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Idle thoughts of a ‘well-calibrated’ Bayesian in
clinical drug development
Andrew P. Grieve*

The use of Bayesian approaches in the regulated world of pharmaceutical drug development has not been without its
difficulties or its critics. The recent Food and Drug Administration regulatory guidance on the use of Bayesian approaches
in device submissions has mandated an investigation into the operating characteristics of Bayesian approaches and has
suggested how to make adjustments in order that the proposed approaches are in a sense calibrated. In this paper, I present
examples of frequentist calibration of Bayesian procedures and argue that we need not necessarily aim for perfect calibration
but should be allowed to use procedures, which are well-calibrated, a position supported by the guidance. Copyright © 2016
John Wiley & Sons, Ltd.
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1. INTRODUCTION

I have been a pharmaceutical statistician for 40 years, and for
35 of them, I have advocated a greater use of Bayesian meth-
ods in all aspects of drug development. I work for a company
providing services to the pharmaceutical industry, having previ-
ously worked for large pharmaceutical companies, and therefore,
when addressing the issues of using Bayesian methods in drug
development, I look at them through pharmaceutical eyes as
well as Bayesian eyes. In the early 1980s, when I began inves-
tigating and implementing the use of Bayesian methods in the
chemical–pharmaceutical industry, the practical use of Bayesian
methods was almost unheard of. This was not because Bayesian
ideas were new. Thomas Bayes’ original paper appeared posthu-
mously in 1763 [1]; Laplace in 1774 was using posterior distri-
butions in practical applications [2]; in 1875/1876, Helmert and
Lüroth developed the t-distribution as the posterior distribution
for a population mean [3–6] followed quickly by Edgeworth with
uninformative prior distributions on the mean and variance [7];
in 1898, when studying uncertainty in estimating the correlation
coefficient, Karl Pearson used a Bayesian approach [8]; Gosset
(Student) developed the sampling distribution of the correlation
coefficient in 1908 to simplify the calculations required to deter-
mine the appropriate posterior distribution [9]. As far as I am
aware, the earliest reference to an adaptive clinical trial design
was a paper by William Thompson in 1933 [10] based on Bayesian
ideas. Despite this early work, there is no evidence to suggest
that in the field of clinical trial methodology Bayesian ideas
caught on a notable exception being Cornfield’s [11,12] work on a
Bayesian approach to sequential clinical trials. Things have, how-
ever, changed. Both in the United States [13] and Europe [14],
there has been significant activity in bringing to the attention of
practicing statisticians the advantages of a Bayesian perspective
in clinical trials and more generally in medical research [15] and
pharmaceutical R&D [16].

In the context of drug development, Bayesian ideas are
now formally acceptable to the major international regulatory
authorities: ‘The use of Bayesian and other approaches may be

considered when the reasons for their use are clear and when
the resulting conclusions are sufficiently robust’ (ICH, Guideline
on Statistical Principles in Clinical Trials - E9 [17]). While I found
this endorsement somewhat lukewarm, it did at least open the
door to the use of Bayesian techniques in drug trials intended to
provide evidence to support marketing authorisation. The sub-
sequent Food and Drug Administration (FDA) guidance on using
Bayesian methods in clinical trials of medical devices gave greater
support but with some caveats [18] of which more later.

If the regulatory environment continues to become more
Bayesian-friendly, what other obstacles could prevent their use?
Whilst in the past, there were five major obstacles: philoso-
phy, trust, conservatism, tools and expertise, the latter two are
less of an issue these days with the development of MCMC
methodology and the increasing number of undergraduate and
post-graduate courses in statistics and/or biostatistics that cover
Bayesian methodology. In this paper, I want to look at an aspect
of the remaining obstacles, namely, the requirement to control,
in a frequentist sense, the false positive rate of Bayesian proce-
dures, sometimes thought of as calibration. To this end, in this
paper, I will look at three major areas of application: monitoring
clinical trials, the use of historical information and Bayesian adap-
tive randomisation designs. In Section 2, I look at the guidelines
that have been developed covering the design and reporting of
a different study types carried out in biomedical research. These
include specific guidelines covering Bayesian approaches devel-
oped both by academic groups as well as regulatory authorities. I
introduce the idea of calibrated Bayesian procedures, an idea that
is missing from the academic guidelines, but central to the regula-
tory guideline. In Sections 3– 5, I cover three specific applications
of Bayesian methods and look at the implications of control of the
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false positive rate of these procedures. The applications include
Bayesian monitoring of group sequential designs (Section 3), the
utilisation of historical control information to enhance clinical
trial designs by forming proper prior distributions (Section 4) and
Bayesian adaptive randomisation designs (Section 5). In Section 6,
I look at the design, analysis and reporting of simulation exper-
iments to control the false positive rate of Bayesian procedures,
covering the use of fractional factorial designs and the choice of
simulation sample size. I conclude with a discussion section.

2. REPORTING OF BAYESIAN ANALYSES OF
CLINICAL TRIALS

In 1996, the Consolidated Standards of Reporting Trials statement
was first published [19], combining the independent recommen-
dations of Standardised Reporting of Trials [20] and the Asilomar
Working Group on Recommendations for Reporting of Clinical Tri-
als in the biomedical literature [21]. Since then, guidelines have
been developed for reporting observational studies in epidemi-
ology (STROBE) [22], genetic association studies (STREGA) [23],
systematic reviews and meta-analysis (PRISMA) [24], diagnostic
studies (STARD) [25], health economic evaluations (CHEERS) [26],
qualitative research (COREQ) [27] and its synthesis (ENTREQ) [28],
public health improvement studies (SQUIRE) [29], case reports
(CARE) [30], the development of protocols (SPIRIT) [31] and the
reporting of statistical analyses and methods (SAMPL) [32]. These
guidelines provide important means to improve the quality of
the design, conduct and analysis and reporting of biomedical
research. With the exception of SAMPL [32], the guidelines do
not refer to Bayesian designs, analysis or reporting. In the fol-
lowing sections, we look at the literature on Bayesian analyses
and reporting.

2.1. Academic Reporting of Biomedical Research

Four academic groups have proposed guidelines for the report-
ing of Bayesian analyses: ROBUST [33], BAYESWATCH [34] and
BaSiS [35] and SAMPL [32]. All four guidelines cover topics that
might be expected including the following: specification and jus-
tification of the prior distribution; specification of the statistical
model; what software is used; details of the convergence crite-
ria if MCMC techniques are used; how aspects of the posterior
inferences are to be summarised; and what sensitivity analyses
are to be conducted. One aspect of sensitivity analysis that is
rarely considered is to provide readers with the ability to change
the prior distribution, and therefore to construct their own pos-
terior distributions. Historically, such Bayesian communication
has not been a simple process (Lehmann and Goodman [36]).
Two approaches have been proposed. The first is to utilise a
family, or community, of priors, which should include a likeli-
hood analysis, essentially a Bayesian analysis of all parameters
using a uniform prior distribution, an optimistic prior distribution
and a pessimistic prior distribution. This idea was introduced by
Hildreth [37] over 50 years ago and brought up to date by Spiegel-
halter, Freedman and Parmar [14]. Alternatively, the basic model
can be embedded in a hierarchical structure and the sensitivity of
posterior conclusions to changes in parameters within the hier-
archy explored. This approach is related to Draper’s continuous
model expansion accounting for uncertainty in model choice [38].
Draper commented ‘it is preferable to perform model expansion
continuously’ in which the alternative is discrete model uncer-
tainty. I am unconvinced that this is generally true as it is often

of interest to treat null models discretely rather than as part of a
continuum. Grieve [39,40] has used the latter approach to allow
readers to input a subjective assessment of competing models
in the context of crossover designs. Missing from these reporting
guidelines is any idea of presenting the operating characteristics
of the chosen Bayesian procedure. This requirement is the subject
of the next section.

2.2. Regulatory Bayesian Guideline

In February 2010, the Centre for Devices and Radiological Health
(CDRH) of the FDA issued Guidance for the Use of Bayesian
Statistics in Medical Device Clinical Trials [18]. The guidance
has its origins in CDRH’s considerable experience in the use of
Bayesian approaches in clinical trials of medical devices. The
guideline introduces Bayesian ideas in comparison with standard
approaches and looks at the benefits and potential pitfalls of their
use. It defines prior distributions, likelihoods, posterior distribu-
tions and predictive distributions; it covers the more complex
issues of exchangeability and the likelihood principle; it describes
the planning and analysis of Bayesian clinical trials in some detail.

The section covering technical details is of particular interest
as it presents the information to be provided in the trial proto-
col covering specific issues relating to the Bayesian aspects of the
trial. These include the prior information to be used, the criterion
for success, the justification of the sample size, operating char-
acteristics (power and type I error), the prior probability of the
study claim, the effective sample size and the programme code.
When considering the operating characteristics and the type I
error, it is worth noting a remark of LeBlond that ‘. . . just because
Bayesian methods do not inherently rely on the hypothetical
repeated trial p-value concept, this does not mean that this met-
ric is not available when Bayesian methods are used. Modern
computer simulation allows us to evaluate the Type 1 error rate
of any statistical decision-making approach, including Bayesian
approaches’. [41]

Whilst most regulatory guidances strongly emphasise strict
control of the type I error of procedures, that is not the case in
this Bayesian guidance. For example, it recognises the importance
of assessing the operating characteristics of Bayesian approaches
but states that they ‘strive for reasonable control of the type I
error’, leaving open what should be understood by ‘reasonable’.
There is a recognition that if we are to use prior information ‘that
it may be appropriate to control the type I error at a less strin-
gent level than when no prior information is used’, a remark we
will return to later. Of course the guidance reserves the right on a
case-by-case basis to judge the amount by which such control can
be relaxed and the degree of discounting of prior information.

This theme is taken up in an extensive section of the guid-
ance dealing with aspects of the simulation of operating char-
acteristics. It includes the remark that if ‘the FDA considers the
type I error rate of a Bayesian experimental design to be too
large; we recommend you modify the design or the model to
reduce that rate’. Determination of ‘too large’ is specific to a
submission because ‘some sources of type I error inflation ....
may be more acceptable than others’. Suggested approaches to
decreasing the type I error include increasing the probability
criterion for a successful trial; adjusting interim analyses, where
appropriate; discounting prior information; increasing the maxi-
mum sample size; changing the study termination criterion; and
changing the method for determining the type I error. We
will take up these themes in subsequent sections when
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considering interim monitoring of clinical trials and the use of
historical information.

2.3. Calibration of Bayesian Procedures

There are at least three types of calibration in statistics: assay cal-
ibration (Hunter and Lamboy [42]), forecasting calibration (Bickel
et al. [43]), and more recently, the frequentist calibration of
Bayesian procedures (Rubin [44]). Rubin argues that frequen-
tist calculations are useful both in understanding and validating
Bayesian statements. The former has to do with communicat-
ing to lay consumers of Bayesian statistics, Bayesian solutions,
which are difficult to understand. The latter is useful ‘for mak-
ing Bayesian statements, scientific’, by which he means making
them empirically testable, and it is this idea, which is of inter-
est in our context. Rubin defines a Bayesian as being calibrated if
the probability statement that he/she makes have the coverage
that is being asserted and argues that frequentist investigation
of procedures, which are going to be recommended for routine
use, are justifiable, if not, absolutely essential. Little in a series
of papers has also championed this approach [45–47] There are
numerous examples in the literature of the frequentist properties
of Bayesian solutions being superior to traditional approaches.
Grieve [48] investigated a Bayesian approach to the problem of
comparing two normal populations in which we wish to show
that both the locations and variances of the two populations are
equivalent. Generalising the two one-sided t-test approach used
in bioequivalence, Bauer and Bauer [49] developed a multi-test
procedure based on two pairs of one-sided tests in which equiv-
alence in terms of location and variability is established if all
four tests lead to a rejection of their respective null hypotheses.
Grieve’s [48] approach was to calculate the posterior probability
that the differences between means and the ratio of the vari-
ances of the two populations lie within the rectangle defined by
the null hypotheses proposed by Bauer and Bauer [49]. Based on
simulations, Grieve [48] showed that the Bayesian approach was
‘well-calibrated’, in fact, he was able to show that the results were
‘uniformly better than and Bauer and Bauer’s corrected test pro-
cedure and are generally better than .... the one they recommend’.

3. MONITORING OF CLINICAL TRIALS

A year before the results of the Medical Research Council trial
of Streptomycin [50] appeared, the trial that introduced Fisher’s
ideas of randomisation into modern medical research, Abraham
Wald published his book on sequential analysis, which he had
developed during his wartime work on military ordnance man-
ufacture [51]. Predating Wald’s work, the earliest sequential test
procedure in which, in contrast to statistical tests developed in
agriculture, the number of observations is not fixed in advance
– goes as far back as Dodge and Romig [52] who developed a
double sampling procedure. The advantage of these schemes,
recognised by Dodge and Romig and by Bartky [53], is that on
average, they require fewer observations than traditional single
sampling schemes.

The development of similar, sequential ideas in medicine in the
1950s is due to Peter Armitage in the UK and Irwin Bross in the
US [54–58]. In 1969, Armitage et al. [59] investigated issues asso-
ciated with multiple tests of accumulating data showing that the
use of repeated significance tests at level ˛ increases the over-
all probability of a type I error above ˛. Their work led directly
to the development of group sequential designs and stopping

rules [60–64] and the ˛–spending function approach of Lan and
DeMets [65]. We noted earlier that Cornfield had addressed issues
in sequential trials from a Bayesian perspective in the 1960s.
From 1983 onwards, there has been a stream of authors who
have addressed monitoring of clinical trials from a Bayesian per-
spective [66–78]. In the next section, we look at one of these
approaches in depth.

3.1. A General Structure of Bayesian Monitoring

We follow the development of Grossman et al. [78]. That is, we
assume that a clinical trial is being run to compare two treat-
ments (A and B) in which T interim analyses are planned after
each block of n/T of patients per group and that a maximum
of n patients in each group will be available. For each block of
patients, an estimate di.i D 1, .., T/ is available where the di �

N.ıT�2
ı
=n/ are independently distributed from each other; ı is the

expected treatment effect; �2
ı
D 2�2 and �2 is known. Further,

we assume there is prior information available about ı, equivalent
to fn patients per group with prior mean ı0. Under these assump-
tions at the end of the tth block, the posterior distribution for
ı is

p .ı j d1, : : : , dt/ � N
�

d�t , �2
ı =nt

�
where

d�t D
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.
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At each interim, the posterior probability that ı is greater than a
pre-specified value ıC is determined, and the decision to the study
is made if this probability is greater than a minimum value 1� t ,
that is

P.ı > ıCjDt/ D 1 � ˆ̂̂
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n
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t
�
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(2)

For the moment, we assume that the prior information is real,
and fixed, then if we are interested in controlling the experiment
wise type I error, we have a number of options to consider. First,
we could leave ıC fixed and choose to have different probabilities,
 i , at each interim. Second, we could choose a common value for
 and adjust the common ıC . Third, we could adjust the common
probability  . Finally, keeping  fixed, we could choose a differ-
ent cutoff ıCi at each interim i .i D 1, : : : T/. We investigate each
of these in turn.9
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3.2. Example 1: T D t D 1,ıııCD 0,   t D    (for all t).

This example corresponds to a single analysis, in other words, no
interims. Under these assumptions, the stopping rule (2) becomes

D > �

p
1C f Z �ı
p

n
� fı0 (3)

and we can investigate the frequency properties of the rule
by noting that under the null hypothesis D � N

�
0, �2

ı
=n
�

implying that

Prob

"
D>�

p
1C f Z �ı
p

n
� fı0

#
D1�ˆ̂̂

 
�Z 
p

1Cf�

p
f
p

nfı0

�ı

!

(4)

To control this probability at the 1 � ˛=2 level requires that

Z1� D
Z1�˛=2 C

p
f Z0

p
1C f

(5)

where Z0 D
p

fnı0=�ı is the prior standardised effect size.
Figure 1 A) displays contours of  necessary to control the
one-sided type I error at 2.5% for varying f and Z0. If the standard-
ised effect size is large then  must be considerably reduced to
control the type I error. In contrast, for small Z0 and large f , the
nominal level may be relaxed. This is intuitively correct because
in this case, the prior distribution is providing a significant penalty
towards zero.

Another example of a single analysis is given by T D t D
1,  t D  (for all t) for which a similar process leads to a require-
ment that the standardised Bayesian decision criterion ZC D

ıC
p

n=�ı satisfies the following relationship

ZC D

p
f Z0 �

�p
1C f � 1

�
Z0.975

1C f

in order to control the type I error. The contours of ZC necessary to
control the one-sided type I error at 2.5% for varying f and Z0 can
also be displayed. Whichever approach is used, we are effectively
discounting the prior information. To see this, consider again Case
1 and substitute (5) into (3) to give

Figure 1. Bayesian decision rules giving a one-sided type I error of 2.5%

D >
�ıZ0.975
p

n

This is the standard, frequentist decision rule. In other words, in
these 2 cases, requiring strict control of the type I error results
in 100% discounting of the prior information. A similar result is
shown in an appendix to Pennello and Thompson [79]. This result
is important in the context of the remark in the FDA’s Bayesian
guidance that ‘it may be appropriate to control the type I error
at a less stringent level than when no prior information is used’. If
when using prior information in a single analysis we require abso-
lute control of the type I error, and such procedures we might
term ‘perfectly-calibrated’, then we must throw away any prior
information. I would argue that the FDA’s remark is recognition of
this phenomenon and an endorsement of a less strict control of
type I error, and such procedures we will term ‘well-calibrated’.

3.3. Example 2:   tD 0025,ıııCD 0,ııı0D 0 (Sceptical Prior
Distribution).

Freedman, Spiegelhalter and Parmar [14] describe the formal con-
struction of a sceptical prior distribution in the following way.
Consider a normal distribution, centred at zero and with a small
probability, .� , of achieving the alternative hypothesis ıA. Then, if
the prior is as previously defined, but with ı0 D 0, the following
relationship will hold

ıA D �
�ıZ1��
p

fn

If the trial has been designed with size˛ and power 1�ˇ to detect
the alternative hypothesis ıA, from which the sample size can be
determined from

n D
�2
ı

�
Z1�˛=2 C Z1�ˇ

�2

ı2
A

then substitution gives

f D

 
Z�

Z1�˛=2 C Z1�ˇ

!2

In what follows, we simply assume that the sceptical prior distri-
bution is ı � N

�
0, �2

ı
=.fn/

�
. Setting  t D 0.025, ıC D 0, ı0 D 0

in (1) gives

Prob .ı > 0 jDt/ D ˆ̂̂

 p
nt Dt

�ı
p

T

r
t

tC fT

!
> 0.975

which is equivalent to increasing the standard, unadjusted critical
region by a factor r

tC fT

t

and in this context, Grossman et al. [78] refer to f as the ‘handi-
cap’. The frequentist properties of this ‘handicapping’ are not as
simply derivable as they were in the previous two cases. For TD2
– a single interim – the frequentist type I error can be calculated
using a bivariate normal probability function, for example, the
SAS function PROBNRM. For T >3, Grossman et al. [78] use sim-
ulation to determine the handicap f that controls the two-sided
type I error at 5% and 1% and to get sufficient accuracy simulated
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Figure 2. Handicaps (f ) to control the two-sided ˛ for up to 25 analyses.

20 000 000 trials. As an alternative, a combination of the algorithm
derived by Armitage et al. [59] and a Newton–Raphson algorithm
can be used. SAS PROC IML has subroutines, which perform the
appropriate integrations or a modified version of the FORTRAN
programme described by Reboussin et al. [80] can be used, the
approach used here. Figure 2 displays the handicaps required
to control the two-sided type I error at 1,5(5) 30% for up to 25
interim analyses.

The extensive results in this figure support the conclusions of
Grossman et al. [78]. For example, the shallow slope as T increases
for T > 5, independent of the type I error, supports their conclu-
sion that this approach is robust in the sense if it were planned to
conduct 4 or 5 interims, there is little lost in terms of the type I and
type II errors if 8–10 are actually carried out.

4. USE OF HISTORICAL INFORMATION

At a meeting around the turn of the millennium hearing, Greg
Campbell of FDA’s CDRH division commented that there was a
concern that the use of ‘subjective priors may allow unscrupulous
companies and/or statisticians to attempt to pull the wool over
the regulators’ eyes.’ I think this is very unlikely, and if it were that
easy, we probably need a different set of regulators! Nonetheless,
the 2010 FDA Bayesian Guideline is clear: ‘. . . Bayesian methods
are usually less controversial when the prior information is based
on empirical evidence such as data from clinical trials. However,
Bayesian methods can be controversial when the prior infor-
mation is based mainly on personal opinion (often derived by
elicitation from "experts")’ [18]. The strength of the regulatory
message has been clearly received by researchers, even subjec-
tive Bayesians: ‘To present a Bayesian analysis in which the com-
pany’s own prior beliefs are used to augment the trial data will, in
general, not be acceptable to an external agency’ (O’Hagan and
Stevens [81]). Even if it is accepted that sponsors in general have
no ‘unscrupulous’ hidden agendas in the use of Bayesian methods
nonetheless, as already noted, Bayesian statisticians need to cali-
brate their methods, and I cannot imagine that a method which
it can be shown unduly inflates the false positive rates would
be acceptable.

Secondly, I agree with Professor Stephen Senn that ‘There can
be few areas where the discipline of statistics is conducted with
greater discipline’ [82] than in the pharmaceutical industry. Part
of this pharmaceutical discipline is documentation, a fundamen-
tal creed of pharmaceutical statistics, and it will be no different

with Bayesian methods. The prior distributions will need to be
specified in the protocol, as will utility functions if required. They
will need to be justified. They will not be able to be changed.
In my mind, it is unlikely that undocumented, subjective prior
distributions will be allowed.

Here are two examples of the use of historical information as
priors in clinical trials, one theoretical and one real.

4.1. Example 1 (Cont.): T D t D 1, D ıCD 0,   t D    .

This example had no interims and supposing that we fixed the
Bayesian decision rule at ˛=2 which would correspond, using an
uninformative prior, to a one-sided test of significance at the ˛=2
level, then from (4), the probability of a positive trial under the
null hypothesis is

1 � ˆ̂̂
�
�Z˛=2

p
1C f � Z0

p
f
�

(6)

where Z0 is the prior standardised effect size. For a given f and
Z0, (6) can be used to calculate the effective type I error. We
noted before that if Z0 is small and f is large, the nominal level  
could be relaxed and still control the type I error at the required
level. This was a consequence in such cases of the prior distri-
bution providing a significant penalty towards the null. One way
of seeing this is to ask, for a given value of f , what value of Z0

when substituted in (6) returns a value of ˛=2. This value for
the prior standardised effect size provides a break-even point,
if the sponsor’s chosen standardised prior distribution is smaller
than the break-even, the resulting test is conservative. In con-
trast, if the sponsor’s chosen standardised prior is larger than
the break-even, the resulting test is anti-conservative. Table I
illustrates the size of these break-even points for prior distribu-
tions with information-content up to 25% of the trial itself and
for nominal one-sided type I error rates of 0.005, 0.025, 0.050
and 0.100.

4.2. Example 4: A Bayesian Adaptive Dose-Ranging
Clinical Trial.

Some of the details of this example have been changed to
preserve client confidentiality, but the essential features have
been retained. This study was run as a multi-centre, randomised,
Bayesian, adaptive design to evaluate the efficacy, safety and tol-
erability of doses of a new drug in a post-operative condition. The
primary efficacy objective of the study was to identify the low-
est dose of the drug that exceeded an increase in mean response
of 0.8 units compared with control. The primary efficacy objec-
tive of the study was to identify the lowest dose of the drug that
exceeded an increase in mean response of 0.8 units compared
to control. A dose of the drug was to be declared successful if

Table I. Standardised prior mean break-even points for a
range of prior sample size fraction (f ) and type I error .˛=2/.

Prior sample size fraction (f ).

0.01 0.05 0.1 0.15 0.2 0.25
Type I 0.005 0.128 0.284 0.398 0.481 0.55 0.608
error 0.025 0.098 0.216 0.303 0.366 0.418 0.463
.˛=2/ 0.05 0.082 0.182 0.254 0.307 0.351 0.388

0.1 0.064 0.142 0.198 0.24 0.274 0.3031
0

0
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the posterior probability that the mean response of that dose
compared to control was greater than 0.8 units was greater than
30%.. The cut-off of 30% was chosen to control the type I error
of the complete null scenario, that is, when the mean response
in all dose arms was the same as the control arm, at 5%. Based
on approximately 3600 control-treated patients, a prior distribu-
tion for the mean response in the control arm was developed with
a discounting of the information down to 40 patients. The study
was designed to have a maximum of 200 completing patients
with an interim analysis after 20 patients per treatment arm to
allow the study to terminate for futility or to allocate the remain-
ing patients to one of three doses depending on pre-specified
decision criteria.

A series of simulation scenarios were run to assess the type I
error and the power not only for the planned adaptive design but
also for a fixed design.

Figure 3 displays two of the scenarios. Scenario A is the com-
plete null scenario in which the mean responses in the control and
treatment arms were all the same as the historical control mean (a
value of 2 units). Scenario B is also a null scenario in the sense that
none of the treatment arms have a mean response exceeding an
increase of 0.8 units. In the case of Scenario A, the empirical type
I error of the adaptive design was 4.7%, confirming the choice of
30% for the posterior probability cut-off to control the type I error.
In contrast, the empirical type I error for Scenario B was > 95%.
Why? The expected posterior mean of the mean response in the
control arm is 2.2 units, and therefore, both of the highest doses
are likely to meet the effectiveness criterion of 0.8 units. This arises
because the low prior control mean reduces the posterior control
mean, and therefore overestimates the dose effect.

The issues raised in this section are of increasing interest in a
drug development context. Neuenschwander [83] have argued
that historic control information is always important and relevant
in the prospective design of clinical trials but also has a role to play
in the analysis of the trials, and their approach has been applied to
develop a prior for a proof-of-concept trial in chronic obstructive
pulmonary disease [84]. Viele et al. [85] review methods for the
borrowing of historical information including methods for check-
ing prior/data compatibility. More recently, Albers and Lee [86]
have investigated an approach to calibrating the prior distribu-
tion for a normal model with conjugate prior by adjusting the
hyper-parameters.

Figure 3. Null SimulationScenarios: a Bayesian Adaptive Dose Selection Design.

5. BAYESIAN ADAPTIVE RANDOMISATION
DESIGNS

The ASTIN trial [87], designed to determine the ED95 of NIF, a gly-
coprotein, originally derived from the canine hookworm, in the
treatment of acute stroke, entailed a change in the allocation
ratio between the 16 arms of the study using a complex Bayesian
approach involving a smoothing algorithm, a longitudinal model
to predict the long-term outcome from a series of short-term
outcomes and a predictive approach to choosing the next dose.
Such complexity is not a requirement of adaptation involving
allocation changes in a Bayesian framework. Thall and Wathen
[88] introduce a Bayesian approach with its roots in Thompson’s
original proposal [10].

Suppose we are designing a trial to compare the response
rate �A of a control with the response rate �B of an active treat-
ment. From a Bayesian perspective, the posterior distribution of
the parameters �A and �B contains all the relevant information
to make inferences about the relative efficacy of the treatments.
For example, the posterior mean of �A � �B provides a point esti-
mate of the absolute rate reduction of the active compared with
placebo; the posterior mean of �A=�B plays the same role for
the relative risk, and any other summary measure of treatment
effectiveness can be similarly treated. Corresponding to each
measure, a credible interval, so-called to differentiate it from a
confidence interval, provides a measure of our certainty, or uncer-
tainty, in the estimate. Alternatively, probabilities of direct interest
can be used to, for example, determine the posterior probabil-
ity that the active response rate is greater than that of control
P .�A < �BjX/ , and it is this latter quantity that forms the basis
of the approach suggested by Thall and Wathen [88]. Suppose,
at a given point during the course of the trial, that nA patients
have been randomised to control of whom rA respond and that
nB patients have been randomised to active of whom rB respond.
Further, if the prior distributions for the response probabilities �A

and �B are Beta (˛AˇA/ and Beta (˛BˇB/, respectively, then their
posterior distribution p.�A,�AjXXX/ is

�
rAC˛A�1
A .1 � �A/

nA�rACˇA�1 �
rBC˛B�1
B .1 � �B/

nB�rBCˇB�1

B .rA C ˛A, nA � rA C ˇA / B .rB C ˛B, nB � rB C ˇB /

The posterior probability that the response rate on active is
greater than on control given by P.�A < �bjX/ DR 1

0

R �A
0 p.�A,�BjX/d�B d�A. Using the relationship between the

incomplete beta function and the binomial distribution, this can
be written as the cumulative hypergeometric distribution

rBC˛B�1P
sDmax.rBC˛B�rA�˛A ,0/

 
rACrBC˛AC˛B�1

s

! 
nACnB�rA�rBCˇACˇB�1

nBC˛BCˇB�1�s

!
 

nACnBC˛AC˛BCˇACˇB�2
nAC˛ACˇA�1

!

(Altham [89]). In the uniform case (˛AD˛BDˇADˇBD 1/, this
probability was first described by Liebermeister [90] (see also
Seneta [91], Ineichen [92] and Seneta et al. [93]) and in Ger-
man statistical circles as an alternative to Fisher’s exact test.
Thompson [94] also considered the uniform case and showed that
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P .�A < �BjX/ can be written as

min.b�1,W�w/X
kD0

�
W

wC k

��
B

b � 1 � k

�
�

W C B
wC b � 1

�

where W D nA C 1, B D nB C 1, w D nA � rA +1 and bD nB � rB

+1. This is the probability under sampling without replacement
from a mixture of W white balls and B black balls that we will
get w white balls before b black balls. This interpretation allowed
Thompson to develop a randomisation ‘machine’ based on P�A <

�BjX . He made a box in the form of an isosceles triangle in which
he put nA C 1 white and nB C 1 black balls. The balls were then
shuffled and allowed to line up along the hypotenuse. If nA�rAC1
white balls were found before nB � rB C 1 black balls, the next
subject was allocated to treatment A, otherwise to treatment B.
Figure 4 illustrates four cases giving rise to randomisation to treat-
ments B, B, A and B, respectively. Thompson used his ‘machine’ to
simulate the conduct of his Bayesian adaptive design.

Early on in such a trial, there will be little information about
the parameters that we are interested in, a consequence is that
P .�A < �BjX/ is likely to be highly variable, and therefore, there
is a considerable risk that it will unbalance the samples in favour
of the inferior treatment. To overcome this, Thall and Whalen [88]
have proposed the following simple modification in which the
probability of randomising a patient to active, pran is

pran D
P .�A < �BjX/

C

P .�A < �BjX/
C C Œ1 � P .�A < �BjX/ �

C

where C is arbitrary.
Figure 5 shows the impact of choice of C on the randomisa-

tion probability pran. The choice C D 0 corresponds to traditional
randomisation with no change in the randomisation probability
during the course of the trial. The choice C D 1 corresponds to
the randomisation probability being P .�A < �BjX/ , which, as we
remarked, is unstable. For small values of C, there is little change
from straightforward randomisation, and therefore, it would be
sensible to start the study with a small value of C and increase it
as P .�A < �BjX/becomes more stable.

With this in mind, Thall and Wathen propose using C D n=.2N/
in which n is the current sample size and N is the trial’s max-
imum sample size. Figure 6 illustrates the difference between
using this approach and a value C D 1. Based on the design con-

Figure 4. Determination of posterior probabilities using Thompson’s machine. A)
rA=0, nA=0, rB=0, nB=0, W=1, B=1, w=1, b=1; B) rA=0, nA=1, rB=2, nB=2, W=2, B=3,
w=2, b=1; C) rA=1, nA=2, rB=1, nB=4, W=3, B=5, w=2, b=4; D) rA=2, nA=4, rB=4,
nB=7, W=5, B=8, w=3, b=4

Figure 5. Thall and Wathen transformation of posterior probabilities.

Figure 6. Randomisation probabilities (105 simulations) �A D 0.25,�B D
0.25.0.05/0.45.

sidered by Thall and Wathen, a maximum of 200 patients were
to be allocated to either control or active. 105 adaptive clinical
trials were simulated using �A D 0.25 and �B D 0.25 .0.05/ 0.45,
and the adaptive probabilities were calculated for each simulated
trial. The figure displays the mean randomisation probability to
B as a function of the patient number as a function of C and �B.
There is an apparent advantage of the choice C D 1 because
it reacts more quickly to the accumulating data than does the
choice C D n=.2N/, and the rate of reaction increases as the
response rate of the active treatment increases. For example, for
the case �B D 0. 45, the randomization probability rising rapidly
to, on average 0.80 by patient number 40 for C D 1 with the cor-
responding randomisation probability being approximately 0.55
for C D n=.2N/. On the negative side, the randomisation prob-
abilities for C D 1 are much more variable. Figure 7 shows the
standard deviations of the randomisation probabilities in the case
�A D 0.25, �B D 0.45 again based on 105 simulations. At patient
number 40, the standard deviation of the probabilities is approx-
imately 0.23 C D 1 whilst for C D n=.2N/. It is less than a
quarter of this value. The use of C D n=.2N/ is recommended
because it provides a substantial imbalance when imbalance is
appropriate, has little risk of unbalancing in the wrong direc-
tion and maintains virtually identical power and average overall1
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Figure 7. Standard deviation (SD) of randomisation probabilities (105 simulations),
�A D 0.25, �B D 0.45.

sample size compared with conventional randomisation and is
relatively stable.

Thall and Wathen [88] chose the following stopping rule:

� If P .�A < �BjX/ >0.99 stop and “choose” B
� If P .�A < �BjX/ <0.01 stop and “choose” A (futility)

We should expect that such a design is likely to have an ele-
vated type I error because the study essentially has 200 interim
analyses, one after every patient. In order to investigate the oper-
ating characteristics of the aforementioned stopping rule, we
again resort to simulation. An added complication is that the
control rate is a nuisance factor. Figure 8(A) displays the out-

come of a simulation experiment for a range of null hypotheses
�A D �B 2 .0.05 , 0.95/ based on 106 simulations and shows the
estimated type I error as a function of the control rate. The esti-
mated type error rate range from approximately 0.015 to 0.08 –
anti-conservative to conservative.

There are different possibilities for adjusting the type I errors.
The first would be to reduce the number of interims. For exam-
ple, we could consider only calculating the posterior probabilities
P .�A < �BjX/ after every 10 or 20 patients rather than after
every patient. What we investigate here is adjusting the cut-off
value 0.99 in the stopping rule. This inevitably will be a function
of the nuisance parameter, the control rate. Figure 8(B) illustrates
this relationship showing the critical value necessary to control
the type I error at 0.025 one-sided as a function of the control rate.
The maximum value of this critical value, 0.99747, occurs approx-
imately when the control rate is 50% and is relatively constant
when the control rate is in the range 0.15 to 0.8. If we fix the criti-
cal value at this maximum for all control rates and re-calculate the
type I error, we get the results shown in Figure 8(C). The figure
shows that when the control rate is again in the range 0.15 to
0.8, the type rate error is between 0.02 and 0.025. Of course, this
value is only the maximum value for the case of 200 patients; if
we use another total number of patients, this critical value needs
to be recalculated. Figure 8(D) illustrates how the maximum value
increases as a function of the maximum sample size. The slope
of the relationship is steep up to a sample size of 50 and then
reduces, but still stays positive.

Examples of the use of this type of design have been reported
by Maki et al. [95] and Giles et al. [96] and whilst they have
an intuitive appeal, their use is not without criticism. We have

Figure 8. A.) Type I error based on P�A > �BjData/ > 0.99 ( 106 Simulations / control rate) B.) Critical value to control one-sided type I error ( 106 Simulations / control rate)
C.) Type I error based on P.�A > �BjData/ > 0.99747 ( 106 Simulations / control rate) D.) Critical value versus maximum patient number ( > 106 Simulations / control rate)
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concentrated this investigation on the type I error as there is an
asymmetry in the handling of type I and type II errors in drug reg-
ulation and a design that is calibrated tends to mean a design that
controls the type I error. There are, of course, other aspects that
are of interest.

The proportion of patients who are allocated to the more effec-
tive treatment is important because these designs were intro-
duced from an ethical perspective to maximise this metric; the
overall response rate across all patients in the trial being a sec-
ond, and the overall ‘power’ of the design being a third. Korn and
Freidlin [97] investigate aspects of the Thall and Wathen design
and conclude adaptive randomisation ‘is inferior to 1:1 random-
ization in terms of acquiring information for the general clinical
community and offers modest-to-no bene?ts to the patients in
the trial, even assuming the best-case scenario of an immediate
binary outcome’. In commenting on their results, Berry [98] has
argued that that the greatest benefits of adaptive randomisation
are likely to accrue for trials with more than two arms. I agree with
this conclusion. Similar to the group sequential case in Section 3
when TD1, greater complexity gives more scope for Bayesian
designs. More recently, the original authors have revisited these
designs [99] and whilst they give some support for their use in
early phase trials, such as phase I-II dose-finding, it is not uncon-
ditional and they recommend a number of strategies to mitigate
some of the issues with their use. However, this support does not
carry over to later-phase trials, indeed their final conclusion is for
‘RCTs where treatment comparison is the primary scientific goal,
it appears that in most cases designs with fixed randomization
probabilities and group sequential decision rules are preferable
to AR scientifically, ethically, and logistically’.

6. PLANNING AND CONDUCTING
SIMULATION STUDIES

The operating characteristics of the ASTIN study, referred to pre-
viously, were determined by simulation. In planning these sim-
ulations, the statistical team identified a large number (>2000)
simulation scenarios, which were of interest. The amount of time
necessary to run these simulations would have delayed the start
of the trial. In these circumstances, it is important to consider
more efficient ways to conduct the simulations. In reality, the
majority of the individual scenarios that were considered to be of
interest could be expressed in terms of six individual factors, four
of which had two levels, and two had four levels. This factorial
structure opens the possibility of utilising experimental design to
efficiently explore the design of the simulation study.

6.1. Experimental Design in Planning
Simulation Experiments

Giovagnoli and Zagoraiou [100] consider the design of ‘virtual
experiments’, in our terminology simulation experiments and
conclude that their design needs to be ‘efficient so as to gather
information in the best possible way’. They point out that in sim-
ulation experiments, we are able to experiment on a far wider
design space than in real experiments. In particular in simulation
experiments, it is possible to arbitrarily increase the numbers of
factors and to increase the number of levels of each factor to
ensure those that are clearly of interest to investigate. Statisticians
designing such multi-factorial experiments need to remember
the basic tenet of good experimental design, which is not to
investigate one factor at a time because if we do that, we are likely

to hide interactions between factors. If we contemplate investi-
gating a large number of parameters, then, as Holford et al. [101]
remark in this situation ‘it is even more critical, than in an actual
experiment, to capitalise on ideas from the statistical sub-field of
experimental design with factorial experiments’; in particular, we
should consider the use of fractional factorial designs.

This is the approach taken in the case of ASTIN. A fractional
factorial design, a 1=4 replicate of the basic 2442 factorial exper-
iment, was used. Such a design results in the aliasing of factors
and their interactions. The design used resulted in a pattern of
aliasing such that no main effects were aliased with any 2-factor
or 3-factor interactions. Second, no 2-factor interactions were
aliased with each other. These aliasing structures are important in
practice when considering how to set up such a design we need
to be aware of the importance of individual factors. For example,
if one particular factor or the interaction of factors is of particular
importance then we can allocate the codes to the factors in such
a way to ensure that these factors and interactions are not aliased.

6.2. Analysis and Reporting of Simulation Experiments

Once we have accepted the principle that simulation investiga-
tions are experiments, we can utilise standard analytic armoury
associated with such designs to analyse and report the results.
For designs with replication standard analysis of variance is used
to analyse each metric separately. For example in ASTIN, separate
analysis of variance were carried out for bias, defined as the dif-
ference between the estimated effect compared with placebo at
the ED95 compared with the true effect; the power of the study;
the accuracy of the estimated ED95; the accuracy of the estimate
of variability; and the proportion of patients allocated to placebo.
For non-replicated designs, there is an issue that models are sat-
urated, which leaves no degrees of freedom to estimate the error
and the appropriate standard deviation � against which to test
the estimated contrasts, or effects. In such cases available, tech-
niques rely on the principle of ‘effect sparsity’, which assumes that
we can expect only a small number of contrasts to be non-zero.
Three approaches have been proposed. Daniel [102] suggested
the use of a half-normal plot of the estimated contrasts associ-
ated with the contrasts that define the fractional factorial design.
The ‘effect sparsity’ principle suggests that non-zero contrasts will
appear as outliers on the plot. The subjective nature of the inter-
pretation of such plots has been criticised, and in response to
Box and Meyer [103], developed a more formal approach based
on the determination of the posterior probability that each indi-
vidual contrast is non-zero, by modelling the individual contrasts
as a sample from a scale-contaminated normal distribution. The
prior information depends on two parameters, the probability
that an individual contrast is effective (˛/ and an inflation factor
(k) applied to the standard deviation caused by a non-zero effect.
Box and Meyer suggest values of˛ D0.2 and kD10 from an empir-
ical analysis of published examples. The posterior probabilities are
plotted as a bar graph with guidelines to aid in interpretation. A
third approach is due to Lenth [104], which first determines an
estimate of � and uses this to re-estimate � based on a trimmed
median procedure. The error estimate, called a pseudo-standard
error, uses the assumption that approximately 20% of the effects
will be active, and the rest of the effect estimates are zero-mean
jointly normal random variables. Simulation results are often
reported in aggregate form, and whilst this can answer many
questions of interest, it cannot answer them all. Grieve and Krams
[87] displayed the posterior distribution of the ED95 derived from1
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the data collected in the ASTIN trial, a distribution that is bimodal.
The outcome is consistent with a flat dose response curve and
because in such circumstances the dose-curve response curve
will consist of a series of random bumps, some of which will dis-
appear through smoothing. After the event, it was possible to
identify individual clinical trial simulations within the fractional
factorial experiment, which exhibited a similar posterior to that
seen in ASTIN. If we concentrate solely on aggregated properties,
we may miss important characteristics, which are of more than
just academic interest in the running of a clinical trial.

6.3. Proof by Simulation

Posch et al. [105] have investigated adaptive designs with treat-
ment selection at an interim and sample size re-estimation. Their
interest was in controlling the family wise error rate in a strong
sense, meaning under all possible configurations of hypotheses
Their approach was to compute the type I error rate for a tradi-
tional test-statistic for a pre-specified adaptation rule, with the
computation being based on simulation, and they were inter-
ested in understanding the limitations of such a simulation-based
approach. One of their conclusions was that researchers have to
be careful with the assumptions behind the simulations. In par-
ticular, they raise the point that the choice of seed for simulation
has an impact on the estimated type I error. Their argument is as
follows. Because Monte Carlo estimates of the type I error rate are
not exact, in the sense that they are subject to random error, the
choice of a particular seed for a random number generator can
impact on the estimate of the type I error rate estimate. A conse-
quence of which is that if researchers use a strategy of searching
for a seed that minimises the estimated type I error rate, this will
inevitably lead to an underestimation of type I error rate. As an
example, they consider a case in which the type I error rate is esti-
mated in a simulation experiment by the percentage of significant
results among 104 simulated Randomized clinical trial (RCTs). Sup-
pose the true type I error rate is 0.026, the chance of observing an
empirical type I error rate less than 0.025 is

p D
0.025N�1X

iD0

�
N
i

�
0.026i0.974N�i

so that the average run length (ARL) that is required to find a
seed giving an empirical type I error less than 0.025 is ARLD1/p.
For N D 10000 simulations p D 0.256 and ARL = 4 whilst for
N D 100000 simulations p D 0.022 and ARL = 45. This raises the
possibility that researchers could practically search for an advan-
tageous seed giving an acceptable empirical type I error. The
fallacy in this argument is in accepting that a simulation sample
size of 10000 or even 100000 is sufficiently large for the purpose.
If the purpose is to discriminate between type I error rates of
0.025 and 0.026 then these sample sizes are inadequate because
such sample sizes are sufficient only to deliver powers of 0.1 and
0.5, respectively, to discriminate between type I errors of 0.025
and 0.026. If we wish to have 80% power to detect a difference
between an empirical type I error of 0.026 and the null hypothesis
of 0.025, a simulation sample size of over 190000 is needed and
for 90% power, 260 000 is needed. These sample sizes correspond
to ARLs of 380 and 1600. Figure 9 shows the relationship between
the ARL and simulation sample size to discriminate between 0.025
and 0.026 type I errors.

Concentrating on comparisons of 2.5% and 2.6% suggests
that Posch and colleagues are aiming at having procedures that

Figure 9. Average run length to find a ‘Good Seed’ .

we previously termed perfectly-calibrated, in which case per-
haps they should have been requiring the ability to discriminate
between 2.5% and 2.51%, which would require a simulation sam-
ple size of approximately 107. These sample sizes are very large,
but can be reduced by the use of techniques such as anitithetic
variates (Hammersley and Morton [106]).

The view that control of the type I error is unprovable by sim-
ulation was re-iterated in a panel discussion on adaptive designs
at the Third Annual FDA/DIA Statistics Forum held in Washing-
ton in 2009 (Wang and Bretz [107]). The panellists agreed that
it is impossible to determine the ˛ level of a confirmatory trial
based only on the empirical type I error rate from a simulation.
The reasons for this were the following: first, to simulate any sta-
tistical procedure, a statistical model is chosen, which may not
be true in practice; second, in relying on simulations as proof,
it is assumed that amongst the configurations studied are those
that give rise to a maximal type I error rate; third, the simula-
tions are reproducible; finally for adaptive designs, the adaptation
rules need to be completely pre-specified, and this does not allow
for changes arising from the practicalities of running clinical tri-
als. The panellists were positive about the use of simulation to
evaluate the robustness of theoretical arguments concerning the
control of the type I error. A referee commented that criticality
of model choice applies even to analytical derivation of type I
error rates. The second reason may not be unique to simulations
either. As models and tests become more complicated, they may
include additional parameters whose values are not clear under a
null hypothesis.

7. DISCUSSION

In this paper, we have looked at a number of examples in which
frequentist calibration of Bayesian procedures has been under-
taken. Perhaps the most important question that needs to be
addressed is the following: should calibration of Bayesian proce-
dures be perfect? Or is being ‘well-calibrated’ sufficient? My view
has always been that it is the latter that we should be seeking.

To illustrate this last point, take as an example the ASTIN trial.
In that trial, a termination rule, based on pre-specified bounds of
posterior probability, was used to recommend stopping recruit-
ment for either futility or efficacy. The prime purpose of the trial
was to identify the ED95, and the stopping rules were based
on the mean response at the dose closest to the estimate of
the ED95. If the lower 80% credible interval for the difference to
placebo was greater than 2 points on the Scandinavian Stroke
Scale, the study would stop for efficacy. In contrast, if the upper
80% credible interval for the difference to placebo on the scale
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was less than 1 point, the decision would be to stop the study
for futility. The cut-offs of 2 points and 1 point for efficacy and
futility, respectively, were chosen after discussions with the clin-
ical members of the team, these were not statistically driven.
Having established those cut-offs, the study simulations were
conducted to assess the ‘type I’ of the procedure. For the case of
a flat dose-response curve, simulations showed that the adaptive
design would wrongly conclude a clinically worthwhile effect at
the ED95. In the event, these simulations showed that there was a
2% one-sided chance of falsely identifying a clinically worthwhile
difference, and this was deemed acceptable. What would have
been the course of action if the empirical type I error had been
above 2.5%? My preference would have been to leave the cut-offs
unaltered and to have changed the information requirement, in
this case by modulating the posterior probability associated with
the credible interval. This is consistent with the FDA’s Bayesian
guidance in which one option to better control the type I error is
to increase the probability criterion for a successful trial.

The distinction between perfectly-calibrated and well-
calibrated procedures is in a sense the distinction between a
position which says that the importance of controlling the type
I error is paramount and of greater importance than minimising
the type II error. More recently, there have been suggestions that
the Neyman–Pearson approach, which minimises the type II error
for a fixed type I error, is not the most appropriate approach in
regulated scientific enterprises [108–110]
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