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1. Introduction and overview

People have pondered divisibility questions throughout most of Western science and 
philosophy. Perhaps the earliest written mention of divisibility is in Aristotle’s Physics
in 350 BC, in the form of the Arrow paradox—one of Zeno of Elea’s paradoxes (ca. 
490–430 BC). Aristotle’s lengthy discussion of divisibility (he devotes an entire chapter 
to the topic) was motivated by the same basic question as more modern divisibility 
problems in mathematics: can the behaviour of an object—physical or mathematical—be 
subdivided into smaller parts?

For example, given a description of the evolution of a system over some time interval t, 
what can we say about its evolution over the time interval t/2? If the system is stochastic, 
this question finds a precise formulation in the divisibility problem for stochastic matrices 
[19]: given a stochastic matrix P, can we find a stochastic matrix Q such that P = Q2?

This question has many applications. For example, in information theory stochastic 
matrices model noisy communication channels, and divisibility becomes important in 
relay coding, when signals must be transmitted between two parties where direct end-to-
end communication is not available [23]. Another direct use is in the analysis of chronic 
disease progression [3], where the transition matrix is based on sparse observations of 
patients, but finer-grained time-resolution is needed. In finance, changes in companies’ 
credit ratings can be modelled using discrete time Markov chains, where rating agencies 
provide a transition matrix based on annual estimates—however, for valuation or risk 
analysis, a transition matrix for a much shorter time periods needs to be inferred [17].

We can also ask about the evolution of the system for all times up to time t, i.e. 
whether the system can be described by some continuous evolution. For stochastic matri-
ces, this has a precise formulation in the embedding problem: given a stochastic matrix P, 
can we find a generator Q of a continuous-time Markov process such that P = exp(Qt)? 
The embedding problem seems to date back further still, and was already discussed 
by Elfving in 1937 [10]. Again, this problem occurs frequently in the field of systems 
analysis, and in analysis of experimental time-series snapshots [7,22,27].

Many generalizations of these divisibility problems have been studied in the mathe-
matics and physics literature. For example, the question of square-roots of (entry-wise) 
nonnegative matrices is an old open problem in matrix analysis [24]: given an entry-wise 
nonnegative matrix M, does it have an entry-wise nonnegative square-root? In quantum 
mechanics, the analogue of a stochastic matrix is a completely-positive trace preserving 
(cptp) map, and the corresponding divisibility problem asks: when can a cptp map 
T be decomposed as T = R ◦ R, where R is itself cptp? The continuous version of 
this, whether a cptp can be embedded into a completely-positive semi-group, is some-
times called the Markovianity problem in physics [8]—the latter again has applications 
to subdivision coding of quantum channels in quantum information theory [26].

Instead of dynamics, we can also ask whether the description of the static state of 
a system can be subdivided into smaller, simpler parts. Once again, probability theory 
provides a rich source of such problems. The most basic of these is the classic topic of 
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divisible distributions: given a random variable X, can it be decomposed into X = Y +Z

where Y, Z are some other random variables? What if Y and Z are identically distributed? 
If we instead ask for a decomposition into infinitely many random variables, this becomes 
the question of whether a distribution is infinitely divisible.

In this work, we address two of the most long-standing open problems on divisibility: 
divisibility of stochastic matrices, and divisibility and decomposability of probability 
distributions. We also extend our results to divisibility of nonnegative matrices and 
completely positive maps. Surprisingly little is known about the divisibility of stochastic 
matrices. Dating back to 1962 [19], the most complete characterization remains for the 
case of a 2 × 2 stochastic matrix [14]. The infinite divisibility problem has recently been 
solved [8], but the finite case remains an open problem. Divisibility of random variables, 
on the other hand, is a widely-studied topic. Yet, despite first results dating back as far as 
1934 [5], no general method of answering whether a random variable can be written as the 
sum of two or more random variables—whether distributed identically, or differently—is 
known.

We focus on the computational complexity of these divisibility problems. In each case, 
we show which of the divisibility problems have efficient solutions—for these, we give 
an explicit efficient algorithm. For all other cases, we prove reductions to the famous 
P = NP-conjecture, showing that those problems are NP-hard. This essentially implies 
that—unless P = NP—the geometry of the corresponding divisible and non-divisible is 
highly complex, and these sets have no simple characterization beyond explicit enumer-
ation. In particular, this shows that any future concrete classification of these NP-hard 
problems will be at least as hard as answering P = NP.

The following theorems summarize our main results on maps. Precise formulations 
and proofs can be found in section 2.

Theorem 1. Given a stochastic matrix P, deciding whether there exists a stochastic ma-
trix Q such that P = Q2 is NP-complete.

Theorem 2. Given a cptp map B, deciding whether there exists a cptp map A such 
that B = A ◦ A is NP-complete.

In fact, the last two theorems are strengthenings of the following result.

Theorem 3. Given a nonnegative matrix M, deciding whether there exists a nonnegative 
matrix N such that M = N2 is NP-complete.

The following theorems summarize our main results on distributions. Precise formu-
lations and proofs can be found in section 3.

Theorem 4. Let X be a finite discrete random variable. Deciding whether X is 
n-divisible—i.e. whether there exists a random variable Y such that X =

∑n
i=1 Y —

is in P.
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Theorem 5. Let X be a finite discrete random variable, and ε > 0. Deciding whether 
there exists a random variable Y ε-close to X such that Y is n-divisible, or that there 
exists such a Y that is nondivisible, is contained in P.

Theorem 6. Let X be a finite discrete random variable. Deciding whether X is 
decomposable—i.e. whether there exist random variables Y, Z such that X = Y + Z—is 
NP-complete.

Theorem 7. Let X be a finite discrete random variable, and ε > 0. Deciding whether 
there exists a random variable Y ε-close to X such that Y is decomposable, or that there 
exists such an ε-close Y that is indecomposable, is NP-complete.

It is interesting to contrast the results on maps and distributions. In the case of 
maps, the homogeneous 2-divisibility problems are already NP-hard, whereas finding an 
inhomogeneous decomposition is straightforward. For distributions, on the other hand, 
the homogeneous divisibility problems are efficiently solvable to all orders, but becomes
NP-hard if we relax it to the inhomogeneous decomposability problem.

This difference is even more pronounced for infinite divisibility. The infinite divisi-
bility problem for maps is NP-hard (shown in [8]), whereas the infinite divisibility and 
decomposability problems for distributions are computationally trivial, since indivisible 
and indecomposable distributions are both dense—see section 3.5.8 and 3.4.5.

The paper is divided into two parts. We first address stochastic matrix and cptp di-
visibility in section 2, obtaining results on entry-wise positive matrix roots along the way. 
Divisibility and decomposability of probability distributions is addressed in section 3. In 
both sections, we first give an overview of the history of the problem, stating previous re-
sults and giving precise definitions of the problems. We introduce the necessary notation 
at the beginning of each section, so that each section is largely self-contained.

2. CPTP and stochastic matrix divisibility

2.1. Introduction

Mathematically, subdividing Markov chains is known as the finite divisibility problem. 
The simplest case is the question of finding a stochastic root of the transition matrix (or 
a cptp root of a cptp map in the quantum setting), which corresponds to asking for 
the evolution over half of the time interval. While the question of divisibility is rather 
simple to state mathematically, it is not clear a priori whether a stochastic matrix root 
for a given stochastic matrix exists at all. Historically, this has been a long-standing 
open question, dating back to at least 1962 [19]. Matrix roots were also suggested early 
on in other fields, such as economics and general trade theory, at least as far back as 
1967 [31], to model businesses and the flow of goods. Despite this long history, very 
little is known about the existence of stochastic roots of stochastic matrices. The most 
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complete result to date is a full characterization of 2 × 2 matrices, as given for example 

in [14]. The authors mention that “. . . it is quite possible that we have to deal with the 

stochastic root problem on a case-by-case basis.” This already suggests that there might 
not be a simple mathematical characterization of divisible stochastic matrices—meaning 

one that is simpler than enumerating the exponentially many roots and checking each 

one for stochasticity.
There are similarly few results if we relax the conditions on the matrix normaliza-

tion slightly, and ask for (entry-wise) nonnegative roots of (entry-wise) nonnegative 

matrices—for a precise formulation, see Definition 10 and 11. An extensive overview can 

be found in [24]. Following this long history of classical results, quantum channel divisi-
bility recently gained attention in the quantum information literature. The foundations 
were laid in [33], where the authors first introduced the notion of channel divisibility. 
A divisible quantum channel is a cptp map that can be written as a nontrivial concate-
nation of two or more quantum channels.

A related question is to ask for the evolution under infinitesimal time steps, which 

is equivalent to the existence of a logarithm of a stochastic matrix (or cptp map) that 
generates a stochastic (resp. cptp) semi-group. Classically, the question is known as 
Elfving’s problem or the embedding problem, and it seems to date back even further 
than the finite case, to 1937 [10]. In the language of Markov chains, this corresponds 
to determining whether a given stochastic matrix can be embedded into an underlying 

continuous time Markov chain. Analogously, infinite quantum channel divisibility—also 

known as the Markovianity condition for a cptp map—asks whether the dynamics of 
the quantum system can be described by a Lindblad master equation [21,12]. The infinite 

divisibility problems in both the classical and quantum case were recently shown to be
NP-hard [8]. Formulated as weak membership problems, these results imply that it is
NP-hard to extract dynamics from experimental data [7].

However, while related, it is not at all clear that there exists a reduction of the finite 

divisibility question to the case of infinite divisibility. In fact, mathematically, the infinite 

divisibility case is a special case of finite divisibility, as a stochastic matrix is infinitely 

divisible if and only if it admits an nth root for all n ∈ N [19].
The finite divisibility problem for stochastic matrices is still an open question, as 

are the nonnegative matrix and cptp map divisibility problems. We will show that the 

question of existence of stochastic roots of a stochastic matrix is NP-hard. We also extend 

this result to (doubly) stochastic matrices, nonnegative matrices, and cptp maps.
We start out by introducing the machinery we will use to prove Theorem 1 and 3

in section 2.2. A reduction from the quantum to the classical case can be found in 

section 2.4, from the nonnegative to the stochastic case in section 2.5 and the main 

result—in a mathematically rigorous formulation—is then presented as Theorem 20 in 

section 2.6.
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2.2. Preliminaries

2.2.1. Roots of matrices
In our study of matrix roots we restrict ourselves to the case of square roots. The more 

general case of pth roots of matrices remains to be discussed. We will refer to square roots 
simply as roots. To be explicit, we state the following definition.

Definition 8. Let M ∈ Kd×d, d ∈ N, K some field. Then we say that R ∈ Kd×d is a root 
of M if R2 = M. We denote the set of all roots of M with 

√
M.

Following the theory of matrix functions—see for example [15]—we remark that in 
the case of nonsingular M, 

√
M is nonempty and can be expressed in Jordan normal 

form via 
√

M = ZJZ−1 for some invertible Z, where J = diag(J±
1 , . . . , J±

m). Here J±
i

denotes the ±-branch of the root function f(x) =
√
x of the Jordan block corresponding 

to the ith eigenvalue λi,

J±
i =

⎛
⎜⎜⎜⎜⎝
±f(λi) ±f ′(λi)/1! . . . ±f (mi−1)(λi)/(mi − 1)!

0 ±f(λi)
. . .

...
...

. . . . . . ±f ′(λi)/1!
0 . . . 0 ±f(λi)

⎞
⎟⎟⎟⎟⎠ .

If M is diagonalizable, J simply reduces to the canonical diagonal form J =
diag(±

√
λ1, . . . , ±

√
λm).

If M is derogatory—i.e. there exist multiple Jordan blocks sharing the same eigen-
value λ—it has continuous families of so-called nonprimary roots 

√
M = ZUJU−1Z−1, 

where U is an arbitrary nonsingular matrix that commutes with the Jordan normal form 
[U, J] = 0.

We cite the following result from [16, Th. 2.6].

Theorem 9 (Classification of roots). Let M ∈ Kd×d have the Jordan canonical form 
ZΛZ−1, where Λ = diag(J0, J1), such that J0 collects all Jordan blocks corresponding 
to the eigenvalue 0, and J1 collects the remaining ones. Assume further that

di := dim(kerMi) − dim(kerMi−1)

has the property that for all i ∈ N≥0, no more than one element of the sequence satisfies 
di ∈ (2i, 2(i + 1)). Then 

√
M = Z

√
ΛZ−1, where 

√
Λ = diag(

√
J0, 

√
J1).

For a given matrix, the classification gives the set of all roots. If M is a real matrix, 
a similar theorem holds and there exist various numerical algorithms for calculating real 
square roots, see for example [15].
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2.2.2. Roots of stochastic matrices
Remember the following two definitions.

Definition 10. A matrix M ∈ Kd×d is said to be nonnegative if 0 ≤ Mij ∀i, j = 0, . . . , d.

Definition 11. A matrix Q ∈ Kd×d is said to be stochastic if it is nonnegative and ∑d
k=1 Qik = 1 ∀i = 0, . . . , d.

In contrast to finding a general root of a matrix, very little is known about the ex-
istence of nonnegative roots of nonnegative matrices—or stochastic roots of stochastic 
matrices—if d ≥ 3. For stochastic matrices and in the case d = 2, a complete character-
ization can be given explicitly, and for d ≥ 3, all real stochastic roots that are functions 
of the original matrix are known, as demonstrated in [14]. Further special classes of ma-
trices for which a definite answer exists can be found in [16]. But even for d = 3, the 
general case is still an open question—see [20, ch. 2.3] for details.

Indeed, a stochastic matrix may have no stochastic root, a primary or nonprimary 
root—or both. To make things worse, if a matrix has a pth stochastic root, it might or 
might not have a qth stochastic root if p � q—p is not a divisor of q—, q > p or q � p, 
q < p.

A related open problem is the inverse eigenspectrum problem, as described in the 
extensive overview in [9]. While the sets Ωn ⊂ D—denoting all the possible valid eigen-
values of an n-dimensional stochastic matrix—can be given explicitly, and hence also 
Ωp

n, almost nothing is known about the sets of valid eigenspectra. Any progress in this 
area might yield necessary conditions for the existence of stochastic roots.

In recent years, some approaches have been developed to approximate stochastic roots 
numerically, see the comments in [14, sec. 4]. Unfortunately, most algorithms are highly 
unstable and do not necessarily converge to a stochastic root. A direct method using 
nonlinear optimization techniques is difficult and depends heavily on the algorithm em-
ployed [20].

It remains an open question whether there exists an efficient algorithm that decides 
whether a stochastic matrix Q has a stochastic root.

In this paper, we will prove that this question is NP-hard to answer.

2.2.3. The Choi isomorphism
For the results on cptp maps, we will need the following basic definition and results.

Definition 12. Let A : H −→ H be a linear map on H = Cd×d. We say that A is positive 
if for all Hermitian and positive definite ρ ∈ H, Aρ is Hermitian and positive definite. 
It is said to be completely positive if A ⊗ 1n is positive ∀n ∈ N.

A map A which is completely positive and trace-preserving—i.e. tr(Aρ) = tr ρ

∀ρ ∈ H—is called a completely positive trace-preserving map, or short cptp map.
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In contrast to positivity, complete positivity is easily characterized using the well-
known Choi–Jamiolkowski isomorphism—cf. [4, Th. 2].

Remark 13. Let the notation be as in Definition 12 and pick a basis e1, . . . , ed of Cd. 
Then A is completely positive if and only if the Choi matrix

CA := (1d ⊗ A)ΩΩT =
d∑

i,j=1
eie

T
j ⊗ A(eieT

j )

is positive semidefinite, where Ω :=
∑d

i=1 ei ⊗ ei.

The condition of trace-preservation then translates to the following.

Remark 14. A map A is trace-preserving if and only if tr2(CA) = 1d, where tr2 denotes 
the partial trace over the second pair of indices.

2.3. Equivalence of computational questions

In the following we denote with S some arbitrary finite index set, not necessarily the 
same for all problems. We begin by defining the following decision problems.

Definition 15 (cptp Divisibility).

Instance. cptp map B ∈ Qd×d.
Question. Does there exist a cptp map A : A2 = B?

Definition 16 (cptp Root).

Instance. Family of matrices (As)s∈S that comprises all the roots of a matrix B.
Question. Does there exist an s ∈ S : As is a cptp map?

Definition 17 (Stochastic Divisibility).

Instance. Stochastic matrix P ∈ Qd×d.
Question. Does there exist a stochastic matrix Q : Q2 = P?

Definition 18 (Stochastic Root).

Instance. Family of matrices (Qs)s∈S comprising all the roots of a matrix P.
Question. Does there exist an s ∈ S : Qs stochastic?
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Definition 19 (Nonnegative Root).

Instance. Family of matrices (Ms)s∈S comprising all the roots of a matrix N, where 
all Ms have at least one positive entry.

Question. Does there exist an s ∈ S : Ms nonnegative?

Theorem 20. The reductions as shown in Fig. 1 hold.

Proof. The implication Stochastic Divisibility←−Stochastic Root needs one in-
termediate step. If P is not stochastic, the answer is negative. If it is stochastic, we 
can apply Stochastic Divisibility. The opposite direction holds for non-derogatory 
stochastic P: in this case we can enumerate all roots of P as a finite family which forms 
a valid instance for Stochastic Root.

The reduction Stochastic Root←−Nonnegative Root can be resolved by 
Lemma 25 and Lemma 26—we construct a family of matrices (Qs)s∈S that contains 
a stochastic root iff (Ms)s∈S contains a nonnegative root. The result then follows 
from applying Stochastic Root. If our stochastic matrix P is irreducible, then 
any nonnegative root Qs′ : Q2

s′ = P is stochastic, and in that case Stochastic 
Root←→Nonnegative Root—see [16, sec. 3] for details.

The link cptp Divisibility←−cptp Root again needs the following intermediate 
step. If A is not cptp, the answer is negative. If it is cptp, then we can apply cptp 
Divisibility. Similarly, if A is non-derogatory, the reduction works in the opposite 
direction as well.

The direction cptp Root←−Stochastic Root follows from Corollary 24. We start 
out with a family (Qs)s∈S comprising all the roots of a stochastic matrix P. Then let 
(As := emb Qs)s∈S—this family then comprises all of the roots of B := A2

k ≡ A2
s

∀k, s. Furthermore, by Lemma 23, there exists a cptp As if and only if there exists a 
stochastic Qs, and the reduction follows.

Finally, we can extend our reduction to the programs Doubly Stochastic Root

and Doubly Stochastic Divisibility as well as Nonnegative Divisibility, de-
fined analogously, see our comment in Corollary 27 and the complete reduction tree in 
Fig. 1. �

At this point, we observe the following fact.

Lemma 21. All the above Divisibility and Root problems in Definition 15 to 19 are 
contained in NP.

Proof. It is straightforward to come up with a witness and a verifier circuit that satisfies 
the definition of the decision class NP. For example in the cptp case, a witness is a matrix 
root that can be checked to be a cptp map using Remark 13 and squared in polynomial 
time, which is the verifier circuit. Both circuit and witness are clearly poly-sized and 
hence the claim follows. �
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Fig. 1. Complete chain of reduction for our programs. The dashed line between the Divisibility and Root

problems hold for non-derogatory matrices, respectively. The dotted line between Stochastic Root and
Nonnegative Root holds only for irreducible matrices. The doubly stochastic and nonnegative branch are 
included for completeness but not described in detail here—see Corollary 27.

By encoding an instance of 1-in-3sat into a family of nonnegative matrices (Ms)s∈S, 
we show the implication 1-in-3sat−→Nonnegative Root and 1-in-3sat−→(Doubly) 
Stochastic/cptp Divisibility, accordingly, from which NP-hardness of (Doubly) 
Stochastic/cptp Divisibility follows. The entire chain of reduction can be seen in 
Fig. 1.

2.4. Reduction of Stochastic Root to CPTP Root

This reduction is based on the following embedding.

Definition 22. Let {ei} be an orthonormal basis of Kd. The embedding emb is defined as

emb : Kd×d ↪−→ Kd2×d2
,

A 
−→ B :=
d∑

i,j=1
Aij(ei ⊗ ei)(ej ⊗ ej)T =

d∑
i,j=1

Aij(eieT
j ) ⊗ (eieT

j ) .

We observe the following.

Lemma 23. We use the same notation as in Remark 13. Let A ∈ Kd×d and B := emb A. 
Then A is positive (nonnegative) if and only if the Choi matrix CB is positive (semi-)
definite. Furthermore, the row sums of A are 1—i.e. 

∑d
j=1 Aij = 1 ∀j = 1, . . . , d—if 

and only if tr2(CB) = 1d. In addition, the spectrum of B satisfies σ(B) ⊆ σ(A) ∪ {0}.

Proof. The first claim follows directly from the matrix representation of our operators. 
There, the Choi isomorphism is manifest as the reshuffling operation or partial transpose

·Γ : Kd2×d2 −→ Kd2×d2
,
[
(eieT

j ) ⊗ (eieT
j )
]Γ 
−→ (eieT

i ) ⊗ (ejeT
j ) .

For more details, see e.g. [2].
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The second statement follows from

tr2(CB) = tr2

⎛
⎝ d∑

i,j=1
Aij(eieT

j ) ⊗ (eieT
j )

⎞
⎠

=
d∑

i,j=1
Aijeie

T
i = diag

⎛
⎝ d∑

j=1
A1j , . . . ,

d∑
j=1

Adj

⎞
⎠ .

The final claim is trivial. �
This remark immediately yields the following consequence.

Corollary 24. For a family of stochastic matrices (Qs)s∈S parametrized by the index 
set S, there exists a family of square matrices (As)s∈S := (emb Qs)s∈S, such that 
(Qs)s∈S contains a stochastic matrix if and only if (As)s∈S contains a cptp matrix.

2.5. Reduction of Nonnegative Root to Stochastic Root

The difference between Nonnegative Root and Stochastic Root is the extra 
normalization condition in the latter, see Definition 11. The following two lemmas show 
that this normalization does not pose an issue, so we can efficiently reduce the problem
Nonnegative Root to Stochastic Root.

Lemma 25. For a family of square matrices (Ms)s∈S parametrized by the index set S, all 
of which with at least one positive entry, there exists a family of square matrices (Qs)s∈S
such that (Ms)s∈S contains a nonnegative matrix if and only if (Qs)s∈S contains a 
stochastic matrix and such that rankQs = rankMs + 2 ∀s ∈ S. Furthermore, (Qs)s∈S
can be constructed efficiently from (Ms)s∈S.

Proof. We explicitly construct our family (Qs)s∈S as follows. Pick an s ∈ S and denote 
M := Ms. Let d be the dimension of M. We first pick a ∈ R+ such that a maxij Mij =
1/21 and define

Qs := 1
1764d

⎛
⎝1764aM + 637 735 − 1260aM 392 − 504aM

735 − 1260aM 900aM + 1029 360aM
392 − 504aM 360aM 144aM + 1372

⎞
⎠

≡ a

d
AAT ⊗ M + 1

d

(
BBT + CCT)⊗ 1 ,

where by sum of matrix M and scalar x we mean M + x1, 1 := (1)1≤i,j≤d ∈ Rd×d, and

1 The exact bound is a maxij Mij ≤ 43/81.
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A :=
(

1,−5
7 ,−

2
7

)T

, B :=
(

1
6 ,

1
2 ,−

2
3

)T

, C := − 1√
3

(1, 1, 1)T .

Observe that {A, B, C} form an orthogonal set—if one wishes, normalizing and pulling 
out the constant as eigenvalue to the corresponding eigenprojectors would work equally 
well.

By construction, Qs is nonnegative if and only if Ms is. Since the row sums of Qs are 
always 1, Qs is stochastic if and only if Ms is nonnegative, and the claim follows. �
Lemma 26. Let the notation be as in Lemma 25 and write 

√
N for the set of roots of N, 

see Definition 8. Assume (Ms)s∈S =
√

N for some N ∈ Cd×d. Then there exists a 
P ∈ Cd×d, such that Q2

s = P ∀s ∈ S and (Qs)s∈S ⊂
√

P. Furthermore, the complement 
of (Qs)s∈S in 

√
P does not contain any stochastic roots.

Proof. The first statement is obvious, since for all s ∈ S,

Q2
s = a2

d2
78
49AAT ⊗ M2

s + 1
d

(
13
18BBT + CCT

)
⊗ 1 =: P ,

and hence clearly (Qs)s∈S ⊂
√

P.
The last statement is not quite as straightforward—it is the main reason our carefully 

crafted matrix Qs has its slightly unusual shape. All possible roots of P are of the form

√
P = a

d
AAT ⊗

√
N ± 1

d

(
BBT ± CCT)⊗ 1 .

It is easy to check that none of the other sign choices yields any stochastic matrix, so 
the claim follows.2 �

Corollary 27. The results of Lemma 25 and 26 also hold for doubly stochastic matrices—
observe that our construction of Qs is already doubly stochastic.

2.6. Reduction of 1-in-3sat to Nonnegative Root

We now embed an instance of a boolean satisfiability problem, 1-in-3sat—see Defi-
nition 87 for details—into a family of matrices (Ms)s∈S in a way that there exists an s
such that Ms is nonnegative if and only if the instance of 1-in-3sat is satisfiable. The 
construction is inspired by [8].

We identify

true ←→ 1 , false ←→ −1 . (1)

2 The reader may try to find a simpler matrix that does the trick.



76 J. Bausch, T. Cubitt / Linear Algebra and its Applications 504 (2016) 64–107
Denote with (mi1, mi2, mi3) ∈ {±1}3 the three boolean variables occurring in the ith

boolean clause, and let mi ∈ {±1} stand for the single ith boolean variable. Then 
1-in-3sat translates to the inequalities

−3
2 ≤ mi1 + mi2 + mi3 ≤ −1

2 ∀i = 1, . . . , nc . (2)

Theorem 28. Let (nv, nc, mi, mij) be a 1-in-3sat instance. Then there exists a family of 
matrices (Ms)s∈S such that ∃s : Ms nonnegative iff the instance is satisfiable.

To prove this, we first need the following technical lemma.

Lemma 29. Let (nv, nc, mi, mij) be a 1-in-3sat instance. Then there exists a family of 
matrices (Cs)s∈S such that ∃s: the first nc on-diagonal 4 ×4 blocks of Cs are nonnegative 
iff the instance is satisfiable. In addition, we have C2

s = C2
t ∀s, t. Furthermore, (Cs)s∈S ⊂√

C2
s, and the complement contains no nonnegative root.

Proof. For every boolean variable mk, define a vector vk ∈ Rd such that their first nc

elements are defined via

(vk)i :=
{

1 mk occurs in ith clause
0 otherwise .

We will specify the dimension d later—obviously d ≥ nc, and the free entries are used to 
orthonormalize all vectors in the end. For now, we denote the orthonormalization region 
with �o. We further define the vectors c1, c2 ∈ Rd to have all 1s in the first nc entries, i.e. 
c1,2 = (1, . . . , 1, �o1,2). Let then

C′
s := c1c

T
1 ⊗

(
1 1
−1 1

)
+ 1

2c2c
T
2 ⊗

(
0 1
1 0

)
+

nv∑
k=1

pkvkv
T
k ⊗

(
0 1
−1 0

)
. (3)

The variables pk denote a specific rescaled choice of the boolean variables mi, which—in 
order to avoid degeneracy—have to be distinct, i.e. via

pi =
(

1 − 1
N

− i

Nnv

)
mi ∀i = 1, . . . , nv . (4)

The pij are defined accordingly from the mij and N ∈ N is large but fixed.
Let further

Cs :=
(

C′
s 0

0 0

)
∈ Cd×d ,

where we have used an obvious block notation to pad C′
s with zeroes, which will come 

into play later.
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Fig. 2. C′
s for various sign choices of the eigenvalues cij , i, j = 1, 2 corresponding to the eigenvectors c1,2. 

Only all positive signs and m := ∑
j mij = −1 yields a nonnegative block (third from right in top row). 

Hatching signifies complex numbers, the colour scale is the same as in Fig. 3, i.e. light green denotes negative 
numbers, dark purple nonnegative entries.

The on-diagonal 2 × 2 blocks of Cs then encode the 1-in-3sat inequalities from equa-
tion (2)—demanding nonnegativity—as the set of equations

3
2 + pi1 + pi2 + pi3 ≥ 0 and − 1

2 − pi1 − pi2 − pi3 ≥ 0 .

Note that we leave enough head space such that the rescaling in equation (4) does not 
affect any of the inequalities—see section 2.8 for details.

Observe further that the eigenvalues corresponding to each eigenprojector in the last 
term of equation (3) necessarily have opposite sign, otherwise we create complex entries. 
We will later rescale Cs by a positive factor, under which the inequalities are invariant, 
so the first claim follows.

We can always orthonormalize the vectors c1,2 and vk using the freedom left in �o, 
hence we can achieve that C2

s = C2
t ∀s, t. It is straightforward to check that no other 

sign choice for the eigenvalues of the first two terms yields nonnegative blocks—see Fig. 2
for details. From this, the last two claims follow. �
2.7. Orthonormalization and handling the unwanted inequalities

As in [8], we have unwanted inequalities—the off-diagonal blocks in the first 4nc

entries and the blocks involving the orthonormalization region �o. We first deal with 
the off-diagonal blocks in favour of enlarging the orthonormalization region, creating 
more—potentially negative—entries in there, and then fix the latter.

Off-diagonal blocks. We begin with the following lemma.

Lemma 30. Let the family (Cs)s∈S be defined as in the proof of Lemma 29, and 
(nv, nc, mi, mij) the corresponding 1-in-3sat instance. Then there exists a matrix 
E ∈ Cd×d such that the top left 4nc × 4nc block of Cs + E has at least one negative 
entry ∀s iff the instance is not satisfiable. Furthermore, imCs ⊥ imE ∀s, and Cs + E′

has negative entries ∀s, ∀E′ ∈
√

E2 \ {E}.



78 J. Bausch, T. Cubitt / Linear Algebra and its Applications 504 (2016) 64–107
Proof. Define

E1 := E1E
T
1 ⊗

⎛
⎜⎝

1 1 0 0
1 1 0 0
1 1 0 0
1 1 0 0

⎞
⎟⎠ where E1 := (1, . . . , 1, �o)T .

Then E1 has rank 1.
From this mask, we now erase the first nc on-diagonal 4 × 4-blocks, while leaving all 

other entries in the upper left 4nc × 4nc block positive. Define bi := (ei, �o) ∈ Cd for 
i = 1, . . . , nc where ei denotes the ith unit vector, and let

E := 7
2E1 −

7
2

nc∑
i=1

tibib
T
i ⊗

⎛
⎜⎝

1 1 −1 0
1 1 −1 0
0 0 0 0
0 0 0 0

⎞
⎟⎠ .

The variables ti are chosen close to 1 but distinct, e.g.

ti :=
(

1 − 1
M

− i

Mnc

)
, (5)

where M ∈ N large but fixed. Then E has rank nc + 1, and adding E to Cs trivializes 
all unwanted inequalities in the upper left 4nc × 4nc block. By picking M large enough, 
the on-diagonal inequalities are left intact.

One can check that all other possible sign choices for the roots of E create negative 
entries in parts of the upper left block where Cs is zero ∀s. Furthermore, Cs and E
have distinct nonzero eigenvalues by construction—the orthogonality condition is again 
straightforward, hence the last two claims follow. �
Orthonormalization region.

Lemma 31. Let 4n < d and δ � 1. There exists a nonnegative rank 2 matrix D ∈ Cd×d

such that the top left 4n × 4n block of D has entries Dij ∈ O(δ−2) if j � 4 and the rest 
of the matrix entries are Ω(δ−1). If D′ ∈

√
D2, either the same holds true for D′, or 

D′
ij < 0 ∀j < 4n + 1, j | 4.

Proof. Define

E2 :=
(

1
δ
, . . . ,

1
δ︸ ︷︷ ︸

n times

, 1, . . . , 1
)

∈ Cd

and let E2 := E2E
T
2 ⊗ 14, where 14 := (1)1≤i,j≤4. Let further

Δ :=
(

1
δ
, . . . ,

1
δ︸ ︷︷ ︸,−

1
δ
, . . . ,−1

δ
, a

)
∈ Cd ,
n times
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Fig. 3. One branch of an unsatisfiable instance of 1-in-3sat encoded into a matrix of total rank 19. The neg-
ative entries—two bright dots—in the upper left block in the combined matrix (d) indicate that this branch 
does not satisfy the given instance. By looking at all other blocks, one sees that none translates to a nonneg-
ative matrix. Observe that in this naïve implementation the orthonormalization region is suboptimally large.

where 0 < a < 1 is used to orthonormalize Δ and E2, which is the case if

a = − n

δ2 + d− n− 1
δ

.

By explicitly writing out the rank 2 matrix

D := E2 ± ΔΔT ⊗

⎛
⎜⎝

1 1 1 0
1 1 1 0
1 1 1 0
1 1 1 0

⎞
⎟⎠ ,

it is straightforward to check that D fulfils all the claims of the lemma—see Fig. 3 for 
an example. �
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2.8. Lifting singularities

The reader will have noted by now that even though we have orthonormalized all our 
eigenspaces, ensuring that the nonzero eigenvalues are all distinct, we have at the same 
time introduced a high-dimensional kernel in Cs, E and D. The following lemma shows 
that this does not pose an issue.

Lemma 32. Let (As)s∈S be the family of primary rational roots of some degenerate 
B ∈ Qd×d. Then there exists a non-degenerate matrix B′, such that for the family 
(A′

s)s∈S of roots of B′, we have As positive iff A′
s positive. Furthermore, the entries 

of A′
s are rational with bit complexity r(A′

s) = O(poly(r(As))).

Proof. Take a matrix A ∈ (As)s∈S. We need to distort the zero eigenvalues {λ(0)
i }

slightly away from 0. Using notation from Definition 36, a conservative estimate for the 
required smallness without affecting positivity would be

λ
(0)
i 
−→ λ

′ (0)
i : 0 < λ

′ (0)
i ≤ 1

C · d3 · maxij{|Zij |, |Z−1
ij |}

,

where we used the Jordan canonical form A = ZΛZ−1 for some invertible Z and Λ =
diag(J0, J1), such that J0 collects all Jordan blocks corresponding to the eigenvalue 0, 
and J1 collects the remaining ones. �

This will lift all remaining degeneracies and singularities, without affecting our line 
of argument above. Observe that all inequalities in our construction were bounded away 
from 0 with enough head space independent of the problem size, so positivity in the 
lemma is sufficient.

We thus constructed an embedding of 1-in-3sat into non-derogatory and non-
degenerate matrices, as desired. It is crucial to note that we do not lose anything by 
restricting the proof to the study of these matrices, as the following lemma shows.

Lemma 33. There exists a Karp reduction of the Divisibility problems when defined for
all matrices to the case of non-degenerate and non-derogatory matrices.

Proof. As shown in Lemma 21, containment in NP for this problem is easy to see, also 
in the degenerate or derogatory case. Since 1-in-3sat is NP-complete, there has to exist 
a poly-time reduction of the Divisibility problems—when defined for all matrices—
to 1-in-3sat. Now embed this 1-in-3sat-instance with our construction. This yields a 
poly-time reduction to the non-degenerate non-derogatory case. �
2.9. Complete embedding

We now finally come to the proof of Theorem 28.
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Proof of Theorem 28. Construct the family (Cs+E)s∈S using Lemma 29 and Lemma 30, 
ensuring that all orthonormalizing is done, which preliminarily fixes the dimension d. By 
Lemma 31, we now construct a mask D(δ) of dimension d + d′, where d′ > 0 is picked 
such that we can also orthonormalize all previous vectors with respect to E2 and δ.

By Lemmas 29, 30, 31 and 32, the perturbed family (M′
s)s∈S := (Cs+E +ND(δ))′s—

where N and δ ∈ Q are chosen big enough so that all unwanted inequalities are trivially 
satisfied—fulfils the claims of the theorem and the proof follows. �

We finalize the construction as follows. In Theorem 28, we have embedded a given 
1-in-3sat instance into a family of matrices (Ms)s∈S, such that the instance is satisfiable 
if and only if at least one of those matrices is nonnegative.

By rescaling the entire matrix such that maxij(Ms)ij = 1/2, we could show that this 
instance of 1-in-3sat is satisfiable if and only if the normalized matrix family (Qs)s∈S, 
which we construct explicitly, contains a stochastic matrix.

As shown in section 2.3, this can clearly be answered by Stochastic Divisibility, 
as the family (Qs)s∈S comprises all the roots of a unique matrix P. If this matrix 
is not stochastic, our instance of 1-in-3sat is trivially not satisfiable. If the matrix is
stochastic, we ask Stochastic Divisibility for an answer—a positive outcome signifies 
satisfiability, a negative one non-satisfiability.

2.10. Bit complexity of embedding

To show that our results holds for only polynomially growing bit complexity, observe 
the following proposition.

Proposition 34. The bit complexity r(Ms) of the constructed embedding of a 1-in-3sat

instance (nv, nc, mi, mij) equals O(poly(nv, nc)).

Proof. We can ignore any construction that multiplies by a constant prefactor, for exam-
ple Lemma 25 and Lemma 26. The renormalization for Lemma 25 to maxij Ms,ij = 1/2
does not affect r either.

The rescaling in equation (4) and equation (5) yields a complexity of O(log nv), and 
the same thus holds true for Lemma 29 and Lemma 30.

The only other place of concern is the orthonormalization region. Let us write ai for 
all vectors that need orthonormalization. In the nth step, we need to make up for O(n)
entries with our orthonormalization, using the same amount of precision to solve the lin-
ear equations (aT

i an = 0)1≤i<n. This has to be done with a variant of the standard Gauss
algorithm, e.g. the Bareiss algorithm—see for example [1]—which has nonexponential 
bit complexity.

Together with the lifting of our singularities, which has polynomial precision, we 
obtain r(Ms) = O(poly(nv, nc)). Completing the embedding in section 2.9 changes the 
bit complexity by at most another polynomial factor, and hence the claim follows. �
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3. Distribution divisibility

3.1. Introduction

Underlying stochastic and quantum channel divisibility, and—to some extent—a more 
fundamental topic, is the question of divisibility and decomposability of probability dis-
tributions and random variables. An illustrative example is the distribution of the sum 
of two rolls of a standard six-sided die, in contrast to the single roll of a twelve-sided 
die. Whereas in the first case the resulting random variable is obviously the sum of two 
uniformly distributed random variables on the numbers {1, . . . , 6}, there is no way to 
achieve the outcome of the twelve-sided die as any sum of nontrivial “smaller” dice—in 
fact, there is no way of dividing any uniformly distributed discrete random variable into 
the sum of non-constant random variables. In contrast, a uniform continuous distribution 
can always be decomposed3 into two different distributions.

To be more precise, a random variable X is said to be divisible if it can be written 
as X = Y +Z, where Y and Z are non-constant independent random variables that are 
identically distributed (iid). Analogously, infinite divisibility refers to the case where X
can be written as an infinite sum of such iid random variables.

If we relax the condition Y
d= Z—i.e. we allow Y and Z to have different 

distributions—we obtain the much weaker notion of decomposability. This includes using 
other sources of randomness, not necessarily uniformly distributed.

Both divisibility and decomposability have been studied extensively in various 
branches of probability theory and statistics. Early examples include Cramer’s theo-
rem [6], proven in 1936, a result stating that a Gaussian random variable can only be 
decomposed into random variables which are also normally distributed. A related result 
on χ2 distributions by Cochran [5], dating back to 1934, has important implications for 
the analysis of covariance.

An early overview over divisibility of distributions is given in [28]. Important applica-
tions of n-divisibility—the divisibility into n iid terms—is in modelling, for example of 
bug populations in entomology [18], or in financial aspects of various insurance models 
[30,29]. Both examples study the overall distribution and ask if it is compatible with an 
underlying subdivision into smaller random events. The authors also give various con-
ditions on distributions to be infinitely divisible, and list numerous infinitely divisible 
distributions.

Important examples for infinite divisibility include the Gaussian, Laplace, Gamma
and Cauchy distributions, and in general all normal distributions. It is clear that those 
distributions are also finitely divisible, and decomposable. Examples of indecomposable 
distributions are Bernoulli and discrete uniform distributions.

3 All continuous uniform distributions decompose into the sum of a discrete Bernoulli distribution and 
another continuous uniform distribution. This decomposition is never unique.
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However, there does not yet exist a straightforward way of checking whether a given 
discrete distribution is divisible or decomposable. We will show in this work that the 
question of decomposability is NP-hard, whereas divisibility is in P. In the latter case, 
we outline a computationally efficient algorithm for solving the divisibility question. We 
extend our results to weak-membership formulations (where the solution is only required 
to within an error ε in total variation distance), and argue that the continuous case is 
computationally trivial as the indecomposable distributions form a dense subset.

We start out in section 3.2 by introducing general notation and a rigorous formulation 
of divisibility and decomposability as computational problems. The foundation of all our 
distribution results is by showing equivalence to polynomial factorization, proven in 
section 3.3. This will allow us to prove our main divisibility and decomposability results 
in section 3.4 and 3.5, respectively.

3.2. Preliminaries

3.2.1. Discrete distributions
In our discussion of distribution divisibility and decomposability, we will use the stan-

dard notation and language as described in the following definition.

Definition 35. Let (Ω, F , p) be a discrete probability space, i.e. Ω is at most countably 
infinite and the probability mass function p : Ω −→ [0, 1]—or pmf, for short—fulfils ∑

x∈Ω p(x) = 1. We take the σ-algebra F to be maximal, i.e. F = 2Ω, and without loss 
of generality assume that the state space Ω = N. Denote the distribution described by p
with D. A random variable X : Ω −→ B is a measurable function from the sample space 
to some set B, where usually B = R.

For the sake of completeness, we repeat the following well-known definition of char-
acteristic functions.

Definition 36. Let D be a discrete probability distribution with pmf p, and X ∼ D. 
Then

φX(ω) := E(eiωX) =
∫
Ω

eiωxdFX(x) =
∑
x∈Ω

p(x)eiωx

defines the characteristic function of D.

It is well-known that two random variables with the same characteristic function have 
the same cumulative density function.

Definition 37. Let the notation be as in Definition 35. Then the distribution D is called 
finite if p(k) = 0 ∀k ≥ N for some N ∈ N.
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Remark 38. Let D be a discrete probability distribution with pmf p. We will—without 
loss of generality—assume that p(0) �= 0 and p(k) = 0 ∀k < 0 for the pmf p of a finite 
distribution. It is a straightforward shift of the origin that achieves this.

3.2.2. Continuous distributions

Definition 39. Let (X , A) be a measurable space, where A is the σ-algebra of X . The prob-
ability distribution of a random variable X on (X , A) is the Radon–Nikodym derivative f , 
which is a measurable function with P(X ∈ A) =

∫
A fdμ, where μ is a reference measure 

on (X , A).

Observe that this definition is more general than Definition 35, where the reference 
measure is simply the counting measure over the discrete sample space Ω. Since we 
are only interested in real-valued univariate continuous random variables, observe the 
following important remark.

Remark 40. We restrict ourselves to the case of X = R with A the Borel sets as mea-
surable subsets and the Lebesgue measure μ. In particular, we only regard distributions 
with a probability density function f—or pdf, for short—i.e. we require the cumulative 
distribution function P(x) := P(X ≤ x) ≡

∫
y≤x

f(y)dy to be absolutely continuous.

Corollary 41. The cumulative distribution function P of a continuous random vari-
able X is almost everywhere differentiable, and any piecewise continuous function f
with 

∫
R
f(x)dx = 1 defines a valid continuous distribution.

3.2.3. Divisibility and decomposability of distributions
To make the terms mentioned in the introduction rigorous, note the two following 

definitions.

Definition 42. Let X be a random variable. It is said to be n-decomposable if X =
Z1 + . . . + Zn for some n ∈ N, where Z1, . . . , Zn are independent non-constant random 
variables. X is said to be indecomposable if it is not decomposable.

Definition 43. Let X be a random variable. It is said to be n-divisible if it is 
n-decomposable as X =

∑n
i=1 Zi and Zi

d= Zj ∀i, j. X is said to be infinitely divisi-
ble if X =

∑∞
i=1 Zi, with Zi ∼ D for some nontrivial distribution D.

If we are not interested in the exact number of terms, we also simply speak of decom-
posable and divisible. We will show in section 3.5.7 that—in contrast to divisibility—the 
question of decomposability into more than two terms is not well-motivated.

Observe the following extension of Remark 38.
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Lemma 44. Let D be a discrete probability distribution with pmf p. If p obeys Remark 38, 
then we can assume that its factors do as well. In the continuous case, we can without 
loss of generality assume the same.

Proof. Obvious from positivity of convolutions in case of divisibility. For decomposabil-
ity, we can achieve this by shifting the terms symmetrically. �
3.2.4. Markov chains

To establish notation, we briefly state some well-known properties of Markov chains.

Remark 45. Take discrete iid random variables Y1, . . . , Yn ∼ D and write P(Yi = k) =
pk := p(k) for all k ∈ N, independent of i = 1, . . . , n. Define further

Xi :=
{
Y1 + . . . + Yi i > 0
0 otherwise .

Then {Xn, n ≥ 0} defines a discrete-time Markov chain, since

P(Xn+1 = kn+1|X0 = k0 ∧ . . . ∧Xn = kn) = P(Yn+1 = kn+1 − kn)

≡ pkn+1−kn
.

This last property is also called stationary independent increments, i.e. we add an iid 
random variable at each step.

Remark 46. Let the notation be as in Remark 45. The transition probabilities of the 
Markov chain are then given by

Pij :=
{
pj−i j ≥ i

0 otherwise .

In matrix form, we write the transition matrix

P :=

⎛
⎜⎜⎝
p0 p1 p2 · · ·

p0 p1 · · ·
p0 · · ·

. . .

⎞
⎟⎟⎠ .

Working with transition matrices is straightforward—if the initial distribution is given 
by π := (1, 0, . . .), then obviously (πP)i = pi. Iterating P then yields the distributions 
of X2, X3, . . ., respectively—e.g. (πP2)i = P(X2 = i) ≡ P(Y1 + Y2 = i).

We know that X2 is divisible—namely into X2 = Y1 +Y2, by construction—but what 
if we ask this question the other way round? We will show in the next section that there 
exists a relatively straightforward way to calculate if an (infinite) matrix in the shape of 
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P has a stochastic root—i.e. if D is divisible. Observe that this is not in contradiction 
with Theorem 1, as the theorem does not apply to infinite operators.

In contrast, the more general question of whether we can write a finite discrete random 
variable as a sum of nontrivial, potentially distinct random variables will be shown to 
be NP-hard.

3.3. Equivalence to polynomial factorization

Starting from our digression in section 3.2.4 and using the same notation, we begin 
with the following definition.

Definition 47. Denote with S the shift matrix Sij := δi+1,j . Then we can write

P = p01 + p1S + p2S2 + . . . =
∞∑
i=0

piSi ∈ R[0,1][S] .

Since S just acts as a symbol, we write

fD(x) :=
N∑
i=0

pix
i ∈ R where R := R≥0[x]/∼ ,

and f ∼ g :⇔ f = cg, c > 0. We call fD the characteristic polynomial of D—not to be 
confused with the characteristic polynomial of a matrix. The equivalence space R defines 
the set of all characteristic polynomials, and can be written as

R =
∞⋃
i=n

Ri where Rn := R/(xn) .

We mod out the overall scaling in order to keep the normalization condition ∑
k p(k) = 1 implicit—if we write fD, we will always assume fD(1) = 1. An alter-

native way to define these characteristic polynomials is via characteristic functions, as 
given in Definition 36.

Definition 48. fD(eiω) = φX(ω).

The reason for this definition is that it allows us to reduce operations on the transition 
matrix P or products of characteristic functions φX to algebraic operations on fD. This 
enables us to translate the divisibility problem into a polynomial factorization problem 
and use algebraic methods to answer it. Observe that the RN are normed vector spaces, 
which we will make use of later.

Definition 49. We define norms on the space of characteristic polynomials of degree 
N—RN—via ‖fD‖N,p := ‖(pi)1≤i≤N‖�p . If N is not explicitly specified, we usually 
assume N = deg fD.
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First note the following proposition.

Proposition 50. There is a 1-to-1 correspondence between finite distributions D and char-
acteristic polynomials fD, as defined in Definition 47.

Proof. Clear by Definition 48 and the uniqueness of characteristic functions. �
While this might seem obvious, it is worth clarifying, since this correspondence will 

allow us to directly translate results on polynomials to distributions.
The following lemma reduces the question of divisibility and decomposability—see 

Definition 42 and 43—to polynomial factorization.

Lemma 51. A finite discrete distribution D is n-divisible iff there exists a polynomial 
g ∈ R such that gn = fD. D is n-decomposable iff there exist polynomials g1, . . . , gn ∈ R
such that 

∏n
i=1 gi = fD.

Proof. Assume that D is n-divisible, i.e. that there exists a distribution D′ and random 
variables Z1, . . . , Zn ∼ D′ such that X =

∑n
i=1 Zi. Denote with Q the transition matrix 

of D′, as defined in Remark 46, and write q for its probability mass function. Then

P(X = j) = P

(
n∑

i=1
Zi = j

)
= (Qnπ)j ,

as before. Write gD′ for the characteristic polynomial of D′. By Definition 47, gn(S) ≡
fD(S), and hence gnD′ = fD. Observe that

1 =
∑
i

p(i) = fD(1) ≡ gnD′(1) =
(∑

i

q(i)
)n

,

and hence 
∑

i q(i) = 1 is normalized automatically.
The other direction is similar, as well as the case of decomposability, and the claim 

follows. �
3.4. Divisibility

3.4.1. Computational problems
We state an exact variant of the computational formulation of the question according 

to Definition 43—i.e. one with an allowed margin of error—as well as a weak membership 
formulation.

Definition 52 (Distribution Divisibilityn).

Instance. Finite discrete random variable X ∼ D.
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Question. Does there exist a finite discrete distribution D′ : X =
∑n

i=1 Zi for random 
variables Zi ∼ D′?

Observe that this includes the case n = 2, which we defined in Definition 43.

Definition 53 (Weak Distribution Divisibilityn,ε).

Instance. Finite discrete random variable X ∼ D with pmf pX(k).
Question. If there exists a finite discrete random variable Y with pmf pY (k), such that 

‖pX − pY ‖∞ < ε and such that
1. Y is n-divisible—return Yes

2. Y is not n-divisible—return No.

3.4.2. Exact divisibility

Theorem 54. Distribution Divisibilityn ∈ P.

Proof. By Lemma 51 it is enough to show that for a characteristic polynomial f ∈ RN , 
we can find a g ∈ R : gn = f in polynomial time. In order to achieve this, write (f)1/n
as a Taylor expansion with rest, i.e.

n
√

f(x) = p(x) + R(x) where p ∈ RN/n, R ∈ RN .

If R ≡ 0, then g = p n-divides f , and then the distribution described by f is n-divisible. 
Since the series expansion is constructive and can be done efficiently—see [25]—the claim 
follows.

If the distribution coefficients are rational numbers, another method is to completely 
factorize the polynomial—e.g. using the LLL algorithm, which is known to be easy in 
this setting—sort and recombine the linear factors, which is also in O(poly(ordf)), see 
for example [13]. Then check if all the polynomial root coefficients are positive. �

We collect some further facts before we move on.

Remark 55. Let p be the probability mass function for a finite discrete distribution D, 
and write supp p = {k : p(k) �= 0}. If max supp p − min supp p =: w, then D is ob-
viously not n-divisible for n > w/2, and furthermore not for any n that do not divide 
w, n < w/2. Indeed, D is not n-divisible if the latter condition holds for either max suppp
or min supp p.

Remark 56. Let X ∼ D be an n-divisible random variable, i.e. ∃Z1, . . . , Zn ∼ D′ :∑n
i=1 Zi = X. Then D′ is unique.

Proof. This is clear, because R[x] is a unique factorization domain. �
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3.4.3. Divisibility with variation
As an intermediate step, we need to extend Theorem 54 to allow for a margin of 

error ε, as captured by the following definition.

Definition 57 (Distribution Divisibilityn,ε).

Instance. Finite discrete random variable X ∼ D with pmf pX(k).
Question. Do there exist finite random variables Z1, . . . , Zn ∼ D′ with pmfs pZ(k), such 

that ‖ pZ ∗ . . . ∗ pZ︸ ︷︷ ︸
n times

−pX‖∞ < ε?

Lemma 58. Distribution Divisibilityn,ε is in P.

Proof. Let f(x) =
∑N

i=0 pix
i be the characteristic polynomial of a finite discrete distri-

bution, and ε > 0. By padding the distribution with 0s, we can assume without loss of 
generality that N = deg f is a multiple of n. A polynomial root—if it exists—has the 
form g(x) =

∑N
i=0 aix

i, where ai ≥ 0 ∀i. Then

g(x)n = (. . . + a3x
3 + a2x

2 + a1x + a0)n

= . . . + ((n− 1)a2
1 + nan−2

0 a2)x2 + nan−1
0 a1x + an0 .

Comparing coefficients in the divisibility condition f(x) = g(x)n, the latter translates to 
the set of inequalities

an0 ∈ (p0 − ε, p0 + ε)

nan−1
0 a1 ∈ (p1 − ε, p1 + ε)

(n− 1)a2
1 + nan−2

0 a2 ∈ (p2 − ε, p2 + ε)

...

Each term but the first one is of the form hi(a1, . . . , ai−1) + nan−i
0 ai ∈ (pi − ε, pi + ε), 

where hi ≥ 0 ∀i is monotonic. This can be rewritten as ai ∈ Uε/nan−i
0

((p −
hi(a1, . . . , ai−1))/nan−i

0 ). It is now easy to solve the system iteratively, keeping track 
of the allowed intervals Ii for the ai.

If Ii = ∅ for some i, we return No, otherwise Yes. We have thus developed an efficient 
algorithm to answer Distribution Weak Divisibilityn,ε, and the claim of Lemma 58
follows. �
Remark 59. Given a random variable X, the algorithm constructed in the proof of 
Lemma 58 allows us to calculate the closest n-divisible distribution to X in polyno-
mial time.
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Proof. Straightforward, e.g. by using binary search over ε. �
3.4.4. Weak divisibility

For the weak membership problem, we reduce Weak Distribution Divisibilityn,ε

to Distribution Divisibilityn,ε.

Theorem 60. Weak Distribution Divisibilityn,ε ∈ P.

Proof. Let D be a finite discrete distribution. If Distribution Divisibilityn,ε answers
Yes, we know that there exists an n-divisible distribution ε-close to D. In case of No, 
D itself is not n-divisible, hence we know that there exists a non-n-divisible distribution 
close to D. �
3.4.5. Continuous distributions

Let us briefly discuss the case of continuous distributions—continuous meaning a non-
discrete state space X , as specified in section 3.2.2. Although divisibility of continuous 
distributions is well-defined and widely studied, formatting the continuous case as a 
computational problem is delicate, as the continuous distribution must be specified by 
a finite amount of data for the question to be computationally meaningful. The most 
natural formulation is the continuous analogue of Definition 43 as a weak-membership 
problem. However, we can show that this problem is computationally trivial.

First observe the following intermediate result.

Lemma 61. Take f ∈ C+
c,b with supp f ⊂ A ∪ B, where A := [0, M ], B := [2M, 3M ], 

M ∈ R>0. We claim that if f is divisible, then both f |A and f |B are divisible.

Proof. Due to symmetry, it is enough to show divisibility for f |A. Assuming f is divisible, 
we can write f = r ∗ r, i.e. f(x) =

∫
R
r(x − y)r(y)dy. It is straightforward to show that 

r(x) = 0 ∀x < 0. Define

r̄(x) =
{
r(x) x ∈ A/2
0 otherwise ,

(6)

where A/2 := {a/2 : a ∈ A}. Then

(r̄ ∗ r̄)(x) =
∫
R

r̄(x− y)r̄(y)dy

=
∫
R

dy
{
r(x− y) x− y ∈ A/2
0 otherwise

·
{
r(y) y ∈ A/2
0 otherwise .

We see that (r̄∗ r̄)(x) = 0 for x /∈ A. For x ∈ A, the support of the integrand is contained 
in {y : y ∈ x −A/2 ∧y ∈ A/2} = x −A/2 ∩A/2 := Sx, and hence we can write (r̄∗ r̄)(x) =
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Fig. 4. (a) Integration domains in Proposition 62 for r̄∗r̄ (dark purple shading) and f |A (light green shading), 
respectively. (b) Example for integration domains in Proposition 85 for r̄ ∗ s̄ (dark purple shading) and f |A
(light green shading), respectively.

∫
Sx

r(x − y)r(y)dy. It hence remains to show that f |A(x) =
∫
Sx

r(x − y)r(y)dy ∀x ∈ A. 
The integrand r(x −y)r(y) = 0 ∀y < 0 ∨y > x. The difference in the integration domains 
can be seen in Fig. 4. We get two cases.

Let x ∈ A. Assume ∃y′ ∈ (M/2, M) such that r(x − y′)r(y′) > 0. Let x′ := 2y′. We 
then have r(y′)2 = r(x′ − y′)r(y′) > 0, and due to continuity f(x′) > 0, contradiction, 
because x′ ∈ (M, 2M).

Analogously fix x′∈ (M/2, M). Assume ∃y′∈ (0, x′−M/2) such that r(x′ − y′)r(y′)> 0, 
and thus r(x′ − y′) > 0, where a := x′ − y′ > M/2, 2a ∈ (M, 2M). Then r(a)2 =
r(2a − a)r(a) > 0, due to continuity f(2a) > 0, again contradiction. �
Proposition 62. Let C+

c,b denote the set of piecewise continuous nonnegative functions of 
bounded support. Then the set of nondivisible functions, I := {f : �r ∈ Cc,b : f = r ∗ r}
is dense in Cc,b.

Proof. It is enough to show the claim for functions f ∈ C+
c,b with inf supp f ≥ 0. Let 

ε > 0, and M := sup supp f . Take j ∈ Cc,b to be nondivisible with supp j ⊂ (2M, 3M), 
and define

g(x) :=

⎧⎪⎪⎨
⎪⎪⎩
f(x) x < M

εj(x)/‖j‖∞ x ∈ (2M, 3M)
0 otherwise .

By construction, ‖f − g‖∞ < ε, but g|(2M,3M) ≡ j is not divisible, hence by Lemma 61
g is not divisible, and the claim follows. �
Corollary 63. Let ε > 0. Let X be a continuous random variable with pdf pX(k). Then 
there exists a nondivisible random variable Y with pdf pY (k), such that ‖pX − pY ‖ < ε.
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Proof. Let ε > 0 small. Since Cc,b ⊂ {f integrable} =: L, we can pick fM ∈ L : supp fM ∈
(−M, M), ‖pX − fM‖ < ε/3 and ‖fM‖ = 1 + δ with |δ| ≤ ε/3. Then∥∥∥∥pX − fM

‖fM‖

∥∥∥∥ =
∥∥∥∥pX − fM

1 + δ

∥∥∥∥ ≤ ‖pX − fM‖ + ε

2‖fM‖ ≤ ε ,

and Proposition 62 finishes the claim. �
Corollary 64. Any weak membership formulation of divisibility in the continuous setting 
is trivial to answer, as for all ε > 0, there always exists a nondivisible distribution ε close 
to the one at hand. Similar considerations apply to other formulations of the continuous 
divisibility problem.

3.4.6. Infinite divisibility
Let us finally and briefly discuss the case of infinite divisibility. While interesting from 

a mathematical point of view, the question of infinite divisibility is ill-posed computa-
tionally. Trivially, discrete distributions cannot be infinitely divisible, as follows directly 
from Theorem 54. A similar argument shows that neither the ε, nor the weak variant of 
the discrete problem is a useful question to ask, as can be seen from Lemma 58 and 60.

By the same arguments as in section 3.4.5, the weak membership version is thus easy 
to answer and therefore trivially in P.

3.5. Decomposability

3.5.1. Computational problems
We define the decomposability analogue of Definition 52 and 53 as follows.

Definition 65 (Distribution Decomposability).

Instance. Finite discrete random variable X ∼ D.
Question. Do there exist finite discrete distributions D′, D′′ : X = Z1 + Z2 for random 

variables Z1 ∼ D′, Z2 ∼ D′′?

Definition 66 (Weak Distribution Decomposabilityε).

Instance. Finite discrete random variable X ∼ D with pmf pX(k).
Question. If there exists a finite discrete random variable Y with pmf pY (k), such that 

‖pX − pY ‖∞ < ε and such that
1. Y is decomposable—return Yes

2. Y is indecomposable—return No.

In this section, we will show that Distribution Decomposability is NP-hard, for 
which we will need a series of intermediate results. Requiring the support of the first 
random variable Z1 to have a certain size, i.e. | supp(pD′)| = m, yields the following 
program.
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Fig. 5. Complete chain of reduction for our discrete programs. The dashed lines are obvious and not men-
tioned explicitly.

Definition 67 (Distribution Decomposabilitym, m ≥ 2).

Instance. Finite discrete random variable X ∼ D with | supp(pD)| > m.
Question. Do there exist finite discrete distributions D′, D′′ : X = Z1 + Z2 for random 

variables Z1 ∼ D′, Z2 ∼ D′′ and such that | supp(pD′)| = m?

We then define Distribution Even Decomposability to be the case where the 
two factors have equal support.

The full reduction tree can be seen in Fig. 5.
Analogous to Lemma 21, we state the following observation.

Lemma 68. All the above Decomposability problems in Definition 65 to 66 are con-
tained in NP.

Proof. It is straightforward to construct a witness and a verifier that satisfies the defi-
nition of the decision class NP. For example in Definition 78, a witness is given by two 
tables of numbers which are easily checked to form finite discrete distributions. Convolv-
ing these lists and comparing the result to the given distribution can clearly be done 
in polynomial time. Both verification and witness are thus poly-sized, and the claim 
follows. �
3.5.2. Even decomposability

We continue by proving that Distribution Even Decomposability is NP-hard. 
We will make use of the following variant of the well-known Subset Sum problem, 
which is NP-hard—see Lemma 92 for a proof. The interested reader will find a rigorous 
digression in section A.1.

Definition 69 (Even Subset Sum).

Instance. Multiset S of reals with |S| even, l ∈ R.
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Question. Does there exist a multiset T � S with |T| = |S|/2 and such that | 
∑

t∈T t −∑
s∈S\T s| < l?

This immediately leads us to the following intermediate result.

Lemma 70. Distribution Even Decomposability is NP-hard.

Proof. Let (S, l) be an instance of Even Subset Sum. We will show that there exists a 
polynomial f ∈ R of degree 2|S| such that f is divisible into f = g ·h with deg g = deg h
iff (S, l) is a Yes instance. We will explicitly construct the polynomial f ∈ R. As a 
first step, we transform the Even Subset Sum instance (S, l), making it suited for 
embedding into f .

Let N := |S| and denote the elements in S with s1, . . . , sN . We perform a linear 
transformation on the elements si via

bi := a

(
si −

1
|S′|

∑
s∈S′

s

)
+ al

2|S′| for i = 1, . . . , N , (7)

where a ∈ R>0 is a free scaling parameter chosen later such that |bi| < δ ∈ R+
small. Let B := {b1, . . . , bN}. By Lemma 93, we see that Even Subset Sum(S, l) =
Even Subset Sum(B, al). Since further 

∑
i bi = al/2 > 0, we know that (B, al) is a

Yes instance if and only if there exist two non-empty disjoint subsets B1 ∪B2 = B such 
that both ∑

i∈B1

bi > 0 and
∑
i∈B2

bi > 0 . (8)

The next step is to construct the polynomial f and prove that it is divisible into 
two polynomial factors f = g · h if and only if (B, al) is a Yes instance. We first 
define quadratic polynomials g(bi, x) := x2 + bix + 1 for i = 1, . . . , N , and set 
fT(x) :=

∏
b∈T g(b, x) for T ⊂ B. Observe that for suitably small δ, the g(bi, x) are irre-

ducible over R[x]. With this notation, we claim that fB(x) has the required properties.
In order to prove this claim, we first show that for sufficiently small scaling parame-

ter a, a generic subset T ⊂ B with n := |T| and fT(x) =:
∑2|T|

i=1 cix
i, the coefficients ci

satisfy

c0 = 1 , (9)

sgn(c1) = sgn(Σ) , (10)

c2j > 0 for j = 1, . . . , |T| , (11)

sgn(c2j+1) ≥ sgn(Σ) for j = 1, . . . , |T| − 1 , (12)

where Σ :=
∑

t∈T t. Indeed, if then fB = g ·h, where g, h ∈ R, then g = fB1 and h = fB2

for aforementioned subsets B1, B2 � B, and conversely if (B, al) is a Yes instance, then 
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fB = fB1 · fB2—remember that R[x] is a unique factorization domain, so all polynomials 
of the shape fT necessarily decompose into quadratic factors.

By construction, c0 = 1 and c1 = nΣ, so the first two assertions follow immediately. 
To address equation (11) and (12), we further split up the even and odd coefficients into

cj =:
{
cj,0 + cj,2 + . . . + cj,j if j even
cj,1 + cj,3 + . . . + cj,j if j odd ,

(13)

where cj,k is the coefficient of xjbi1 · · · bik . We thus have cj,k = O(δk) in the limit δ → 0—
we will implicitly assume the limit in this proof and drop it for brevity. Our goal is to 
show that the scaling in δ suppresses the combinatorial factors, i.e. that cj is dominated 
by its first terms cj,0 and cj,1, respectively.

In order to achieve this, we need some more machinery. First regard g(δ, x) =
x2 + δx + 1. It is immediate that for an expansion

g(δ, x)n =:
2n∑
j=0

xj
n∑

k=0

dj,kδ
k ,

we get coefficient-wise inequalities

|cj,k| ≤ dj,k ∀j = 0, . . . , 2n, k = 0, . . . , n . (14)

We will calculate the coefficients dj,k of g(δ, x)n explicitly and use them to bound the 
coefficients cj,k of fT(x).

Using a standard Cauchy summation and the uniqueness of polynomial functions, we 
obtain

g(δ, x)n =
n∑

j=0

1
j! (1 + x2)n−jxj(n)jδj

=
n∑

j=0

δj

j! (n)jxj

n−j∑
k=0

(
n− j

k

)
x2k

≡
∞∑
j=0

∞∑
k=0

δj

j!
(n)j

(
n− j

k

)
xj+2k

=
∞∑
j=0

j∑
l=0

δl

l! (n)l
(
n− l

j − l

)
x2j−l

≡
n∑

j=0

j∑
l=0

δl

l! (n)l
(
n− l

j − l

)
x2j−l

=
n∑ 2j∑ δ2j−l

(2j − l)! (n)2j−l

(
n− 2j + l

l − j

)
xl .
j=0 l=j
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With (n)l we denote the falling factorial, i.e. (n)l = n(n − 1)(n − 2) · · · (n − l + 1). By 
convention, (n)0 = 1.

Regarding even and odd powers of x separately, we can thus deduce that

g(δ, x)n =
2n∑
j=0

xj

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

� j
2 	∑

k=0

δ2k+1

(2k + 1)!
(n)
 j

2 �+k

(� j
2� − k)!

if j odd

j
2∑

k=0

δ2k

(2k)!
(n) j

2+k

( j
2 − k)!

if j even

=
2n∑
j=0

xj

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(n)
 j
2 �

� j
2 	∑

k=0

δ2k+1

(2k + 1)!
(n− � j

2�)k
(� j

2� − k)!
if j odd

(n) j
2

j
2∑

k=0

δ2k

(2k)!
(n− j

2 )k
( j
2 − k)!

if j even .

A straightforward estimate shows that for the even and odd case, we obtain the coefficient 
scaling

g(δ, x)n =
2n∑
j=0

xj

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(n)
 j
2 �

� j
2 	∑

k=0

δ2k+1O(nk) if j odd

(n) j
2

j
2∑

k=0

δ2kO(nk) if j even ,

which means that e.g. picking δ = O(1/n2) is enough to exponentially suppress the 
higher order combinatorial factors.

We will now separately address the even and odd cases—equation (11) and (12).

Even case. As the constant coefficients cj,0 = O(1) in δ, it is the same as for g(δ, x)n and 
by equation (14), we immediately get

|cj,2 + . . . + cj,j |
cj,0

= O(δ) .

Odd case. Note that if Σ < 0, we are done, so assume Σ > 0 in the following. A simple 
combinatorial argument gives

cj,1 =
(

n− 1
(j − 1)/2

)
Σ ,

so it remains to show that cj,1 > −cj,3 − . . . − cj,j . Analogously to the even case, by 
equation (14), we conclude
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|cj,3 + . . . + cj,j |
cj,1

= O(δ) ,

which finalizes our proof. �
3.5.3. m-Support decomposability

In the next two sections we will generalize the last result to Distribution

Decomposabilitym. As a first observation, we note the following.

Lemma 71. Let f(n) be such that (f(n)β(f(n), n + 1 − f(n)))−1 = O(poly(n)). Then 
Distribution Decomposabilityf(|·|) ∈ P.

Proof. See proof of Theorem 54, and an easy scaling argument for 
(

n
f(n)

)
com-

pletes the proof. As in Remark 91, this symmetrically extends to Distribution

Decomposability|·|−f(|·|) ∈ P. �
Observe that f(n) = n/2 yields exponential growth, hence the remark is consistent 

with the findings in section 3.5.2.
We now regard the general case. As in the last section, we need variants of the Subset 

Sum problem, which are given in the following two definitions.

Definition 72 (Subset Summ, m ∈ Z).

Instance. Multiset S of reals with |S| even, l ∈ R.
Question. Does there exist a multiset T � S with |T| = m and such that | 

∑
t∈T t −∑

s∈S\T s| < l?

Definition 73 (Signed Subset Summ).

Instance. Multiset S of positive integers or reals, x, y ∈ R : x ≤ y.
Question. Does there exist a multiset T ⊂ S with |T| = m and such that x <

∑
t∈T t −∑

s∈S\T s < y?

Both are shown to be NP-hard in Lemma 90 and 94, or by the following observation. 
In order to avoid having to take absolute values in the definition of Subset Summ, we 
reduce it to multiple instances of Signed Subset Summ, by using the following interval 
partition of the entire range (−l, l).

Remark 74. For every a > 0, l > 0, there exists a partition of the interval (−l − 2a,
l + 2a) =

⋃N−1
i=0 (xi, xi+1) with suitable N ∈ N such that xi+1 − xi = 2a and

(−l, l) =
(

N−2⋃
i=1

(xi, xi+1)
)

\ ((x0, x1) ∪ (xN−1, xN )) .
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This finally leads us to the following result.

Lemma 75. Distribution Decomposabilitym is NP-hard.

Proof. We will show the reduction Distribution Decomposabilitym ←− Subset

Summ. Let m be fixed. Let (S, l) be an Subset Sum instance. For brevity, we write 
ΣS :=

∑
s∈S s. Without loss of generality, by Corollary 89, we again assume ΣS ≥ 0. 

Now define a := 2(|S|l + 2mΣS − |S|ΣS)/(2m − |S|). Using Remark 74, pick a suitable 
subdivision of the interval (−l − 2a, l + 2a), such that

Subset Summ(S, l) =
(

N−2∨
i=1

Signed Subset Summ(S, xi, xi+1)
)

∧ ¬Signed Subset Summ(S, x0, x1)

∧ ¬Signed Subset Summ(S, xN−1, xN ) .

One can verify that

Signed Subset Summ(S, xi − a, xi + a)

= Signed Subset Summ(S + c(m, i),−ΣS+c(m,i),ΣS+c(m,i))

= Subset Summ(S + c(m, i),ΣS+c(m,i)) ,

where we chose c(m, i) = xi/(2m − |S|). The latter program we can answer using the 
same argument as for the proof of Lemma 70, and the claim follows. �

As a side remark, this also confirms the following well-known fact.

Corollary 76. Let f(n) be as in Lemma 71. Then Subset Sumf(|·|) ∈ P.

3.5.4. General decomposability
We have already invented all the necessary machinery to answer the general case.

Theorem 77. Distribution Decomposability is NP-hard.

Proof. Follows immediately from Lemma 70, where we regard the special set of Subset 
Sum instances for which (S, l) is such that l =

∑
s∈S s. We show in Lemma 96 that 

Subset Sum(·, Σ·) is still NP-hard, thus the claim follows. �
3.5.5. Decomposability with variation

As a further intermediate result—and analogously to Definition 57—we need to allow 
for a margin of error ε.
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Definition 78 (Distribution Decomposabilityε).

Instance. Finite discrete random variable X ∼ D with pmf pX(k).
Question. Do there exist finite discrete random variables Z1 ∼ D′, Z2 ∼ D′′ with pmfs 

pZ1(k), pZ2(k), such that ‖pZ1 ∗ pZ2 − pX‖∞ < ε?

This definition leads us to the following result.

Lemma 79. Distribution Decomposabilityε is NP-hard.

Proof. First observe that we can restate this problem in the following equivalent form. 
Given a finite discrete distribution D with characteristic polynomial fD, do there exist 
two finite discrete distributions D′, D′′ with characteristic polynomials fD′ , fD′′ such 
that ‖fD − fD′fD′′‖d < ε? Here, we are using the maximum norm from Definition 49, 
and assume without loss of generality that deg fD = deg fD′ deg fD′′ .

As fD is a polynomial, we can regard its Viète map v : Cn −→ Cn, where n = deg fD, 
which continuously maps the polynomial roots to its coefficients. It is a well-known fact—
see [32] for a standard reference—that v induces an isomorphism of algebraic varieties 
w : An

k/Sn
∼−→An

k , where Sn is the nth symmetric group. This shows that w−1 is polyno-
mial, and hence the roots of fD′fD′′ lie in an O(ε)-ball around those of fD. By a standard 
uniqueness argument we thus know that if fD =

∏
i fi with fi = x2 + bix + 1 as in the 

proof of Lemma 70, then fD′ =
∏

i gi with gi = aix
2 +b′ix +ci, where ai = ci = 1 +O(ε), 

b′i = bi + O(ε)—we again implicitly assume the limit ε → 0.
We continue by proving the reduction Distribution Divisibilityε ←− Subset

Sum(·, Σ· + poly ε), which is NP-hard as shown in Lemma 97. Let S = {si}Ni=1 be a
Subset Sum multiset. We claim that it is satisfiable if and only if the generated charac-
teristic function fS(x)—where we used the notation of the proof of Lemma 70—defines 
a finite discrete probability distribution and the corresponding random variable X is a
Yes instance for Distribution Divisibilityε.

First assume fS is such a Yes instance. Then 
∑

s∈S s ≥ 0, and there exist two char-
acteristic polynomials g =

∏
i gi and h =

∏
i hi as above and such that ‖fS − gh‖d < ε. 

We also know that if gi = aix
2 + bix + ci, then ∃T � S such that {bi}i ∈ Bε(T) ⊆ R|T|, 

where T � S and Bε(T) denotes an ε ball around the set T, and analogously for 
hi = a′ix

2 + b′ix + c′i, with {b′i}i ∈ Bε(S \ T) ⊆ R|S|−|T|. Regarding the linear coeffi-
cients, we thus have

∣∣∣∣∣∣
∑
s∈S

s−
∑
t∈T

t−
∑

s∈S\T
s

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
s∈S

s−
|T|∑
i=1

bi −
|S\T|∑
i=1

b′i + O(ε)

∣∣∣∣∣∣
≤ O(ε) ≤

∑
s∈S

s + O(ε) . (15)
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Now the case if fS is a No instance. Assume there exists a nontrivial multiset T � S
satisfying ∣∣∣∣∣∣

∑
t∈T

t−
∑

s∈S\T
s

∣∣∣∣∣∣ <
∑
s∈S

s + O(ε) .

Then by construction 
∑

t∈T t, 
∑

s∈S\T s ≥ −O(ε) and fT · fS\T = fS, contradiction, and 
the claim follows. �
3.5.6. Weak decomposability

Analogously to section 3.4.4, we now regard the weak membership problem of decom-
posability.

Theorem 80. Weak Distribution Decomposabilityε is NP-hard.

Proof. In order to show the claim, we prove the reduction Weak Distribution

Decomposabilityε ←− Distribution Decomposabilityg(ε), where the function 
g = O(ε). It is clear that the polynomial factor leaves the NP-hardness of the latter 
program intact.

We use the same notation as in the proof of Lemma 79. Let fS be a Yes in-
stance of Distribution Decomposabilityε, and define S′ := {s + O(ε) : s ∈ S}. 
From equation (15) it immediately follows that fS′ is a Yes instance of Distribution

Decomposabilityg(ε), where we allow g = O(ε). We have hence shown that there exists 
an O(ε) ball around each Yes instance that solely contains Yes instances.

A similar argument holds for the No instances. It is clear that these cases can be 
answered using Weak Distribution Decomposabilityε, and the claim follows. �
3.5.7. Complete decomposability

Another interesting question to ask is for the complete decomposition of a finite distri-
bution D into a sum of indecomposable distributions. We argue that this decomposition 
is not unique.

Proposition 81. There exists a family of finite distributions (Dn)n∈N with probability 
mass functions pn(k) : max supppn(k) = 4n and such that, for each Dn, there are at 
least n! distinct decompositions into indecomposable distributions.

Proof. We explicitly construct the family (Dn)n∈N. Let n ∈ N. We will define a set of 
irreducible quadratic polynomials {pk, nk for k = 1, . . . , n} such that nk are not positive, 
but pknl are positive quartics ∀k, l—and thus define valid probability distributions. Since 
R[x] is a unique factorization domain the claim then follows.

Following the findings in the proof of Lemma 70, it is in fact enough to construct 
a set {ak, bk : 0 < |ak| < 2, −2 < bk < 0 for k = 1, . . . , n} ⊂ R2n and such that 
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Fig. 6. Construction of a family of distributions (Dn)n∈N with at least n! distinct decompositions, cf. Propo-
sition 81. Shown is Dn for n = 3. The dashed line shows a normal distribution for comparison.

ak + bl > 0 ∀k, l—then let pk := 1 + akx + x2, nk := 1 + bkx + x2. It is straightforward 
to verify that e.g.

ak := 1 + k

2n and bk := − k

2n

fulfil these properties. As an illustration, D3 and the roots of its characteristic polynomial 
are shown in Fig. 6. �
Remark 82. Observe that for bk := −k/2n2, the construction in Proposition 81 allows 
decompositions into m indecomposable terms, where m = n, . . . , 2n.

Corollary 83. R is not a unique factorization domain.

Proposition 81 and Remark 82 show that an exponential number of complete 
decompositions—all of which have different distributions—do not give any further in-
sight into the distribution of interest–indeed, as the number of positive indecomposable 
factors is not even unique. Asking for a non-maximal decomposition into indecomposable 
terms does therefore not answer more than whether the distribution is decomposable at 
all.

Indeed, the question whether one can decompose a distribution into indecomposable 
parts can be trivially answered with Yes, but if we include the condition that the fac-
tors have to be non-trivial, or for decomposability into a certain number of terms—say 
N ≥ 2 or the maximum number of terms—the problem is also obviously NP-hard by 
the previous results.

In short, by Theorem 77, we immediately obtain the following result.
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Corollary 84. Let D be a finite discrete distribution. Deciding whether one can write D
as any nontrivial sum of irreducible distributions is NP-hard.

3.5.8. Continuous distributions
Analogous to our discussion in section 3.4.5, the exact and ε variants of the decom-

posability question are computationally ill-posed. We again point out that answering 
the weak membership version is trivial, since the set of indecomposable distributions is 
dense, as the following proposition shows.

Proposition 85. Let C+
c,b denote the piecewise linear nonnegative functions of bounded 

support. Then the set of indecomposable functions, J := {f : �r, s ∈ Cc,b : f = r ∗ s} is 
dense in Cc,b.

Proof. We first extend Lemma 61, and again take f ∈ C+
c,b : supp f ⊂ A ∪ B. While not 

automatically true that r(x), s(x) = 0 ∀x < 0, we can assume this by shifting r and s
symmetrically. We also assume inf supp f = 0, and hence inf supp r = inf supp s = 0—see 
Lemma 44 for details.

Since f(x) = 0 ∀x ∈ (M, 2M), we immediately get r(x) = s(x) = 0 ∀x ∈ (M, 2M). 
Furthermore, ∃m ∈ (0, M) : r(x) = s(y) = 0 ∀x ∈ (m, M ], y ∈ (M −m, M ]. Analogously 
to equation (6), we define

r̄(x) =
{
r(x) x ∈ [0,m]
0 otherwise

and s̄(x) =
{
r(x) x ∈ [0,M −m]
0 otherwise .

(16)

The integration domain difference is derived analogously, and can be seen in an example 
in Fig. 4. We again regard the two cases separately.

Let x ∈ A. Assume ∃y′ ∈ (M −m, M) such that r(x − y′)s(y′) > 0. Then s(y′) > 0, 
contradiction. Now fix x′ ∈ (m, M), and assume ∃y′ ∈ (0, x′ −m) : r(x′ − y′)s(y′) > 0. 
Since x′ − y′ > x′ − x′ + m = m, r(x′ − y′) > 0 yields another contradiction.

The rest of the proof goes through analogously. �
Corollary 86. Let ε > 0. Let X be a continuous random variable with pmf pX(k). Then 
there exists an indecomposable random variable Y with pmf pY (k), such that ‖pX −
pY ‖ < ε.

Proof. See Corollary 63. �
4. Conclusion

In section 2, we have shown that the question of existence of a stochastic root for a 
given stochastic matrix is in general at least as hard as answering 1-in-3sat, i.e. it is
NP-hard. By Corollary 27, this NP-hardness result also extends to Nonnegative and
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Doubly Stochastic Divisibility, which proves Theorem 1. A similar reduction goes 
through for cptp Divisibility in Corollary 24, proving NP-hardness of the question of 
existence of a cptp root for a given cptp map.

In section 3, we have shown that—in contrast to cptp and stochastic matrix 
divisibility—distribution divisibility is in P, proving Theorem 4. On the other hand, if 
we relax divisibility to the more general decomposability problem, it becomes NP-hard 
as shown in Theorem 6. We have also extended these results to weak membership for-
mulations in Theorem 5 and 7—i.e. where we only require a solution to within ε in the 
appropriate metric—showing that all the complexity results are robust to perturbation.

Finally, in section 3.4.5 and 3.5.8, we point out that for continuous distributions—
where the only computationally the only meaningful formulations are the weak member-
ship problems or closely related variants—questions of divisibility and decomposability 
become computationally trivial, as the nondivisible and indecomposable distributions 
independently form dense sets.

As containment in NP for all of the NP-hard problems is easy to show (Lemma 21
and 68), these problems are also NP-complete. Thus our results imply that, apart for 
the distribution divisibility problem which is efficiently solvable, all other divisibility 
problems for maps and distributions are equivalent to the famous P = NP conjecture, in 
the following precise sense: A polynomial-time algorithm for answering any one of these 
questions—(Doubly) Stochastic, Nonnegative or cptp Divisibility, or either of 
the Decomposability variants—would prove P = NP. Conversely, solving P = NP

would imply that there exists a polynomial-time algorithm to solve all of these Divisi-

bility problems.
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Appendix A

A.1. NP-toolbox

Boolean satisfiability problems.

Definition 87 (1-in-3sat).

Instance: nv boolean variables m1, . . . , mnv
and nc clauses R(mi1, mi2, mi3) where i =

1, . . . , nc, usually denoted as a 4-tuple (nv, nc, mi, mij). The boolean operator R
satisfies
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R(a, b, c) =
{

True if exactly one of a, b or c is True

False otherwise .

Question: Does there exist a truth assignment to the boolean variables such that every 
clause contains exactly one true variable?

Subset sum problems. We start out with the following variant of a well-known
NP-complete problem—see for example [11] for a reference.

Definition 88 (Subset Sum, variant).

Instance. Multiset S of integer or rational numbers, l ∈ R.
Question. Does there exist a multiset T � S such that | 

∑
t∈T t −

∑
s∈S\T s| < l?

From the definition, we immediately observe the following rescaling property.

Corollary 89. Let a ∈ R \ {0} and (S, l) a Subset Sum instance. Then Subset

Sum(S, l) = Subset Sum(aS, |a|l).

For a special version of Subset Sum, Subset Summ—as defined in Definition 72—we 
observe the following.

Lemma 90. Subset Summ ←− Subset Sum.

Proof. If (S, l) is a Subset Sum instance, then

Subset Sum(S, l) =
|S|∨

m=1
Subset Summ(S, l) . �

Remark 91. It is clear that Subset Summ(S, l) = False for |S| ≤ m ∨ 0 ≥ m. Further-
more, Subset Summ(S, l) = Subset Sum|S|−m(S, l).

Observe that this remark indeed makes sense, as Subset Sum0 should give False, 
which is the desired outcome for m = |S|. We further reduce Subset Sum to Even 
Subset Sum, as defined in Definition 69.

Lemma 92. Even Subset Sum←−Subset Sum.

Proof. Let (S, l) be an Subset Sum instance. Define S′ := S ∪ {0, . . . , 0} : |S′| = 2|S|. 
Then if Even Subset Sum(S′, l) = True, we know that there exists T′ ⊂ S′ :
| 
∑

t∈T′ t −
∑

s∈S′\T′ s| < l. Let then T := T′ without the 0s. It is obvious that then 
| 
∑

t∈T t −
∑

s∈S\T s| < l. The False case reduces analogously, hence the claim fol-
lows. �
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For Even Subset Sum, we generalize Corollary 89 to the following scaling property.

Lemma 93. Let a ∈ R \ {0}, c ∈ R, and (S, l) an Even Subset Sum instance. Then 
Even Subset Sum(S, l) = Even Subset Sum(aS + c, |a|l), where addition and multi-
plication is defined element-wise.

Proof. Straightforward, since we require |S| = 2|T| = 2|S \ T|. �
For Definition 73, we finally show

Lemma 94. Signed Subset Summ ←− Subset Summ.

Proof. Immediate from Signed Subset Summ(S, −l, l) = Subset Summ(S, l). �
Partition problems. Another well-known NP-complete problem which will come into play 
in the proof of Theorem 77 is set partitioning.

Definition 95 (Partition).

Instance. Multiset A of positive integers or reals.
Question. Does there exist a multiset T � A with 

∑
t∈T t =

∑
s∈A\T s?

Lemma 96. For the special case of Subset Sum with instance (S, l), where the bound 
l ∈ R equals the total sum of the instance numbers l =

∑
s∈S s, we obtain the equivalence 

Subset Sum(·, Σ·) ←→ Partition(·).

Proof. Let S be the multiset of a Subset Sum instance (S, l), where we assume without 
loss of generality that all S � s ≥ 0. Now first assume ΣS = 0. In that case the claim 
follows immediately, since the problems are identical.

Without loss of generality, we can thus assume ΣS > 0 and regard the set S′ :=
S ∪ {−ΣS/2, −ΣS/2}, such that ΣS′ = 0.

If now Subset Sum(S′, 0) = True, we know that there exists T � S′ : | 
∑

t∈T t −∑
s∈S′\T s| = 0. Now assume T contains both copies of −ΣS/2. Then clearly

|
∑
t∈T

t −
∑

s∈S′\T
s| = | − ΣS +

∑
t∈T\{−ΣS}

t −
∑

s∈S\T
s| > 0 ,

since |S \ T| > 0. The same argument shows that exactly one −ΣS/2 ∈ T, S \ T, and 
hence Partition(S) = True.

On the other hand, if Partition(S) = True, then it immediately follows that 
Subset Sum(S, ΣS) = True. �

Finally observe the following extension of Lemma 96.
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Lemma 97. Let ε > 0, f a polynomial. Then Subset Sum(·, Σ·+f(ε)) ←→Partition(·).

Proof. The proof is the same as for Lemma 96, but we regard S ∪ {−ΣS/2 − f(ε)/2,
−ΣS/2 − f(ε)/2} instead. �
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