1) (see [Tka91], we reprove this result in Section 2).

The propertyM(ω1) in this context behaves in a more complicated way. If cov(N ) = ω1,
then there is a compact space with M(ω1) which has fibers homeomorphic to 2ω, and so
none of them has M(ω1) (see Example 4.2). On the other hand, the theorems of Fremlin
and of Tkachenko mentioned above imply that under MAω1 the property M(ω1) has to
be inherited by some fiber. In Section 2 we prove that under MAω1 for measure algebras
(MAω1(ma), in short) every zerodimensional space with M(ω1) has a fiber with M(ω1).
Note that MAω1(ma) is considerably weaker than MAω1. In particular it is consistent with
the existence of space with M(ω1) and without A(ω1). On the other hand, MAω1(ma) is
equivalent to cov(Nω1) > ω1, which is just a slightly stronger axiom than cov(N ) > ω1.

In Section 3 we show in ZFC that the zerodimensional spaces with M(ω1) cannot have
too simple fibers. Namely, for every continuous f : K → 2ω, where K has M(ω1), at least
one fiber of f has M(ω). There are many properties of compact spaces implying that a
space only carries separable measures (e.g. linearity, being a Rosenthal compactum, being
a Stone space of a minimally generated Boolean algebra). Theorem 3.1 enlarges this list
adding the property of being a space with scattered fibers. In Section 4 we provide some
known examples of spaces with scattered fibers. Theorem 3.1 implies that all of them only
carry separable measures.

Section 3 contains one more results of this sort. Say that a compact space has property
(?) if it is non-separable and supports a (strictly positive) measure. In a sense such spaces
are big from the measure-theoretic point of view, similarly to spaces having M(ω1). There
are spaces having M(ω1) but not (?) (e.g. 2ω1). The question if (?) implies M(ω1) is
quite interesting and, in fact, it was one of the motivations for our research (see [BNP16]
for further discussion). It turns out that there are, at least consistently, non-separable
zerodimensional spaces supporting measures and having scattered fibers (see remarks at
the end of Section 4). In light of Theorem 3.1 those spaces have (?) but not M(ω1). In
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Section 3 we prove Theorem 3.4 saying that the spaces with (?) at least cannot be finitely-
fibered.

In Section 4 we present some relevant examples and we give some additional motivation
for our research.

Let us mention that although the authors mentioned at the beginning of this section
have not considered properties connected to measures in the context of fibers, the study
of measures on fibers of measurable mappings is an important part of probability theory.
It is worth to recall here well-known Rokhlin’s theorem:

Theorem 1.1 ([Rok52]). Let K be a separable compact space and let f : K → M be a
measurable mapping into the compact metric space M . If µ is a measure on K, then
there is a family of measures {µx : x ∈M} such that

• µx is supported on f−1[{x}] for every x ∈M ,
• µ(B) =

∫
x∈M µx(B) dµf−1 for each measurable B ⊆ K,

• the mapping x 7→ µx(B) is measurable for each measurable B ⊆ K.

The family {µx : x ∈M} is called a disintegration of µ. For our purposes this theorem
will not be of big use, since we are rather interested in compact spaces which are not
necessarily separable.

2. Fibers with non-separable measures.

A fiber of a mapping f : K → M is a set of the form f−1[{t}], where t ∈ M . In what
follows we shall constantly abuse notation by writing f−1(t) instead of f−1[{t}]. More
generally, a cylinder of f is a set of the form f−1[X], where X ⊆M .

We begin with a fact which is in principle [Tka91, Corollary 2.13]. We prove it by a
slightly different method.

Fact 2.1. Assume that K is a compact space and f : K →M is a continuous function
into a compact metric space. If K can be mapped continuously onto [0, 1]ω1, then there
is t ∈M such that f−1(t) can be mapped continuously onto [0, 1]ω1.

Proof. Let g : K → [0, 1]ω1 be a continuous surjection. For each α < ω1 let

A0
α = g−1[{x : x(α) ≥ 2/3}] and A1

α = g−1[{x : x(α) ≤ 1/3}].

Claim. Assume that F ⊆M is a closed set and α < ω1 is such that⋂
i∈I

g−1[A
ε(i)
i ] ∩ f−1[F ] 6= ∅

for each finite I ⊆ [α, ω1) and ε : I → {0, 1}. Then there is a closed F ′ ⊆ F , diam(F ′) ≤
diam(F )/2 and β ≥ α such that⋂

i∈I

g−1[A
ε(i)
i ] ∩ f−1[F ′] 6= ∅

for each finite I ⊆ [β, ω1) and ε : I → {0, 1}.
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Suppose the contrary. Let F = F0 ∪ F1, where diam(Fi) ≤ diam(F )/2, Fi - closed for
i ∈ {0, 1}. Suppose that there is finite I ⊆ [α, ω1) and ε : I → {0, 1} such that⋂

i∈I

g−1[A
ε(i)
i ] ∩ f−1[F0] = ∅.

(Otherwise, there is nothing to prove.) Let β > max I and suppose, towards contradiction,
that there is a finite J ⊆ [β, ω1) and δ : J → {0, 1} such that⋂

i∈J

g−1[A
δ(i)
i ] ∩ f−1[F1] = ∅.

Then ⋂
i∈J

g−1[A
δ(i)
i ] ∩ f−1[F ] ⊆ f−1[F0].

and thus ⋂
i∈I∪J

g−1[A
δ∪ε(i)
i ] ∩ f−1[F ] = ∅,

a contradiction.

Notice that ⋂
i∈I

g−1[A
ε(i)
i ] 6= ∅

for every finite I ⊆ ω1 and every ε : I → {0, 1}. Hence, starting with F0 = K and subse-
quently using the claim we can find inductively a decreasing sequence (Fn) of closed sets.
If t is such that {t} =

⋂
Fn, then t has the desired property. �

Let µ be a measure on a compact space K and let E be a family of measurable subsets
of K. We say that a measure µ is approximated by E if

(1) inf{µ(A4 E) : E ∈ E} = 0

for each µ-measurable A ⊆ K. The measure µ is determined by E if

(2) µ(U) = sup{µ(E) : E ∈ E and E ⊆ U}

for each open U ⊆ K and finally µ is almost-determined if

(3) µ(U) = sup{µ(E) : E ∈ E and µ(E \ U) = 0}

for each open U ⊆ K. In what follows we will consider zerodimensional spaces. Note
that in this case the family of clopen subsets approximates µ and therefore to check if E
approximates µ it is enough to check if (1) holds for all clopen sets A. Similarly, we can
check if µ is (almost) determined by E by considering (2) (and (3)) only for clopen sets U .

A measure µ is of Maharam type κ if κ is the minimal size of a family approximating
µ. We say that µ is separable if it is of Maharam type at most ω. Notice that a measure
µ is non-separable if there is a family {Aα : α < ω1} and ε > 0 such that µ(Aα 4 Aβ) > ε

for each α 6= β.
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Note that by saying that K carries a measure µ we do not necessarily assume that µ is
strictly positive on K, i.e. that µ(U) > 0 for every non-empty open U ⊆ K. If µ is strictly
positive on K, then we say that K supports µ.

We say that ω1 is a precaliber of a Boolean algebra A if for every uncountable family
of nonzero elements of A there is an uncountable subfamily which is centered, i.e. each
of its finite subfamilies has nonempty intersection. For a cardinal number κ let λκ be the
standard measure on 2κ. If I is an ideal of subsets of K, then

cov(I) = min{|A| : A ⊆ I,
⋃
A = K}.

By Nκ we will mean the σ-ideal of λκ-null sets and N = Nω.

Theorem 2.2 (see e.g. [KvM95]). The following are equivalent:

(1) MAω1(ma) holds,
(2) cov(Nω1) > ω1,
(3) ω1 is a precaliber of measure algebras.

The following theorem was mentioned in the introduction.

Theorem 2.3 (Fremlin, [Fre97]). MAω1 implies that K can be mapped continuously
onto [0, 1]ω1 iff K carries a non-separable measure.

Theorem 2.3 and Theorem 2.1 implies that under MAω1 if K is a compact space carrying
a non-separable measure and f : K → 2ω is continuous, then f−1(t) carries a non-separable
measure for some t ∈ 2ω. This statement cannot be proved in ZFC: under cov(N ) = ω1 there
is a metrizably-fibered compact space supporting a non-separable measure (see Example
4.2). However, it can be generalized in the following way:

Theorem 2.4. Assume ω1 is a precaliber of measure algebras. Suppose that µ is a
measure on a compact zerodimensional space K, µ is non-separable and f : K → 2ω

is a continuous mapping. Then there is t ∈ 2ω such that f−1(t) carries a non-separable
measure.

According to Theorem 2.2 the assumption used in the above theorem is weaker than
MAω1 . There are many models in which it is satisfied but MAω1 is not (e.g. the classical
random model). Also, it is consistent with the existence of a compact space which supports
a non-separable measure but which cannot be mapped continuously onto [0, 1]ω1 (see [Ple97,
Theorem 6.2]). Theorem 2.4 implies that such spaces (under MAω1(ma)) cannot have fibers
carrying only separable measures.

On the other hand, since cov(N ) ≥ cov(Nω1) (see [Kra01, Fact 4.1]), the assumption
used in Theorem 2.4 is stronger than cov(N ) > ω1. We do not know if it can be weakened
to cov(N ) > ω1 (see also Example 4.2) but Example 4.2 shows that cov(N ) > ω1 is the
weakest axiom we can try to use to prove Theorem 2.4.
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Let µ be a measure on a compact zerodimensional space K. Let f : K → 2ω be a
continuous mapping. For σ ∈ 2<ω define

µσ(A) =
µ(A ∩ f−1

[
[σ]
]
)

µ(f−1
[
[σ]
]
)

,

where [σ] = {t ∈ 2ω : σ ⊆ t}. Recall that a sequence of measures (µn) on a zerodimensional
compact K converges to µ in weak∗ topology if limn→∞ µn(A) = µ(A) for each clopen
A ⊆ K. Since the family of probability measures is compact in weak∗ topology (by the
Banach-Alaoglu Theorem [Die84, Chapter II]) for each t ∈ 2ω we can choose a weak∗-
accumulation point µt of the set {µt|n : n ∈ ω}. Notice that for each t ∈ 2ω we have
µt(f

−1(t)) = 1.
Denote by ν the measure given by ν(A) = µf−1[A].

Proposition 2.5. Assume that µ and K are as above. Let A ⊆ K be such that µ(A) < ε.
Then there is a closed set FA ⊆ 2ω such that ν(FA) > 0 and whenever t ∈ FA there is
NA ∈ ω such that µt|n(A) < ε for each n > NA.

Proof. Assume µ(A) = r < ε. For n ∈ ω let gn : 2ω → [0, 1] be defined by

gn(t) = µt|n(A).

Clearly, gn is measurable for each n and so g = lim supn gn is measurable, too. Hence,

H = {t ∈ 2ω : ∃∞n µt|n(A) ≥ ε} = g−1[ε, 1]

is measurable. We are going to show that ν(H) < 1. Then, any closed ν-positive set FA
such that FA ⊆ 2ω \ H would be as desired. Indeed, if t /∈ H, then we can find NA ∈ ω
such that µt|n(A) < ε for each n > NA.

So, suppose towards contradiction that ν(H) = 1. Let C be the family of all clopen
sets C ⊆ 2ω such that µ(A ∩ f−1[C]) ≥ εν(C) whenever C ∈ C. Notice that C is a Vitali
covering of H, i.e. for each t ∈ H and each δ > 0, there is C ∈ C such that t ∈ C and C is
a ball of radius at most δ. By Vitali Covering Theorem (see e.g. [Fre03, 261B]) there is a
countable family C ′ ⊆ C of pairwise disjoint sets such that ν(H \

⋃
C ′) = 0.

As ν(H) = 1, there is a finite family F ⊆ C ′ such that ν(
⋃
F) > r/ε. Since C is closed

under finite unions of disjoint sets, C =
⋃
F ∈ C. But then

µ(A) ≥ µ(A ∩ f−1[C]) ≥ ε · ν(C) > r,

a contradiction. �

Lemma 2.6. Assume ω1 is a precaliber of measure algebras. Let K and µ be as above,
ε > 0 and let A be a family of subsets of K such that µ(A) < ε for each A ∈ A. Then,
there is t ∈ 2ω, N ∈ ω and an uncountable family A′ ⊆ A such that µt|n(A) < ε for
every n > N and A ∈ A′.

Proof. For A ∈ A let FA and NA be as in Lemma 2.5. Without loss of generality, refining
A if needed, we can assume that NA = N for some N and each A ∈ A. Since ω1 is a
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precaliber of measure algebras, there is an uncountable A′ ⊆ A such that {FA : A ∈ A′} is
centered. By compactness, there is t ∈

⋂
A∈A′ FA. Clearly, µt|n(A) < ε for each A ∈ A′ and

n > N . �

Recall that a set D ⊆ 2κ depends on a set I ⊆ κ if x ∈ D ⇐⇒ x|I ∈ D|I for each
x ∈ 2κ. A closed set F ⊆ 2κ is a zero set if it depends on countably many coordinates.
For a measure µ defined on a space K, denote by M(µ) its measure algebra, i.e. M(µ) =

Bor(K)/µ=0. Let M = M(λω). A function ϕ : M(µ) → M(ν) is a measure-isomorphism
if it is a Boolean isomorphism and ν(ϕ(A)) = µ(A) for each A ∈ M(µ). A measure µ is
homogeneous if M(µ) = M(µ|A) for every µ-positive A ⊆ K.

It will be convenient to formulate the following corollary of Maharam’s theorem:

Theorem 2.7 (see e.g. [Fre89][Theorem 3.9, Theorem 3.10). If µ is homogeneous and of
Maharam type κ, then there is a measure-isomorphism ϕ : M(µ)→M(λκ). Moreover,
if K carries a measure µ of Maharam type κ, then there if a closed F ⊆ K such that
µ|F is a homogeneous measure of Maharam type κ.

Lemma 2.8. Assume µ is a non-separable measure on K and let S be a countable
family of measurable subsets of K. There is a family {Bα : α < ω1} of measurable
subsets of K such that

µ
(
S ∩ (Bα4Bβ)

)
=

1

2
µ(S)

for every S ∈ S and α < β < ω1.

Proof. First, note that according to Theorem 2.7 we may assume (considering a closed
subspace of K instead of K, if needed) that µ is non-separable and homogeneous and so
there is a measure-preserving isomorphism ϕ : M(µ)→M(λκ) for κ ≥ ω1.

Let D ⊆ 2ω1 be measurable. Notice that there is a countable ID ⊆ κ such that

λκ(D ∩ E) = λκ(D) · λκ(E)

for every measurable E ⊆ 2κ depending on κ \ ID. Indeed, since µ is inner regular with
respect to zero sets (see [Fre06, Theorem 416U]), for every n there is a set Dn such that
Dn ⊆ D, λκ(D \Dn) < 1/n and Dn depends on a countable set In. Let ID =

⋃
n In.

Denote Cα = {x ∈ 2κ : x(α) = 1} and notice that if α, β /∈ ID, then

λκ
(
D ∩ (Cα4 Cβ)

)
=

1

2
µ(D).

So, for a µ-measurable S ⊆ K and for α, β /∈ Iϕ(S) we have

µ
(
S ∩ (ϕ−1(Cα)4 ϕ−1(Cβ))

)
=

1

2
µ(S).

Now, let
I =

⋃
{Iϕ(S) : S ∈ S}.

Of course I ⊆ κ is countable. Choose Λ ⊆ κ \ I of size ω1 and finally let

{Bα : α < ω1} = {ϕ−1(Cβ) : β ∈ Λ}.
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�

Proof. (of Theorem 2.4) Apply Lemma 2.8 to µ and S = {f−1
[
[σ]
]
: σ ∈ 2<ω} to obtain

appropriate {Bα : α < ω1}. Notice that for every σ ∈ 2<ω we have

µσ(Bα4Bβ) =
1

2
.

For each α find a clopen set Aα ⊆ K such that

µ(Aα4Bα) <
1

8
.

By Lemma 2.6 applied to the family {Aα4Bα : α ∈ ω1} there is t ∈ 2ω, N ∈ ω and an
uncountable Λ ⊆ ω1 such that

µt|n(Aα4Bα) <
1

8
for every n > N and α ∈ Λ.

Then, for each α 6= β ∈ Λ and n > N

µt|n(Aα4 Aβ) >
1

4
.

Let µt be an accumulation point (in weak∗ topology) of the set {µt|n : n > N}. Since
(Aα4 Aβ) is clopen for each α, β < ω1,

µt(Aα4 Aβ) ≥ 1

4

for each α 6= β ∈ Λ. Therefore, µt is non-separable. �

3. Spaces with non-scattered fibers

In this section we will prove in ZFC that zerodimensional spaces with scattered fibers
do not carry non-separable measures. Since there is, consistently, a compact space which
supports a non-separable measure and whose fibers are homeomorphic to 2ω (see Example
4.2) one cannot hope to prove a stronger ZFC result of this sort.

Theorem 3.1. Assume that a compact zerodimensional space K carries a non-separable
measure µ and f : K → 2ω is a continuous mapping. Then there is t ∈ 2ω such that
f−1(t) is not scattered.

We will need two lemmas.

Lemma 3.2. Assume that µ is a measure on K. Let f : K → 2ω be a continuous
mapping. If µ is almost determined by closed cylinders, then µ is separable.

Proof. We will show that the family of clopen cylinders approximates µ. Of course, each
closed subset of 2ω is a countable intersection of clopens. So, if F ⊆ 2ω is closed, then

µ(f−1[F ]) = inf{µ(f−1[C]) : F ⊆ C,C is clopen}.
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Let A ⊆ K be µ-measurable and let ε > 0. By the assumption there is a closed F ⊆ 2ω

such that µ(f−1[F ]\A) = 0 and µ(A\f−1[F ]) < ε/2. Take a clopen set C such that F ⊆ C

and µ(f−1[C])− µ(f−1[F ]) < ε/2. Then

µ(A4 f−1[C]) < ε.

As A and ε > 0 were chosen arbitrarily, µ is approximated by the clopen cylinders and so
µ is separable. �

Lemma 3.3. Assume that K is zerodimensional and f : K → 2ω is a continuous
mapping. Suppose that µ is not almost determined by closed cylinders. Then there is
a clopen set C ⊆ K and a closed set F ⊆ 2ω such that

(1) µ(f−1[F ]) > 0,
(2) whenever G ⊆ F is a closed set and µ(f−1[G]) > 0, then µ(f−1[G] ∩ C) > 0 and

µ(f−1[G] \ C) > 0.

Proof. Let C ⊆ K be a µ-positive clopen. Assume that there is no closed F ⊆ 2ω satisfying
the above properties for C. Let F be a maximal pairwise disjoint family of closed subsets
of 2ω such that for each F ∈ F we have µ(f−1[F ]) > 0 but either µ(f−1[F ] ∩ C) = 0 or
µ(f−1[F ] \ C) = 0.

Then µ(C \
⋃
F∈F f

−1[F ]) = 0. Otherwise, we could find a closed F ⊆ 2ω disjoint with
all the members of F and such that µ(f−1[F ]∩C) > 0. As F does not satisfy (2), we could
find a closed G ⊆ F such that µ(f−1[G]) > 0 but such that either µ(f−1[G] ∩ C) = 0 or
µ(f−1[G] \ C) = 0. We could add G to F violating its maximality.

Now, let F ′ be the family of all finite unions of elements of {F ∈ F : µ(f−1[F ]\C) = 0}
and notice that

µ(C) = sup{µ(f−1[F ]) : F ∈ F ′}
and for each F ∈ F ′

µ(f−1[F ] \ C) = 0.

Therefore, if there is no clopen for which we can find a closed set satisfying (1) and (2),
then µ is almost determined by closed cylinders, a contradiction. �

Proof. (of Theorem 3.1) Without loss of generality we can assume that µ|A is non-separable
for each µ-positive A ⊆ K. Indeed, using Theorem 2.7 we can find a closed F ⊆ K such
that µ|F is homogeneous. Then, instead of K we may consider the support of µ|F which
clearly has the desired property.

We will inductively construct a family {Bτ : τ ∈ 2<ω} of clopen subsets of K and a
sequence (Fn)n of closed subsets of 2ω such that

(1) (Bτ ∩ f−1[Fn]) ⊆ (Bσ ∩ f−1[Fn]) if σ ⊆ τ and τ ∈ 2n,
(2) (Bτa0 ∩Bτa1) ∩ f−1[Fn+1] = ∅ for τ ∈ 2n,
(3) µ(f−1[Fn]) > 0 and µ(Bτ∩f−1[G]) > 0 if τ ∈ 2n,G ⊆ Fn is closed and µ(f−1[G]) > 0,
(4) Fn+1 ⊆ Fn for each n and limn→∞ diam(Fn) = 0.
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First, assume that we have a family as above. Let t be such that {t} =
⋂
Fn. For each s ∈

2ω by (3) and by compactness we can choose bs ∈
⋂
nBs|n ∩

⋂
n f
−1[Fn] =

⋂
nBs|n ∩ f−1(t).

Let B = {bs : s ∈ 2ω} ⊆ f−1(t) and notice that the function g : B → 2ω given by g(bs) = s

is continuous (if σ ∈ 2<ω, then g−1
[
[σ]
]

= B ∩ Bσ, because of (1) and (2)). Hence, B can
be mapped continuously onto 2ω and so it is not scattered.

To complete the proof we perform the promised inductive construction. Let B∅ = K

and F0 = 2ω.
Assume that we have have Fn and Bτ for all τ ∈ 2n. Enumerate 2n = {τk : k < 2n}.

Let H0 = Bτ0 ∩ f−1[Fn]. According to (3) and to our preliminary assumption µ|H0 is not
separable and so it is not almost determined by closed cylinders. So, we can apply Lemma
3.3 to H and f|H0 to find closed G0 ⊆ Fn such that µ(f−1[G0] ∩ H0) > 0 and a clopen
subset C0 ⊆ K such that

• µ (f−1[G] ∩ (C0 ∩H0)) > 0 and µ (f−1[G] ∩ (H0 \ C0)) > 0 for each closed G ⊆ G0

such that µ(f−1[G]) > 0,
• diam(G0) < 1/(n+ 1).

Then, proceed in the same manner, letting Hk+1 = Bτk+1
∩f−1[Gk] and finding Gk+1 ⊆ Gk,

Ck for k < 2n. Finally, define

• Fn+1 = G2n−1,
• Bτka0 = Ck ∩Bτk ,
• Bτka1 = Bτk \ Ck.

It is straightforward to check that in this way we obtain the desired properties. �

One may get an impression that being a measure almost determined by a family E is
just a slightly weaker property than being a measure determined by E . This impression
is rather misleading. For example, in our setting every measure which is determined by
closed cylinders is in fact determined by clopen cylinders. It follows from the fact that
every closed F ⊆ 2ω can be written as F =

⋂
Cn, where Cn is clopen for each n. If U is

an open set and f−1[F ] ⊆ U , then, by compactness, there is n such that f−1[Cn] ⊆ U .
So, every measure determined by closed cylinders is in fact determined by a countable
family and, consequently, its support is separable. In contrast, spaces supporting measures
which are almost determined by closed cylinders may be very far from being separable
(see Example 4.1).

There are (at least consistently) spaces with scattered fibers which support measures
and are non-separable (see remarks at the end of Section 4). However, such spaces cannot
be finitely-fibered.

Theorem 3.4. Assume K is a zerodimensional compact space supporting a strictly
positive measure µ and let f : K → 2ω be a finite-to-one continuous map. Then K is
separable.

Proof. Suppose that K is non-separable and let f : K → 2ω be a continuous mapping.
Without loss of generality we can assume that if A ⊆ K is µ-positive, then A is not
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separable. Indeed, let B be a maximal pairwise disjoint family of µ-positive sets B such
that B is separable. The family B is clearly countable and so B′ =

⋃
B contains a countable

dense set D. If µ(K \ B′) = 0, then U ∩ B′ 6= ∅ for each non-empty open U ⊆ K.
Consequently, U ∩D 6= ∅ for every non-empty open U ⊆ K and so K would be separable.
So µ(K \B′) > 0 and there is a closed µ-positive set K ′ ⊆ K \B′. Then A is non-separable
for each µ-positive A ⊆ K ′. So, we can consider K ′ instead of K if needed.

Since K is not separable, µ is not determined by clopen cylinders and, according to
above remarks, it is neither by closed cylinders. It means that there is a closed L ⊆ K such
that µ(L) > 0 and for each t ∈ f [L] we have f−1(t) \ L 6= ∅. We can additionally assume
that L supports the measure µ|L (throwing out all clopens C such that µ(L ∩ C) = 0).
Since L is not separable, the measure µ|L is not determined by {f−1[G]∩L : G = G ⊆ 2ω}.

Subsequently using these remarks we can construct a sequence (Ln)n of closed sets such
that L0 = K and for every n

• Ln+1 ⊆ Ln,
• µ(Ln) > 0 for each n and Ln supports µ|Ln,
• if t ∈ f [Ln], then f−1(t) ∩ (Ln \ Ln+1) 6= ∅.

Let x ∈
⋂
Ln and let t = f(x). The set f−1(t) is infinite since f−1(t) ∩ (Ln \ Ln+1) 6= ∅

for every n. So f is not a finite-to-one map. �

One cannot omit the assumption that K supports a measure. E.g. let K be the Alexan-
droff duplicate of 2ω, i.e. K = (2ω × {0}) ∪ (2ω × {1}) and the topology is generated by
the sets of the form {(x, 1)} for x ∈ 2ω and C × {0, 1} \ {(x, 1)} for a clopen C ⊆ 2ω and
x ∈ 2ω. It is straightforward to check that K is compact, Hausdorff and non-separable but
the fibers of the natural retraction onto 2ω × {0} are of size 2.

4. Examples

Every space can be mapped continuously into a metrizable compact space and all
compact spaces which are not scattered can be mapped continuously onto 2ω. Most of
these mappings are not particularly interesting in context of its fibers. However, quite
often such mapping can be chosen in a more or less canonical way. If a compact space is
constructed as an inverse limit, then usually its first coordinate is compact and metrizable
and the projection of the whole space onto it is of course continuous. Also, every Boolean
algebra A which is not superatomic (i.e. its Stone space is not scattered) have a Cantor
algebra C as a subalgebra and then its Stone space is mapped continuously onto 2ω by the
function

f(x) = x|C.

The properties of fibers of such mappings are sometimes easier to grasp than the global
properties of the space and studying them can lead to interesting pieces of information
about the space itself. In particular, it is not always easy to show directly that a space
cannot be mapped continuously onto [0, 1]ω1. Usually one has to prove that a space pos-
sesses some other property which makes such mapping impossible (e.g. is countably tight,
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Corson compact, hereditary Lindelöf etc.). Similarly, sometimes it not clear if a given space
carries a non-separable measure. Results from previous sections provide here yet another
tool.

In this section we will overview several examples which we found interesting. We begin
with remarks on the Stone space of M. Then we present two non-separable metrizably-
fibered spaces supporting a measure inspired by a certain Kunen’s construction. We finish
with examples of spaces with scattered fibers of Bell and Todorčević.

We will use the fact that every (finitely-additive) measure on a Boolean algebra can
be extended uniquely to a Radon measure on its Stone space. If A ∈ A, then by Â we
denote the appropriate clopen subset of Stone(A), but only in case of a possible confusion.
Otherwise, we do not distinguish in notation between elements of a Boolean algebra and
clopens of its Stone space. For the sake of brevity we are not going to define all the notions
which will appear in what follows, but the reader can easily find the definitions following
the given references.

Example 4.1. Stone space of the measure algebra.
Let K be the Stone space of M. Let C ⊆ M be the Boolean algebra generated by

{[C]λ=0 : C ∈ Clop(2ω)} and let f : K → 2ω be defined by f(x) = x|C. Notice that the fibers
of f are homeomorphic to each other. Indeed, if t ∈ 2ω, then h : f−1(0)→ f−1(t) given by
h(x) = x + t is a homeomorphism. (Here 0 stands for the element of 2ω constantly equal
to 0 and x+ t is the ultrafilter consisting of {A+ t : A ∈ x}, where [F ]λ=0 + t = [F + t]λ=0.)

It is well-known that the space K is not separable and it maps continuously onto [0, 1]c.
So, its fibers map continuously onto [0, 1]ω1. However, K supports a measure which is
almost determined by closed cylinders.

Let λ̂ be the unique extension of λ to K. Let M ∈ M and ε > 0. There is M0 ∈ M

such that M0 = [F ]λ=0 for some closed F ⊆ 2ω, M0 ⊆ M and λ(M \ M0) < ε. Then
λ̂(f−1[F ]\M0) = 0 since λ(F ) = λ̂(M0). Therefore λ̂(f−1[F ]\M) = 0. But λ̂(M \f−1[F ]) ≤
λ̂(M \M0) < ε.

We will now present an example of a non-separable space supporting a measure which
cannot be mapped continuously onto [0, 1]ω1 . The latter property follows from the fact
that the presented space is metrizably-fibered (because of Theorem 2.1 and the fact that
metrizable spaces cannot be mapped continuously onto [0, 1]ω1). We show that one can
demand that the supported measure is non-separable. The construction is in the spirit of
[Kun81] (although Kunen constructed his space as an inverse limit).

If I is an ideal of subsets of K, then

add(I) = min{|A| : A ⊆ I,
⋃
A /∈ I},

cof(I) = min{|A| : ∀I ∈ I ∃A ∈ A I ⊆ A}.

Example 4.2. Non-separable measure with small non-separable support under the assump-
tion cov(N ) = ω1.
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Let {Nα : α < ω1} ⊆ N be an increasing family witnessing cov(N ) = ω1. Let F =

{Fα : α < ω1} be a family of closed subsets of 2ω such that for each α < ω1

a) Fα ∩Nα = ∅,
b) λ(Fα) > 0.

It can be easily seen that such family can be constructed by a transfinite induction.
Let C be the Boolean algebra of clopens of 2ω. Generate a Boolean algebra A by C and

the family {Fα : α < ω1}. Denote by K ′ its Stone space and by f ′ : K → Stone(C) = 2ω the
(continuous) mapping f(x) = x|C. The Boolean algebra A carries the measure λ (which
does not need to be strictly positive on A). Let λ̂ be the unique extension of the measure
λ to K ′. Let K be the support of λ̂ and let f = f ′|K . If t ∈ 2ω, then t ∈ Nα for some α < ω1.
Hence, t /∈ Fβ for β ≥ α. So, the topology of f−1(t) is generated by countably many sets
and, thus, f−1(t) is metrizable.

Moreover, K is not separable. If X is a countable subset of K, then f [X] is a countable
subset of 2ω and so we can find α < ω1 such that f [X] ⊆ Nα. Then, Fα+1 ∩ f [X] = ∅ and
so F̂α+1 ∩X = ∅. But λ̂(F̂α+1) > 0 and therefore K ∩ F̂α+1 is a non-empty clopen subset of
K disjoint from X.

Using this method we can construct a space like above which additionally supports
a non-separable measure. It will be more convenient to work in 2ω1 instead of 2ω. Let
π : 2ω1 → 2ω be the standard projection. Notice that the family {π−1[Nα] : α < ω1} is a
family of λω1-null sets covering 2ω1. Consider a family F = {Fα : α < ω1} of closed subsets
of 2ω1 such that for each α < ω1

a) Fα ∩ π−1[Nα] = ∅,
b) inf{λω1(Fξ 4 Fα) : ξ < α} > 0.

As before, it can be obtained by a simple transfinite induction. Condition (b) is easy to
achieve since λω1 is non-separable and so the families {Fξ : ξ < α} do not approximate λω1

for α < ω1.
Generate the Boolean algebra A by Clop(2ω1) and the family {Fα : α < ω1} and let K be

defined in an analogous way as above, so that λ̂ω1 is strictly positive on K. If g : K → 2ω1

is defined by g(x) = x|Clop(2ω1 ) then the mapping f = π ◦ g : K → 2ω is continuous. As
before, if t ∈ Nα, then F̂β ∩ f−1(t) = ∅ for every β ≥ α and so K is metrizably-fibered.

Clearly, there is ε > 0 and Λ ⊆ ω1 of size ω1 such that

inf{λω1(Fξ 4 Fα) : ξ < α, ξ, α ∈ Λ} > ε.

Hence, λ̂ω1(F̂α4 F̂β) > ε for each α, β ∈ Λ and so λ̂ is non-separable.
By manipulating the conditions imposed on the family F one can obtain spaces sat-

isfying various properties: e.g. Kunen in [Kun81] provided a CH example of a Corson
compact L-space supporting a non-separable measure µ for which µ(A) = 0 if and only if
A is metrizable. In [KvM95][Theorem 1.2] the authors proved that such space can be con-
structed assuming only that cof(Nω1) = ω1 (both of these spaces are metrizably-fibered).
In [KvM95][Theorem 1.1] it is also shown that cov(N ) > ω1 implies that there is a Corson
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compact space supporting a non-separable measure. It is not clear for us if this space is
metrizably-fibered. If not, then perhaps the assumption of Theorem 2.4 can be relaxed to
cov(N ) > ω1. Other interesting examples inspired by the Kunen’s example can be found
e.g. in [Ple97].

Now we turn our attention to examples of spaces with scattered fibers. We will start with
a technique of total ideal spaces developed by Murray Bell which was used to produce
several interesting spaces (see [Bel88] and [Bel96]). We will overview two of them. The
presentation differs from that of Bell: we find more convenient to see them as Stone spaces
of certain Boolean algebras.

Example 4.3. Total ideal spaces.
In [Bel88] the author constructs a compact separable space which cannot be mapped

continuously onto [0, 1]ω1 and which does not have a countable π-base.
Let T = {Tα : α < ω1} be any ⊆∗-increasing chain in P (ω) such that T0 = ∅. For each

A ⊆ ω let XA = {x ∈ 2ω : x(n) = 1 if n ∈ A}. Generate a Boolean algebra B of subsets of
2ω by the family:

{XA : A =∗ Tα for some α < ω1}

and let KT be its Stone space.
The space KT is separable (and so it supports a measure) and it does not have a

countable π-base (see [Bel88] or [BND13] for the proofs of these statements). Bell proved
that it does not map continuously onto [0, 1]ω1 by showing that it is scattered in the Gδ

topology. We will show that it is in fact scatteredly fibered. First, notice that the algebra
C generated by {XA : A =∗ ∅} ⊆ B is countable and non-atomic and so it is isomorphic to
the Cantor algebra. The mapping f : KT → C, given by f(x) = x|C, is continuous. We will
show that fibers of f are homeomorphic to ordinal numbers (and so, in particular, they
are scattered). Indeed, let t ∈ 2ω and let α < β. If n > max(Tα \ Tβ), then

(f−1([t|n]) ∩ Tα) ⊆ (f−1([t|n]) ∩ Tβ)

unless f−1
(
([t|n]) ∩ Tβ

)
is empty. Hence, if Tα ∩ f−1(t) 6= ∅ and Tβ ∩ f−1(t) 6= ∅, then

Tα ∩ f−1(t) ⊆ Tβ ∩ f−1(t),

and thus the topology of f−1(t) is generated by a well-ordered family.
It is not difficult to see that if we apply the above machinery to a family different

than T (but containing all finite sets), then the resulting space will still be separable (see
[BND13, Proposition 6.5]). In [Bel96] Bell modified this technique to provide an interesting
example of a non-separable space.

For A, B ⊆ ω let

XA,B = {x ∈ 2ω : x(n) = 1 if n ∈ A and x(n) = 0 if n ∈ B}.

Let G = {(Lα, Rα) : α < κ} be a pregap on ω of height κ, i.e. (Lα)α<κ, (Rα)α<κ are ⊆∗-
increasing and Lα ∩Rα = ∅ for each α < κ. We call G a gap if there is no L ⊆ ω such that
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Lα ⊆∗ L and Rα ∩ L =∗ ∅ for each α < κ. A gap G is destructible if there is a ccc forcing
P such that


P Ǧ is not a gap.

Note that gaps of height κ > ω1 are always destructible.
Generate a Boolean algebra AG by the family:

{XA,B : A = Lα, B = Rα for some α < κ}

and let KG be its Stone space.
The space KG has scattered fibers. It can be proved as in the case of KT . Hence, KG

cannot be mapped continuously onto [0, 1]ω1. Bell proved that KG is not separable if and
only if G is a gap. Moreover, if G is destructible, then KG is ccc. Thus, every example
of a destructible gap can be translated, using the above machinery, to an example of
ccc non-separable space which cannot be mapped continuously onto [0, 1]ω1. Destructible
gaps do not always exist. Actually, Bell remarked that under OCA there is a very general
reason why using this technique one cannot obtain a ccc non-separable space (see [Bel88,
Fact 2.3]). However, since due to Kunen’s result (see [Bau84]) MAω1 is consistent with the
existence of gap of height ω2 (which is, therefore, destructible), it follows that MAω1 is
consistent with the existence of a ccc non-separable space which cannot be mapped onto
[0, 1]ω1.

In [Tod00][Theorem 8.4] Todorčević carried out a ZFC construction of a ccc non-
separable space which cannot be mapped continuously onto [0, 1]ω1. He showed that his
space can be mapped continuously onto 2ω by a function whose fibers are homeomorphic
to ordinal numbers.

Example 4.4. Todorčević’s ccc non-separable small space.
Let S be the set of slaloms, i.e.

S = {S ⊆ ω × ω : |S(n)| ≤ n}.

Let Ω = {(S, n) : n ∈ ω, S ∈ S, S ⊆ (n× n)}. For each A ∈ S define

TA = {(T, n) ∈ Ω: A ∩ (n× n) ⊆ T}.

For (S, n) ∈ Ω let

T(S,n) = {(T,m) ∈ Ω: m ≥ n, T ∩ (n× n) = S}.

Let
Z = {S ⊆ ω × ω : S ∈ S and lim

n
|S(n)|/n = 0}.

There is a family (Aα)α<add(N ) of elements of Z such that Aα ⊆∗ Aβ if α < β and there
is no S ∈ S such that Aα ⊆∗ S for every α < add(N ) (see [FK91]).

Let A = {A ∈ Z : A =∗ Aα for some α < add(N )} and

TA = alg
(
{TA : A ∈ A} ∪ {T(S,n) : (S, n) ∈ Ω}

)
.

Finally let KA be the Stone space of TA/Fin.
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Notice that the algebra C = alg({T(S,n) : (S, n) ∈ Ω}) is a countable non-atomic Boolean
algebra and hence it is isomorphic to the Cantor algebra. So, the mapping f : KA →
Stone(C) given by f(x) = x|C is a continuous mapping into 2ω. We will show that KA has
scattered fibers (see also [Tod00, Claim 4, Theorem 8.4]).

Let t ∈ Stone(C) and let A, B be such that A =∗ Aα, B =∗ Aβ for some α ≤ β < add(N ).
Suppose that TA ∩ f−1(t) 6= ∅ and TB ∩ f−1(t) 6= ∅. There is n such that A \ (n× n) ⊆ B.
Let S ⊆ (n×n) be such that T(S,n) ∈ t. Then TA∩T(S′,n′) ⊆ TB ∩T(S′,n′) for each n′ > n and
T(S′,n′) ∈ t and, consequently, TA ∩ f−1(t) ⊆ TB ∩ f−1(t). Therefore, the topology of f−1(t)
is induced by a well-ordered chain and so it is homeomorphic to an ordinal number.

Todorčević showed thatKA is ccc and non-separable, obtaining therefore a ZFC example
of ccc non-separable space without a continuous mapping onto [0, 1]ω1.

One of the motivations to study the fibers of spaces supporting measures was the
question about the existence of non-separable spaces supporting measures which cannot
be mapped continuously onto [0, 1]ω1 . Actually, some of the theorems presented in this
article were proved in an attempt to show that spaces with scattered fibers supporting
measures have to be separable (and, in particular, to prove that the space from Example
4.4 cannot support a measure). Our efforts were hopeless. First, in [BNP16], under MA, the
authors provided an example of a non-separable space with scattered fibers supporting a
measure (in a sense distilling some ideas present in Example 4.2 and Example 4.3). Then,
it turned out that Todorčević’s construction described in Example 4.4 can be modified to
obtain a non-separable space with scattered fibers supporting a measure assuming only
that add(N ) = non(M) (see [BNI]).

We still do not know if there is a ZFC example of such space:

Problem 4.5. Is it consistent that spaces with scattered fibers and supporting mea-
sures are separable?
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