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Abstract

We exhibit models of set theory, using large cardinals and forcing, in which successor cardinals can
be made singular by some “Namba-like” further set forcing, in most cases without collapsing cardinals
below that successor cardinal. For successors of regular cardinals, we work from consistency-wise
optimal assumptions in the ground model. Successors of singular cardinals require stronger hypothe-
ses. Our partial orderings are different from Woodin’s stationary tower forcing, which requires much
stronger hypotheses when singularizing successors of regular cardinals, and collapses cardinals above
the cardinal whose cofinality is changed when singularizing successors of singular cardinals.

1 Introduction and statements of results
In Zermelo Fraenkel set theory (ZFC), cardinals κ are either regular (cof(κ)= κ) or singular (cof(κ)< κ),
where cof is Hausdorff’s cofinality function (see [10]). There are pronounced combinatorial differences
between these two classes of cardinals. For example, the value of the cardinal power 2κ at singular
κ is markedly influenced by cardinal exponentiation below κ, whereas for regular κ, 2κ can be made
arbitrarily large by the forcing method, rather independent of behavior below κ. There are a number of
classical forcing constructions in which a particular combinatorial situation is first prepared at a regular
cardinal which is then made singular by some singularization forcing, thus transferring some possibilities
of regular cardinal combinatorics to singular cardinals (see [10] for further details). These constructions
typically use regular limit cardinals κ, i.e., inaccessible cardinals, for which a variety of singularization
forcings have been defined, which preserve κ and other cardinals as cardinals when stepping into the
generic extension.

By contrast, singularizing a successor cardinal κ+ by forcing will destroy κ+ as a cardinal, since
successor cardinals are always regular in ZFC. But it is a challenge to singularize to some small value of
cofinality and preserve the cardinal κ and possibly smaller ones in the process. Namba forcing [15, 10],
also introduced by Bukovský [4], singularizes the successor cardinal ℵ2 = ℵ

+
1 without collapsing ℵ1;

for a ground model M, it yields a generic extension N ⊇ M such that ℵM
1 = ℵN

1 and cofN(ℵM
2 ) = ℵ0.

Such results provide important limitations for covering properties in the spirit of Jensen [6] between the
set theoretical universe and its constructible inner models.

We describe “Namba-style singularizability” by forcing over M in

Definition 1 Sing(µ,δ) stands for: δ< µ are cardinals, and there is a set forcing P such that the following
properties are forced by P:

a) Cardinals <µ and their cofinalities are preserved between V and V [Ġ], where Ġ is a canonical name
for a generic filter for P;
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b) cofV [Ġ](µ) = δ.

In ZFC, Namba forcing witnesses Sing(ℵ2,ℵ0). If µ is a measurable cardinal, Prikry forcing wit-
nesses Sing(µ,ℵ0). By combining Lévy collapse forcing and Prikry forcing, we can force the singulariz-
ability of successor cardinals above ℵ2.

Theorem 2 Consider a ground model V in which µ is a measurable cardinal and κ is a regular cardinal
such that ℵ1 < κ < µ. Then there is a two-stage forcing extension V ⊆M ⊆ N such that

a) V , M, and N possess the same bounded subsets of κ;

b) cardinals ≤ κ are absolute between V and N, and κ is regular in N;

c) µ = (κ+)M;

d) cofN(µ) = ℵ0.

Hence M satisfies Sing(κ+,ℵ0).

Using higher cofinality singularization forcings of Gitik [7], Theorem 2 can be generalized to un-
countable cofinalities.

Theorem 3 Consider a ground model V of GCH with ℵ1 ≤ δ < µ, where δ is a regular cardinal and µ is
a measurable cardinal of Mitchell order o(µ) = δ. Then there is a two-stage forcing extension V ⊆M⊆N
such that δ remains regular in M, µ remains measurable in M, and for κ a fixed regular cardinal in M,
δ < κ < µ, in N

a) κ and δ are regular;

b) µ = κ+;

c) Sing(κ+,δ) holds.

Theorems 2 and 3 work from optimal large cardinal assumptions by the following lower bounds on
consistency strengths.

Theorem 4 Assume Sing(κ+,δ), where δ < κ are regular cardinals and κ≥ℵ2. Then

a) if δ = ℵ0, κ+ is a measurable cardinal in some inner model;

b) if δ > ℵ0, κ+ is a measurable cardinal of Mitchell order δ in some inner model.

For singular cardinals κ, our forcings singularizing κ+ are achieved from considerably stronger large
cardinals.

Theorem 5 Let κ = supi<ω κi, where 〈κi | i < ω〉 is a strictly increasing sequence of κ+-strongly compact
cardinals. Then Sing(κ+,ℵ0) holds via a κ++-c.c. partial ordering which adds no bounded subsets of κ.

Theorem 6 Let κ be κ+-strongly compact. Then there is a forcing extension in which κ is a singular
cardinal satisfying Sing(κ+,ℵ0) via a κ++-c.c. partial ordering which adds no bounded subsets of κ.
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Using Magidor’s work from his paper [13], it is possible to transfer the results of Theorem 6 down to
ℵω and ℵω1 .

Theorem 7 Let κ be κ+-supercompact. Then there is a forcing extension satisfying Sing(ℵω+1,ℵ0) via
a partial ordering which adds no bounded subsets of ℵω and preserves cardinals ≥ℵω+2.

Theorem 8 Let κ be κ++-supercompact in a ground model satisfying 2κ+
= κ++. Then there is a forcing

extension with a partial ordering P such that forcing with P changes the cofinality of ℵω1+1 to ℵ1 while
preserving ℵω1 and all cardinals ≥ℵω1+2.

The necessity of strong assumptions for Theorems 5 – 8 follows from

Theorem 9 Suppose that it is possible to define a set partial ordering P such that for some singular
cardinal κ

a) κ remains a singular cardinal in VP;

b) (κ+)V < (κ+)V
P
.

Then there must be an inner model with a Woodin cardinal.

Note that singularizations of successor cardinals are also possible with Woodin’s stationary tower
forcing (see [12]). Assuming the existence of a Woodin cardinal λ in a model V of ZFC, the stationary
tower forcing P<λ can be defined so that for any regular cardinals κ1 < κ2 < λ, in VP<λ we have that

a) cardinals below κ2 are preserved;

b) cof(κ2) = κ1;

c) if δ < κ2 is such that 2δ < κ2 in V , then VP<λ contains the same subsets of δ as V .

However the chain condition on P<λ is large, and forcing with P<λ collapses many cardinals above the
cardinal being singularized. This is in sharp contrast to Theorems 5 – 8, where no cardinal above the one
being singularized is collapsed. In addition, the hypotheses of the existence of a Woodin cardinal λ used
in the definition of P<λ are far beyond what is needed to singularize the successor of a regular cardinal,
as Theorems 2 – 4 show.

This paper was initiated by the PhD-project of the first author [1], where Theorems 2 and 3 were
proved by introducing some Prikry or Magidor-type tree forcings with built-in Lévy collapses and an-
alyzing generic extensions as two-stage iterations. In Section 3 of this paper, we replace the tedious
combinatorial work with tree forcings by a general lemma on a “weak commutativity” of Lévy collapses
and some singularization forcings, and obtain Theorems 2 and 3 as corollaries. We prove Theorems 4 and
9 in Section 2 as immediate consequences of certain covering theorems. Successors of singular cardinals
are treated in Section 4. We conclude with remarks and further questions in Section 5.
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2 Lower bounds
We turn our attention now to obtaining lower bounds in consistency strength for the hypotheses needed
to define our singularization partial orderings.

For the proof of Theorem 4a), suppose ℵ2 ≤ κ. Let µ = (κ+)V . Assume Sing(µ,ℵ0) holds in V
and is witnessed via P. We work below 0¶ (the sharp for a strong cardinal), and take K =df KV as the
core model below 0¶. (If 0¶ exists, then all uncountable cardinals of V , in particular µ, are measurable in
some inner model.) Let G be V -generic for P. Since P is set forcing, K = KV = KV [G], and V [G] does not
contain 0¶. Further, since Sing(µ,ℵ0) implies that forcing with P changes µ’s cofinality to ω but preserves
all cardinals and cofinalities ≤ κ, in V [G], cof(µ) = ω, |µ| = κ, and ℵ2 ≤ κ < µ. In addition, since µ is
regular in V and K ⊆V , µ is regular in K. Putting all of this together, we thus have that in V [G], ℵ2 < µ,
µ is regular in K, and cof(µ)< |µ|. By [5, Theorem 1], µ is therefore measurable in K. This completes the
proof of Theorem 4a).

�

Theorem 4b) follows from (and in fact, is explicitly stated as part of) [14, Theorem 0.1].
�

For the proof of Theorem 9, let P ∈ V and κ be as in the hypotheses for Theorem 9. Assume that
there is no inner model with a Woodin cardinal. Then by the work of [11], it is possible to build K within
V and assume that it satisfies standard facts about core models. In particular, we know that K computes
successors of singular cardinals correctly. This means that

(κ+)K = (κ+)V .

Consider now VP. By the absoluteness of K and its properties under set forcing, it is possible to build
the same K within VP. Since by assumption (a), κ remains a singular cardinal in VP, it is still the case
that

(κ+)K = (κ+)V
P
.

However, since by assumption (b),
(κ+)V < (κ+)V

P
,

we have that
(κ+)K = (κ+)V < (κ+)V

P
= (κ+)K.

This contradiction completes the proof of Theorem 9.
�

3 Singularizing successors of regular cardinals
The results in this section are based on a lemma about the Lévy collapse

Coll(κ,<µ) = { f | f : κ×µ→ µ,∀〈ξ,ν〉 ∈ dom( f )[ f (〈ξ,ν〉)< ν], |dom( f )|< κ},

partially ordered by p≤ q iff p⊇ q. The term Coll(κ,<µ) can be interpreted in various models of ZFC.

Fix a transitive ground model M of ZFC and let µ be inaccessible in M. Let κ < µ be regular in M.
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Lemma 10 Let P∈M be a partial ordering which does not add bounded subsets of µ. Let G be M-generic
for P. Let H be M[G]-generic for (Coll(κ,<µ))M[G]. Then

H̄ = H ∩ (Coll(κ,<µ))M

is an M-generic filter for (Coll(κ,<µ))M. Hence, the two-stage forcing iteration M[G][H] is also of the
form

M[G][H] = M[H̄][G∗],

where M[H̄][G∗] is a two-stage iteration by Coll(κ,<µ) and some quotient forcing from M[H̄].

Proof: Obviously, H̄ is a filter for (Coll(κ,<µ))M. It remains to show M-genericity. Let D̄ ∈M be dense
in Coll(κ,<µ), i.e., in M,

∀p ∈ Coll(κ,<µ)∃q ∈ Coll(κ,<µ)[q≤ p∧q ∈ D̄].

By a reflection argument, it is possible to find λ < µ with cofM(λ)≥ κ such that

∀p ∈ (Coll(κ,<µ))M ∩ (Vλ)
M∃q ∈ (Coll(κ,<µ))M ∩ (Vλ)

M[q≤ p∧q ∈ D̄],

i.e., D̄∩ (Vλ)
M is dense in (Coll(κ,<µ))M ∩ (Vλ)

M. Define, in M[G],

D = {p ∈ (Coll(κ,<µ))M[G] | p∩ (Vλ)
M ∈ D̄}.

We show that D ∈M[G] is dense in (Coll(κ,<µ))M[G]. First, let r ∈ (Coll(κ,<µ))M[G]. Then r∩ (Vλ)
M ∈

(Coll(κ,<µ))M ∩ (Vλ)
M, since r cannot be cofinal in λ because cofM(λ) = cofM[G](λ) ≥ κ. Take q ∈

(Coll(κ,<µ))M ∩Vλ such that q≤ r∩ (Vλ)
M and q ∈ D̄. Define p = q∪ r � (κ× (µ\λ))≤ r. Then p ∈D.

By the M[G]-genericity of H, take p ∈ H ∩D. Then p∩ (Vλ)
M ∈ D̄, p∩ (Vλ)

M ≥ p, p∩ (Vλ)
M ∈

H ∩ (Coll(κ,<µ))M = H̄. Hence, p∩ (Vλ)
M ∈ D̄∩ H̄ 6= /0. This completes the proof of Lemma 10.

�

Given Lemma 10, it is now possible to prove Theorems 2 and 3. For the proof of Theorem 2, in M, let
µ be measurable, and let P be Prikry-forcing for µ. Let G be M-generic for P, and let H be M[G]-generic
for (Coll(κ,<µ))M[G]. Form H̄ as above. Then M[H̄] is a generic extension of M in which µ = κ+. Thus,
by Lemma 10, because M[H̄][G∗] = M[G][H], in M[H̄], there is a set generic extension preserving all
cardinals ≤ κ in which κ+ has been singularized with countable cofinality. This completes the proof of
Theorem 2.

�

For the proof of Theorem 3, suppose we start with a model V of GCH in which there exist δ< µ, δ and
µ regular cardinals such that o(µ) = δ. By the work of [7], V can be generically extended to a model M
in which µ remains measurable, δ remains regular, and it is possible to change µ’s cofinality to δ without
either collapsing cardinals or adding bounded subsets of µ. Suppose that in M, κ is regular, δ < κ < µ.
The argument used in the proof of Theorem 2 then applies to produce a generic extension M[H̄] having a
further set generic extension in which all cardinals ≤ κ are preserved and κ+ has been singularized with
cofinality δ. This completes the proof of Theorem 3.

�

We remark that by their definitions, the partial orderings witnessing the conclusions of Theorems 2
and 3 are both (2µ)+-c.c. In particular, assuming 2µ = µ+, each of these forcings is µ++-c.c. This is best
possible, since by a theorem of Shelah (which says that if δ is a regular cardinal such that after forcing
with Q, cof(δ) 6= |δ|, then Q collapses δ+ — see [16, Lemma 4.9] and [10, Corollary 23.20]), both of
these partial orderings must collapse µ+.
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4 Singularizing successors of singular cardinals
In this section, we will prove Theorems 5 – 8. We begin with the proof of Theorem 5.

Proof: Suppose κ = supi<ω κi, where 〈κi | i < ω〉 is a strictly increasing sequence of κ+-strongly compact
cardinals. The definition of our forcing partial ordering P uses an idea of Sargsyan found in [3] which
builds upon the work of [9] and [2]. Since each κi is κ+-strongly compact, let 〈Ui | i < ω〉 be such that
Ui is a κi-additive, uniform ultrafilter over κ+. P may now be defined as the set of all finite sequences of
the form 〈α1, . . . ,αn, f 〉 satisfying the following properties.

a) 〈α1, . . . ,αn〉 ∈ [κ+]<ω.

b) f is a function having domain Tα1,...,αn = {〈β1, . . . ,βm〉 ∈ [κ+]<ω | 〈α1, . . . ,αn〉 is an initial segment of
〈β1, . . . ,βm〉} such that f (〈β1, . . . ,βm〉) ∈Um.

The ordering on P is given by 〈β1, . . . ,βm,g〉 ≤ 〈α1, . . . ,αn, f 〉 iff the following criteria are met.

a) 〈α1, . . . ,αn〉 is an initial segment of 〈β1, . . . ,βm〉.

b) For i = n+1, . . . ,m, βi ∈ f (〈α1, . . . ,αn, . . . ,βi−1〉).

c) For every~s ∈ dom(g) (which must be a subset of dom( f )), g(~s)⊆ f (~s).

The usual density argument shows that forcing with P adds a cofinal ω sequence to (κ+)V . It is
possible to prove a Prikry lemma for P, i.e., given 〈α1, . . . ,αn, f 〉 ∈ P and formula ϕ in the language
of forcing with respect to P, there is a condition 〈α1, . . . ,αn, f ′〉 ≤ 〈α1, . . . ,αn, f 〉 deciding ϕ. More
specifically, we have the following.

Lemma 11 Given any formula ϕ in the forcing language with respect to P and any condition
〈α1, . . . ,αn, f 〉 ∈ P, there is a condition 〈α1, . . . ,αn, f ′〉 ≤ 〈α1, . . . ,αn, f 〉 deciding ϕ.

Proof: The proof of Lemma 11 is essentially the same as the proof of [3, Lemma 2] and generalizes
the proofs of [9, Lemma 4.1] and [2, Lemma 1.1]. We will quote verbatim as appropriate, making the
necessary minor changes where warranted. Specifically, let s = 〈α1, . . . ,αn〉, and say that n =df length(s).
For any t ∈ Ts, call t sufficient if, for some g, 〈t,g〉 ‖ ϕ (i.e., 〈t,g〉 decides ϕ). For t sufficient, let gt be a
witness, with gt(r) = κ+ for all r ∈ dom(gt) if t is not sufficient. If s is sufficient, then we are done. If
not, then for any t ∈ Ts, sufficient or otherwise, one of the sets

Xt = {α < κ
+ | ∃g[〈t_{α},g〉 
 ϕ]},

Yt = {α < κ
+ | ∃g[〈t_{α},g〉 
 ¬ϕ]},or

Zt = {α < κ
+ | ∀g[〈t_{α},g〉does not decide ϕ]}

is an element of Ulength(t). Let At be that set, and for i≤ length(t), let t � i be the first i members of t. For
t ∈ Ts, define f ′ by

f ′(t) = f (t)∩
⋂

n≤i≤length(t)

gt�i(t)∩At .

Note that by the definition of P, f ′(t) ∈Ulength(t), which means that 〈s, f ′〉 is a well-defined member of P
extending 〈s, f 〉.
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Now, let t be sufficient and of minimal length m+1 > n, with 〈t, f ′′〉 ≤ 〈s, f ′〉 and f ′′ = f ′ � Tt . Let t ′

be the sequence t without its last element. It then follows that At ′ must be either Xt ′ or Yt ′ , so we suppose
without loss of generality that At ′ = Xt ′ . It must be the case that 〈t ′, f ′ � Tt ′〉 
 ϕ, since if some extension
〈t ′′,g′〉
 ¬ϕ, such a condition must add elements to t ′, since t ′ isn’t sufficient. The first element added to
t ′, α, must come from Xt ′ , yielding a condition 〈t ′_{α}_u,g′〉 
 ¬ϕ. However, by construction,

〈t ′_{α}_u,g′〉 ≤ 〈t ′_{α}, f ′ � Tt ′_{α}〉 ≤ 〈t ′_{α},gt ′_{α}〉 
 ϕ,

which is a contradiction. Thus, 〈t ′, f ′ � Tt ′〉 ‖ ϕ, which contradicts the minimality of the length of t for
sufficiency. This completes the proof of Lemma 11.

�

Lemma 12 Forcing with P adds no new subsets of any δ < κ.

Proof: The proof of Lemma 12 is virtually identical to the proof of [3, Lemma 3]. As before, we will
quote verbatim as appropriate, making the necessary minor changes where warranted. Given δ < κ,
suppose that p = 〈α1, . . . ,αn, f 〉 
 “τ ⊆ δ”. Without loss of generality, by extending p if necessary, we
also assume that κn > δ. Further, by Lemma 11, for each β < τ, we let 〈α1, . . . ,αn, fβ〉 be such that
〈α1, . . . ,αn, fβ〉 ‖ “β ∈ τ”.

Note that the domains of all of the fβ s for β< δ and f are the same, namely Tα1,...,αn . Therefore, by the
choice of p and the definition of P, for each s∈ Tα1,...,αn , fβ(s) and f (s) lie in an ultrafilter Ulength(s) that is
κn-additive. This means that g(s) =

⋂
β<δ fβ(s)∩ f (s) is such that g(s)∈Ulength(s), and q= 〈α1, . . . ,αn,g〉

is a well-defined element of P such that q≤ p and q decides the statement “β∈ τ” for every β < δ. Hence,
forcing with P adds no new subsets of δ. This completes the proof of Lemma 12.

�

By Lemma 12, forcing with P adds no new bounded subsets of κ. Since any two conditions having
the same stem are compatible and the number of stems is |[κ+]<ω| = κ+, P is κ++-c.c. This completes
the proof of Theorem 5.

�

To prove Theorem 6, suppose V � “κ is κ+-strongly compact”. Fix U a κ-additive, fine measure over
Pκ(κ

+). We may now define strongly compact Prikry forcing Q as in [2] as the set of all finite sequences
of the form 〈p1, . . . , pn, f 〉 satisfying the following properties.

a) Each pi ∈ Pκ(κ
+).

b) p1 ⊆ ·· · ⊆ pn.

c) f is a function having domain Tp1,...,pn = {〈q1, . . . ,qm〉 | q1 ⊆ ·· · ⊆ qm and 〈p1, . . . , pn〉 is an initial
segment of 〈q1, . . . ,qm〉} such that f (〈q1, . . . ,qm〉) ∈U.

The ordering on P is given by 〈q1, . . . ,qm,g〉 ≤ 〈p1, . . . , pn, f 〉 iff the following criteria are met.

a) 〈p1, . . . , pn〉 is an initial segment of 〈q1, . . . ,qm〉.

b) For i = n+1, . . . ,m, qi ∈ f (〈p1, . . . , pn, . . . ,qi−1〉).
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c) For every~s ∈ dom(g) (which must be a subset of dom( f )), g(~s)⊆ f (~s).

Let G be V -generic over Q. Because |Pκ(κ
+)| = |[κ+]<κ| = κ+ and |[κ+]<ω| = κ+, there are only

κ+ many possibilities for stems for members of Q. Since any two conditions having the same stem are
compatible, Q is therefore κ++-c.c. By [2, Lemma 1.1] and the remark in the paragraph immediately
following, forcing with Q adds no new bounded subsets of κ. Thus, κ is a cardinal in V [G]. A routine
density argument (mentioned in the paragraph immediately prior to [2, Lemma 1.1]) tells us that the
ω sequence r = 〈pi | i < ω〉 generated by G changes the cofinality of both κ and (κ+)V to ω and also
collapses (κ+)V to κ. And, if we let r � κ = 〈pi ∩ κ | i < ω〉, by the density argument just mentioned,
r � κ also changes κ’s cofinality to ω. Consequently, in V [r � κ] ⊆ V [G], κ is a singular cardinal having
cofinality ω.

For A ∈U, let A � κ = {p∩κ | p ∈ A}. Define U � κ = {A � κ | A ∈U}. It is easy to verify that U � κ

is a κ-additive, fine measure over Pκ(κ). Let QU�κ be defined in the same manner as Q except that U � κ

is used in its definition instead of U. Because |Pκ(κ)| = |[κ]<κ| = κ and |[κ]<ω| = κ, there are only κ

many possibilities for stems for members of QU�κ. As in the preceding paragraph, this just means that
QU�κ is κ+-c.c. Further, since [2, Lemma 1.5] and the paragraph immediately following tell us that r � κ

generates a V -generic object G∗ for QU�κ and r generates G, V [r � κ] = V [G∗] and V [r] = V [G]. Hence,
(κ+)V [r�κ] = (κ+)V [G∗] = (κ+)V . In addition, as V [r � κ]⊆V [r], V , V [r � κ], and V [r] all contain the same
bounded subsets of κ.

Working now in V [r � κ], let P = Q/(r � κ), i.e., P is the quotient forcing of Q with respect to
r � κ. Take G∗∗ as the quotient generic object G/G∗. P is the desired forcing over V [r � κ] witnessing
Sing(κ+,ℵ0). This is since V [r � κ] and V [r � κ][G∗∗] = V [G∗][G∗∗] = V [G] contain the same bounded
subsets of κ, cofV [G]((κ+)V [r�κ]) = ω, and P = Q/(r � κ) is κ++-c.c. because Q is. This completes the
proof of Theorem 6.

�

When proving Theorems 7 and 8, we will omit precise definitions of the partial orderings, generic
extensions, and submodels used, which are rather technical in nature. Instead, we refer readers to the
relevant paper by Magidor. In particular, for the proof of Theorem 7, suppose V �“ZFC + κ is κ+-
supercompact”. By the proof of [13, Theorem 1], there is a partial ordering Q ∈ V and submodel V ′ ⊆
V [G] (where G is V -generic over Q) such that the following hold.

a) G generates generic sequences r = 〈pi | i < ω〉 and ~f = 〈 fi | i < ω〉 such that r changes the cofinality
of both κ and κ+ to ℵ0 and ~f collapses κ to ℵω.

b) V ′ =V [〈r � κ, ~f 〉], where as in the proof of Theorem 6, r � κ = 〈pi∩κ | i < ω〉.

c) In both V ′ and V [G], κ = ℵω.

d) V ′ and V [G] contain the same bounded subsets of κ.

e) (κ+)V = (κ+)V
′
< (κ+)V [G].

f) cofV [G]((κ+)V
′
) = ℵ0.

g) V ′ and V [G] have the same cardinals ≥ (κ++)V .
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If we now let Q∗ be the partial ordering and G∗ the V -generic object over Q∗ such that V [G∗] = V ′,
take P = Q/(〈r � κ, ~f 〉) as the quotient forcing of P with respect to 〈r � κ, ~f 〉, and let G∗∗ once again be
the quotient generic object G/G∗, then the argument found in the last paragraph of the proof of Theorem
6 in tandem with properties a) – g) above show that P is the desired forcing witnessing Sing(ℵω+1,ℵ0)
over V ′. This completes the proof of Theorem 7.

�

Finally, to prove Theorem 8, suppose V �“ZFC + κ is κ++-supercompact + 2κ+
= κ++”. By the proof

of [13, Theorem 2], there is a partial ordering Q ∈V and submodel V ′ ⊆V [G] (where G is V -generic over
Q) such that the following hold.

a) G generates generic sequences r = 〈pi | i < ω1〉 and ~f = 〈 fi | i < ω1〉 such that r changes the cofinality
of both κ and κ+ to ℵ1 and ~f collapses κ to ℵω1 .

b) V ′ =V [〈r � κ, ~f 〉], where in analogy to the proofs of Theorems 6 and 7, r � κ = 〈pi∩κ | i < ω1〉.

c) In both V ′ and V [G], κ = ℵω1 .

d) (κ+)V = (κ+)V
′
< (κ+)V [G].

e) cofV [G]((κ+)V
′
) = ℵ1.

f) V ′ and V [G] have the same cardinals ≥ (κ++)V .

If we once again let Q∗ be the partial ordering and G∗ the V -generic object over Q∗ such that V [G∗] =
V ′, take P = Q/(〈r � κ, ~f 〉) as the quotient forcing of P with respect to 〈r � κ, ~f 〉, and let G∗∗ be the
quotient generic object G/G∗, then the arguments found above in tandem with properties a) – f) show
that P is the desired forcing over V ′ singularizing ℵω1+1 in cofinality ℵ1 while preserving ℵω1 and also
preserving all cardinals ≥ℵω1+2. This completes the proof of Theorem 8.

�

5 Remarks and further questions
We note that there are key differences between the singularizing forcings constructed in Theorems 7
and 8. Specifically, the partial ordering P of Theorem 7 will not add new bounded subsets of ℵω (and
therefore won’t collapse any cardinals below ℵω), whereas the partial ordering P of Theorem 8 will
collapse cardinals below ℵω1 (and thus adds new bounded subsets of ℵω1). This is since the sequence
〈pi | i < ω1〉 collapses cardinals below κ (see [13] for further details). Also, easy modifications of the
definitions of the singularizing forcings found in Theorems 7 and 8 will allow us to prove analogues
of these theorems for other “small” singular cardinals of both countable and uncountable cofinality, as
well as an analogue of Theorem 6 for uncountable cofinality (using supercompactness instead of strong
compactness assumptions).

The theorems in this paper raise a number of questions. In particular:
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1. Can we have sequences of consecutive successor cardinals below ℵω which are simultaneously
singularizable? This is possible for ℵ2 (since Namba forcing is always definable in any model of
ZFC) and ℵ3 (by Theorems 2 and 3 above). Are there other examples, of length 2 or longer? Note
that the existence of such sequences has high consistency strength. In particular, if κ and κ+ are
both singularizable with κ > ℵ2, then there is an inner model with a Woodin cardinal.1

2. Can we obtain a model of ZFC in which κ is inaccessible and it is possible to singularize all regular
cardinals in the interval [ℵ2,κ) while preserving that κ is a cardinal?

3. Are there other successors of singular cardinals at which one can outright prove that a singularizing
forcing exists, assuming the appropriate large cardinal hypotheses?

4. Is it possible to weaken the large cardinal assumptions used to prove Theorems 5 – 8? What are the
optimal hypotheses?

5. Is it possible to prove versions of Theorems 5 – 8 in which the cofinality of κ+, the successor of the
singular cardinal, is changed to a cofinality different from κ’s? This can be done with the stationary
tower forcing. Note that by Shelah’s theorem of [16, Lemma 4.9] and [10, Corollary 23.20], any
partial ordering accomplishing this would have to collapse (at least) κ++ as well as κ+.

6. Is it possible to prove a version of Theorem 8 in which no bounded subsets of ℵω1 are added by
the singularizing forcing? More weakly, is it possible to prove a version of Theorem 8 in which no
cardinals below ℵω1 are collapsed? The analogous stationary tower forcing will not add bounded
subsets of ℵω1 assuming GCH. Work of Gitik [8] shows that any partial ordering with a definition
similar to the one given in Theorem 8 will of necessity have to collapse a stationary subset of
cardinals below ℵω1 .

7. What applications (if any) are there for the singularizing forcings constructed in this paper?
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